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The introduction of the Solvency II regulatory framework in 2011 and unprecendented property and casualty (P/C) claims
experienced in recent years by large insurance firms have motivated the adoption of risk-based capital allocation policies
in the insurance sector. In this article, we present the key features of a dynamic stochastic program leading to an optimal
asset-liability management and capital allocation strategy by a large P/C insurance company and describe how from such
formulation a specific, industry-relevant, stress-testing analysis can be derived. Throughout the article the investment manager
of the insurance portfolio is regarded as the relevant decision-maker: he faces exogenous constraints determined by the core
insurance division and is subject to the capital allocation policy decided by the management, consistently with the company’s
risk exposure. A novel approach to stress-testing analysis by the insurance management, based on a recursive solution of a

large-scale dynamic stochastic program, is presented.

Keywords: Property and casualty liabilities; Risk-adjusted returns; Stochastic quadratic programming; Dynamic risk—reward

trade-off; Stress-testing
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1. Introduction

Record property and casualty (P/C) insurance claims
reported by global players in recent years (CEA 2010,
Europe Economics 2009) and the introduction of the Sol-
vency Il regulatory framework (European Parliament 2009)
have induced a majority of global P/C firms to increase their
technical reserves and at the same time revise their capital
allocation policies under growing market competition. An
integrated approach to capital allocation and asset-liability
management (ALM) by insurance companies has emerged
as a managerial requirement and resulted in several internal
modelling efforts (Mulvey et al. 2007, Consigli et al. 2011).

In this article, we present the key features of a dynamic
stochastic program (DSP) leading to an optimal ALM by a
P/C insurance company (Bertocchi et al. 2011, Birge and
Louveaux 2011) and describe how from such formulation
a specific, industry-relevant, stress-testing analysis can be
derived. No reinsurance option is considered and the portfo-
lio manager is assumed to pursue a 10-year strategy driven
by a set of time-dependent performance targets. Throughout
the article the investment manager of the P/C portfo-
lio is regarded as the relevant decision-maker: he faces
exogenous constraints determined by the core insurance
(so-called technical) division and is subject to the capital
allocation policy determined by the management, consis-
tently with the risk exposure estimated by an independent
risk management division.

The literature dedicated to dynamic asset-liability mod-
els for P/C firms is limited. After the seminal paper by
Carifo et al. (1994) focusing, as here and in Consigli et al.
(2011), on a real-world application of DSP techniques, a
discussion on the role of reinsurance decisions by P/C
managers can be found in de Lange ef al. (2003). A rich

set of contributions originates from the extended coopera-
tion with the insurance sector by Mulvey, who concentrates
in Mulvey and Erkan (2005), Mulvey et al. (2007) on the
general structure of the decision process for multinational
insurers operating in global markets and the implications
on the optimal capital allocation decisions. The general
relationship between risk measures and capital allocation
is considered in Dhaene et al. (2003). In Consigli et al.
(2011), we presented a first version of the long-term P/C
portfolio problem under a set of simplifying assumptions,
including the lack of any risk capital constraint, the absence
of risk-adjusted reward measures and associated targets
and a simplistic liability model. We follow up from those
contributions and focus here on the relationship between
risk capital constraints, insurance claim scenarios and risk-
adjusted performance of a P/C portfolio. The introduction
across the financial and insurance sectors of performance
measures based on risk-adjusted returns (Modigliani and
Modigliani 1997) is one of the relevant evidences of recent
market history. Our contribution lies primarily on (i) the
explicit introduction in the optimization problem of control
equations on the allocated risk capital (as a function of the
portfolio strategy and leading to risk capital bounds for dif-
ferent risk factors correlation matrices), (ii) the extension of
the DSP approach to accommodate a post-optimality stress-
test analysis (with stress generated by the insurance busi-
ness) and the associated iterative solution method for wors-
ening input technical conditions. From (i) the evaluation of
the difference between allocated and absorbed investment
risk capital along specific scenarios can also be retrieved.
The following open questions are addressed: to which extent
a condition of increasing trouble in the core insurance busi-
ness needs to be compensated by a relaxation of the risk cap-
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ital constraints? Furthermore, in the presence of a trade-off
between short-, medium- and long-term targets in the deci-
sion model, how would the targets attainability be affected
by deteriorating technical ratios? We tackle these issues
relying on a stochastic optimization framework. From a
mathematical viewpoint the decision problem is formulated
as a quadratically constrained DSP (Bertocchi et al. 2011).

