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Abstract

In this work we investigate the use of linearly implicit Rosenbrock-type Runge-Kutta schemes to

integrate in time high-order Discontinuous Galerkin space discretizations of the Navier-Stokes

equations. The final goal of this activity is the application of such schemes to the high-order ac-

curate, both in space and time, simulation of turbulent flows. Besides being able to overcome the

severe time step restriction of explicit schemes, Rosenbrock schemes have the attractive feature

of requiring just one Jacobian matrix evaluation per time step, thus reducing the overall compu-

tational effort. Several high-order (up to sixth order) Rosenbrock schemes available in the liter-

ature have been implemented and evaluated on benchmark test cases of both compressible and

incompressible flows. For the sake of completeness, the sets of coefficients of the schemes here

considered have been reported in an Appendix to the paper. An implementation of Rosenbrock

schemes for systems of equations with a solution dependent block diagonal matrix multiplying

the time derivative is here proposed and described in detail. This can occur, for example, if sets

of working variables different from the conservative ones are used in the compressible Navier-

Stokes equations. In particular, we have found useful to employ primitive variables based on the

logarithms of pressure and temperature in order to ensure the positivity of all thermodynamic

variables at the discrete level. The best performing Rosenbrock scheme resulting from our anal-

ysis has then been applied to the Implicit Large Eddy Simulation of the transitional flow around

the Selig-Donovan SD7003 airfoil.

Keywords: Discontinuous Galerkin discretization, high-order accurate time integration, linearly

implicit Rosenbrock-type Runge-Kutta schemes, compressible and incompressible flows

1. Introduction

In recent years the application of the Discontinuous Galerkin (DG) method to the high-fidelity

simulation of turbulent flows has become increasingly popular. Thanks to its favourable dis-

sipation and dispersion properties, the DG method proved to be very well suited for the Direct

Numerical Simulation (DNS), [1, 2, 3], and the Large Eddy Simulation (LES), [4, 5], of turbulent

flows. The DG method has also been recently applied by Bassi et al., [6], to hybrid RANS-LES
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approaches, [7, 8, 9], in an attempt to overcome the poor predictive capabilities of the Reynolds-

averaged Navier-Stokes (RANS) equations with first-moment closures in case of particular flow

conditions, e.g., massively separated flows.

Advanced approaches to the simulation of turbulent flows require accurate long term time in-

tegration of unsteady flows characterized by a wide range of temporal scales. In this context, the

locality and flexibility of the DG space discretization turns out very useful both for explicit and

implicit time integration approaches. In general, explicit schemes can be of high accuracy and

simple to implement, but a search for high levels of efficiency can also lead to very sophisticated

algorithms, [10, 11]. On the other hand, implicit methods require in general to form the Jacobian

matrix of residuals, a task that leads to high memory usage, but that can be quite systemati-

cally accomplished in the framework of the DG space discretization. In an attempt to combine

the advantages of explicit and implicit approaches, also implicit-explicit (IMEX) Runge-Kutta

schemes have been recently applied to LES of turbulent flows by Persson, [12].

Multistep Backward Differentiation Formulae (BDF), [13], are often used as implicit time inte-

grators, due to ease of implementation and robustness. However, since BDF schemes are A-stable

only up to second order, they might not always be the best choice for matching very high-order

space discretizations, which are in increasingly widespread use for turbulent flow simulations.

Several high-order implicit time integrators, relying on multistage and multistep schemes, are

already available. For example, Explicit Singly Diagonally Implicit Runge-Kutta (ESDIRK)

schemes, [14, 15], are A-stable up to order five, Modified Extended BDF (MEBDF), [16, 17, 18],

are A-stable up to order four, and Two Implicit Advanced Step-point (TIAS) schemes, [19, 20],

are A-stable up to order six. At each time step, all these schemes require to solve several nonlin-

ear systems of equations, a task that can be efficiently performed, for example, by means of the

(quasi-)Newton method.

