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Abstract

The price of inertial platforms (based on MEMS sensors) is dropping, permit-

ting the use of these sensors in various field, like, for instance, the industrial

one. The inertial measurements can be used raw or can be elaborated in

order to obtain high level information like the orientation of an object.

The thesis approach the problem of using the inertial platforms firstly as

orientation sensor, showing some algorithms for the estimation, and then as

a way to increase the performance of a mechatronic system.

The first application shows an innovative anti sway system for bridge crane

which uses the inertial platform as angle sensor; the estimated oscillation

angle is then used inside a control loop to move the crane without sway,

increasing the safety and the productivity. To be noted that the control is

invisible to the operator, leading to the so called Human In the Loop (HIL)

structure. Then, a condition assessment algorithm, based on the analysis

of the spectrogram of the acceleration using the Dynamic Time Warping, is

explained for a circuit breaker. The last chapter shows an impact detection

algorithm for an automatic access gate, based on a sensor fusion between

acceleration and the motor torque in order to estimate the friction coefficient

and, on this parameter, evaluate the presence of the impact.

All the solutions proposed aim to show how these type of sensors can be

used in an innovative way to attain better performance from an industrial

mechatronic system.

Keywords. Inertial Platforms, Mechatronic Systems, Orientation Estima-

tion, Anti-Sway System, Condition Assessment, Impact Detection.





Contents

1 Introduction 1

2 Orientation estimation 7

2.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Accelerometer . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Magnetometer . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Orientation Algorithms . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Quaternion Extended Kalman Filter . . . . . . . . . . 16

2.2.2 Quaternion Complementary filter . . . . . . . . . . . . 22

2.2.3 Reduced Kalman filter . . . . . . . . . . . . . . . . . . 24

2.2.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Anti sway system 31

3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Model of the system . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Model validation . . . . . . . . . . . . . . . . . . . . . 40

3.3 Angle Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Sensor placement . . . . . . . . . . . . . . . . . . . . . 43

v



vi CONTENTS

3.3.2 Algorithm for sensor fusion . . . . . . . . . . . . . . . 44

3.4 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Closed-loop analysis . . . . . . . . . . . . . . . . . . . 46

3.4.2 Control system simulation . . . . . . . . . . . . . . . . 46

3.4.3 Real Control System . . . . . . . . . . . . . . . . . . . 63

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5.1 Test number 1 . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.2 Test number 2 . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7.1 Motor delay . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7.2 Load connection . . . . . . . . . . . . . . . . . . . . . . 82

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Condition assessment 87

4.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 System Description . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 Dynamic Time Warping . . . . . . . . . . . . . . . . . 93

4.3.2 Application to condition assessment . . . . . . . . . . . 98

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Collision detection 109

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Model of the system . . . . . . . . . . . . . . . . . . . 113

5.2.2 Problem Description . . . . . . . . . . . . . . . . . . . 116



CONTENTS vii

5.2.3 Experimental setup . . . . . . . . . . . . . . . . . . . . 117

5.3 Collision detection algorithms . . . . . . . . . . . . . . . . . . 120

5.3.1 Model free - Pure Inertia (PI) . . . . . . . . . . . . . . 120

5.3.2 Model based . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4.1 Stiff impact . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4.2 Soft impact . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4.3 Considerations . . . . . . . . . . . . . . . . . . . . . . 133

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Conclusions 137





Chapter 1

Introduction

The best way to introduce the thesis is by analyzing the title:

Control and estimation problems based on inertial measurements in

industrial mechatronic systems

it defines the context of the thesis, industrial mechatronic systems, the type

of problems, control and estimation, and finally the tools used to solve these

problems, the inertial sensors. But what are these industrial mechatronic

systems and why use the inertial sensors? Let’s discuss these two topics

more deeply.

Inertial sensors are sensors based on inertia, as obvious. These range from

MEMS inertial sensors, measuring only a few square mm, up to ring laser gy-

roscopes which are extremely accurate but can measure 50 cm in diameter. In

particular, in this thesis all the sensors are based on the MEMS technology;

MEMS, acronym of MicroElectroMechanical Systems, is the technology of

very small devices, from sensors to actuators to gears and mechanical struc-

tures. The most famous MEMS are for sure the sensors, and in particular,

the accelerometer and the gyroscope which completely changed the consumer

1
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Figure 1.1: The evolution and the previsions, in terms of revenue, of the
MEMS market.

electronic market in the last years. First developed in the 1970s and then

commercialized in the 1990s, MEMS are smaller, faster, more energy-efficient

and less expensive than the traditional sensors; with these characteristics it

is possible to embed the MEMS sensors almost everywhere, making the de-

vices more smart.

In figure 1.1, it is possible to see how the market expanded over the last

years. Analyzing each sector, it is visible how the consumer field (smart-

phone, tablet and other electronics gadget) and the medical (e-health, moni-

toring etc.) had the biggest increase in terms of revenue. Even the industrial

sector, which is the one analyzed during the thesis, is expanding; obviously

the number of pieces involved in the industrial field are a minor part com-

pared to the million (or even billion) of parts inserted into the electronic

devices.

The effect of such an evolution of the MEMS market is that the price of each

sensor drops: the average price of accelerometers and gyroscopes will fall

from $1.01 to $0.90 within the end of 2015, according to IC Insights. This



3

price drop is one of the reason of the expansion of this market even inside an

industrial application like, for instance, a mechatronic system.

In an industrial mechatronic systems, the MEMS sensors is able to increase

the knowledge of the system, permitting an increment of performance in

terms of:

• safety;

• maintainability;

• efficiency;

• productivity.

These improvements, as obvious, cannot be reached only using the raw data

of the sensor (e.g. accelerometer or gyroscope), but a signal processing is

needed.

The process of obtain useful information from an inertial MEMS sensor

is described during the thesis. In the first chapter some algorithms which es-

timates the orientation of an object from accelerometer, magnetometer and

gyroscope are shown.

This is a typical use of the inertial sensor, which is widely applied in the con-

sumer electronic and in some medical devices. The two proposed algorithm

aims to identify the orientation in a very accurate manner without increasing

the computational burden.

This chapter can be seen as a bridge between the use of the inertial platform

in the consumer electronic and the use in the industrial systems. In fact,

in the next chapter, a pure industrial application shows how the previous

algorithms can be used in order to estimate an angle to use in a control loop.

The system shown in the third chapter is an anti sway system; it permits
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to use a bridge crane avoiding any oscillation of the load. This control sys-

tem is able to be completely transparent to the operator, who can use the

bridge crane as before, but moving the loads without sway. The effect is an

improvement in terms of safety and even productivity, since the load can be

moved more quickly.

In this application, the inertial measurements are used for the estimation of

the oscillation angle; then a control loop is closed directly on this measure-

ments.

The fourth chapter explain how to use an accelerometer for a vibration analy-

sis which can lead to a condition assessment of a circuit breaker. In this case,

the MEMS sensor used is only an accelerometer which records data during

the typical operation of the circuit breaker. An algorithm constantly ana-

lyzes these measurements permitting to identify if a deterioration is affecting

the functionality of the system. In particular a machine learning algorithm

(the Dynamic Time Warping) is used in order to compare the spectrogram

of the accelerometer measurements.

The fifth chapter addresses a safety problem related to the impact detection

on an automatic access gate. The sensor used is still a MEMS accelerome-

ter, which permits to identify the deceleration due to an obstacle. A sensor

fusion algorithm, which is able to identify every type of impact, is then pre-

sented, showing its effectiveness. The method used to solve this problem was

a Kalman filter which mixes the accelerometer measurements with the motor

torque.

Resuming the title, this thesis faces different control and identification

problems in the industrial field. The linking rule of these problems is the use

of inertial platform and in particular MEMS sensors.

The thesis shows how is possible to use these type of sensor in order to
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highly increase performance of control, estimation or identification systems

using inertial sensors, which provide high performance for a low price and

size.





Chapter 2

Orientation estimation

The orientation estimation issue is a well known problem in the engineering

field. Two main different approach exists:

• Optical: it is typically composed by at least two cameras which analyze

the positions of active or passive markers placed on the object to track.

More cameras can be used, highly increasing the efficiency. A typical

optical tracking system requires more than 4 cameras.

• Inertial/Magnetic: this solution typically is composed by a small elec-

Figure 2.1: On the left an optical motion capture, where the cameras are
visible on the top and the lights on the two people are the markers. On the
right is visible a very small MARG system.

7
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tronic board, with a tri-axial accelerometer, a tri-axial gyroscope and

a tri-axial magnetometer on it. These board are called IMU (Inertial

Measurement Unit) if they are composed only by a gyro and accelerom-

eter; adding the magnetometer the name changes in MARG (Magnetic,

Angular Rate, and Gravity). Both MARG and IMU are able to fully

estimate the orientation.

The first technique has the big advantage of being very precise, permitting

to estimate even the position, not only the orientation. The second solution,

reaches almost the same performance in terms of orientation precision but

has big problems in the estimation of the position.

It has to be said that the optical solution has two big drawback that the

inertial approach solves; in fact the optical systems are very expensive and

they work only in a limited space, typically a room, while the inertial systems

are very cheap, they don’t have limits regarding the space and they are less

invasive. In figure 2.1 are shown one optical system and a MARG.

The choice between one of the previous system typically is application ori-

ented, meaning that both systems have advantages and drawback, so a per-

fect solution for all the applications doesn’t exist. In this chapter, and in

general during all the thesis, the focus will be on the inertial platform; they

are the perfect solution in industry, they are cheap, non invasive and with

great performance.

The determination of objects orientation is a task needed in several fields:

among them, human motion tracking [57], inertial navigation [48], robotics

[3] and in a lot of industrial problems which involves the estimation of an an-

gle (e.g. see chapter 3). These problems can be solved using a sensor fusion

algorithm that is based on an inertial platform measurements. The develop-

ment of these orientation estimation algorithms is a challenging task since
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it involves the creation of filters which are able to take the advantages from

all the sensors in order to create a robust estimation. In literature several

approaches can be found, and most of them are based on the Kalman filter

([57],[14],[32]). Various alternatives to the standard EKF have been recently

introduced, such as unscented Kalman filters (UKF ) [15], also known as

sigma-point filters, and particle filters (PF ) [41]. These two types of filters

overcome the problems of the Kalman filter connected to high non linearity

in the state transition and observation models. The PF has some similarities

with the unscented; both transforms a set of points through known nonlinear

equations and combines the results to estimate the mean and covariance of

the state. The difference between the PF and the UKF is that in the par-

ticle filter the points are chosen randomly, while in the UKF the points are

chosen on the basis of a specific algorithm (the unscented transformation).

Because of this, the number of points used in a particle filter generally needs

to be much greater than the number of points in a UKF , increasing the

number of simulation, and consequentially the computational burden for a

particle filter. Most of these techniques are described in [16].

In this chapter, the problem of estimating the orientation of a IMU or

MARG is approached, starting with a description of the typical sensor with

the pros and cons of them. Then the algorithm for the estimation are pre-

sented, firstly the Quaternion Complementary Filter (QCF ) and then the

Quaternion Extended Kalman Filter (QEKF ).

It has been decided to show these two type of algorithms because most of

the problem related to the orientation estimation can be solved using one

of them. Furthermore, with the aim of using these sensors in an industrial

environment, the QEKF and the QCF can be implemented on real system
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without requiring high performance microcontroller.

2.1 Sensors

As previously discussed the IMU or MARG platforms are composed typically

by three types of sensor: accelerometer, gyroscope and magnetometer. Each

of them can be used in order to estimate the orientation and all of them

have some pros and some cons. In the next sections these sensors will be

described, analyzing the correct way to use them.

2.1.1 Gyroscope

A triaxial gyroscope senses the angular velocity on its three axis; due to

this, in order to obtain the real angles, an integration of the measurements

is needed.

This process has the typical disadvantages related to an integration since the

sensed angular speed is not the real one, but it is composed by the following

parts:

ωm = (1 + sf ) · ωr + b0 + b(t) (2.1)

where ωm is the angular speed measured, ωt is the real angular speed, sf is a

scale factor, b0 an offset and b(t) is a stochastic process linked to electronic

and environmental noise on the measurements.

The value of sf and b0 can be estimated during the calibration phase, but

typically can be avoided. In fact sf is usually close to one, while the bias b0

is sensible can be easily filtered or estimated online [52]. The noise, instead,

can not be known or estimated; only a statistical distribution of it can be

defined. It is pretty clear that, even reducing the sample time, the integration

will make the angle drifts, making the estimation unusable.
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2.1.2 Accelerometer

The accelerometer measures all the acceleration on the three axes ( x, y and

z) of the system. Using the trigonometry it is possible to deduce the Euler

angles (yaw, pitch and roll) with respect to a fixed tern x, y, z:

γ = atan2 (Ay, Az)

φ = atan2 (Ax, Az)

ψ = atan2 (Ay, Ax)
(2.2)

where γ, φ and ψ are the angle around x, y and z, Ax, Ay and Az are the

components of the gravity acceleration on each axis and atan2 is the arctan-

gent function with two arguments that has (−π, π] as image. The equations

(2.2) have two main problems:

1. if one of the sensing axes is parallel to the gravity vector ~G one degree

of freedom is lost, making impossible to estimate the angle around this

axis. In fact, the two axes perpendicular to ~G will measure a gravity

acceleration of 0 g.

2. the module of the accelerations sensed by the accelerometer is a sum

of two components:

Am = Ag + Aext

whit Am the module of the measured acceleration, Ag the gravity accel-

eration and Aext the external acceleration suffered by the sensor. These

components are added and it is very difficult to separate them.

The problem of the noise in the accelerometer is not so critical as in the

gyroscope, since no integration is needed. The only calibration needed is
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related to the amplitude of the sensed acceleration at rest; it has to be 1 g.

In conclusion, with an accelerometer is not possible to fully estimate the

attitude: in some positions one degree of freedom is lost, creating infinite pos-

sible orientations that fits the measurements. Furthermore, the estimation

based on the accelerometer is valid only until the system is at rest, without

external forces acting on it.

2.1.3 Magnetometer

The triaxial magnetometer measures the magnetic field on three axis. This

sensor is useful when the angles of roll γ and pitch φ are known, since it is

possible to estimate the yaw angle:

Hx = Mx · cos(φ) +Mz · sin(φ)

Hy = Mx · sin(γ) · sin(φ) +My · cos(γ)−Mz · sin(γ) · cos(φ)

ψ = atan2(Hy, Hx)

(2.3)

where Mx,My ans Mz are the magnetometer measurements, γ, φ the roll and

pitch angle and ψ the yaw angle.

Resuming, the magnetometer permits to estimate the attitude when the ac-

celerometer fails.

The magnetometer is the sensor which most suffers the lack of a calibration

procedure. The main sources of errors are the so called soft and hard iron

distortions:

• Soft iron materials close to the sensor condense magnetic flux toward

themselves, causing distortions depending on the direction of the sensor

and a gain over each axis different from 1.

• Hard iron ferrous materials, whose magnetic field remains constant in
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a fixed location relative to the sensor, produce an offset on each axis of

the sensor.

For a calibrated sensor, the measured magnitude will be constant for all

orientations. Hence, by performing m measurements covering almost the

whole space of the magnetic field, scale factors and biases can be computed

by solving the following minimization problem:

arg min
x

[
m∑
i=1

f 2
i

]
(2.4)

fi =
(
M −

∥∥∥K · ui −~b∥∥∥) (2.5)

where x is the calibration parameters vector, M is the intensity of the mag-

netic field, ui is the i− th measurement, K is the scale factors matrix and ~b

is the offsets vector:

K =


kxx kxy kxz

kxy kyy kyz

kxz kyz kzz

 (2.6)

~b = [bx by bz]
T (2.7)

x = [kxx · · · kzz bx by bz]T (2.8)

Several optimization algorithms have been investigated and the Gauss-

Newton method has been chosen to compute the calibration parameters

thanks to its fast convergence in few iterations. Since the calibration proce-

dure can be performed offline, a large number of data can be acquired. The

k − th iteration is defined as follows:

xk+1 = xk −
(
JT J

)−1
JT f (2.9)
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where f is the m functions array and J is the Jacobian of f :

f = [f1 · · · fm]T (2.10)

J =


δf1
δkxx

· · · δf1
δbz

...
...