In Section 2, we present the mathematical instance of
the decision problem, while in Section 3 we discuss more
in detail the definition of stressed insurance scenarios and
the interaction between optimal investment processes and
risk capital allocation.

2. ALM model

We consider an insurance company within an ongoing P/C
business perspective: every year the company is assumed
to renew its liability portfolio, collect the premiums, set
the insurance reserves for future claims and compensate for
current claims. The income of the technical division is deter-
mined by the premiums collected net of insurance claims
and administrative and operational costs. The investment
manager will benefit from the liquidity generated by the
premiums and she/he will seek an optimal portfolio strat-
egy typically under an extended set of regulatory, technical
and financial constraints. For given insurance reserves and
expected evolution of the technical business, the risk man-
agement division will determine the capital to be allocated
against unexpected technical losses: this is the so-called
technical risk capital that will be treated as exogenous
and not under the portfolio manager control. Unlike the
technical risk capital, the investment risk capital, reflect-
ing the investment portfolio tail risk exposure, depends in
a dynamic setting on the adopted portfolio strategy and
will thus be endogenous to the optimal strategy. The com-
pany overall risk exposure is the sum of the technical and
investment risk capital.

2.1. The optimization problem

We consider an ALM probem over a 10-year planning
horizon, split into non-homogeneous decision stages ¢ €
T,T =1{0,0.5,1,2,3,5,10}; T is used to denote the 10-
year horizon. We adopt a discrete scenario tree represen-
tation of the uncertainty underlying the decision problem,
with nodal labels n € N; at stage ¢. For each node 7 in
N, F, denotes the o-algebra, or information set, available
to the decision-maker at that node. We denote with a(n)
the sequence of all ancestors of node » and with c(n) the
nodes originating from node » up to the end of the plan-
ning horizon: this is the subtree originating from node n.
We indicate with ¢, the time stage for node » and denote
the set of immediately descending, or children, nodes of n
by n+ and its unique parent node by n—: for each leaf node
nr the sequence of nodes ny—, (ny—)—,...,no defines a
scenario path.

Given the investment universe /, we denote with X, =
> icr 2meatm Ximn the portfolio value in node n as the
sum of all holdings of assets i € / held for periods ¢, —
tw, for all m € a(n). Similarly, we indicate with X" =

;x;, the buying decisions in node n and with X, =
D el 2meatn Ximn S€llings of assets in node n which were
bought in node m € a(n). The need to keep track of holding
periods is related to the inclusion of the portfolio capital gain
and losses in the model formulation. Let z,, denote the cash,
liquid, position of the portfolio. The management board is
assumed to specify a set of investment targets Vi, j=1,2,3,
at the 1-, 3- and 10-year horizons respectively. Slightly
abusing notation, we use A7 to specify the set of nodes
associated with the jth target, while 7, is the associated
information structure. Accordingly E[V;|F,] will denote
the expectation of V7 conditional on the information set
associated with that node in the scenario tree (Beraldi ez al.
2011). In the discrete model, all nodes at a given stage are
treated as equally probable in the definition of the expec-
tation. In the optimization problem, the three targets l7j are
associated with

V! = (I, + IT'): the sum of financial and tech-
nical operating profits before taxes: the operating
profit.

V= (I, — ®,)¢ — kK%: a surplus investment
value —the investment value created (IVC)— deter-
mined by the financial operating profit net of a cost
®,, and taxes ¢, minus the portfolio cost of capital
K. Here « is a constant cost of capital coefficient
and K, , as specified below, is the portfolio invest-
ment risk capital in node n. The quantity &, reflects
a specific cost of funding assumed to be charged by
the actuarial division on the investment manager to
compensate, at the current short-term interest rate,
for the transfer of resources induced by growing
insurance liabilities. From ¥'! we denote with

V3 = V!¢: the company overall profit after taxes.
From V? with associated target V'3, the company
return on risk-adjusted capital (RoRAC) target can
be specified as Z, = Vn3 /K, this is the ratio of the
total profit to the company overall risk capital K,
(see below), with an associated target Z.