In the large family of implicit Runge-Kutta methods, the class of linearly implicit Rosenbrock-

type Runge-Kutta schemes, [21], is of special interest because such methods, being linearly

implicit, require to solve only linear systems in the stages within each time step, i.e., the Jacobian

matrix needs to be assembled and factored only once per time step. The performance of all the

aforementioned time integration schemes have been recently investigated, and, according to the

numerical comparison presented in [22], Rosenbrock schemes turned out to be an appealing

choice both in terms accuracy and efficiency. In this paper we focus on the implementation and

assessment of Rosenbrock schemes as time integrators for the high-order DG space discretization

of the compressible and incompressible Navier-Stokes equations. In particular, we present an

implementation of Rosenbrock schemes for systems of equations with a solution dependent block

diagonal matrix multiplying the time derivative. For compressible flows, this situation occurs if

the polynomial approximation of the unknowns in the governing equations is not applied to the

set of conservative variables but to a different set, like, for example, the primitive variables based

on pressure and temperature. Among other reasons for working with a polynomial approximation

of primitive variables, here we want to emphasize the possibility of ensuring the positivity of

all thermodynamic variables at the discrete level by using a polynomial approximation for the

logarithms of pressure and temperature, [6].

In this work we have carried out a comparative assessment, in terms of accuracy and per-

formance, of several (up to sixth order) Rosenbrock schemes, [23, 24, 25, 26, 27, 28, 29], on

two benchmark testcases, i.e., the convection of a compressible isentropic vortex and a trav-

elling waves problem for incompressible flow. In particular, the following aspects have been

investigated in detail: (i) temporal order of convergence of the schemes; (ii) optimal choice of

parameters of the iterative linear solver; (iii) computational efficiency of the schemes to obtain a
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given accuracy. Then, guided by the results of the above comparison, one of the best perform-

ing high-order Rosenbrock schemes has been applied to the high-order DG Implicit Large Eddy

Simulation (ILES) of the transitional flow around the Selig-Donovan (SD) 7003 airfoil. This test

case has been considered by several other authors using different numerical methods and LES

models, e.g. [5, 30, 31, 32, 33, 34, 35].

The rest of the paper is organized as follows. A quick overview of the governing equations is

given in Sec. 2. In Sec. 3, devoted to space and time discretization, the use of different sets of

working variables in the DG discretized equations is considered, and the related implementation

of Rosenbrock schemes is devised. Sec. 4 deals with the accuracy and performance assessment

of the time integration schemes and presents the results of an ILES simulation. The conclusions

are given in Sec. 5 and all the sets of coefficients of the Rosenbrock schemes considered in this

paper are reported in Appendix B.

2. Governing Equations

Using Einstein notation, the Navier-Stokes equations for compressible flows read

∂ρ

∂t
+
∂

∂x j

(ρu j) = 0, (1)

∂

∂t
(ρui) +

∂

∂x j

(ρu jui) = −
∂p

∂xi

+
∂τ ji

∂x j

, (2)

∂

∂t
(ρE) +

∂

∂x j

(ρu jH) =
∂

∂x j

[
uiτi j − q j

]
, (3)

where E and H are total energy and total enthalpy, respectively. The pressure, stress tensor and

heat flux vector are given by

p = (γ − 1)ρ (E − ukuk/2) , (4)

τi j = 2µ

[
S i j −

1

3

∂uk

∂xk

δi j

]
, (5)

q j = −
µ

Pr

∂h

∂x j

, (6)

where γ is the ratio of gas specific heats, S i j is the mean strain-rate tensor

S i j =
1

2

(
∂ui

∂x j

+
∂u j

∂xi

)
,

and Pr is the molecular Prandtl number.

For incompressible flows, we consider the set of governing equations

∂u j

∂x j

= 0, (7)

∂ui

∂t
+
∂

∂x j

(u jui) = −
∂p

∂xi

+
∂τ ji

∂x j

, (8)

where the density has been assumed to be uniform and equal to one. The stress tensor τi j is

again computed from Eq. (5), assuming a constant µ and keeping the velocity divergence in this

equation.
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3. Space and time discretization

3.1. The DG discrete setting

Let Th = {K} denote a mesh of the domain Ω ∈ R
d, d ∈ {2, 3} consisting of non-overlapping

arbitrarily shaped elements K such that

Ωh =
⋃

K∈Th

K. (9)

Following the idea to define discrete polynomial spaces in physical coordinates, see, e.g., [36,

37, 38, 39, 40, 41], we consider DG approximations based on the space

P
k
d(Th)

def
=

{
vh ∈ L2(Ω) | vh |K ∈ Pk

d(K), ∀K ∈ Th

}
, (10)

where k is a non-negative integer and P
k
d
(K) denotes the restriction to K of the polynomial func-

tions of d variables and total degree ≤ k. To build a satisfactory basis for the space (10) we rely

on the procedure presented in [42], see also [43, 44], allowing to obtain orthonormal and hierar-

chical basis functions by means of the modified Gram-Schmidt (MGS) algorithm. The starting

set of basis functions for the MGS algorithm are the monomials defined over each elementary

space P
k
d
(K), K ∈ Th, in a reference frame relocated in the element barycenter and aligned with

the principal axes of inertia of K. For the sake of presenting the DG discretization, we introduce

the set Fh of the mesh faces Fh
def
= F i

h
∪F b

h
, where F b

h
collects the faces located on the boundary

of Ωh and for any F ∈ F i
h

there exist two elements K+,K− ∈ Th such that F ∈ ∂K+ ∩ ∂K−.