...

δfm
δkxx

· · · δfm
δbz

 (2.11)

The intensity of the magnetic field M is taken as the average value of the

acquired data from the magnetometer; however, the algorithm converges with

whatever value of M since the intensity affects only the absolute value of the

calibration parameters x. Concerning the initial guess of the calibration

parameters, these have been chosen equal to the ideal values:

x = [1 0 0 1 0 1 0 0 0]T (2.12)

Figure 2.2 shows the uncalibrated and calibrated data set (4000 samples)

acquired from the magnetometer in a common environment with the predom-

inant component of the Earth magnetic field: the reference circumferences

and sphere of intensity M respectively enclose and superimposes the cali-

brated acquisition with few exceptions laying outside. Experimental results

show that the algorithm converges in 3 - 4 iterations with an RMS error

below the 2% of the intensity reference M .

2.2 Orientation Algorithms

For the reason described in the Sensors section, it is not possible to estimate

the attitude of an object relying only on one sensor, since all of them have

some drawbacks. From the previous discussion it is also clear that the mag-
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Figure 2.2: 3D plot (bottom right) of a calibration experiment and its three
perspectives. The black sphere m2

x +m2
y +m2

z = M2 represents the ideal
magnetic vector space whereas the blue dotted ellipsoid not centered in
(0, 0, 0) describes the uncalibrated raw data acquired from the magnetome-
ter. The result of the calibration is depicted by the red dotted sphere, well
fitting the black reference one, centered in the axes origin. It has to be noted
that the Earth magnetic field intensity is approximately 470 mG.

netometer requires a calibration in order to measure correct data.

In this section two different sensor fusion algorithms for the estimation of

the orientation will be presented. The orientation will be represented using

unity quaternions. The quaternion is a complex number with a real part (w)

and three imaginary part (i, j, k). They permits to represent the orientation

without problems related to singularity of the representation; furthermore,

the calculus using quaternion instead of the Direct Cosine Matrix (DCM )

are more light. For a deeper analysis of quaternion see [30].
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2.2.1 Quaternion Extended Kalman Filter

The orientation of the platform is estimated using the 3D raw data provided

by the geomagnetic module and the gyroscope. Common classes of orienta-

tion estimation algorithms are based on the Kalman filter [9]. Typically it is

composed by two steps: prediction and update. In the first phase the pre-

diction of the state is made by means of the gyroscope data. The update of

the estimation is then made using the Kalman gain. The vector observation

is provided by the magnetometer and the accelerometer raw data.

Most of the algorithms presented in the literature make use of a 7 compo-

nents state vector [33, 56], which are the quaternion representing the orien-

tation and the biases on the three gyroscope axes. The complexity has been

decreased by using a state vector based on the estimated orientation only.

Among the several ways available to represent the 3D orientation, quater-

nions have been chosen because of their advantages in terms of computability

and because of they are not affected by singularity problems [46]. The state

vector is then defined as follows:

x = [qw qi qj qk]
T (2.13)

where qw is the real component and qi, qj and qk are the imaginary compo-

nents. The following notations will be used:

• xt|t−1 is the state predicted at time t by means of the estimated quater-

nion at the previous time;

• zt is the state observed at time t;

• xt|t is the state estimated at time t.
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In the following, the three steps providing the orientation estimation al-

gorithm are described in detail.

2.2.1.1 Prediction Step

In this phase the angular rates provided by the gyroscope are translated

into quaternion and then integrated. The quaternion rate can be computed

according to the following equation [53]:

δqt
δt

=
1

2
·
(

[0ωx ωy ωz]
T ⊗ qt−1

)
(2.14)

where ωi is the angular rate relevant to the i− th axis, ⊗ is the Hamilton

product and qt−1 is the previous time step quaternion. Then the quaternion

at time t is achieved by means of the following:

qt = qt−1 +
δqt
δt
· dt (2.15)

where dt is the sampling period.

The state equation is derived from Equations 2.14 and 2.15 by adding the

process noise coming from the gyroscope:

xt = f (xt−1) + wt (2.16)

f (xt−1) =
1

2
·
(

[0ωx ωy ωz]
T ⊗ xt−1

)
· dt+ xt−1 (2.17)

where wt is the process noise with covariance matrix Q, related to the gyro-

scope. Hence, the state at time t is given by the prediction equation:

xt|t−1 = f
(
xt−1|t−1

)
. (2.18)
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Since f (xt) is not a linear function of xt, the transition matrix Ft is computed

by means of the following Jacobian:

Ft = δf(xt)
δx

∣∣∣
x=xt−1|t−1

=


1 −dt/2 · ωx −dt/2 · ωy −dt/2 · ωz

dt/2 · ωx 1 dt/2 · ωz −dt/2 · ωy
dt/2 · ωy −dt/2 · ωz 1 dt/2 · ωx
dt/2 · ωz dt/2 · ωy −dt/2 · ωx 1


. (2.19)

The prediction covariance matrix is then given as follows:

Pt|t−1 = F · Pt−1|t−1 · F T
t +Q (2.20)

where Pt−1|t−1 is the estimation covariance matrix at t− 1.

2.2.1.2 Vector Observation

The observation zt is achieved by minimizing the function e (x), which rep-

resents the difference between the data and the references in the body frame:

e (x) =

 x∗ ⊗ aE ⊗ x− aB

x∗ ⊗mE ⊗ x−mB

 (2.21)

where x is the quaternion to be observed, ∗ is the conjugate operator, aE

and mE are the accelerometer and magnetometer references in the earth

frame respectively, aB and mB are the accelerometer and magnetometer

measurement vectors respectively. The aE, aB, mE and mB vectors are

arranged in such a way that the quaternion product can be performed, by

using a zero as real component. For example, the aB vector is defined as
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follows:

aB = [0 ax ay az]
T (2.22)

where ax, ay and az are the accelerometer data relevant to the x, y and z

axes respectively. The normalized accelerometer reference has been chosen

equal to the gravity vector aE = ḡ = [0 0 0 1]T , whereas the magnetometer

reference is computed by carrying the magnetic acquisition in the earth frame

and by assuming it directed on the x and z axes:

hE = x⊗mB ⊗ x∗ (2.23)

mE =
[
0
√
h2E,x + h2E,y 0 hE,z

]T
. (2.24)

Since Equation 2.21 is non linear with respect to x, an optimization algo-

rithm is needed to minimize e (x). The same Gauss-Newton method based

procedure proposed in [33] has been used, even though in this work it has

been implemented in the quaternions domain. The k − th iteration is the

following:

xk+1 = xk −
(
J (xk)

T J (xk)
)−1

J (xk)
T e (xk) (2.25)

where J (xk) is the Jacobian of e (x). Concerning the first iteration, the ini-

tial guess x0 is the estimated quaternion at the previous time, xt−1|t−1. As

depicted in Figure 2.3, experimental results show that the algorithm con-

verges in 3 - 4 steps, as expected. At the end of the iterations the observed

state zt is achieved.

The observation of the state is made according to the following model:

zt = H xt + v (t) (2.26)

where H is the observability matrix and v (t) is the observation noise with
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Figure 2.3: Convergence of the observation estimation algorithm. The initial
guess [1 0 0 0]T converges to the observed quaternion [0.5 0.5 0.5 0.5]T in 3 - 4
iterations.

covariance matrix R. Since actually the observation zt is the quaternion

representing the state, the H matrix has been chosen equal to the identity

matrix I4×4.

2.2.1.3 Update step

Once the integration and the vector observation steps have been computed,

the Kalman filter is performed:

• The Kalman gain is computed:

Kt = Pt|t−1H
T
(
H Pt|t−1H

T +R
)−1

. (2.27)

• The update step is performed:

xt|t = xt|t−1 +Kt

(
zt −H xt|t−1

)
. (2.28)
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Figure 2.4: Quaternion estimated using the Extended Kalman filter during
a rotation of 90◦ around Y axis.

• The estimation covariance matrix is computed:

Pt|t = Pt|t−1 −KtH Pt|t−1. (2.29)

The initial value of the estimation covariance matrix has been chosen

equal to the identity matrix I4×4.

The initial estimated quaternion, x0|0 has been chosen equal to [1 0 0 0]T ,

since the filter takes only few iterations to converge.

The covariance matrices of the state and observation models have been

experimentally tuned considering that the former is related to the static and

dynamic biases of the gyroscope, whereas the latter determines the latency

of the accelerometer and magnetometer measurements contribution.

In figure 2.4 is visible the estimated quaternion for three different combina-
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Figure 2.5: Block diagram of the quaternion complementary algorithm.

tion of Q and R matrices, showing how the algorithm gives more reliability

to the gyroscope with a small value Q. This effect is visible analyzing how

the estimation with Q = 0.0001 and R = 0.1 is more smooth, without suf-

fering the peaks in acceleration that creates the oscillation in the other two

estimations.

2.2.2 Quaternion Complementary filter

The filter name explains most of the concepts behind it: the orientation is

represented as unit quaternions, that simplifies the computation and solves

problem related to singularity in the orientation. The terms complementary

filter means that is composed by ”A pair of filters with transfer functions that

sum to one at all frequencies in a complex sense” (from definition). Hence

it is composed by two filters, with the aim of taking only the advantages of

each sensor used:

• the angle estimated from the gyroscope measurements has problems

related to the signal integration. It works well in high frequency, during

movements, but over time it tends to drift as described before. The

useful components of this estimation is on high frequency, explaining
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the high pass filter applied in this estimation.

• the angle estimated from the accelerometer and magnetometer has high

performance in low frequency, but it suffers external acceleration or

periodic magnetic disturbance. This lead us to consider a low-pass

filtering on this estimation.

The filter is visible in figure 2.5: the gyroscope measurements are trans-

formed into quaternions using (2.14), then they are integrated and then qgyro

passes through an high pass filter, reducing the problems related to the drift.

The others inputs, the magnetometer and the accelerometer, enter inside the

Gauss-Newton block which is the same used in 2.2.1. The output of this

block is qobs which represent the best estimation reachable using these sen-

sors; qobs then pass through a low pass filter.

The low pass and the high pass filter have the same natural frequency, so the

concept of complementary filter is kept.The transfer function of the comple-

mentary filter is:

qest(s) =
1

1 + τ · s · qobs +
τ · s

1 + τ · s ·
1

s
· q̇gyro (2.30)

with τ the parameter to be tuned, ω the vector containing the measure-

ments of the gyro and qobs the quaternion estimated using the Gauss-Newton

method.

The filter inside the complementary have the gain defined, the order typ-

ically is the first since it is more simple and the performance introduced by

a higher order doesn’t justify this choice, while the natural frequency it is

still undefined. It must be chosen carefully: basically it defines the frequency

until which the estimation will be carried out with the geomagnetic module.

A typical value is around 5 rad/s corresponding to 0.8 Hz. Since this value
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Figure 2.6: Quaternion estimated using the Complementary filter during a
rotation of 90◦ around Y axis.

influences the performance of the algorithm, it has to be tuned on the basis

of the application. In figure 2.6 are visible the estimated quaternion during

a rotation around the Y-axis. In particular the simulation was made with

different value of τ and consequentially ωn. It is clear that increasing the

ωn the algorithm gives more trust to the gyroscope, slowing the estimation;

more trust to the geomagnetic module makes the estimation more sensible

to external disturbances. A good trade-off is with ωn ∼ 5.

2.2.3 Reduced Kalman filter

This filter has the same structure of the Quaternion Extended Kalman filter

(QEKF ) described in the previous section. The only difference is the type

of sensors available; in particular in the reduced version the magnetometer

is not present, reducing the ability of the algorithm in the estimation of the
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rotation around the vertical axis.

The prediction step doesn’t change, the only part that suffer changes is the

estimation of the observation vector. Without the magnetometer it is not

possible to estimate a quaternion, the risk is to have conditions where infinite

orientation are correct solution to the minimization problem showed in (2.25).

In order to avoid infinite solutions a Direct Cosine Matrix (DCM ) with the

following structure is estimated using only the accelerometer measurements:

A =


cos θ sinφ sin θ − cosφ sin θ

0 cosφ sinφ

sin θ − sinφ cos θ cosφ cos θ

 (2.31)

Then the estimated DCM is translated into a quaternion:

qw =
1

2

√
1 + A11 + A22 + A33

qi =
1

4q4
(A32 − A23)

qj =
1

4q4
(A13 − A31)

qk =
1

4q4
(A21 − A12)

(2.32)

This solution is, as obvious, less performant compared to the QEKF, since

in some condition the orientation is estimated only using the gyroscope. In

some application, where it is known that there will be no rotation around the

vertical axis permits to estimate the orientation without adding the magne-

tometer that is a sensor with a lot of problems related to external disturbs

and that needs a periodical calibration.
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2.2.4 Comparison

Before comparing the performance of the two proposed algorithms, a theo-

retical comparison between the Kalman filter and the Complementary filter

will be made.

Starting from the following system:

 ẋ = q̇gyro + w(t)

y = x+ v(t)
(2.33)

where q̇gyro are computed using (2.14), x is the state vector composed by the

four components of a unit quaternion and w(t), v(t) are two Gaussian noises

affecting respectively the state and the observation.

Digitizing the system and introducing the Kalman correction yields:

x(k|k) = x(k|k − 1) +K(k) · (yobs(k)− y(k|k − 1))

y(k|k) = x(k|k)
(2.34)

where the state prediction x(k|k − 1) correspond to y(k|k − 1) and it is

made using the gyroscopes, while yobs are computed from the accelerome-

ter/magnetometer.

Rearranging the state equation

x(k|k) = (1−K(k)) · (x(k − 1|k − 1) + q̇gyro · Ts) +K(k) · yobs (2.35)

In order to compare the algorithms the same approach must be done on

the complementary filter. Starting from the transfer function described in

(2.30):

qest(s) =
qobs + τ · q̇gyro

1 + τ · s (2.36)
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Using backward difference:

s =
1

Ts
· z

z − 1

with Ts the sampling time, yields the following difference equation:

~qest(k) = (1−G) · ~qobs(k) +G · (~̇qgyro(k) · Ts+ ~qest(k − 1)) (2.37)

where G is a constant equal to

G =
τ

τ + Ts
(2.38)

The value of the gain G depends on the sample time and on the cut-off

frequency of the filters. Rewriting equation (2.35) and (2.37):

Kalman Filter :

x(k|k) = (1−K(k)) · (x(k − 1|k − 1) + q̇gyro · Ts) +K(k) · yobs
Complementary F ilter :

~qest(k) = G · (~qest(k − 1) + ~̇qgyro(k) · Ts) + (1−G) · ~qobs(k)

(2.39)

considering that x(k|k) = ~qest(k) and yobs = ~qobs(k) the only difference be-

tween the first and the second equations is the gain. In a first order system

a direct relation between the two gains can be found, in particular:

G = 1−K(k) (2.40)

So, for each step of the Kalman filter, exists a Complementary filter which

lead to the same result. More in deep, under the hypothesis of a steady

state Kalman filter, exists a gain G that make the two algorithms exactly
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the same. In a system with an order higher than one the previous relation

doesn’t yield anymore but, considering the out of the diagonal values of K

equal to zero, for each state of the system:

Gi = 1−Ki,i(t), i = 1, ..., n (2.41)

with n the order of the system. So, under the hypothesis of a diagonal

Kalman gain, the Extended Kalman filter correspond to n Complementary

filter, with n the order of the system.

As mentioned before the two algorithms have similar structure, or at

least they can be compared. Due to this, there isn’t an evident advantage in

using the complementary filter or the extended Kalman filter. It is obvious

that the EKF requires an higher computational burden compared to the

complementary but it is even more robust to possibles changes in the model,

like for instance temperature or magnetic field.

2.3 Conclusions

In this chapter the problem of the orientation estimation of a MARG has

been faced. In particular in the first part the sensors typically involved were

presented (accelerometer, gyroscope and magnetometer); then the algorithms

that uses these measurements were introduced, starting from the calibration

of the sensors and arriving to the algorithms that estimate the orientation.

These algorithms were the Quaternion Extended Kalman Filter (QEKF ) and

the Quaternion Complementary Filter (QCF ) that both use the quaternions

as method for the representation of the orientation.