Both V7 and Z, are considered risk-adjusted rewards
based on Ki: and K,, respectively (Modigliani and
Modigliani 1997). The former is a performance indicator
specific to the portfolio manager responsible for generat-
ing a reward sufficient to compensate the investment risk
exposure and the internal cost of funding. The latter instead
focuses on the company overall risk-adjusted performance.
The financial operating profit 1'[’,; represents the key vari-
able for the portfolio manager. It is the sum of the portfolio
income returns and the capital gains:

H{q = Xn—én + Z Xm_,nym,n + HC;—:

mea(n)

where &, denotes the portfolio cash return innode n and y,,, ,
the capital gain and loss coefficients on selling decisions.
The other stochastic coefficients of the DSP are clarified in
Section 2.2.
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We solve the following optimization problem, based on
a convex trade-off between a growth criterion and a penalty
function defined with respect to the targets V; forj = 1,2, 3:

xeX,

max { (1 — ) Y MEVIIF] — o Y LEV — Vi F)]
J J

(1

subject, for ¢ € T, n € NV, to the following constraints:

(1) The portfolio inventory balance constraints:
X, =X,-(1 +pn)+Xn+_Xn_ + Zp. 2

(2) The cash balance constraints (3), which include the
cash balance z, and accumulated interests, the P/C
premiums R, treated as exogenous and driven by
market competition, the insurance claims L, the
associated operational costs C, and cash payments
generated by the holding portfolio X,:

zn =X, —A/YnJr +R,—L,—C,
+ Xubn +z,— (1 +1,). 3)

(3) A maximum turnover constraint (4) under which in
node n buying and selling decisions cannot exceed
a certain proportion ¢ of the current portfolio value:

X+ X, = 0X,-(1+ pa). (4)

(4) An investment risk capital constraint (5) under
which at any point in time the value X, of the
portfolio, net of the reserves A, and the technical
risk capital K} must be sufficient to hedge against
unexpected investment losses:

Kg = Xn - An - KytI) (5)

A, are statutory inflation-adjusted reserves
allocated at time ¢, which are consistent with
the reserves’ so-called rum-off profile: A, =
> cefr.4] As,r» Where T denotes the extinction year
(or end of the run-off period) of the insurance
reserves allocated at time ¢, for all future claims
from year 1 to 7. The constraint in equation (5)
provides an upper bound to the capital that can
be allocated to the investment division and can
be regarded as a default boundary for the overall
P/C business. We assume K! = A, - k', where «'
is a predetermined constant risk multiplier. K, =
K, + K! defines the company global risk exposure
in node n. At the root node we have K{o = Kf,o =
K,, =0.

The DSP solution implies for given « the maximization
of equation (1) subject to the constraints (2)—5).

2.2. Scenario generation

All investment positions JX;, € I in node n are defined
in terms of current market values: the optimal strategy is

determined at each stage in terms of portfolio rebalancing
decisions expressed in market values along the scenario
tree and up to the beginning of the last stage. No rebalanc-
ing is allowed at T'. A distinction between price and income
returns for each investment opportunity is introduced in the
model: p;, is a price return in node » for asset i per unit
investments, computed as p; , = (v;,/Vin—) — 1, where v;,
denotes the clean price of benchmark i in node n. Cash
returns are computed from income coefficients (coupon
rates, dividend yields and rental rates) &;, taking accrual
times into account, from holdings in the parent node. The
scenario coefficients p,, r,, &, and y,,, in problem (1)—~5)
define, for ease of mathematical representation, the port-
folio price return, the interest rate on the money account,
the portfolio income return and the capital gain and losses,
respectively.

The investment universe includes a set of global mar-
ket indices for treasuries with different maturity buckets,
inflation-linked bond indices, corporate bond indices for
speculative and investment grade positions, equity and pri-
vate equity investments, direct and indirect real estate and,
finally, a set of alternative investments including renewable
energy, infrastructures and commodities.

As for liability scenarios, these are generated exoge-
nously by the insurance division through the so-called
chain-ladder methodology. The insurance claims and the
reserves run-off profiles over the 10-year horizon are then
inflation-adjusted from an underlying evolving inflation
process.

From a methodological viewpoint scenarios are gen-
erated through a set of dedicated economic and financial
models employing a Monte Carlo procedure adapted to
the scenario tree conditional structure. For an overview of
scenario generation methods, we refer to Bertocchi et al.
(2011).