Moreover, for all F ∈ F b
h

, nF denotes the unit outward normal to Ωh, whereas, for all F ∈ F i
h
, n−

F

and n+
F

are unit outward normals pointing to K+ and K−, respectively.

Since a function vh ∈ Pk
d
(Th) is double valued over an internal face F ∈ F i

h
, we introduce the

jump [[·]] and average {·} trace operators, that is

[[vh]]
def
= vh |K+n

+
F + vh |K−n

−
F , {vh}

def
=

vh |K+ + vh |K−

2
, (11)

and consider them to act componentwise when applied to vector functions. Finally, the DG

discretization of second-order viscous terms employs the lifting operators rF and r. For all

F ∈ Fh, we define the local lifting operator rF :
[
L2(F)

]d → [Pk
d
(Th)]d, such that, for all

v ∈
[
L2 (F)

]d
, ∫

Ω

rF (v) · τhdx = −
∫

F

{τh} · vdF ∀τh ∈ [Pk
d(Th)]d. (12)

The global lifting operator r is then defined as

r (v)
def
=

∑

F∈Fh

rF (v) . (13)

3.2. DG discretization of the Navier-Stokes equations

The Navier-Stokes equations for the m variables in d dimensions, Eqs. (1)-(2)-(3) or (7)-(8),

can be written in compact form as

P(w)
∂w

∂t
+ ∇ · Fc(w) + ∇ · Fv(w,∇w) = 0, (14)
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where w ∈ Rm is the unknown solution vector, Fc,Fv ∈ Rm ⊗ Rd are the convective and viscous

flux functions, and P (w) ∈ R
m ⊗ R

m is a transformation matrix. Employing the conservative

variables wc = [ρ, ρui, ρE]T for compressible flows and the primitive variables wp = [p, ui]
T

for incompressible flows, P reduces to the identity matrix (P = I) in the former case and to the

difference between the identity and a single-entry matrix (P = I − J11) in the latter.

While the choice wp = [p, ui]
T is quite natural for incompressible flows, several reasons can

lead to use a set of primitive variables also for compressible flows. For example, the set of

primitive variables (p, ui,T ) has long since been employed for preconditioning the governing

equations of low Mach number compressible flows, [45, 46], and more recently has also been

shown to be effective in the context of high-order DG approximations, [47]. Moreover, the prim-

itive variables allow an easier and more efficient computation of the contributions to the Jacobian

matrix related to the viscous terms discretization and to the implicit treatment of boundary condi-

tions. The use of primitive variables for compressible flows offers also the interesting and useful

possibility to ensure the positivity of all thermodynamic variables at the discrete level. For this

purpose, it is in fact enough to work with polynomial approximations not directly for p and T ,

but for their logarithms p̃ = log(p) and T̃ = log(T ), [6]. In this way pressure and temperature

values computed as p = ep̃, T = eT̃ are always positive. A numerical assessment of the effect of

this change of variables on the solution accuracy is reported in Appendix A.

Using then, for compressible flows, the set of variables w = [ p̃, ui, T̃ ]T , the transformation

matrix P (w) reads

P (w) =



ρp̃ 0 0 0 ρT̃

ρp̃u1 ρ 0 0 ρT̃ u1

ρp̃u2 0 ρ 0 ρT̃ u2

ρp̃u3 0 0 ρ ρT̃ u3

ρp̃H + ρhp̃ − ep̃ ρu1 ρu2 ρu3 ρT̃ H + ρhT̃


, (15)

where

ρ = e
(
p̃−T̃

)
, ê =

eT̃

γ − 1
, (16)

hp̃ =
∂h

∂ p̃

∣∣∣∣∣
T̃

= êp̃ +
ep̃

ρ
−
ρp̃

ρ2
ep̃, hT̃ =

∂h

∂T̃

∣∣∣∣∣
p̃

= êT̃ −
ρT̃

ρ2
ep̃, (17)

and assuming an ideal gas

ρp̃ =
∂ρ

∂ p̃

∣∣∣∣∣
T̃

= ρ, ρT̃ =
∂ρ

∂T̃

∣∣∣∣∣
p̃

= −ρ, (18)