This chapter has to be intended only as a small introduction to the problem of

the orientation estimation. These two algorithms reaches high performance,
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both in static and in dynamic, mixing perfectly the information arising from

the sensors. In particular, the QEKF is one of the most used, which is able

to keep changing the weight of each source, obtaining the best estimation.

The QCF, is one of the simplest and more easy to implement keeping an high

level of performance.





Chapter 3

Anti sway system

An overhead bridge crane is a crane typically used for challenging manipu-

lation tasks in many industrial applications, e.g in the refinement of steel or

to handle raw materials in the automobile industry. It consists of parallel

runways with a traveling bridge spanning the gap. A trolley, the lifting com-

ponent of a crane, can travel along the bridge, as visible in figure 3.1. The

proposed system aim to remove the oscillation of the load while the bridge

crane is moving. This lead to two positive effects:

1. Safety: since the bridge crane typically operates in an environment

with human it is important to avoid accidentally impact between the

load and workers.

2. Productivity: when the load starts swinging it can last even for min-

utes. It is easy to deduct that in an environment like the modern

industry, reduce the time required to create a product is a key factor.

This problem has been already faced numerous times, and various papers

can be found. The solutions found in literature goes from neural network

[36], to feedback control on linearized model [37] passing through adaptive

31
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Sliding mode control [39]. The previous paper and more than 90% of the

articles found in literature describe solutions that are not implemented in

the real world but only in simulation or in small laboratory models.

Some paper deals the problem of control a real bridge crane, but typically

the solution is in open loop, like the input shaping proposed in [49, 55], or

it is based on a path planning like in [4]. Both these real solutions suffer

some problems; the first is strongly related to the model, a change in it is

not compensated by the controller that keeps working on the original model.

The second solution needs an a priori knowledge of the path or the operation

that the bridge crane must do.

The anti-sway system proposed is based on an inertial platform used as angle

sensor, giving a measure of the amplitude of the oscillations. The proposed

system can be considered innovative because, unlike the systems found in

literature, it leaves the control of the bridge crane to the operator admitting

change in the model during the movement. The control is invisible to the

worker, who keeps using the crane as before, but without the oscillations.

This type of control system layout is usually called Human in the loop (HIL),

since the human operator enter in the loop as a disturb.

3.1 Problem Description

The bridge crane is a structure used in many warehouse or plants in order

to move heavy loads. The typical structure is visible in fig. 3.1; as easily

understandable when the trolley start moving, due to the not fully rigid

connection, the load starts swinging. The bridge cranes typically have two

different working paradigms:

• Fully automatic: in this case the operator doesn’t control directly the
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Figure 3.1: Structure with parts name of a typical bridge crane

crane. The movement typically is repetitive or at least previously

planned. The control system need to know the starting and the ar-

rival point. Then the trajectory is created and the operator can only

decides when to start. Typically these systems are used in foundry or

in chemical industries.

• Fully manual: the operator has the power to move the bridge crane

where he wants, without deciding the arrival point and the path to

follow a priori.

In the first type of bridge cranes the oscillations are damped by the trajectory

planner while in the second type the sway of the load is uncontrolled and

can cause injuries to the workers or damages to objects; for this reason these

systems are typically driven by a specialized operator, as suggested in [5]. The

drawback of the fully automatic bridge cranes is that they need a repetitive

or cyclical task. The challenging problem faced during the project was to
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Figure 3.2: Block diagram of a bridge crane.In black is visible the open loop
system, while in red the controller.

create an hybrid system, a fully manual bridge crane which moves without

any oscillations.

In fig.3.2 is represented the block diagram of the system. Following the

color notation, there is a black part which is the open loop system, the typical

fully manual bridge crane, while in red it is visible the control system which

aims to remove the sway of the load. The components of the bridge crane

are:

• The motors: these are the actuators of the system. The motors, con-

trolled by the inverters, make the trolley and the bridge move along

the track.

• The System: this is effectively the bridge crane; this block has the

speeds of the motors as input (v(t) = [vx(t), vy(t)]) and two output:

the position in the space of the bridge crane (x(t)) and the oscillation

angle (θ(t)). Both the outputs can be divided in the x and y-axis.

The only input of the fully manual bridge crane is the signal arising from the

button panel used by the operator.

The control system (visible in red) closes a feedback loop on the oscillation

angle. The reference angle, since the aim is to remove the oscillation, is

zero. The error, the amplitude of the oscillation, enters in a Controller (C)
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Figure 3.3: Mono axial bridge crane. x is the position, ẍM is the acceleration
of the trolley, ẋM is the speed of the load, r the length of the rope, θ the sway
amplitude, m and M are the mass of the load and of the trolley respectively
and b is the friction coefficient.

which create a correction signal to be added to the command arising from

the operator.

The diagram exposed before is valid both for a mono-axial bridge crane

and for a planar one. In the next session the transfer function of a mono-axial

bridge crane will be analyzed, showing that in the case of a planar one, the

two axis are decoupled.

3.2 Model of the system

In this section the transfer function from the speed (v(t)) to the oscillation

angle (θ(t)) of the bridge crane will be derived using an energetic approach.

In particular a mono-axial bridge crane, as the one showed in figure 3.3, will

be analyzed. In the same figures is possible to find all the variables and parts

name that will be used in the derivation of the model.

In the derivation of the model, some approximation has been made, in
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particular:

• the load m has been considered as point mass. This means that the

shape of the object, and consequentially the moment of inertia is not

considered;

• the rope which connects the trolley to the load has been considered

massless and fully rigid;

• the trolley moves on the tracks without friction.

In order to obtain the model of the system the Lagrangian mechanics has

been used. It is a re-formulation of classical mechanics using the principle

of stationary action. In Lagrangian mechanics, the trajectory of a system of

particles is derived by solving the Lagrange equations in one of two forms,

either the Lagrange equations of the first kind, which treat constraints ex-

plicitly as extra equations, often using Lagrange multipliers; or the Lagrange

equations of the second kind, which incorporate the constraints directly by

judicious choice of generalized coordinates. For the purpose of this project,

the Lagrange equations of the second kind (also called Euler-Lagrange equa-

tion of motion) has been used:

d

dt

(
δL
δq̇j

)
− δL
δqj

= τj (3.1)

where L = T − V is the Lagrangian of the system, defined as the difference

between the kinetic and the potential energy, j is the number of degrees of

freedom (DOF ) of the system, {q1...qj} are a set of generalized coordinates

and {τ1...τj} represents a set of generalized force associated to the coordi-

nates. Following the definition of the axis and parameters shown in figure



3.2. MODEL OF THE SYSTEM 37

3.3, the kinetic energy is:

T =
1

2
(M +m) · ẋ2 +

1

2
ml2θ̇2 +mlθ̇ẋ cos θ (3.2)

while the potential energy is:

U = −mgl cos θ (3.3)

Obtaining the Langrangian L:

L = T − U =
1

2
(M +m) · ẋ2 +

1

2
ml2θ̇2 +mlθ̇ẋ cos θ +mgl cos θ (3.4)

Recalling the equation 3.1, the Euler-Lagrange equations for the bridge crane

are defined as follows:

d

dt

(
δL
δθ̇

)
− δL
δθ

= −b · θ̇ (3.5)

d

dt

(
δL
δẋ

)
− δL
δx

= F (3.6)

where b is a viscous friction coefficient placed in the connection between the

rope and the trolley and F is the force acting on the cart to make it move.

Solving 3.5 and 3.6 using the Lagrangian obtained in 3.4

ml2θ̈ +mlẍ cos θ +mgl sin θ = −b · θ̇ (3.7)

(M +m) · ẍ+ml ·
(
θ̈ cos θ − θ̇2 sin θ

)
= F (3.8)

the two equations of motions are then obtained. The full system is non-

linear, time variant (the length of the rope change) and of the 4th order.

Since the control system aims to remove the oscillation keeping the control of
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the position in the hands of the operator, the only equation needed for this

purpose is the 3.7, reducing the order of the model. The simplified equation

which links the cart acceleration to the angle acceleration is the following,

with the dependence on time is explicited:

θ̈(t) = −
(
ẍ(t)

l(t)
cos θ(t) +

g

l(t)
sin θ(t) +

b

ml(t)2
θ̇(t)

)
(3.9)

Notice that a positive cart acceleration creates an opposite reaction in the

angle acceleration due to the minus sign.

At this point, in order to obtain the transfer function a linearization is

required; first of all, the states of the system are: x1(t) = θ(t)

x2(t) = θ̇(t)
(3.10)

The nonlinear state-space model is then defined as follows:
ẋ1(t) = x2(t)

ẋ2(t) = −
(
u(t)
l(t)

cosx1(t) + g
l(t)

sinx1(t) + b
ml(t)2

x2(t)
)

y(t) = x1(t)

(3.11)

With u, the trolley acceleration, defined as the input of the system. Note

that the speed is limited since is not possible to reach infinite speed, so the

inputs of the system are saturated. Linearizing the system around the rest

condition, x1 = θ = 0, x2 = θ̇ = 0 and u = 0, and considering a constant

rope length, the following transfer function is obtained:

G(s) =
θ

Ẍ
= −

1
l

s2 + b
ml2

s+ g
l

(3.12)
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And, directly, even the transfer function between speed and angle can be

obtained:

G(s) =
θ

Ẋ
= −

1
l
s

s2 + b
ml2

s+ g
l

(3.13)

This equation relates the cart acceleration to the angle value. Analyzing the

characteristic equation, the natural frequency and the damping of the system

can be obtained:

ωn =

√
g

l
, ξ =

b

2m
√
gl3

(3.14)

Considering the previous equations some observations can be done:

• without the viscous friction the system has two pure imaginary poles

(ξ = 0); This condition can be considered as the worst case, since the

damping coefficient does exactly what the control aims to do: it damps,

reduces the oscillations;

For this reason the worst case transfer function is:

G(s) = −
1
l
s

s2 + g
l

(3.15)

• the mass of the trolley doesn’t influence the frequency of the oscilla-

tions, it influences only the damping coefficient and consequentially the

amplitude of the sway;

• the frequency of the oscillations depends only on the length of the rope;

considering a bridge crane with maximum height 7m and minimum 2m,

the frequency range of the oscillations can be computed:

fmin = 0.1884 Hz, with l = 7 m

fmax = 0.3525 Hz, with l = 2 m
(3.16)
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Figure 3.4: The test used for the identification of the parameters of the
model.

For further analysis, the state space model of the system is represented:

ẋ = Ax+Bσ(u)

A =

 0 1

−g
l
− b
ml2

, B =

 0

−1
l

 , (3.17)

where σ(u) = max(min(umax, u), umin) and umin, umax denote the lower and

upper limits of u, respectively.

3.2.1 Model validation

A bridge crane can be easily approximated to a pendulum on a cart. Due

to that in literature it is easy to find various paper describing how to deduct

this model ([43], [2]). As usual, the step between the mathematical model

and the real model can be bigger than expected. For this reason, a validation

of the deducted model on real data is needed.
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µ D1 D2

Value 0.067 0.626 0.015

Table 3.1: Value identified

In order to obtain valid data for the identification a test on a real bridge

crane has been carried out. Recalling the figure 3.2, the input of our system

is the reference speed, while the output is the angle of the oscillation. The

first variable can be directly obtained from the inverter which drives the

motor, while the angle can be estimated using an inertial platform (as shown

in chapter 3.3). The bridge crane moves without a load, on the Y-axis,

with a rope length of 6 meters; this condition is the worst for the model

deducted before, since in this case the approximation to a full rigid rope is

weak. In figure 3.5 are visible the results of the identification, carried out

using a typical optimization algorithm, the Nelder-Mead Simplex Method. It

is visible how the second order model identified captures the behavior of the

system. In order to reduce the complexity of the identification, the equation

3.13 was simplified as follows:

G(s) = − µs

D1s2 +D2s+ 1
(3.18)

the parameters identified are summarized in table 3.1. Analyzing the relation

between the transfer function and the equation identified (3.18) is easy to

obtain the natural frequency and the damping ratio:

µ =
1

g
, D1 =

1

ω2
n

=
l

g
, D2 =

2ξ

ωn
=

b

mlg
(3.19)

ωn = 1.264 rad/s , ξ = 0.01 (3.20)
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Figure 3.5: The test used for validate the parameter identified.

From the previous values, the length can be deducted from the natural

frequency; remember that ωn =

√
g

l
, so the rod length, based on the value

obtained in (3.20) is equal to 6.13 m, making an error of only 13 cm on the

real value of the rope length. The damping ratio estimated is very small and,

consequentially, the time required to damp the oscillation is very high, more

than 200 s. The value of the gain is not correct, since the speed reference is

measured in Hz instead of m/s2.

To be noted that this model is valid only for a rope length of 6 m.

The identified model represented in 3.4 has been validated on another test

made in the same condition of weight and rope length. The result is shown

in figure 3.5, showing the effectiveness of the identification.

In addition to the validation of the model, an analysis on real data with

the aim of confirm the decoupling of the axes is needed. For this reason a test

was carried out, moving the bridge crane only in the Y-axis direction. The

two angles (θx and θy) are shown in figure 3.6; as visible the decoupling can

be considered a valid approximation, since there is a magnitude of around
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Figure 3.6: Test for validate the decoupling on the two axes. The movement
was only on the Y-axis. The angle generated on the X-axis is 25 times lower.

25 between the maximum amplitude on the X-axis and the maximum on the

Y-axis.

3.3 Angle Estimation

As discussed in the section 3.1, in order to remove the oscillations of the load,

the control system needs an estimation of them. For this reason an inertial

platform was placed on the rope which connect the load to the trolley. Using

a Kalman filter (as described in chapter 2), a robust estimation of the angle

can be obtained from the measurements of the gyroscope and accelerometer.

3.3.1 Sensor placement

In the industrial environment the sensor position is a crucial decision. The

sensor needs to be in a safe and useful position. For what concern the use-

fulness of the position, it is pretty clear that it must be placed on the rope



44 CHAPTER 3. ANTI SWAY SYSTEM

Figure 3.7: Concept of turnbuckle in a system with pulleys.

in order to estimate the oscillations. The theme related to the safety of the

position must be discussed a bit more: in the real bridge crane, the connec-

tion between the trolley and the load, is not composed by a single rope as

modeled in section 3.2 but it is composed by a system of various ropes and

pulleys. A simplified view of the connections is visible in figure 3.7; it is clear

how one of the ropes has a fixed connection, this cable is called turnbuckle.

In order to avoid the destruction of the sensor during a lift of the load, the

inertial platform is placed on the turnbuckle, near the fixed connection, on

a piece of rope which is never rolled into the cylinder of the pulleys. It is

important to place the sensor with the sensing axes in the same direction of

the bridge crane axes.

3.3.2 Algorithm for sensor fusion

Once the sensor is placed in a correct position and the informations from ac-

celerometer and gyroscope are consistent, the angle can be computed using

one of the method described in chapter 2. In this specific application, since

the oscillation has a really low frequency, and there’s no rotation around the

gravity vector, even only an accelerometer can be enough. With the aim

to make the estimation more robust was decided to use both the measure-
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ments from accelerometer and gyroscope; a Steady state Kalman filter was

implemented, and the equations are represented in the next formula:

θx(t) = θx(t− 1) + ωy · dt+ K̄x · (θACC,x(t− 1)− θx(t− 1))

θy(t) = θy(t− 1) + ωx · dt+ K̄y · (θACC,y(t− 1)− θy(t− 1))

y1(t) = θx(t)

y2(t) = θy(t)

(3.21)

θACC,x and θACC,y are the estimations of the angle arising only from the

accelerometer measures and dt is the sampling time equal to 0.01. They are

computed using the arctangent formula described in section 2.1.2. Analyzing

the equation 3.21, the matrices are:

A =

1 0

0 1

B =

dt 0

0 dt

C =

1 0

0 1

 (3.22)

with θx and θy as state of the system. It is visible that the system is linear,

and, due to this, the Kalman gain (K̄) can be computed simply solving the

DARE, the Discrete Algebraic Riccati Equation [28]. Following the previous

consideration and adding that the covariance matrices are:

Q =

0.001 0

0 0.001

R =

0.1 0

0 0.1

 (3.23)

The steady state Kalman gain is

K̄ =

0.1 0

0 0.1

 (3.24)
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3.4 Control

In this section the control structure for the anti sway system will be exposed.