We focus next on the dependence of the investment risk
capital evolution on the adopted portfolio strategy.

2.3. Investment risk capital control

According to regulatory and operational standards (Mulvey
et al. 2007), the risk exposure K} of the portfolio man-
ager is assumed to carry two components: K represents
a linear risk exposure induced by an asset-liability dura-
tion mismatching and K7 reflects the portfolio market risk
exposure:

K/ =Kl + K”, (6)
Kl = (AL — AN Ydry(ty — t,2) + KT, ()

K= NS Xow Xy ky(ty — ta) +KE. (8)
i€eZ jeT

In equation (7), AL =", coon XimnBin and AN =
ZT>IH A, - (T —t,) are the asset and liability durations
in node n, respectively. In equation (8), k;; are defined as
the product between the risk charges &; and the correlation
coefficients &;; between assets i andj : kjj = k; - k; - £;;. The
risk charges k; and the correlation matrix { with elements
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i can either be estimated through appropriate statistical
procedures or, as we assume in the sequel, set by the regula-
tory body. We observe that following Solvency Il standards,
the k;’s are defined between 0 (lack of extreme risk: trea-
suries, fixed income positions) and 0.40 (maximum tail
risk exposure: alternative investments, commodities), while
the correlation matrix is positive definite. In the numerical
study, we consider three specifications for ¢: as a matrix
of all 1 (perfect and positive risk factors correlation), as an
identity matrix (uncorrelated risk factors) and as the regula-
tory matrix (correlation coefficients between 0 and 1). From
an economic viewpoint, K forn e N; defines the risk capi-
tal absorbed or consumed by the investment strategy while
the right-hand side in equation (5) represents the maximum
risk capital that in a dynamic setting can be allocated to
the portfolio manager. The former cannot exceed the latter
from a risk management perspective.

In our numerical application, the stochastic program
(1)~«(5) is solved replacing k; in equation (8) with l~c,«j,
a rescaled matrix to preserve feasibility with respect to
constraint (5):

K =K/ +|KI+ ZZX;_X;J{ N ()

The definition leads to a quadratically constrained
stochastic program (QCSP). After solution and given the
optimal policies along each scenario we recompute the
investment risk capital consistently with equation (6) and
derive the appropriate values of V2, I3 and Z for further
analysis.

3. Stressed technical scenarios and risk capital

The combined ratio T, := (L, + C,)/R, = L,/R, + C,,/
R, =1, 4 ¢, of claims plus operational costs to premi-
ums is regarded as a key measure of P/C business effi-
ciency and reflects the core activity profitability. I, is
expected to remain on average below 1. However, dur-
ing the last years several large P/C companies have
been confronted with combined ratios frequently close
to one, resulting into increasing pressure on the invest-
ment strategy. L, in insurance practice is often esti-
mated as a certain constant percentage of expected pre-
miums: L, =/ X R,. As [ (an input to the scenario gen-
erator) increases so will the claims and the associated
reserves A,. Such increase will impact both the IVC,
due to an increasing cost of funding — &, in the vari-
able specification — and the RoORAC, due to an increas-
ing technical risk capital K! and decreasing operating
profit.

Consider the following formulation of the financial risk
upper bound:

K <3 -1X,— A, — K. (10)

In constraint (5) x was assumed to be equal to 1. Here
we allow x to vary and in the case study below we allow
the coefficient to increase from 0.6 to 1.2. A coefficient
below 1 will force the portfolio manager to follow a very
conservative and non-risky strategy, while the opposite is

true for x increasing above 1. For different specifications
of %, it is of primary importance to the P/C management —
and the focus of this analysis — the evaluation of the impact
of stressed technical conditions on the [IVC and the RoORAC
dynamics.

3.1. Stress-testing methodology

For given goals 72 and Z on the IVC and RoRAC,
respectively, the stress-testing application is based on the
evaluation through a sequence of DSP solutions of the
impact of an increasing loss ratio / — claims per unit premi-
ums — on the risk-adjusted returns, while relaxing through
X the risk capital constraint.