êp̃ =
∂ê

∂ p̃

∣∣∣∣∣
T̃

= 0, êT̃ =
∂ê

∂T̃

∣∣∣∣∣
p̃

= ê, (19)

hp̃ = 0, hT̃ = êT̃ −
ep̃

ρ
. (20)

By multiplying Eq. (14) by an arbitrary smooth test function v = {v1, . . . , vm}, and integrating

by parts, we obtain the weak formulation

∫

Ω

v ·
(
P (w)

∂w

∂t

)
dx −

∫

Ω

∇v : F (w,∇w) dx +

∫

∂Ω

v ⊗ n : F (w,∇w) dσ = 0, (21)
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where F is the sum of the convective and viscous flux functions and n is the unit vector normal

to the boundary.

To discretize Eq. (21) we replace the solution w and the test function v with a finite element

approximation wh and a discrete test function vh, respectively, where wh and vh belong to the

space Vh
def
= [Pk

d
(Th)]m. For each of the m equations of system (21), and without loss of gener-

ality, we choose the set of test and shape functions in any element K coincident with the set {φ}
of NK

do f
orthogonal and hierachical basis functions in that element. With this choice each com-

ponent wh, j, j = 1, . . . ,m, of wh ∈ Vh can be expressed, in terms of the elements of the global

vector W of unknown degrees of freedom, as wh, j = φlW j,l, l = 1, . . . ,NK
do f

, ∀K ∈ Th. Then,

the DG discretization of the Navier-Stokes equations consists in seeking, for j = 1, . . . ,m, the

elements of W such that

∑

K∈Th

∫

K

φiP j,k (wh) φl

dWk,l

dt
dx −

∑

K∈Th

∫

K

∂φi

∂xn

F j,n (wh,∇hwh + r ([[wh]])) dx

+
∑

F∈Fh

∫

F

[[
φi

]]
n F̂ j,n

(
w±h , (∇hwh + ηFrF ([[wh]]))±

)
dσ = 0, (22)

for i = 1, . . . ,NK
do f

. In Eq. (22) repeated indices imply summation over the ranges k = 1, . . . ,m,

l = 1, . . . ,NK
do f

, n = 1, . . . , d.

The DG discretization of the viscous fluxes is based on the BR2 scheme, proposed in [36] and

theoretically analyzed in [48] and [49]. According to this scheme, the viscous numerical flux is

given by

F̂v

(
w±h , (∇hwh + ηFrF ([[wh]]))±

)
def
= {Fv (wh,∇hwh + ηFrF ([[wh]]))} (23)

where the stability parameter ηF is defined according to [49].

The convective numerical flux is computed from the solution of local Riemann problems in

the normal direction at each integration point on elements faces. For compressible flows, we use

either the exact Riemann solver of Gottlieb and Groth, [50], or, alternatively, the van Leer flux

vector splitting method as modified by Hänel et al., [51]. For incompressible flows, we employ

the approach proposed in [37], whereby the convective numerical flux is computed from the exact

solution of local Riemann problems suitably modified by means of an artificial compressibility

perturbation. According to the results of numerical experiments presented in [37] and [52], the

value of the artificial compressibility parameter can be chosen in the range [0.01, 100], without

affecting the numerical accuracy. For the incompressible flow computations presented in this

work the value was set equal to 1.

The DG discretization is very well suited to weakly enforce boundary conditions, [36, 53].

This can easily be achieved by properly defining at each integration point on boundaries the

state wb and its gradient ∇wb, which are used, directly or together with the internal state and

its gradient, to compute the numerical convective and viscous fluxes and the lifting operators

for all F ∈ F b
h

. At inflow, outflow, and farfield boundaries the state wb, which is defined using

prescribed boundary data and the Riemann invariants related to the outgoing characteristics,

enters in the Riemann solver and allows to compute, together with the internal state w−
h
, the

numerical convective flux. For these types of boundaries, the gradient ∇wb is defined as ∇wb =

∇w−
h
+ηFrF

(
[[w]]b

)
, where rF

(
[[w]]b

)
is the lifting associated to the jump between wb and w−

h
. For

solid wall boundaries, the state wb and its gradient ∇wb are defined exactly at the wall. Hence, the

state at the wall has zero velocity relative to the boundary and the pressure is determined from the
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analytical solution of the Riemann problem for a flow moving towards, or away from, the wall

with the normal velocity component of the internal state. For compressible flows, the energy

conservation equation requires a boundary condition either for the wall temperature, which is set

in the state wb, or for the wall heat flux, which is proportional to the normal component of the

temperature gradient ∇wb at the wall.