In the first part the control problem will be faced in a theoretical way, ex-

posing some simulation results of various type of control. In the second part

the control system applied on the real bridge crane will be shown.

3.4.1 Closed-loop analysis

3.4.2 Control system simulation

In this subsection two types of control will be compared. The first is the

P-control and the second is the time-optimal control. The purpose of this

sub-section is to compare these two types of control; in particular they will

be compared on the so called residual oscillations problem: the bridge crane

is moving, when the operator decides to stop it, which is the controller that

completely remove the oscillation in the minimum time?

3.4.2.1 P-control

Typically, the first approach is usually the easiest one. Following this as-

sumption the first control to test is the PID. PID, as well known, is a control

loop feedback mechanism widely used in the industry. A PID controller cal-

culates an error value as the difference between a measured process variable

and a desired setpoint. The controller attempts to minimize the error by

adjusting the process through use of a manipulated variable. In our case it

is pretty obvious that our setpoint is related to the sway angle, and, more in

deep, is equal to zero because the aim is to remove any oscillation. Recall-

ing the transfer function of the system, and placing it side by side with the
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Figure 3.8: Block diagram of the system with the P-controller.

typical equation of a PID, some consideration can be made:

PID(s) =
Kds

2 +Kps+Ki

s
G(s) =

θ

Ẋ
= −

1
l
s

s2 + b
ml2

s+ g
l

(3.25)

First of all, it is possible to say that it is not recommended to delete a

zero in the origin with an integrator and that it is disadvantageous to add

another zero in the origin because in this way the system is already out of

phase of 180◦ and it is difficult to keep it asymptotically stable. For the

reasons exposed before the suggested controller is a proportional one. With

this type of control the system is shown in figure 3.8 and, considering the

Motor as ideal, the closed-loop transfer function is the following:

H(s) = −
1
l
Kps

s2 − 1
l
Kps+ g

l

(3.26)

It is clear that in this closed loop transfer function the worst case has been

considered (see equation 3.15), since the friction coefficient b is equal to zero.

Analyzing the closed loop transfer function some considerations can be made:

• s2 − 1
l
Kps + g

l
: the characteristic equation suggest that Kp must be

negative in order to keep the system asymptotically stable;

• ωn =
√

g
l

the natural frequency of the system doesn’t change, it remain
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the same. This type of control is unable to change the frequency of the

oscillations, it remains linked only to the length of the rope;

• ξ = − Kp
2·
√
gl

the damping coefficient is directly proportional to the value

of Kp. Working on the value of the coefficient of the P-controller it is

possible to increase (or reduce) the damping of the system, reducing

(or increasing) the oscillations.

The previous analysis suggest that the P-controller can damps the sway of

the load, but which is the best value ofKp? In order to answer to this question

a consideration is requested: in figure 3.9 are visible some simulations whom

show the effect of the control on a mono axial bridge crane with a mass of

1000 kg, a rope length of 3 m and without friction. The input of the system is

a trapezoidal reference speed and it is clearly visible that, increasing the Kp

even the damping of the oscillation grows, reducing nearly to zero the sway of

the load. Increasing the control action has a drawback; in the lower graph of

figure 3.9 it is shown the effective speed of the trolley and, under an increasing

Kp the maximum speed is not reached. This creates a performance problem,

since in the industry the time required for the operations is fundamental and

if the bridge crane is slow, everything is delayed. Due to that, a trade-off

between the reduction of the sway and the reduction of the maximum speed

is needed. This compromise can be reached choosing a Kp = 14 in figure 3.9.

The correct way to choose the value of the Kp is carrying out a root-locus

analysis. It is a graphical method for examining how the roots of a system

change with variation of a certain system parameter, commonly a gain within

a feedback system. In our case it is clear that the gain which changes inside

the feedback system is the coefficient of the P-controller. This analysis is

visible in figure 3.10. Since the length of the rope changes over time the root

locus analysis has been carried out between the minimum and the maximum
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Figure 3.9: Simulation of the system with different Kp. An high value of Kp

will make the bridge crane slow.

length. The analysis has been carried out on the system without friction,

the worst case, since the trajectories of the roots are exactly the same, with

the difference that the system without friction includes more cases (the pure

imaginary poles for example). In order to guarantee a damping of at least

0.7 in all the working condition, Kp = −11.6 has been chosen. In fact, with

this value of Kp, with a rope length of 7 m ξ is equal to 0.7, while with a

rope length of 2 m the damping factor is equal to 1 and the system can be

approximate to a single real slow pole in −0.93.

Now that the P-controller is tuned it is important to remember that the

inputs of the system are saturated and so it is crucial to check if the close-loop

system is internal stable. To do that, an a-posteriori check must be done.

Such a verification method is based upon LMI-based analysis of anti-windup

systems (see e.g. [21, 23,24]) and can briefly described as follows.

To start with, consider the closed-loop dynamics obtained by inserting
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Figure 3.10: Root locus of the system for a rope length of 2 and 7 meters.
The black lines delimit the region with a ξ of at least 0.7.

the proportional action

u = Kpy = Kx, K = [Kp, 0]T

in the loop with (3.17).

Then, rewrite the system as fed by q = u − σ(u). It can be shown

[21,23,24] that the system turns out to be as

ẋ = Āx+ B̄q

u = Kx

q = u− σ(u)

(3.27)

where Ā = A + BK and B̄ = −B. Moreover, from the same reference, we

know that proving internal stability is equivalent to show the feasibility of
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the LMI problem

P = P T > 0, W ≥ 0 diagonal, (3.28) ĀTP + PĀ PB̄ +KTW

BTPB̄ +W TK −2W

 < 0, (3.29)

for at least one choice of matrices P and W , such that (3.28) holds. Notice

that, once the stability verification is done, the proportional controller can

be used in the same experimental conditions of the time-optimal one.

3.4.2.2 Time-Optimal control

In this section, the time-optimal control strategy introduced in [47] is briefly

recalled and rewritten in order to be directly applied to the bridge crane con-

trol problem. In this type of application, the performance index to minimize

is the time to stop the payload (i.e., to move it from the initial condition x0

to the final condition xr). Formally, the cost function is

J =

∫ t

0

dt. (3.30)

which must be evaluated under the dynamical constraints (3.17).

The standard approach to a time-optimal control problem with bounded

input involves the application of the Pontryagin Minimum Principle (PMP)

[42], yielding the bang-bang law:

u∗ (t) =

umin, if ψT (t)B < 0,

umax, if ψT (t)B > 0

(3.31)

where ψ (t) is the costate vector.
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To solve the time-optimal control problem, the approach in [47] avoids the

calculation of the evolution of costate, by introducing a geometric solution

for the computation of the switching times. Next, we briefly recall the main

passages of such an approach.

Firstly, consider the generic second order system of the form

Y (s)

U (s)
=

b1s+ b2

s2 + a1s+ a2
(3.32)

By comparing it with (3.13), the correspondence between the parameters

turns out to be

a1 =
b

ml2
, a2 =

g

l

b1 = −1

l
, b2 = 0.

(3.33)

Consider now the affine mapping of the state of the system:

M−
min,
max

: R2 → R2x1
x2

 7→
X
Y

 = A−1min,
max

x1
x2

−Bmin,
max

 (3.34)
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Where

Amin =

−a1p+q
a2

−p(4ω2−a21)−2a1q
4a2ω

p −a1p+2q
2ω

 , (3.35a)

Bmin = xr +

a1p+qa2

−p

T , (3.35b)

Amax =

−a1v+z
a2

−v(4ω2−a21)−2a1z
4a2ω

v −a1v+2z
2ω

 , (3.35c)

Bmax = xr +

a1v+za2

−v

T , (3.35d)

X (t) = R (t) cos (ωt) Y (t) = R (t) sin (ωt) (3.35e)

R (t) = e
a1
2
t , (3.35f)[

p q
]T

= Axr +Bumin, (3.35g)[
v z

]T
= Axr +Bumax, (3.35h)

ω =

√
4a2 − a21

2
(3.35i)

Applying the above mapping to the original state variables, we obtain

(X, Y ), from now on referred to as normal variables and the original state

trajectory is turned into a logarithmic spiral.

By mapping the state trajectory, it is possible to generate the switch-

ing curves, which permit to calculate the number of switches; specifically, a

switch in the control law occurs when the mapped state trajectory (black

solid line in Figure 3.11) encounters these curves. In the normal coordinates,

a switching curve is created by rotating the final state under umin and umax

by π radians and scaling it by e
a1π
2ω . This process creates the three curves in

Figure 3.11, where
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• the first curve represents the trajectories reaching the final state under

umax (red line);

• the second curve indicates the trajectories reaching the final state under

umin (blue line);

• the third curve is called bounding curve because it divides the space

into regions where the bang-bang control law has the same number of

switches (green line).

The geometric parameters needed for the computation of the bang-bang con-

trol law are then:

• α, which represents the rotation to apply to the first switching curve,

where it is crossed by the mapped state trajectory, in order to include

p0;

• β, which is the angle between the switching curve segment in the same

region of p0 and its center of rotation;

Using α and β, it is possible to compute the switching times tk, according to

the following algorithm.

TIME-OPTIMAL CONTROL DESIGN

1. map the initial state x0 according to M−
min and M−

max; the one that

lies on the x-axis is called p0 and is the initial state in the normal

coordinates;

2. find the number of switches by searching in which regions p0 lies;
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Figure 3.11: Application of the geometric method for the computation of the
bang-bang control law, using M−

min. Switching curves (red and blue lines),
bounding curves (green line) and trajectory of the state (black line). The
point p0 represents the initial conditions, whereas the target is denoted by
(1, 0).

3. the initial extreme of the bang-bang control law is

u (0) =

umin, if M−
min was used

umax, if M−
max was used

. (3.36)

4. calculate the switching times using the following formulas:

- the time corresponding to the first switch is:

t1 =


π+α
ω
, α < 0,

α
ω
, α ≥ 0;

(3.37)

- the intermediate switches times are:

tk = t1 +
π

ω
(K − 1) , k = 2, 3, ..., K − 1 (3.38)
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The following remarks are due.

Remark 1 Notice that, with the algorithm above defined, the total time for

driving the system to the final condition can be easily computed and is equal

to

Ts = t1 +
(K − 1)π + β

ω
. (3.39)

Remark 2 A second order system typically twists around its equilibrium

point, which is different for every system. This method, using the map de-

fined in (3.34), standardizes all the systems by placing the target always in

[1, 0] and transforming all the switching curves (which can be everywhere in

the original state space), in semi-logarithmic spiral with centre of rotation

placed on the x-axis.

Remark 3 Since the costate rotate at a fixed velocity ω (3.35i) and the max-

imum rotation between two switches is π radians (deduced from Equation

(3.31)), the intermediate switch has a length of π
ω
s.

Remark 4 The duration of the first and the last switch depends on the dis-

tance, in degrees, from the switch limit. These distances are traduced in

terms of α and β.

3.4.2.3 Control performance

In order to evaluate the performance of the considered strategies, both the

introduced controllers - the time-optimal one and its approximation using

the P-controller - are now simulated under the same conditions.

The bridge crane system considered in the next examples is (3.17), where

the physical parameters are selected as follows.

m = 1000 Kg, l = 5 m, g = 9.81 m/s2, b = 12000
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Concerning the bounds on the motor current, the input is assumed to belong

to [−10, 10].

As already mentioned, the payload reaches the maximum oscillation angle

when the sway speed is equal to zero. Generally, 10 degrees of oscillation

represent a dangerous condition, thus motivating the use of a controller which

quickly moves and stops the load. Then, we select the initial conditions of

the experiments as

x0 =

θ
θ̇

 =

10

0

 . (3.40)

The final condition is instead given by

xr =

θ
θ̇

 =

0

0

 . (3.41)

In Figure 3.12, the results of the simulation under the conditions de-

scribed above are illustrated. Without control (blue line), the system shows

the response of a second order system with conjugate poles and low damp-

ing. Using the proportional controller (green line), the oscillations are instead

significantly reduced. Notice that the time-optimal controller takes the least

time possible and therefore it is the best in terms of settling time. In Ta-

ble I, the quantitative performance of the controller in terms of maximum

overshoot and settling time are briefly summarized. It should be noticed

that, although the time-optimal controller ensures quickly damping of the

oscillations, the maximum sway angle is bigger than the one given by the

proportional controller. This is indeed reasonable, as the bang bang control

law exploits the most of the control power to stop the system, and this is

generally converted into quite aggressive control requirements.

Robustness issue
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Settling Time [s]
Max Overshoot

[%]
Without
Control

> 15 57.9

Time-Optimal
Control

4.47 39.1

P Control 6.31 36.2

Table 3.2: Performance of time-optimal and proportional controller in the
nominal case.
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Figure 3.12: Simulation results: response of the system without control
(dashed line); response with the proportional controller (solid line) and re-
sponse with the time-optimal controller (dash-dotted line).
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Figure 3.13: Simulation results with no control (dashed line), with time-
optimal control (dash-dotted line) and with proportional control (solid line).
In the experiments, the mass is decreased of 5%, the length of the rope of 2%
and the friction coefficient is increased of 15% with respect to the nominal
values.

The model described in section 3.2 is generally a good approx-

imation of the reality. However, the three physical parameters

can in practice be subject to some uncertainties, e.g.,

• concerning the payload: its weight cannot be known ex-

actly, as standard bridge cranes do not have a load cell to

estimate the mass of the cargoes.

• concerning the length of the rope: this information is some-

times available and easily obtainable using an encoder. How-

ever, some uncertainty may come from the connection of

the payload to the rope; as a matter of fact, the cargoes
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are often connected to the hook using a cable, thus leading

to an error in the estimation of r.

• concerning the friction coefficient: this parameter is the

least accurate since it is strongly dependent on the envi-

ronmental conditions (see e.g. [10, 35]) and it is hard to

measure on-line.

Due to the above considerations, we test the robustness of the

two controllers in case of undesired parametric variations. More

specifically, as an example, we consider the realistic case where:

• the payload mass has an error of −5%;

• the rope length has an error of −2%;

• the friction coefficient has an error of 15%.

In Figure 3.13, the results of the simulations on the system

with parametric variations are illustrated. In the experiments,

we used the same control laws of the last section (i.e., consider-

ing the nominal model).

As shown in Table II, the performance of the time-optimal

controller significantly jeopardizes, due to the variations in the

parameters of the model. In particular, the settling time, which

was the strength of the time-optimal strategy, is now about 4s
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Figure 3.14: The figure show the loss of optimality applying the bang-bang
law to system with parameters different from the nominal ones. Switching
curves for the system without (dotted line) and with uncertainties (dashed
line); state trajectory with the correct bang-bang law (dash-dotted line) and
with a wrong one (solid line).

slower than P control. On the other side, the maximum over-

shoot maintains the same behaviour, whereas the proportional

controller reduces the maximum oscillation angle and it is now

better than the time-optimal solution. The loss of performance

of the time-optimal control is due to the variation in the model,

which makes the bang-bang control strategy switch at wrong

times. This behaviour is evident in Figure 3.14, where:

• the green and blue line represent the switching curves for

the system with and without parametric uncertainties re-

spectively;

• the red line is the system response under the bang-bang
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Settling Time [s]
Max Overshoot

[%]
Time-Optimal

Control
9.38 32

P Control 5.66 29.5

Table 3.3: Performance of time-optimal and proportional controller in case
of parametric variations.

control law based on the system with the new correct values

of the parameters;

• the black line is the system response under the bang-bang

control law based on the nominal system.

• the points (in red and black) denote the switching times.

As expected, there is an error in the switching times; in fact, the

black line does not switch when the switching curve is crossed.

This fact obviously leads to the loss of the optimality of the

time-optimal controller.

Based on the above results, we could then conclude that,

in some real-world situations, the most promising approach for

time-optimal control - in practice - turns out to be the subopti-

mal procedure at the end of Section 3.4.2.1.
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Figure 3.15: Full control scheme for a Mono-axial bridge crane.