Let in particular Y (J, X5, 1, 2) denote the stochastic
program solution for given loss ratio /; and risk capital
coefficient ¥, with @ = 1 in equation (1) and fixed num-
ber of financial and insurance scenarios 2. We wish to
evaluate numerically along a representative mean scenario
the surfaces V? = f (I, s) and Z; = f (L, Xs) of the risk-
adjusted returns to increasing loss ratio and risk capital
tolerance. We analyse Y (I, x5, 1, 2) for different input val-
ues /; = {0.52, 0.56, 0.59, 0.63, 0.66, 0.7} and x, = {0.6,
0.72, 0.84, 0.96, 1.08, 1.2} on a sequence of problem
instances with 768 scenarios and a branching structure of
[6'4223]. The weights A; = 0.5, A, = 0.2 and A3 = 0.3 are
considered as default settings in the objective function, con-
sistently with insurance practice (Consigli ef a/.2011). The
following coefficients are also considered in the case study:
a turnover constant ¥ = 0.3, the technical risk capital mul-
tiplier x* = 0.17 and the cost of capital k = 8%. Targets
(figure 1) are set at the 3-year horizon to V2 = 400€ per
year, assumed to be roughly 0.5% of the initial portfolio
value, and at the 10 years to Z = 14%, an RoORAC target.

3.2. Results

We summarize first the results collected from the solution
of one instance of the DSP ((1)~5)), for/ = 0.6and x =1,
and then analyse the evidences emerging from the stress-
testing exercise.

All results have been collected on an HP workstation
with Intel® Core 13-3220-CPU at 3.30 Ghz processor and
5 Gb of RAM running Windows 8 OS and 453 GB of hard
disk. The model has been implemented in the algebraic
modelling language GAMS 21.3, with scenarios, graphi-
cal user interface and main program all in Matlab R2011b.
We have generated the deterministic equivalent (DetEqv)
in GAMS and selected the Cplex solver for large-scale
quadratically constrained problems.

The following analyses are relevant for our purposes
and can be retrieved from the DSP optimal solution:

(1) for given targets we wish to assess the time evolu-
tion of (V2 — V2) and (Z — Z,) at the target stages
and over the planning horizon along a representa-
tive scenario and

(2) estimate the investment risk capital absorption
K{ relative to the maximum risk exposure in
equation (10).
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Figure 1. IVC and RoRAC behaviour along a representative mean scenario.
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Figure 2. Investment risk capital requirements for different correlation matrices ¢.

From an economic standpoint, the higher the return gen-
erated by the portfolio manager, the lower is the required
risk capital, the higher is the company long-term profitabil-
ity. In the presence of increasing insurance costs, due to a
worsening combined ratio, increasing investment returns
are welcome only if the absorbed risk capital does not
compensate such increase. The investment risk capital is
evaluated at each stage and cumulates from time 0 up to the
10-year horizon. The focus is on a representative mean sce-
nario, identified as detailed in Consigli e al. (2011) by the
scenario and portfolio policy leading to a mean operating
profit trajectory. A shadow area highlights in figure 1 the
target stages. The plots show along the specified scenario
the dynamic of the IVC and RoRAC with respect to their
targets. Only in the short term both reward measures remain
below their targets, when however the portfolio manager is
concerned primarily with the end-of-year-1 financial profit
target V.

The same underlying optimal portfolio policy generates
under the three different specifications of the correlation
matrix ¢ (see equation (6)) the investment risk capital
requirements plotted in figure 2. The thin solid line is
associated with the regulatory correlation matrix consistent
with the Solvency Il framework. The two dotted lines are
instead associated with the case of perfect positive correla-
tion between risk factors (upper line) and uncorrelated risk
factors (lower line).

Under any specification of the correlation matrix the
investment risk capital absorbed by the portfolio policy
is lower than the maximum risk exposure specified in
equation (5) and displayed in red in figure 2.

The stochastic program can be solved recursively for
different specifications of the loss ratio to perform stress-
testing: a new set of liabilities is derived at each run and
input to the optimization problem. At the same time we
relax the investment risk capital upper bound and analyse
along the representative mean scenario the dynamics of the
IVC and RoRAC surfaces, displayed in figures 3 and 4.