3.3. Time integration

Numerical integration of Eq. (22) by means of suitable Gauss quadrature rules leads to a

system of nonlinear ODEs, or DAEs for incompressible flows, that can be written as

MP (W)
dW

dt
+ R (W) = 0, (24)

where R (W) is the vector of residuals and MP (W) is a global block diagonal matrix arising from

the discretization of the first term in Eq. (22). Thanks to the use of orthonormal basis functions

defined in the physical space, the matrix MP reduces to the identity matrix for the compressible

flow variables wc = [ρ, ρui, ρE]T , and to a modified identity matrix, with zeros in the diagonal

positions corresponding to the pressure degrees of freedom, for the incompressible flow variables

wp = [p, ui]
T . For different sets of variables, however, the transformation matrix P will couple

the degrees of freedom of the variables wh within each block of MP, hence MP will no longer

be diagonal. Below we describe the implementation we have adopted in order to account for the

solution dependent block diagonal matrix MP(W) in linearly implicit Rosenbrock-type Runge-

Kutta schemes.

The time integration of Eq. (24) by means of Rosenbrock schemes can be written as

Wn+1 =Wn +

s∑

j=1

b jK j, (25)

(
I

∆t
+ γJ̃

)n

Ki = −R̃

W
n +

i−1∑

j=1

αi jK j

 − J̃n

i−1∑

j=1

γi jK j, i = 1, . . . , s, (26)

where, omitting the dependence on W for notational convenience,

J =
∂R

∂W
, R̃ =M−1

P R, J̃ =
∂R̃

∂W
=M−1

P

(
J − ∂MP

∂W
R̃

)
, (27)

and bi, αi j, γi j are real coefficients. In this work the Jacobian matrix J of the DG space dis-

cretization is computed analytically and fully accounts for the dependence of the residuals on

the unknown vector and its derivatives, including the implicit treatment of lifting operators and

of boundary conditions. A direct implementation of Eq. (26) entails a matrix-vector product

J̃n
∑i−1

j=1 γi jK j from the second stage on. In practice this can be avoided by noting that Eqs. (25)

and (26) can be reduced to the following equivalent formulation, [25],

Wn+1 =Wn +

s∑

j=1

m jY j, (28)

(
I

γ∆t
+ J̃

)n

Yi = −R̃

W
n +

i−1∑

j=1

ai jY j

 +
i−1∑

j=1

ci j

∆t
Y j, i = 1, . . . , s, (29)
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where the quantities Ki and Yi and the coefficients of the two formulations are related by the

equations

Ki =
1

γ
Yi −

i−1∑

j=1

ci jY j, i = 1, . . . , s,

(m1, . . . ,ms) = (b1, . . . , bs)Γ
−1,

(
ai j

)
=

(
αi j

)
Γ
−1,

(
ci j

)
= γ−1Is − Γ−1,

and Γ−1 def
=

(
γi j

)−1
denotes the inverse of the matrix formed with the coefficients

(
γi j

)
of the

schemes.

Recasting Eq. (29) so as to avoid the cumbersome product M−1
P

J in Eq. (27), we obtain the

final form of the proposed implementation

Wn+1 =Wn +

s∑

j=1

m jY j, (30)

(
MP

γ∆t
+ J − ∂MP

∂W
R̃

)n

Yi = −Mn
P

R̃
W

n +

i−1∑

j=1

ai jY j

 −
i−1∑

j=1

ci j

∆t
Y j

 , i = 1, . . . , s, (31)

which also allows to quantify the computational overhead due to the solution dependent block

diagonal matrix MP.

Eq. (31) is solved by means of the GMRES algorithm available in PETSc, [54], the library

we employ also to manage parallel distributed arrays and the communication among processes.

Preconditioning of the iterative solver is based on the block Jacobi method with one block per

process, each of which is solved with ILU(0), or on the Additive Schwarz Method (ASM).