3.4.3 Real Control System

In section 3.4.2 some controllers were analyzed and simulated.

The controller which meets the performance required in terms

of robustness, easiness of implementation and performance is

the P-controller. Obviously the step from the simulation to the

reality is not simple. The real bridge crane has a lot of difference

from the ideal model analyzed in 3.2. In this section the real

anti sway control system implemented on the bridge crane will

be shown, enlightening some important features added in order

to increase the performance.

In figure 3.15 is visible the full control scheme related to a

mono-axial bridge crane, in particular this figure shows the X-

axis. Remind that the two axes are decoupled, so, duplicating

the mono-axial control, the anti sway system is active on both
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axes.

The measures available from the system are:

• ωy is the angular velocity measured by the gyroscope placed

on the turnbuckle;

• Az and Ax are the accelerations measured by the accelerom-

eter. The z−axis is solidal with the rope, while the x−axis
is perpendicular to the z − axis and in the direction of the

movement;

• vx and vz are the speeds of the motor which make the bridge

crane moves on the x−axis (left-right) and on the z−axis
(up-down).

Once the inputs of the system are defined, analyzing the figure

3.15 is possible to isolate four main components of the control,

resumed below:

• Accelerations removal: this block remove the external ac-

celeration introduced by the movement of the crane;

• Angle estimation: in this block it is implemented the Kalman

filter which estimates the real angle;

• Angle filtering: in this section the original angle estimated
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Figure 3.16: Error in the estimation of the angle due to the acceleration of
the bridge crane.

before passes through a battery of filter (linear and nonlin-

ear) in order to make the angle more ”controllable”;

• Gain scheduling controller: this is the block which perform

the control.

These parts will be described in details in the next sessions.

3.4.3.1 Acceleration removal

This block has the task of reducing the external acceleration

measured by the accelerometer. In fact the accelerometer is

able to estimate the angle in a better way if the sensor is mea-

suring only the gravity vector as acceleration. Since the bridge

crane undergoes important accelerations, this preprocessing is
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fundamental. As an example, in figure 3.16 is visible the error

introduced by an estimation without the removal of the acceler-

ation and one with it. Knowing the speed of the bridge crane,

read directly from the motor, the acceleration is estimated using

a derivative filter with the following structure:

F (s) =
s(

s
63 + 1

)2 (3.42)

This filter permits to estimate the external accelerations. In

particular the derivative band is between 0 and ∼ 10Hz, which

contains most of the informative content of the speed reference.

The estimated external acceleration then needs to be divided

into the component on each axis. This task can be easily ac-

complished knowing the angle, but this is like a dog chasing its

tail since this process aim to remove the external acceleration in

order to estimate a better angle. Due to that, the external accel-

eration estimated from the speed is divided using an estimation

of the actual angle made only with the gyroscope:

θ̂x = θold + ωy · dt (3.43)

with dt the sampling time. θ̂ is not perfectly correct because it

suffer the problems related to the gyroscope integration, but, us-
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ing a high sampling rate, these problems can be reduced. Using

the external acceleration estimated before (aext) and θ̂x the com-

ponents on the z and x axis can be deduced using the following

equations:

ax = Accx + aext · cos θ̂x

az = Accz + aext · sin θ̂x
(3.44)

The previous equation are derived rotating the external acceler-

ation (which can be only on the horizontal axes) using a rotation

matrix.

3.4.3.2 Angle estimation and filtering

Once the accelerometer signals are purified from the external

acceleration it is possible to estimate the angle using the Kalman

filter described in section 3.3.

The angle estimated, however, is still not usable for the purpose

of the anti sway system. In fact, this angle suffer two main non

ideality due to the mechanical structure of the bridge crane:

1. in rest condition, due to the structure composed by pulleys

and cable, the turnbuckle is not perfectly perpendicular.

The consequence is that the angle estimated is not zero

when the bridge crane is at a standstill. This offset depends

on the length of the rod and even on the operation the
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Figure 3.17: Offset in the angles estimation during a movement on the Z-
axis from a length of 1m to 7m and back. It is visible how the angles offset
depends on the length of the rope and even a sort of hysteresis between the
lifting and the lowering.

bridge crane is doing. In fact, as visible in figure 3.17,

there is a sort of hysteresis in the angles between the lifting

and lowering operation.

2. the second unexpected problem is the oscillation of the ca-

ble. This is a consequence of the fact that the cable is not

rigid, but it acts as a guitar cord; it is fixed in two points

and when the bridge crane starts moving the rope oscil-

lates at an high frequency that depends on the length of

the rope.

In order to solve the previous problems and introduce some new

functionalities the battery of filter visible in figure 3.15, and
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Figure 3.18: Filters introduced to increase the information content of the
angle. It is visible a Band Pass filter, a Low Pass filter and a dead-zone with
a gain.

recalled in 3.18, has been introduced. In particular the two new

functionalities are the following:

1. Perfect lift : this functionality helps the workers to lift the

load always in a perpendicular way. This is very helpful,

because most of the oscillation are created by a bad lift,

where the load start swaying before starting the movement;

2. Follow me: this functionality permits the workers to move

the load simply creating an angle pushing the load. This is a

direct consequence of the previous point. This functionality

can be not fully legal, but in some case can help.

Considering the figure 3.18 it is possible to identify three

different filters:

• Band-Pass filter: this filter has the aim of removing the
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two non ideality related to an offset that changes over time

and the higher frequency oscillation introduced by the not

fully rigid rope. The filter is a 4th order with a bandpass

going from 0.05 Hz to 1 Hz that is the frequency band of

the oscillations, as deducted in equation (3.16);

• Low-Pass filter: this filter, which has 0.05 Hz as cut-off fre-

quency, estimates the offset introduced by the cables ge-

ometry. To be noticed that this filter is the dual of the

high-pass described in the previous point;

• Dead-Zone: this block implements a classic dead-zone with

a gain, meaning that the input outside the dead-zone is

multiplied by a factor K = 5. The width of the dead-zone

depends on the offset introduced by the cables geometry;

in particular it is placed exactly in the middle of it. For

example, watching figure 3.17, on the X-axis, it is possible

to determine that the angle offset change from ∼ 7.5◦ to ∼
1.5◦, depending on the length of the rope. As a consequence

the dead-zone is centered in 4.5◦ with an amplitude of 3.5◦,

covering the actual offset and permitting some changes in

it.
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Now that all the filters are described is possible to analyze

how the angle is modified in order to create a signal which con-

tains the information required. It is pretty clear that this type

of filtering creates a separation in frequency, let’s describe it bet-

ter: during the normal movements the branch that contains the

dead-zone is not active, because the offset is always inside the

typical value. So the upper branch, the one with the band-pass

filter, removes all the problems related to the not fully rigid rope

and angle offset. The second branch becomes active only when

the offset grows and exits the dead-zone band; that is the case

of an external event like, for example, a load lift with the bridge

crane not perpendicular to the weight. In this case, the bridge

crane, while lifting the load it will move over it, removing the

problem related to an initial angle that can easily create huge

oscillations. It has to be remembered that the control is active

only when there are some input from the button panel, so while

the control is not active, the workers can move the hook where

they want, creating potential dangerous situations.

At the exit of the filters described above the angle can be

controlled much more easily.
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3.4.3.3 Gain scheduling controller

As described in 3.4.2.1, the behavior of the system changes with

the length of the rope l; both the natural frequency and the

damping coefficient change.

In particular, for the aim of the control, the damping factor is

crucial; recalling its equation:

ξ = − Kp

2
√
gl(t)

(3.45)

with Kp the parameter of the controller, g the gravity and l(t)

the length of the rope, which changes over time. The best per-

formance are achieved setting a damping factor equal to one.

Due to that the gain of the P-controller must be changed fol-

lowing

Kp(l, t) = −2
√
gl(t) (3.46)

Thus, Kp is changed depending on the length of the rope l. Since

the maximum and minimum length are known, there will be an

higher control at l = 7 m with a Kp = −16.57, and a lower

control at l = 2 m with Kp = −8.8.

This behavior is summarized in figure 3.19.
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Figure 3.19: Variation of Kp with respect to the cable length.

3.4.3.4 Differences in the bi-axial control

Since the two axes are decoupled the mono axial control de-

scribed until now can be replicated on both axes in order to

fully control the bridge crane. The only thing which need an

adjustment is the part related to the angle estimation, and, as

a consequence, the acceleration removal.

The estimation of the angles can be realized using one of the

algorithm described in section 2. A reduced quaternion Kalman

filter has been implemented. It is reduced because the magne-

tometer is not present and the system can not move around the

Z axis (Yaw).

Once the angle is estimated the process described in 3.4.3.1 must

be done, applying the following modifications:
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1. The estimation of the current angle is made by the predic-

tion step of the Kalman filter;

2. The quaternion estimated is then applied to the accelera-

tion vector (which will have components on the X and Y

axis) using the following equation:

ar = q̂ ⊗ ao ⊗ q̂−1 (3.47)

where ao and ar are pure quaternion which represent re-

spectively the original acceleration vector and the rotated

one. q̂ is the estimated quaternion which represent the ori-

entation of the board and ⊗ is the Hamilton product. The

components of ar are the external acceleration which has

to be removed from the original measurements of the ac-

celerometer.

Once the correct angle is estimated on both axes the filtering

and the control correspond to those described in the previous

sections.

3.5 Results

The aim of the project was to analyze and implement an anti-

sway system based on an estimation of the angle arising from an
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Figure 3.20: The path followed by the bridge crane during the tests.

inertial platform. The problem was at first approached in sim-

ulation and then implemented in the real world. In this section

the results achieved will be shown, enlightening the improve-

ments in performance and safety that can be reached using the

new anti sway system developed.

Two different test will be shown:

1. In the first the bridge crane moves along a configured path

(shown in figure 3.20), without load, with a rope length

of 2 m. The results with and without the control will be

shown.

2. In the second test, the same path has been applied to a

bridge crane with a C-shape load of 3000 kg and a rope

length of 3 m. Even in this case the results with and without
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control will be analyzed.

3.5.1 Test number 1

As mentioned before this test was made without the load, on

a rectangular path and with a rope length of 2 m. The results

are shown in figure 3.21. It is visible how the control damps the

oscillation, making the load stopping much more time before the

uncontrolled one. The control system is not able to fully remove

the oscillations, this can be done only avoiding movement of the

bridge crane. So, the main advantage introduced by the control

is not the fully removal of the oscillations, but the time required

to damp these oscillations. The direct consequence is that the

bridge crane is much more safe and can perform the same ”pick

and place” operation in less time.

3.5.2 Test number 2

The second test follows the same path of the first one, but with a

load of 3000 kg connected and a rope length of 3 m, as visible in

figure 3.22. Even in this case the effect of the control is pretty

clear on both axes, as visible in figure 3.23. In this case, the

control can increase the efficiency of a company; reducing the

time needed to move a big load is crucial in order to reduce the
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Figure 3.21: The first test, carried out without load. In red is visible the
angle under the effects of the control system. The damping factor is higher
than in the open loop system.

Figure 3.22: The real bridge crane with the C-shape load of 3000 kg con-
nected.
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Figure 3.23: The second test is carried out with a load of around 3000Kg.
This test shows that the control system is robust to change in the parameter
of the system, like length and load weight.

time required to produce a good. In this particular case, the

saved time is more than 20 s, even minutes checking how the

sway is not damped.

3.6 Implementation

The control system described in 3.4.3 has been tested on the

bridge crane shown in figure 3.22. This is a typical bridge crane

with 40tons as maximum weight liftable. It is able to move

on both axes at a maximum speed of 1 m/s2. The speed on

the Z-axis, the lifting axis, is 0.2 m/s2. The control algorithm
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has been implemented on a B&R PLC. The inertial measure-

ment unit connected to the turnbuckle is a classic 6DOF with

tri-axial accelerometer and tri-axial gyroscope. The commu-

nication between the IMU and the PLC was made with the

CAN BUS. The signals generated by the PLC, are the refer-

ence speed, which are sent to the inverters using an analogical

output between 0− 20V .

3.7 Open problems

The anti-sway system realized fulfill the requirements but it still

has some open issues. Two of them are the most critical, and, in

some rare case, they can create some problem to the anti sway

system. The first is related to the non-ideality of the motors,

while the second is connected to the correct estimation of the

rope length in presence of a load.

3.7.1 Motor delay

The motor and its controller (the inverter), during the model-

ing phase has been considered ideal. This assumption has to be

reconsidered after some acquisitions, since the transfer function

between the reference speed and the real speed is not equal to

one. More in deep, observing the figure 3.24 it is possible to
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deduct that the motor introduces a delay and a quick dynamic.

For this reason the transfer function of the motor can be repre-

sented in the following way:

M(s) = e−τs · 1

sT + 1
(3.48)

with T ∼ 0.1 and τ that has a mean value of around 120 ms,

but an high variability, moving from 90 ms to 150 ms. The

first thing to notice is that there is almost a decade between the

band of the motor controller and the band of our system, which

is between 1 rad/s to 3 rad/s. The delay can be a problem,

because it is inside the control loop, this means that the control

action is delayed. Checking the open loop transfer function:

L(s) = Kp ·M(s) ·G(s) (3.49)

with Kp the gain of the controller computed using the gain

scheduling method described before, M(s) is the transfer func-

tion of the motor and G(s) is the transfer function of the bridge

crane in the worst case, without friction (equation 3.15). An-

alyzing the phase margin of the system L(s) with l spanning

from 2m to 7m is possible to identify the maximum loop delay

in order to keep the system asymptotically stable. These value
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Rope length φm[◦] ωc[rad/s] τmax[s]
2 63.6 4.9 0.22
7 74.4 2.6 0.47

Table 3.4: Maximum allowable delay.
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Figure 3.24: Reference speed sent to the motor (blue) and the actual speed
(red). It is visible the delay and the dynamic of the motor controller. It is
also noticeable a non linearity at the beginning of the movement, probably
due to static friction.

are summarize in the table 3.4. It is pretty clear that maxi-

mum permissible delay, with a rope length of 2 m is less than

two times the mean delay present in the system. Luckily the

presence of the friction increase the maximum allowable delay,

making the real system robust to the delay.

Obviously this delay reduces the performance of the control sys-

tem.
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Figure 3.25: The triple pendulum case on the real bridge crane.

3.7.2 Load connection

The second open problems is related to the length estimation

during operation with a load connected. The connection be-

tween the load and the hook of the bridge crane is made with

ropes or chains. This type of connection will increase the degree

of freedom, making the system a double or even a triple pen-

dulum, as visible in figure 3.25. In this condition two possible

behaviors can occur:

1. The load cannot be considered as a point mass due to an

high inertia momentum on one axis; in this case it is pos-
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sible to see the two, or more, pendulums oscillate at a dif-

ferent frequency or out of phase.

2. The load, as in fig.3.25, acts as a point mass, and the weight

makes the ropes acting similar to a rigid rope. In this case

the two or more pendulum acts as a single one.

The two possible behaviors defined before have different conse-

quence on the control system. In particular, the first condition

make the bridge crane completely uncontrollable, since there

is no knowledge related to all the pendulums. In the second

condition the system still acts as a pendulum, so the system is

controllable, but the performance are highly downgraded. In

fact the control estimates only the length of the rope until the

hook, so the gain scheduling controller uses a wrong Kp.

The first failure, the multi pendulum one, can’t be solved with

the actual control structure/hardware, it is only possible to iden-

tify this situation and create an alarm. Luckily most of the loads

are connected using the typical 4-rope structure (as the one vis-

ible in fig. 3.25) that aim to center the momentum of inertia

reducing this problem.

The second failure can be solved implementing an algorithm that

is able to identify the length of the rope on the basis of the am-

plitude of the oscillations. A test, using a frequency tracker [7]
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has been done; this solution, anyway, is able to identify the fre-

quency of oscillations only in presence of them, that is a counter

sense since the aim of the control system is to remove the sway

of the load.

3.8 Conclusions

The creation of an anti sway system has been exposed in this

chapter. In the first part the model of the system has been com-

puted using the Eulero-Lagrange equations. Then the control

problem has been faced in a theoretical way, comparing the per-

formance of the time optimal and the P-controller in suppressing

the residual oscillation after a movement. Then the real control

system, which is based on a gain scheduling P-controller, is pre-

sented, explaining all the expedients used in order to make it

works.