Consider V2 first. As the loss ratio increases, so will
the endogenous cost of funding: the IVC will deteriorate
if, for given income taxes and exogenous cost of capital,
the portfolio manager will be unable to push portfolio net
returns up without increasing the portfolio cost of capital.
From figure 3 as the loss coefficient increases the IVC at
the three-year horizon decreases: the derivative is negative
and decreasing rapidly as the loss ratio reaches 0.65. On the
other hand, V2 appears relatively independent from the allo-
cated risk capital, suggesting that to achieve the specified
target, as the loss ratio deteriorates, the portfolio manager
will not find convenient to move into riskier strategies,
which would require incremental investment risk capital.

We can also evaluate the dependence of the IVC on
the loss ratio only, through the Matlab interactive inter-
face: for [ = {0.5,0.6, 0.7}, for instance, the IVC achieved
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by the strategy at the three-year horizon changes, respec-
tively, to V2 = {3021,3003,2927}. Taking all runs into
account, we can fit the surface through a nonlinear spline
and with sufficient accuracy derive an estimate of the
IVC—loss ratio first-order derivative d72/3] = —501017 +
3010, which depends on the loss ratio /. Through this
approximation the insurance management can evaluate the
impact of an increasing loss ratio on the IVC achieved by the
optimal policy under an average financial market scenario.

A different set of evidences comes from the estimation
along the same average scenario of the RoRAC surface
against the loss ratio and the investment risk tolerance.
The RoRAC is very sensitive to the change of technical

coefficients and indeed as the loss ratio deteriorates an
increasing limit risk exposure is exploited by the portfolio
manager to achieve higher risk-adjusted returns and reduce
the target shortfall.

We can again evaluate the dependence of the RORAC
on the loss ratio and the risk tolerance coefficient
through the Matlab interactive interface: for {/;x} =
{0.5;1.2,0.6; 1,0.7; 0.8} the RORAC achieved by the strat-
egy changes, respectively, to {0.38;0.31;0.20}. Interest-
ingly the 3D surface can be fitted in this case with
a hyperplane with equation Z = 0.864 K/ — 0.551, with
estimated first-order partial derivatives 0Z/d/ = —0.55
and 3Z/3dK’ = 0.864. Contrary to the previous case, the
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relaxation of the investment risk capital constraint is in
this case exploited to compensate the stress generated by
increasing losses on the P/C business.

The evidence collected on the sensitivity of the IVC and
the RORAC to worsening technical conditions depends to a
certain extent on the financial and insurance scenarios con-
sidered in the problem. For given scenarios, however, the
different behaviour of the IVC and RoRAC can be related to
the different risk exposure considered by the two indicators,
relative to the investment risk K, (which is endogenous to
the optimal strategy) for 2 and to the total risk capital K,
for Z. In the first case, in the presence of increasing cost of
funding the search for profit by the portfolio manager may
be jeopardized by an increasing cost of capital: this is the
evidence emerging from our study.

The estimation of the above surfaces through repeated
solutions of the DSP problem and the derivation of an ana-
lytical relationship between risk-adjusted returns, loss ratio
and risk capital tolerance allow the management to evalu-
ate the business forward evolution and adapt medium- and
long-term business plans to alternative insurance scenar-
ios. The accurate estimation of an average, representative
stress-testing surface is a computationally very challeng-
ing application and extensive numerical work is needed
to derive a robust surface estimate, a requirement for the
subsequent fitting procedure, here briefly outlined, and the
stress-testing analysis.

4. Conclusions

Following the historic change of the insurance world
towards risk-based capital allocation policies and evi-
dence of stressed conditions in the core business in sev-
eral advanced economies, we have presented an approach
based on dynamic stochastic programming to evaluate how
exogenous changes of loss ratios and relaxed risk capi-
tal constraints would affect P/C portfolios risk-adjusted
performances. A stress-testing analysis has been derived
from the iterative solution of a sequence of DSPs lead-
ing to the definition of IVC and RoRAC sensitivity
surfaces. In the presence of deteriorating insurance coef-
ficients, under the introduced modelling framework and
set of assumptions, the following evidences are worth
recalling:

e The investment value surplus decreases as the loss
ratio increases and an increase of the allocated risk
capital would not be beneficial.

e The RoRAC, instead, has shown a negative linear
dependence on the loss ratio, compensated in this case
by an increasing risk capital absorption.

e The QCSP problem formulation has facilitated the
adoption of a decision paradigm taking into account
risk factors correlation and intertemporal trade-
off between short-, medium- and long-term targets
leading to optimal strategies with minimal risk capital
requirements over a 10-year horizon.
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