3.3.1. Stability properties

In this section we summarize the stability results for the Rosenbrock schemes considered in

this paper and referred to as ROq-s, where q is the order of convergence and s is the number

of stages. The schemes RO2-2 of Iannelli and Baker, [55], RO3-3 (ROS3P) of Lang and Ver-

wer, [24], RO3-4 (RODAS3) of Hairer and Wanner, [25], RO4-6 (RODASP) of Steinebach, [26],

and RO5-8 (RODAS5(4)-Rod5 1) of Di Marzo, [27], preserve their accuracy with DAEs. In-

stead, the schemes RO4-4 (ROS4) of Shampine, [28], and RO6-6 (ROW6A) of Kaps and Wan-

ner, [29], are suited only for ODEs. For completeness, the sets of coefficients actually employed

in Eqs. (30) and (31) are reported in Appendix B.

Figure 1 displays the stability area of the above schemes and allows to appreciate that all

the schemes are A-stable. The stability areas have been obtained by means of the analytical

procedure described by Hairer and Wanner in [25]. According to this procedure, the Rosenbrock

schemes are applied to the following model equation

dw

dt
− λw = 0, (32)

where the boundary of the stability domain µ is given by

µ = λ∆t, (33)

and the numerical solution at a given time step is set equal to

wn+t = eιtθ, (34)
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Figure 1: Stability area of the Rosenbrock schemes considered in this paper

where, to avoid ambiguity with the repeated indices notation, ι denotes the imaginary unit.

An s-stage Rosenbrock method applied to Eq. (32) reads

wn+1 = wn +

s∑

i=1

miYi, (35)

(
1

γ∆t
− λ

)
Yi = λ

w
n +

i−1∑

j=1

ai jY j

 +
i−1∑

j=1

ci j

∆t
Y j, i = 1, . . . , s. (36)

Using Eq. (33) we can write

Yi =

∑i
j=1 di jµ

j

(1 − γµ)i
wn, i = 1, . . . , s, (37)

s∑

i=1

miYi =

∑s
k=1

∑s
i=1 mig

(s)

ik
µk

∑s
k=0 f(s+1)(k+1) (γµ)k

wn, (38)

where the parameters di j are functions of the Rosenbrock scheme coefficients only, fi j are the

9



elements of the matrix F ∈ R(s+1)×(s+1)

fi j =



1 j = 1

0 i = 1 ∧ j , 1

f(i−1) j − f(i−1)( j−1) otherwise,

(39)

and g
(s)

ik
are the elements of the matrix G(s) ∈ Rs×s defined such that

s∑

k=1

g
(s)

ik
µk =

s−i∑

t=0

f(s−i+1)(t+1) (γµ)t

i∑

j=1

di jµ
j, i = 1, . . . , s. (40)

By inserting Eqs. (38) and (34) into Eq. (35) we finally obtain

s∑

k=0

Ak (θ) µk = 0, (41)

where

Ak(θ) =


1 − eιθ k = 0
∑s

i=1 mig
(s)

ik
+

(
1 − eιθ

)
f(s+1)(k+1)γ

k otherwise.
(42)

For θ ∈ [0; 2π] the roots of Eq. (41), µ j (θ), j = 1, . . . , s, describe the stability area of a Rosen-

brock scheme with s stages. Expressions for the di j parameters and the elements of the G(s)

matrices up to s = 4 are reported in Appendix C.

4. Numerical Results

The performance and the order of convergence of the Rosenbrock schemes introduced in

Sec. 3.3 have been numerically assessed on two simple test cases of compressible and incom-

pressible flow. One of the best performing schemes has then been applied to the high-order DG

Implicit Large-Eddy Simulation (ILES) of an external aerodynamic flow problem.

4.1. Convection of an isentropic vortex

An inviscid isentropic vortex transported by a uniform flow, [56, 20, 6], is here considered.

The vortex is defined by velocity and temperature perturbations of a uniform flow, with pressure,

temperature and density equal to 1 and with velocity components equal to
√
γ, where γ = 1.4 is

the ratio of specific heats. The perturbations are given by

δu1 = −
α

2π
(y − y0) eφ(1−r2), δu2 =

α

2π
(x − x0) eφ(1−r2), δT = −α

2 (γ − 1)

16φγπ2
e2φ(1−r2), (43)

where φ = 1
2

and α = 5 are parameters defining the vortex strength, r is the distance of a point

(x, y) from the vortex center (x0, y0), placed at (5, 5) in a periodic domain [0, 10] × [0, 10] at

time t0 = 0. The initial pressure field is shown in Figure 2(a). Notice that, due to the periodic

boundary conditions, the problem actually solved is that of a regular grid of vortices moving on

and parallel to the domain diagonal. As observed by Nigro et al., [20], it is important to take into

account the contributions of nearby vortices on the initial and reference solutions, otherwise a

reduced rate of convergence will be observed for sufficiently accurate solutions.