The proposed solution can be considered innovative since it is

one of the first anti-sway system applied directly on the real

bridge crane. Furthermore the control system developed is able

to suppress oscillation keeping the control of the bridge crane

in the hands of the human operator. So, it is completely trans-

parent, a worker can use it as he usually uses the crane. To be

remembered that the performance, in terms of maximum speed
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reached by the bridge crane, are not degraded.

Some work can still be done in order to increase the performance

in terms of angle suppression and even in terms of robustness to

possible instable situations (e.g. the double pendulum).

The results obtained on the real bridge crane confirms the good-

ness of the control system, and even the tests made by a person

which never used a bridge crane before confirms that the devel-

oped anti-sway system makes it more usable.





Chapter 4

Condition assessment

The problem of providing the reliable operation of equipment,

components and parts becomes more and more relevant every

year as the equipment aging in many branches of industry sig-

nificantly surpasses the rates of technical re-equipment. The

process of condition assessment, in particular related to a man-

ufacturer field, aim to identify when a particular machinery is

getting old and consequentially reduce the down time caused by

a failure. The typical approach is a scheduled maintenance pro-

gram, which is time consuming and resource hungry. Further-

more, this type of approach is not continuous but it is done at

intervals, so, in order to increase the effectiveness, the condition

assessment check has to be made much frequently, increasing

the costs related to this process.

For the previous reasons an automatic approach that is able to

87
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continuously monitoring the condition of the plant can increase

its reliability. Moreover the maintainer can be called automati-

cally from the condition assessment system, reducing the costs.

In literature is possible to find various type of condition or

residual life assessment algorithm. Some of them are made

knowing precisely the model of the system to preserve, making

possible to understand if something is going wrong, for example

in a transistor [1] or on a cast duplex stainless steel [13]. If the

model is not well known, or too difficult to identify precisely,

some different approach can be realized; in [51] and [11] the vi-

brations of the structure are analyzed, in time and in frequency

in order to identify if something is changing. Others approach

aim to evaluate how the system is working differently from the

initial or typical condition, for example the current signature in

motors [19].

In this chapter a condition assessment algorithm based on

vibration analysis will be described. In particular the Dynamic

Time Warping algorithm will be applied to the spectrogram of

the vibration recorded during the operation of an high-voltage

circuit breaker. It will be shown how this algorithm permits to

understand if the circuit breaker is changing its behavior and,

consequentially, if it requires a maintenance.
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4.1 Problem Description

The problem faced in this chapter is related to the development

of a condition assessment algorithm for an high voltage circuit

breaker. This problem has been already faced in literature and

is possible to find various approach. The algorithms used dif-

fers ones to the other for the physical setup and for the method

used to elaborate the data. In [26] a very expensive sensor like

a thermal camera is used in order to identify some possible vari-

ations from the normal functioning. A much cheaper sensor like

a current one, has been used in [50] and [40]. In this two ap-

proaches the difference is made by how the data are elaborated.

In the first the current flowing inside the coil which make the

circuit breaker opens and closes is analyzed using the current

signature of the motor. In the second, the signal is the input

of a trained neural network which is able to identify a possible

fault. The most used sensor, by the way, is the accelerometer,

which is able to acquire informations about the vibrations of the

system. Then different analysis can be carried out:

• In [45] a vibration analysis is made simply analyzing the

peaks in the spectrum;

• In [27] the analysis is made using the wavelet transform
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and then a classifier permits to understand the source of

the fault;

• In [31] the accelerometer measurements are compared using

the Dynamic Time Warping algorithm, which identifies the

pattern inside the signals.

The proposed algorithm is an improvement of [31]; in fact the

Dynamic Time Warping developed analyze the spectrogram of

the signals, merging the time and frequency analysis.

4.2 System Description

The system used for test is an high voltage circuit breaker, which

close the contacts using a rotating shaft puts in movement using

a spring. The spring is then reloaded using a small motor. Three

phases can be identified:

• Closing: the shaft rotate, actuated by a spring, and close

the contact very quickly (less than 5 ms). In this phase

another small spring is loaded and will be used to open the

contacts;

• Charging: the spring used for closing the contacts is reloaded

using a DC-motor;
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Figure 4.1: Acceleration measured during a full cycle. The sensing axis of
the accelerometer is placed parallel to the movement of the shaft.

• Opening: the shaft come back to the original position open-

ing the contacts.

The data are acquired during all these three phases. In particu-

lar the sensor used, as said before, is a mono axial accelerometer

which is mounted pointing in the same direction of the move-

ment of the shaft.

The aim of the algorithm is to evaluate the condition assess-

ment of the circuit breaker so, starting with a new one, a lot

of tests has been done in order to drive the system to the fail-

ure. Each test is composed by a full cycle, meaning a closing, a

charging and an opening operation.
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In figure 4.1 the signals acquired by the accelerometer dur-

ing the three phases are shown. It is pretty clear that during

the closing and opening operation there is the higher amount

of acceleration. In particular during the closing phase, which is

the fastest and most impulsive, the accelerometer register accel-

erations of almost 1000m/s2. During the charging phase some

vibration due to the charge of the motor are registered and, at

the end, a peak in the acceleration happens when the spring

is blocked by a hook. During the opening, some powerful vi-

brations are visible, but the event is less impulsive than in the

closing phase.

The aim of the project is the evaluation of the condition of

the circuit breaker. First of all it is important to understand

if the system is repeatable. Three consecutive tests has been

analyzed, and the signals are shown in figure 4.2. The system

results repeatable both in the time domain and in the frequency

domain. Notice that both analysis are important, because typ-

ically a structural deterioration lead to a change in frequency

that maybe is not clearly visible in the time domain [12], while

a failure is much more visible in the time domain. For these

reasons the analysis has been done on the spectrogram.

The spectrogram of a full cycle operation is visible in figure 4.3.
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Figure 4.2: Acceleration measured during the closing phase. The signal in
time and in frequency is shown. Three test are overlapped in order to show
the repeatability of the signal either in time and frequency.

4.3 Proposed solution

As discussed before the proposed solution is a variation of the

Dynamic Time Warping algorithm. In this section, the algo-

rithm will be described in general, and then applied to the spe-

cific case of a circuit breaker.

4.3.1 Dynamic Time Warping

In time series analysis, dynamic time warping (DTW ) is an algo-

rithm for measuring similarity between two temporal sequences
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Figure 4.3: Spectrogram of a full cycle composed, in order, by closing, charg-
ing and opening phase.

which may vary in time or speed. For instance, similarities in

walking patterns could be detected using DTW [8], even if one

person was walking faster than the other, or if there were accel-

erations and decelerations during the course of an observation.

DTW has been applied to temporal sequences of video, audio,

and graphics data indeed, any data which can be turned into

a linear sequence can be analyzed with DTW . A well known

application has been automatic speech recognition [6], to cope

with different speaking speeds. Other applications include on-

line signature recognition [34] and can be used also in partial

shape matching application [29].
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In general, DTW is a method that calculates an optimal

match between two given sequences (e.g. time series) with cer-

tain restrictions. The sequences are ”warped” non-linearly in

the time dimension to determine a measure of their similarity

independent of certain non-linear variations in the time dimen-

sion (see figure 4.4). This sequence alignment method is often

used in time series classification. Although DTW measures a

distance-like quantity between two given sequences, it doesn’t

guarantee the triangle inequality to hold.

The algorithm compare two time series, for instance S of
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Figure 4.5: The distance matrix D computed using (4.3), while in red is
visible the optimal path.

length n, and T of length m, with:

S = s1, s2, ..., si, ..., sn (4.1)

T = t1, t2, ..., ti, ..., tm (4.2)

To align these two sequences using DTW, an n-by-m matrix,

called D, must be constructed with the (ith, jth) element of the

matrix defined as the squared distance

d(si, tj) = (s1 − tj)2 (4.3)

To find the best match between these two sequences, a path

through the matrix D that minimizes the total cumulative dis-
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tance between the two signals must be find. This process is

shown in figure 4.5.

In particular, the optimal path is the one that minimizes the

warping cost

DTW (S, T ) = min

√√√√ k∑
k=1

wk (4.4)

where wk is the (i, j)th element of the matrix D. wk also

belong to the warping path W ; in particular wk is the kth ele-

ment of this path, which represent a mapping between S and T

(as visible in figure 4.4). This path is composed by contiguous

elements from the matrix D. Analyzing figure 4.5, you have

to start from the bottom left, the zero position, and reach the

end of both signals, in this case 150, following a path that mini-

mize the warping cost described in equation 4.4. This path can

be found using dynamic programming to evaluate the following

recursion:

λ(i, j) = d(si, tj) + min{λ(i− 1, j − 1), λ(i− 1, j), λ(i, j − 1)}
(4.5)

where d(si, tj) is the distance found in the current cell, and λ(i, j)

is the cumulative distance of d(si, tj) and the minimum cumu-

lative distances between the three adjacent cells.
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The DTW outputs are the distance between the two signals,

expressed as cumulative distance of the warping path and the

warping path itself.

Computing the DTW requires O(N 2) in general, since you have

to travel all along the matrix D. Some techniques introduces

some bounds in the research inside the matrix in order to reduce

the computational burden and speed up the algorithm. This

process and the possible boundaries that can be introduced, are

summarized in [54].

4.3.2 Application to condition assessment

The full cycle of the circuit breaker is composed by three phase:

first there is the closing operation, where the contacts get closed;

then a small motor recharges the spring used during the previ-

ous phase and then the contacts get opened during the opening

phase, where a second spring loaded during the closing phase is

used. The algorithm aim to analyze all the three phases using

the Dynamic Time Warping.

The idea is to evaluate the condition assessment of the circuit

breaker analyzing how much the behavior is moving away from

the first cycles. In order to understand ”how much the behavior

is moving” the DTW will be applied to the spectrogram of the
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ing these bands with the reference ones. Then the distances computed are
summarized in the indexes mean and variance.

accelerometer measurements. Since the Dynamic Time Warping

can be applied only to time series or to linear sequence of data,

the spectrogram will be analyzed slice by slice.

The measurements are analyzed using the Short Time Fourier

Transform (STFT), obtaining the spectrogram of the signal.

The spectrogram process requires to chunk into small pieces the

time series and then apply the STFT to each of these pieces.

This process is made using a window which selects only a part

of the signal. This window defines the time and frequency res-

olution of the spectrogram. As the frame (window, segment)
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length increases, frequency resolutions are increased, however,

time resolutions are decreased. As the frame (window, segment)

length decreases, time resolutions are increased, however, fre-

quency resolutions are decreased. The window has been defined

in order to obtain a time resolution of around 4 ms and a fre-

quency resolution of around 100 Hz. The spectrogram is then

analyzed using the DTW ; in particular each band (in time and

in frequency) is compared with the reference one, created with

the spectrogram of the firsts cycles. This analysis creates a vec-

tor of distances for the time and another one for the frequencies.

In order to have a more synthetic index, the mean and the stan-

dard deviation of these vectors is taken. To be noticed that the

output of the DTW, the distance, is always a positive number,

so there is no problems related to possible eliminations of ef-

fects. At the end of this analysis, for each phase 4 indexes will

be generated, leading to an amount of 12 indexes for the full

operative cycle. These indexes represent the actual condition

of the circuit breaker referred to the first operations; evaluating

the deviation of these indexes from the same indexes generated

by the operation made with a new circuit breaker can express

the need of a preventive maintenance.

Once the indexes are created a statistical test can be made;



4.4. RESULTS 101

define, for instance:

X = Ik−1, . . . , Ik,n (4.6)

where Ik−j is the k-th index generated by the DTW computed

at j-th operation. On X the mean µ and the standard deviation

σ has been calculated. In particular in order to create a statis-

tical representation, these values are computed on the first 100

tests.

The value of µ and σ will be used in order to perform a statis-

tical test to evaluate the deviation of the behavior of the circuit

breaker from the first operations. In particular two threshold

can be defined:

• If the distance overcome the limit of µ + 3 · σ, a warning

can be created;

• If the distance overcome µ + 5 · σ, the warning become an

alert requiring a maintenance.

This process must be done on all the indexes created.

4.4 Results

The algorithm has been tested on two different Circuit Breakers

of the same type. In this section the evolution of all the 12
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Figure 4.7: Results of the first circuit breaker. The top two figures are the
mean and variance in time and frequency related to the closing phase. In the
middle the results related to the charging operation and at the bottom the
results of the opening phase.
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Figure 4.8: Three particularly significative indexes related to circuit breaker
1. It is visible that the algorithm shows a variation in the behavior of the
system. In particular this three indexes are related to a time analysis.

indexes (4 for each phase) related to the first circuit breaker

will be shown. The test consists in making the circuit breaker

executes a normal cycle until it breaks. In particular for the first

circuit breaker around 2400 cycles has been made, while with

the second one less 1700.

In figure 4.7 are summarized all the results related to the

circuit breaker number 1. In particular it is possible to see the

evolution of each index over all the tests. Resuming, the indexes

are:
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• µT,CL: mean of the distance vector related to the time anal-

ysis of the spectrogram for the closing phase;

• σT,CL: standard deviation of the distance vector related to

the time analysis of the spectrogram for the closing phase;

• µF,CL: mean of the distance vector related to the frequency

analysis of the spectrogram for the closing phase;

• σF,CL: standard deviation of the distance vector related to

the frequency analysis of the spectrogram for the closing

phase;

• µT,CH : mean of the distance vector related to the time anal-

ysis of the spectrogram for the charging phase;

• σT,CH : standard deviation of the distance vector related to

the time analysis of the spectrogram for the charging phase;

• µF,CH : mean of the distance vector related to the frequency

analysis of the spectrogram for the charging phase;

• σF,CH : standard deviation of the distance vector related to

the frequency analysis of the spectrogram for the charging

phase;

• µT,OP : mean of the distance vector related to the time anal-

ysis of the spectrogram for the opening phase;
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• σT,OP : standard deviation of the distance vector related to

the time analysis of the spectrogram for the opening phase;

• µF,OP : mean of the distance vector related to the frequency

analysis of the spectrogram for the opening phase;

• σF,OP : standard deviation of the distance vector related to

the frequency analysis of the spectrogram for the opening

phase;

On the signals described before, the condition assessment can

be made simply checking if the index overcomes the threshold

for the warning or for the alert. In figure 4.8 is visible the same

index for the three phases: the mean of the distance vector

calculated analyzing the temporal slice of spectrogram with the

DTW. Observing the figure is possible to underline:

1. around the test number 1500 the distance in the closing

phase remain in a warning situation while in the other in-

dexes the warning sometimes fire up but then the situation

come back to the normality;

2. around the test number 1700 the index on the closing phase

fires up an alarm; since the circuit breaker is not broken the

test keep going and even the index related to the charging

phase reports an alarm;
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3. the circuit breaker undergoes a failure later, around the

test number 2400. This behavior can be explained with a

deterioration of the system that slowly leads to a failure.

In figure 4.9 the results of the second circuit breaker are

shown. In this case the indexes taken into account are the mean

of the distance vector calculated analyzing the frequency slices

of spectrogram with the DTW. Even on this Circuit breaker is

pretty clear the moment when the behavior completely change.

Around the test 1600, the index related to the Closing phase

has fires an alarm and after around 100 operation the circuit

breaker has a failure.

4.5 Conclusions

The proposed algorithm for condition assessment has good per-

formance, being able to underline a change in the behavior of

the circuit breaker before the failure. The analysis on the spec-

trogram extend the ability of the algorithm of enlightening a

possible deterioration of the system, either in time or frequency

domain. The technique used, the Dynamic Time Warping, per-

mits to evaluate a distance value between two signal that is more

advanced compared to the standard Euclidean distance.

The proposed solution is completely model-free making the al-



4.5. CONCLUSIONS 107

0 200 400 600 800 1000 1200 1400 1600

D
is

ta
nc

e 
- 
µ

F

Closing phase

Distance µ µ+3σ µ+5σ

0 200 400 600 800 1000 1200 1400 1600

D
is

ta
nc

e 
- 
µ

F

Charging phase

Number of Cycles
0 200 400 600 800 1000 1200 1400 1600

D
is

ta
nc

e 
- 
µ

F

Opening phase

Figure 4.9: Results for the circuit breaker 2. The algorithm shows a variation
in the behavior around test 1600. These indexes are related to a frequency
analysis if the spectrogram.

gorithm applicable even to other systems. The indexes created,

can be used as input in a Fault isolation algorithm in order to

identify the source of the fault.

Future developments even to be implemented on a micro-controller,

creating a smart sensor for the condition assessment.





Chapter 5

Collision detection

The term ”collision” refer to an event in which two or more

bodies exert forces on each other for a relatively short time.

Typically in engineering the collision detection problem is re-

lated to a safety issue. In fact, when there is a machinery that

is moving automatically, the collision detection is crucial in order

to reduce injuries to the workers or damages to other machines.

In this chapter the collision detection problem will be faced on

an automatic access gate. Using an accelerometer it is possible

to show that this sensor is the fastest to identify the impact. Ob-

viously the accelerometer detect only the impact with an high

level of deceleration making the slow collision impossible to iden-

tify. For this reason others two very similar algorithm has been

developed; one is based only on the torque of the motor and the

other mixes the information arising from the accelerometer and

109
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from the motor. The results will show that the best performance

are achieved with the mixed solution, which permits to always

identify the collision.

5.1 Introduction

The research field related to collision detection is very wide and

span from the computer graphic to robotics. In both field it

refers to problems in interaction between subjects which can be

two 3d-models in a simulation environment or a manipulator

robot in an factory.

The work made is related to collision detection on physical sys-

tem, in particular on an automatic access gate, that can be

seen as a very simple robot that always repeat the same opera-

tion. Either in this application case or in robotics, the principal

aim of the collision detection is to detect impact that can cause

damages to objects or people. In robotics some significative

work has been done, in particular in the human-robot interac-

tion (pHRI )[18], [25], [20]; in the previous papers, the systems

used were robotic arms or high level robot system, far from an

automatic access gate, especially in terms of sensors availability

and performance reached by the components (motor, transmis-

sion etc.)
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As said before this work considers an automatic access gate,

that can be seen as a generic speed-controlled electromechanical

system: it is composed by an electric motor which moves a load

through a mechanical transmission. About these type of sys-

tems taken into account, in literature exists different methods

which affords to detect faults on the basis of the data collected

from the measurements. In particular exists a branch of ap-

proach which use the data from the currents of the motor ([58],

[44]), other which use vibrational measurements ([17]) and oth-

ers which detect the fault using thermal camera ([38]). More in

deep, the current has a good information content on the overall

system about the arising of a fault thanks to the control system

which tend to compensate the unexpected behavior. However,

for the same reason, it is affected by a time delay depending

on the performance of the controller. This fact has a great rel-

evance in particular when the fault has to be detected in the

minimum time. For example in any type of collisions or in an

electromechanical actuator included in safety system. This type

of method is called Electrical Signature Analysis (ESA - [19]).

In this work three type of collision detection are presented:

1. Pure Inertia (PI ): this algorithm exploits only the inertial

measurements in order to detect the impact;
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2. Friction Estimation Extended Kalman Filter (FEEKF ): this

algorithm merge the information arising from the accelerom-

eter with the measurements related to the motor (speed,

torque);

3. Friction Estimation Motor side(FEMS ): this algorithm iden-

tifies the collision using only the informations available in

the motor, the speed and the torque.

As easily understandable the main difference in the algorithms

are the signals used for the identification of the collision.

The chapter is organized as follow: firstly the problem is intro-

duced, describing the context and the model taken into account.

Then, the three algorithms developed are shown, starting from

the Pure Inertia passing to the Friction Estimation Extended

Kalman Filter and then to the Friction Estimation Motor Side

algorithm. The effectiveness of the algorithms are then shown

enlightening pros and cons; the performance are compared on

the automatic access gate following some benchmarks.

5.2 Problem Statement

In order to introduce the proposed methods consider the auto-

matic access gate as a speed controlled electromechanical actu-
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Figure 5.1: Block diagram of a speed controlled electromechanical system

ator with an external force acting on it, as shown in figure 5.1.

This force represents the physical effect of an event affecting the

system, due to an unexpected phenomenon like a collision or a

general fault.

5.2.1 Model of the system

The physical model of the system considered is shown in figure

5.2. A motor, through a mechanical transmission, moves a mass

where is present a dissipative force, represented as viscous fric-

tion. In the real situations the mass J represent all the inertia

of the system: it includes the motor inertia Jm, the inertia of the

transmission Jt and the inertia of the loads Jl. The transmission

is considered rigid; the power losses due to the deformation of

the parts of the system are not considered. The torque Td is

the unexpected event. For the aims of this work the model of

the electric motor is not considered. The motor torque Tm is
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estimated from the current through the following relation:

Tm = Kt · i (5.1)

where i is the current circulating in the motor and Kt the related

torque constant.

The behavior of the overall system (visible in figure 5.3) is

described from a dynamic equilibrium:

Tm(t)

τ
− cf · ω(t)− Td(t) = Jω̇(t) (5.2)

where:

• cf is the viscous friction coefficient;

• ω, ω̇: are respectively the angular speed and the angular

acceleration of the mechanical system;

• τ is the reduction ratio, defined as the ratio between the

output and the input speed of the transmission (τ = ω/ωm);

• J is the moment of inertia of the overall system (J = Jm
τ2 +

Jt + Jl)

Td is the disturb introduced by an external event which can be
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Figure 5.2: Physical model of the system

Figure 5.3: Block diagram of the system

seen as a variation of the friction coefficient of the system:

Td(t) = cd · ω(t). (5.3)

Thus, the final model equation becomes:

Tm(t)

τ
− c · ω(t) = J · ω̇(t) (5.4)

where c = cf +cd is the global viscosity friction coefficient of the

system.
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Figure 5.4: Image of the gate used for the tests

5.2.2 Problem Description

The electromechanical system used to test the algorithm is an

automatic access gate, showed in figure 5.4. The goal is to de-

tect, in the minimum time, an impact of the gate against a per-

son, a car or any other object. Obviously, from a safety point of

view, the impact with a human is the most significant to detect.

This lead to an examination of the different type of impact:

• Stiff : it relates to collisions between a gate and rigid objects

(e.g. human cranium or other exposed bones);

• Soft : this type of impact refers to collisions among the gate

and soft items (e.g. parts of the human body covered by

muscle or fat). Another crucial condition, modeled as soft

impact, happens when a person remain stuck between the
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Figure 5.5: Comparison of the two different impacts. The stiff one has an
higher impact force and, consequentially an higher deceleration.

gate and the barrier at the end of the track, being pressed

by the gate.

Since the system now is completely described, it is easy to

deduce that the stiff impact will produce an higher deceleration

compared to the soft one, as visible in figure 5.5.

On the other side, a soft impact will be more visible on the

torque signal, due to the slow increase of the force needed to

overcome the obstacle.

5.2.3 Experimental setup

The mechanical structure of the gate consists of four principal

component:
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• motor: typically a synchronous brushless motor, with the

speed of the rotor calculated by the resolver;

• transmission: reduce the rotational speed, increasing the

torque produced in output;

• rack: transform the motion from rotational to linear;

• moving mass: this is effectively the gate, which moves for-

ward and backward, opening and closing the access.

The measurements already available on the gate are:

• torque: in this case, the torque is estimated directly from

the motor current:

T (t) = Kt · im (t) (5.5)

where im is the current in the motor and Kt is the coefficient

which relate the current to the torque;

• angular velocity: this variable is acquired through a resolver

connected to the motor.

In addition to these data two more sensors were added in

order to have a better knowledge of the system:

• Accelerometer: it is placed on the moving part of the gate

and measures the longitudinal and vertical acceleration.
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Moreover, using the following equation the linear accelera-

tion is transformed into a rotational one:

aα =
al
τ

(5.6)

where τ is the gear ratio and al the longitudinal accelera-

tion;

• Load cell: it is used only for validation purpose, it measures

the force of the impact. This sensor permits to understand

when the collision begins and, as a consequence, an evalu-

ation of the time required by the algorithm to identify the

impact. The load cell chosen has a stiffness of 500N/mm

which approximate the rigidity of a human cranium.

The experimental layout is described in figure 5.6.

The two types of collision defined in 5.2.2 are recreated in this

way:

• Stiff : using the load cell previously described;

• Soft : placing a rubber bumper in front of the gate, which

absorbs a part of the impact force.

All this data are acquired using a dedicated electronics which

runs the algorithm in real-time.
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Figure 5.6: Schematic of the experimental layout. The position of the IMU
and of the load cell reflects the real location during the tests.

5.3 Collision detection algorithms

Two different approach will be shown: the first is the so-called

Model free approach, the impact is detected using only mea-

surements, without considering a mathematical model of the

system. In this section the Pure Inertia algorithm will be de-

scribed. The second approach is the opposite of the first and

is the model-based one. In this section the Friction Estimation

and the Motor Side Extended Kalman filter will be presented.

5.3.1 Model free - Pure Inertia (PI)

The pure inertia algorithm is a complete model-free solution,

which try to identify the impact only analyzing a measured

physical variable, the acceleration. The raw signal needs to be

preprocessed in order to became a useful index for the impact
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detection.

The measurements arising from a gate during the normal oper-

ations are highly repeatable, permitting us to create a sort of

signature of the gate. This signal is created following the next

steps:

1. Data collection: a number of test without impact are car-

ried out in order to acquire the typical behavior of the gate.

2. Positive acceleration removal: the gate moves only in one

direction during the closing phase; this direction is the same

of the accelerometer sensing axes. An impact will create a

negative peak in the acceleration; due to that the positive

part of the acceleration can be removed.

3. Envelope: the envelope of all the negative parts of the tests

acquired at point 1 is done.

4. Safety margin: the envelope created before is increased by

a safety factor defined by the maximum standard deviation

of the signals acquired at point 1.

Once the signature is created the impact is detected when

the acceleration overcome the signature, as visible in figure 5.7.
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Figure 5.7: Pure Inertia algorithm. The red line is the signature created while
the blue line is the accelerometer measurements. Around 10s the acceleration
exceeds the threshold and the impact is detected.

5.3.2 Model based

Two model-based algorithm has been created. The first requires

both the measurements from the accelerometer and from the mo-

tor, while the second rely only on the speed and the torque of

the motor.

These two algorithms will be presented, showing how in both

cases the friction coefficient is estimated; the algorithm for im-

pact detection is based on this value, making it the same for

both.
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5.3.2.1 Friction Estimation Extended Kalman Filter (FEEKF)

The first model-based algorithm proposed is a sensor data fu-

sion method, which merges the measurement of motor current,

the speed of the system and its acceleration with the aim of

estimating the viscous friction coefficient of the mechanical sys-

tem. As shown in the model section 5.2.1, the concept idea is

to represent the collision as a variation of friction of the system.

This approach, beyond giving an intuitive physical meaning to

the fault, as shown in the application case, it improves the per-

formance of the fault detection algorithms. Starting from the

last model equation (5.4), the goal is to estimate the friction

coefficient c of the system, given the measurements of the mo-

tor torque (Tm), the speed (vα) and its acceleration (aα). The

torque is an estimation from the measurement of the current of

the motor, as described in 5.1. The speed vα can be measured

using an encoder or a similar sensor. The data of angular ac-

celeration can be computed from an Inertial Measurement Unit

(IMU ); depending on where it is placed, exist a constant rela-

tionship between the linear acceleration measured and aα (for

example, in the application reported it is the reduction ratio of

the transmission).

Since the model is nonlinear, in order to solve the estima-
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tion problem, the Extended version of the Kalman filter must

be used. As reported in [22], the EKF consists in applying lin-

earization techniques about the estimated trajectory, to get sim-

ple approximation of the system and then compute the Kalman

filter gain respect these points. The principal drawback of the

EKF is the loss of optimality guaranteed by the linear Kalman

filter.

Thereby to formulate the Extended Kalman filter problem,

there are three main steps to follow:

1. basing on the model equations (5.4), define the state space

model of the system;

2. linearize the system;

3. define the noise covariance matrix Q and R.

About the first step, given the measurement of the motor torque,

the speed and the acceleration, the state variables of the system

are defined as:

x1 = c

x2 = aα

x3 = vα

while the motor torque Tm/τ is defined as the input u of the

system. Hence, the discrete state space model is:
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

x1(k + 1) = x1(k) + w1(k)

x2(k + 1) = u(k)−x1(k)x3(k)
J + w2(k)

x3(k + 1) = x3(k) + Tsx2(k) + w3(k)

z1(k) = x2(k) + v1(k)

z2(k) = x3(k) + v2(k)

(5.7)

where wn represents the uncorrelated noise of the plant, while

vm the uncorrelated noise in the measurement. Ts is the sam-

pling time.

The second step consists in linearize our model; starting from

the classic state space description of nonlinear system:


x(k + 1) = f(x(k + 1), u(k))

z(k) = h(x(k), u(k))

the system is linearized in the following manner:

δF =
δf(x, u)

δx
=


1 0 0

−x3
J 0 −x1

J

0 Ts 1

 (5.8)

δH =
δh(x, u)

δu
=

 0 1 0

0 0 1

 (5.9)
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Finally, to complete the formulation the covariance matrices

of the model are defined as:

Q =


σ2w1

0 0

0 σ2w2
0

0 0 σ2w3

 , R =

 σ2v1 0

0 σ2v2

 (5.10)

where Q represent the covariance matrix related to the plant

noise while R is linked to the measurement noise. The values

for these matrices are assigned using a trial and error method.

5.3.2.2 Motor side (MS)

The idea behind this algorithm is to replicate the FEEKF but

without adding an extra sensor, the accelerometer. For this

reason, starting from the state space model described before

(5.7) and removing the accelerometer state, the new discrete

state space model is obtained:
x1(k + 1) = x1(k)

x2(k + 1) = x2(k) + Ts
J · (u(k)− x1(k)x2(k)) + w2(k)

z1(k) = x2(k)

(5.11)

with x1 = c the friction coefficient, x2 = vα the speed of the

motor and u = Tm/τ the motor torque. In this solution, the
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parameter used in order to identify the impact is still the fric-

tion coefficient; this algorithm follows the same paradigm of the

FEEKF removing the accelerometer. For this reason it is called

Motor side, because it can be implemented directly in the con-

trol unit of the motor, without adding any sensor.

5.3.2.3 Impact detection

The algorithm for the identification of the impact (resumed in

figure 5.8) can be divided in two parts. The first is the algorithm

(FEEKF or FEMS ) needed for the estimation of the friction

coefficient. The second part effectively describe how the collision

is identified.

Since the behavior of the system is deterministic the impact can

be detected comparing the actual value of the friction coefficient

with a threshold curve which represent the normal behavior of

the system without collision. This threshold curve is defined as

the signature of the gate.

In this phase a number (> 10) of closing operation without

impact has been carried out, estimating for each operation a

friction coefficient curve. The threshold is then created taking

the mean of these curves and increasing it by a safe-factor, in

this case the standard deviation. Each time the gate completes a
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Figure 5.8: Structure of the algorithm: the torque, the angular speed and the
acceleration permits to estimate the friction coefficient. Then this parameter
is used for the creation of the signature and the identification of the impact.

closing operation without impact the signature is updated with

the new values; in this way the behavior of the gate is updated,

matching the changes in the environment (weather, aging of the

components etc.).

Once the reference behavior is created the impact can be

detected simply identifying when the friction coefficient exceeds

the signature, as visible in figure 5.9.

5.4 Results

In this section, the results achieved on the real system described

in section 5.2 are shown.

The benchmark used to test the performance of the three al-

gorithms consists in a closing operation at the maximum speed

reachable by the gate. In particular the reliability of the algo-

rithm is tested in the two different type of impact described in
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Figure 5.9: The figure illustrates how the impact detection algorithm uses
the friction coefficient in order to identify the impact. It is clear that when
the actual friction coefficient exceeds the threshold the impact is detected.

section 5.2.2.

The gate used for the tests has a weight of 620 Kg and a maxi-

mum speed of 12 meters per minute and is visible in figure 5.4.