10



(a) Isentropic vortex - pressure (b) Travelling waves - velocity magnitude

Figure 2: Isentropic vortex and travelling waves - initial flow field, DG P
6 approximation (70000 DOFs)

To verify the order of convergence of the Rosenbrock schemes, the solutions have been com-

puted using a very accurate P6 DG space discretization on a uniform 50×50 quad mesh, resulting

in 70000 degrees of freedom per equation (DOFs). The GMRES solver parameters, i.e., number

of vectors in the Krylov subspace nrst, maximum number of iterations nmax, and tolerance on the

relative residual norm tolr, have been set to nrst = 120, nmax = 240, and tolr = 1e−14. The

results reported in Table 1 and shown in Figure 3 demonstrate that all the Rosenbrock schemes

verify the formal order of convergence for all the variables.

In Table 1 and Figure 4 the computational time of the Rosenbrock schemes is given in terms

of Work Units (WU) defined by WU = twallNcores/tT B, where twall is the execution time of a

simulation on Ncores cores and tT B is the reference TauBenchmark time of the hardware1. These

results show that, for a given order of convergence and among the schemes here considered,

those with more stages are more accurate and efficient. The large number of stages even makes

the RO5-8 scheme competitive with the formally more accurate RO6-6 scheme.

In order to assess the sensitivity of the computational cost of the schemes to tolr, this tolerance

has been increased, for each scheme, up to the value for which the convergence rate differs by

less than 1% from the convergence rate with tolr = 1e−14. The results reported in Table 1 show

that increasing tolr entails a significant reduction of the computational cost for all the schemes,

without affecting the convergence rate. Overall, the results of this test case show that higher-

order Rosenbrock schemes are much more efficient than lower-order ones when coupled to a

high-order DG space discretization.

4.2. Incompressible travelling waves

For incompressible flows, the accuracy and performance of the time integration schemes has

been assessed on the following travelling-wave solution to the Navier-Stokes equations on the

1-n 250000 -s 10 define the reference TauBench workload for the hardware benchmark
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Table 1: Isentropic vortex, ROq-s–DG P
6 solutions - L2 norm of the error with respect to the exact solution for pressure

and temperature, convergence rate, Work Units (WU), maximum tolr ensuring a convergence rate close to (within 1%)

the convergence rate with tolr = 1e−14 (tol1%), computational cost percentage reduction with respect to tolr = 1e−14

(∆%WU).