In addition to the three algorithms described in this chapter,

the results achieved by the solution currently available on the

gate are presented.

5.4.1 Stiff impact

The trigger activations for the stiff impact which, recalling the

concept, represents a collision with a rigid object, are shown in

figure 5.10 and the performance of the algorithms are summa-
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Figure 5.10: Trigger of activation of the algorithms during a stiff impact at
maximum speed. The red triangle indicates the beginning of the impact.
The fastest algorithm is the Pure Inertia.

rized in the table 5.1.

In case of stiff impact an high level of acceleration is detected

and, as a consequence, the Pure Inertia algorithm, which uses

only the accelerometer signals, is the fastest to detect the colli-

sion. Some milliseconds later the Friction Estimation Extended

Kalman Filter takes the advantages from the accelerometer sig-

nals and identify the impact very quickly. The Friction Esti-

mation Motor Side detects the collision after the PI and the

FEEKF since it doesn’t have a real measure of the acceleration

but only an estimation arising from the speed of the motor. The

current impact detection algorithm identifies the collision much

later compared to the new algorithms.
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Algorithm type Activation time [ms]

Mean Std deviation
Pure inertia 21 3

FEEKF 36 3
FEMS 78 5

Commercial 204 15

Table 5.1: Performance of the algorithms in case of stiff impact. The mean
and the std deviation are computed using 30 impact tests.

5.4.2 Soft impact

A soft impact happens when the stiffness of the object against

whom the gate hits is low. In the application presented, this type

of impact is recreated placing a rubber bumper on the moving

part of the gate. The performance are summarized in table 5.2,

while in figure 5.11 the activations of the triggers, compared to

the force of the impact, are shown.

The effect of the bumper is visible in figure 5.11; in fact the

slope of the force is not continuous, it has two steps.The first is

related to the force absorbed by the bumper, while the second

starts when the bumper has ended its work.

The first algorithm to identify the impact is the FEEKF, which

is able to perfectly mix the information from the accelerometer

and the torque. The worst performance is achieved by the pure

inertia algorithm since in this type of impact the amount of ac-
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Figure 5.11: Trigger of activation of the algorithms during a soft impact at
maximum speed. The red dashed line is the FEEKF, the green dashed-dotted
line is the pure inertial algorithm and the blue dotted line is the motor-side
algorithm. The black continuous line is the force of the impact measured by
the load cell.

celeration measured is very low. In this impact even the current

commercial solution is quicker than the PI.

Algorithm type Activation time [ms]

Mean Std deviation
FEEKF 220 10
FEMS 268 6

Commercial 390 15
Pure inertia 400 14

Table 5.2: Performance of the algorithms in case of soft impact. The mean
and the std deviation are computed using 30 impact tests.
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5.4.3 Considerations

The two different types of impact are drastically different. In

the first the deceleration is high, while in the second the bumper

absorb the force of the gate reducing almost to zero the accel-

eration measured by the accelerometer. For this reason, the PI

is the fastest in the Stiff impact while is the worst in the Soft

one.

The Soft impact is much more easy to identify observing the

torque of the motor, which, due to the control system, tends to

increase when the gate start pushing against the bumper. The

model-based solutions have the main advantage of merging the

accelerometer information with the motor signals creating a new

parameter (the friction coefficient) which change in both impact.

Due to that the best performance are achieved by these two so-

lutions, in particular by the FEEKF that can use a measured

acceleration and not an estimated one.

5.5 Conclusions

The chapter faced the problem of detecting an impact in the

minimum time possible. In particular this problem has been

addressed on an automatic access gate. After the description of
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the system and the deduction of the model equation, two dif-

ferent approach has been tested. The first, called Pure Inertia,

is a model-free solution, since the algorithm doesn’t rely on a

physical model but identify the impact only analyzing the mea-

surements of the accelerometer. The second approach is based

on the model of the system and aims to identifies the impact as

a variation in the friction coefficient of the system. Two model-

based algorithm has been developed; both of them estimate the

friction coefficient using an Extended Kalman Filter, but the

difference is that the first use the accelerometer measurements

(FEEKF ) while the second doesn’t (FEMS ).

The results can be summarized enlightening the pros and cons

of each algorithm:

• Pure Inertia: it is the quickest in the stiff impact but the

slowest in the soft one. This solution is not enough robust;

• Friction Estimation EKF: this solution use all the three

available signals and in the soft impact is the quickest, while

in the stiff one identifies the collision some milliseconds af-

ter the PI. Overall it is the best solution in term of quickness

of identification and robustness to different impact;

• Friction Estimation Motor Side: this algorithm has the
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same structure of the FEEKF but it doesn’t use the ac-

celerometer measurements. For this reason its performance

are still good but a little worse than the FEEKF. The ad-

vantage of this algorithm is that can be implemented di-

rectly on the motor, withohut adding more sensors.

Further tests must be done in order to confirm the goodness

of the solutions in all the condition but the performance of the

current commercial solution has been drastically improved.





Chapter 6

Conclusions

The thesis addresses the problems related to the use of inertial

platforms inside an industrial mechatronic systems. This field

is suffering a quick growth due either to the reduction of the

sensors price and even to the need to make the industry more

smart. The second factor, in particular is related to the need of

an increment in the safety of the plant. This need leads the work

to develop systems that are able to remove unpleasant behavior

in a plant or prevent possible failures. All these algorithms make

use of inertial measurements.

The thesis follows a path that at the beginning introduces the

concept of inertial measurements, showing how these platforms

are typically used in the consumer electronic.

In the second chapter some algorithms which permits to identify

the orientation of an object, based on accelerometer gyroscope

137
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and magnetometer measurements, are shown. These algorithms

have a typical structure for the orientation estimation algorithm,

with the main difference that the output of the estimation is only

a quaternion which simplifies the calculus and reduces the com-

putational burden.

Once these algorithms are presented the thesis start approach-

ing problems strictly related to a industrial mechatronic system;

the first problem addressed is related to an anti sway system.

Using inertial measurements (in this case gyroscope and mag-

netometer), the system is able to estimate the oscillation of the

load. This estimation is then used as controlled variable in a

control loop. In order to decide the type of controller a compar-

ison made in simulation has been done. This simulation claims

that the suboptimal solution reached using a P-controller has

performance that are comparable to the optimal solution, in

particular if the discussion is made on a parameter time vary-

ing system. This results justifies the solution implemented on

the real bridge crane, a gain scheduling proportional controller

which is able to remove most of the oscillation of the system.

In particular, since the control system is able to highly increase

the damping factor, removing the oscillation much more quickly

compared to the uncontrolled bridge crane. In addition to the
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control algorithm some expedients were added in order to make

the system more functional; a non linear battery of filter makes

the angle estimated more easy to control and furthermore it per-

mits to implement the perfect lift functionality that is one of the

best improvements due to the control system.

The implementation on a real bridge crane shows the effective-

ness of this solution, reducing the time needed to remove the os-

cillation from more than 3 minutes to around 15 seconds. One of

the biggest advantages of this anti-sway system is that it is com-

pletely retroactive, it can be added to old bridge cranes highly

increasing their performance. Furthermore this solution has the

big advantages of being invisible to the operator, who can still

uses the bridge crane as before, but without oscillations.

In the fourth chapter, the problem of evaluating the residual

life of a circuit breaker is addressed. The need of this solution

arise with the necessity to avoid or prevent possible failures.

In order to do that a knowledge of the system under control

is required; for this reason an accelerometer which is able to

measure the vibration of the system is placed inside the cir-

cuit breaker. The condition assessment algorithm attempts to

identify the deviation of the circuit breaker from the default

behavior, recorded during the firsts 100 tests. The condition
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assessment solution proposed makes use of a machine learning

algorithm, the Dynamic Time Warping, which permits to com-

pute a distance between two time or pseudo-time series. This

distance can be interpreted as how the behavior of the circuit

breaker is changing. In order to make the algorithm more robust,

this type of analysis has been carried out on the spectrogram

of the accelerometer measurements, analyzing both the behav-

ior in time and frequency. The algorithm has been tested on

two different circuit breaker enlightening the effectiveness of the

proposed solution. The computed distance can be used in order

to create a sort of statistical test: when it overcomes the 3σ

threshold a warning is fired, when the distance overcomes the

5σ limit an alarm requires a maintenance check.

The proposed solution applies the DTW in an innovative way,

using its output (the distance) as a parameter which represent

the residual life of the circuit breaker. The tests made confirms

that the solution is valid, identifying a change in the behavior

before a failure, permitting a preventive maintenance.

The last problem faced is related to the impact detection

issue. In particular, in order to increase the safety inside an

automated access gate, an accelerometer is used to sense the

deceleration suffered during an impact. Two different types of
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impact have been identified: soft and stiff. The first is not

visible on the accelerometer measurements since it is against a

soft object creating a slow variation in speed and consequen-

tially almost zero deceleration. The second, instead, has a huge

component of deceleration. With the aim of identify both im-

pact, a sensor fusion algorithm has been developed in order to

merge both measurements of the accelerometer and the motor

torque. This algorithm estimates the friction coefficient of the

system using an Extended Kalman filter; this estimated variable

changes both in stiff and soft impact, becoming the perfect vari-

able to monitor during the impact. Test results shows how this

algorithm is able to identify the impact very quickly, showing an

important performance improvements in the safety of the access

gate.

The thesis has to be intended as a window on the typical

problems that can be found in an industrial mechatronic sys-

tem. In particular, the thesis approaches and describes how to

use an inertial platform in order to solve these problems. The

three major applications described are a only small part of the

possible uses of the inertial platform; it has been decided to

show these three because in all of them an innovative solution

with optimal results has been reached.
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This work will continue on this track, trying to improve the per-

formance (in terms of safety or productivity) of existing mecha-

tronic systems simply using an inertial platform as sensor.
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Olivier Turcotte, and Fouad Brikci. An improved vibration analysis algo-
rithm as a diagnostic tool for detecting mechanical anomalies on power
circuit breakers. Power Delivery, IEEE Transactions on, 23(4):1986–
1994, 2008.

[32] Joseph J Laviola. A comparison of unscented and extended kalman filter-
ing for estimating quaternion motion. In American Control Conference,
2003. Proceedings of the 2003, volume 3, pages 2435–2440. IEEE, 2003.

[33] J.L. Marins, Xiaoping Yun, E.R. Bachmann, R.B. McGhee, and M.J.
Zyda. An extended kalman filter for quaternion-based orientation es-
timation using marg sensors. In Intelligent Robots and Systems, 2001.
Proceedings. 2001 IEEE/RSJ International Conference on, volume 4,
pages 2003 –2011 vol.4, 2001.

[34] Ronny Martens and Luc Claesen. On-line signature verification by dy-
namic time-warping. In Pattern Recognition, 1996., Proceedings of the
13th International Conference on, volume 3, pages 38–42. IEEE, 1996.

[35] Lrinc Marton and Bla Lantos. Modeling, identification, and compensa-
tion of stick-slip friction. Industrial Electronics, IEEE Transactions on,
54(1):511–521, 2007.

[36] L Moreno, L Acosta, JA Mendez, S Torres, A Hamilton, and
GN Marichal. A self-tuning neuromorphic controller: application to the
crane problem. Control Engineering Practice, 6(12):1475–1483, 1998.

[37] Kamal AF Moustafa and Am M Ebeid. Nonlinear modeling and control
of overhead crane load sway. Journal of Dynamic Systems, Measure-
ment, and Control, 110(3):266–271, 1988.

[38] Subhasis Nandi, Hamid A Toliyat, and Xiaodong Li. Condition monitor-
ing and fault diagnosis of electrical motors-a review. Energy Conversion,
IEEE Transactions on, 20(4):719–729, 2005.

[39] QH Ngo and K-S Hong. Adaptive sliding mode control of container
cranes. IET control theory & applications, 6(5):662–668, 2012.

[40] Xin Niu and Xiaoxia Zhao. The study of fault diagnosis the high-voltage
circuit breaker based on neural network and expert system. Procedia
Engineering, 29:3286–3291, 2012.



BIBLIOGRAPHY 147

[41] Yaakov Oshman and Avishy Carmi. Estimating attitude from vector ob-
servations using a genetic algorithm-embedded quaternion particle filter.
In AIAA Guidance, Navigation, and Control Conference and Exhibit,
pages 1–24. AIAA Reston, VA, 2004.

[42] Lev Semenovich Pontryagin, VG Boltyanskii, RV Gamkrelidze, and
EF Mishchenko. The mathematical theory of optimal processes. 1962.

[43] Kitichoke Prommaneewat, Prapas Roengruen, and Viriya Kongratana.
Anti-sway control for overhead crane. In Control, Automation and Sys-
tems, 2007. ICCAS’07. International Conference on, pages 1954–1957.
IEEE, 2007.

[44] L Romeral, JA Rosero, A Garcia Espinosa, J Cusido, and JA Ortega.
Electrical monitoring for fault detection in an ema. Aerospace and Elec-
tronic Systems Magazine, IEEE, 25(3):4–9, 2010.

[45] M Runde, B Skyberg, and M Ohlen. Vibration analysis for periodic
diagnostic testing of circuit-breakers. In High Voltage Engineering, 1999.
Eleventh International Symposium on (Conf. Publ. No. 467), volume 1,
pages 98–101. IET, 1999.

[46] A.M. Sabatini. Quaternion-based extended kalman filter for determining
orientation by inertial and magnetic sensing. Biomedical Engineering,
IEEE Transactions on, 53(7):1346 –1356, july 2006.

[47] Zhaolong Shen, Peng Huang, and Sean B Andersson. Calculating switch-
ing times for the time-optimal control of single-input, single-output
second-order systems. Automatica, 2013.

[48] Eun-Hwan Shin. Estimation techniques for low-cost inertial navigation.
UCGE report, 20219, 2005.

[49] William Singhose, Dooroo Kim, and Michael Kenison. Input shaping
control of double-pendulum bridge crane oscillations. Journal of Dy-
namic Systems, Measurement, and Control, 130(3), 2008.

[50] Scott M Strachan, Stephen DJ McArthur, Bruce Stephen, James R
McDonald, and Angus Campbell. Providing decision support for the
condition-based maintenance of circuit breakers through data mining
of trip coil current signatures. Power Delivery, IEEE Transactions on,
22(1):178–186, 2007.

[51] Habib Tabatabai, Armin B Mehrabi, and P Yen Wen-huei. Bridge stay
cable condition assessment using vibration measurement techniques. In



148 BIBLIOGRAPHY

Non-Destructive Evaluation Techniques for Aging Infrastructure & Man-
ufacturing, pages 194–204. International Society for Optics and Photon-
ics, 1998.

[52] J Thienel and Robert M Sanner. A coupled nonlinear spacecraft attitude
controller and observer with an unknown constant gyro bias and gyro
noise. Automatic Control, IEEE Transactions on, 48(11):2011–2015,
2003.

[53] Nikolas Trawny and Stergios I. Roumeliotis. Indirect Kalman filter for
3D attitude estimation. Technical Report 2005-002, University of Min-
nesota, Dept. of Comp. Sci. & Eng., March 2005.

[54] Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter
Scheuermann, and Eamonn Keogh. Experimental comparison of rep-
resentation methods and distance measures for time series data. Data
Mining and Knowledge Discovery, 26(2):275–309, 2013.

[55] Gao Jiyong Lai Xinming and Wang Jinnuo. Dynamic analysis and op-
timization of a bridge crane. Journal of Machine Design, 6:004, 1994.

[56] Xiaoping Yun, C. Aparicio, E.R. Bachmann, and R.B. McGhee. Imple-
mentation and experimental results of a quaternion-based kalman filter
for human body motion tracking. In Robotics and Automation, 2005.
ICRA 2005. Proceedings of the 2005 IEEE International Conference on,
pages 317 – 322, april 2005.

[57] Xiaoping Yun and Eric R Bachmann. Design, implementation, and ex-
perimental results of a quaternion-based kalman filter for human body
motion tracking. Robotics, IEEE Transactions on, 22(6):1216–1227,
2006.

[58] Jafar Zarei. Induction motors bearing fault detection using pattern
recognition techniques. Expert systems with Applications, 39(1):68–73,
2012.