∆t ‖errp‖2 orderp ‖errT ‖2 orderT WU to
l 1

%

∆%WU

R
O

2
-2

T/125 1.427e−3 - 1.834e−3 - 1087.7

1
e−

3

−30.1

T/160 8.694e−4 2.008 1.116e−3 2.012 1350.7 −28.5

T/200 5.557e−4 2.006 7.129e−4 2.008 1634.1 −24.4

T/250 3.553e−4 2.004 4.557e−4 2.006 2010.5 −25.0

T/320 2.167e−4 2.003 2.779e−4 2.004 2512.5 −23.3

R
O

3
-3

T/125 7.756e−4 - 3.985e−4 - 1588.4

1
e−

4

−40.3

T/160 3.773e−4 2.919 2.013e−4 2.767 1969.9 −38.4

T/200 1.954e−4 2.949 1.068e−4 2.838 2304.3 −26.5

T/250 1.008e−4 2.966 5.606e−5 2.890 2894.2 −30.1

T/320 4.834e−5 2.978 2.720e−5 2.929 3393.4 −32.6

R
O

3
-4

T/125 1.882e−4 - 2.641e−4 - 1712.8

1
e−

4

−40.8

T/160 9.022e−5 2.978 1.270e−4 2.966 2108.6 −39.0

T/200 4.633e−5 2.987 6.533e−5 2.978 2478.4 −35.8

T/250 2.377e−5 2.991 3.356e−5 2.986 2983.2 −34.4

T/320 1.135e−5 2.994 1.604e−5 2.990 3648.0 −31.7

R
O

4
-4

T/125 2.555e−5 - 4.238e−5 - 1712.9
1
e−

5
−34.7

T/160 9.737e−6 3.908 1.607e−6 3.929 2100.5 −35.3

T/200 4.054e−6 3.927 6.663e−6 3.945 2484.4 −32.5

T/250 1.681e−6 3.945 2.754e−6 3.959 3011.0 −31.4

T/320 6.322e−7 3.961 1.034e−6 3.971 3665.0 −32.0

R
O

4
-6

T/125 1.602e−6 - 8.047e−7 - 1916.7

1
e−

6

−32.7

T/160 6.002e−7 3.978 3.009e−7 3.985 2297.1 −31.2

T/200 2.467e−7 3.984 1.235e−7 3.990 2791.0 −30.0

T/250 1.013e−7 3.989 5.068e−8 3.993 3269.8 −27.5

T/320 3.781e−8 3.992 1.890e−8 3.995 4124.6 −28.0

R
O

5
-8

T/125 3.517e−8 - 6.627e−8 - 2216.3

1
e−

8

−24.8

T/160 1.005e−8 5.075 2.044e−8 4.793 2683.9 −23.8

T/200 3.244e−9 5.067 6.894e−9 4.870 3881.2 −21.5

T/250 1.051e−9 5.052 2.304e−9 4.912 4750.7 −21.5

T/320 3.323e−10 4.663 6.888e−10 4.890 4750.7 −19.1

R
O

6
-6

T/125 1.891e−7 - 1.271e−7 - 2103.6

1
e−

8

−26.1

T/160 4.506e−8 5.810 2.954e−8 5.912 2474.4 −25.1

T/200 1.189e−8 5.972 7.549e−9 6.114 3054.6 −22.9

T/250 3.094e−9 6.031 1.891e−9 6.203 3527.8 −23.2

T/320 7.212e−10 5.899 4.196e−10 6.099 4343.6 −20.4
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Table 1: Isentropic vortex, ROq-s–DG P
6 solutions - L2 norm of the error with respect to the exact solution for the velocity

components, convergence rate, Work Units (WU), maximum tolr ensuring a convergence rate close to (within 1%) the

convergence rate with tolr = 1e−14 (tol1%), computational cost percentage reduction with respect to tolr = 1e−14

(∆%WU).

∆t ‖erru1
‖2 orderu1

‖erru2
‖2 orderu2

WU to
l 1

%

∆%WU

R
O

2
-2

T/125 3.324e−3 - 1.834e−3 - 1087.7

1
e−

3

−30.1

T/160 2.026e−3 2.007 1.116e−3 2.012 1350.7 −28.5

T/200 1.295e−3 2.005 7.129e−4 2.008 1634.1 −24.4

T/250 8.282e−4 2.003 4.557e−4 2.006 2010.5 −25.0

T/320 5.052e−4 2.002 2.779e−4 2.004 2512.5 −23.3

R
O

3
-3

T/125 1.376e−3 - 1.098e−3 - 1588.4

1
e−

4

−40.3

T/160 6.678e−4 2.928 5.376e−4 2.767 1969.9 −38.4

T/200 3.456e−4 2.952 2.794e−4 2.838 2304.3 −26.5

T/250 1.782e−4 2.967 1.444e−4 2.890 2894.2 −30.1

T/320 8.542e−5 2.979 6.929e−5 2.929 3393.4 −32.6

R
O

3
-4

T/125 3.363e−4 - 2.641e−4 - 1712.8

1
e−

4

−40.8

T/160 1.612e−4 2.979 1.270e−4 2.966 2108.6 −39.0

T/200 8.275e−5 2.987 6.533e−5 2.978 2478.4 −35.8

T/250 4.244e−5 2.992 3.356e−5 2.986 2983.2 −34.4

T/320 2.027e−5 2.995 1.604e−5 2.990 3648.0 −31.7

R
O

4
-4

T/125 5.223e−5 - 4.238e−5 - 1712.9
1
e−

5
−34.7

T/160 1.972e−5 3.947 1.607e−5 3.929 2100.5 −35.3

T/200 8.150e−6 3.959 6.663e−6 3.945 2484.4 −32.5

T/250 3.362e−6 3.968 2.754e−6 3.959 3011.0 −31.4

T/320 1.260e−6 3.976 1.034e−6 3.971 3665.0 −32.0

R
O

4
-6

T/125 3.309e−6 - 2.795e−6 - 1916.7

1
e−

6

−32.7

T/160 1.238e−6 3.984 1.046e−7 3.981 2297.1 −31.2

T/200 5.082e−7 3.989 4.298e−7 3.986 2791.0 −30.0

T/250 2.085e−7 3.992 1.765e−7 3.990 3269.8 −27.5

T/320 7.779e−8 3.994 6.586e−8 3.992 4124.6 −28.0

R
O

5
-8

T/125 6.815e−8 - 7.101e−8 - 2216.3

1
e−

8

−24.8

T/160 2.018e−8 4.930 2.080e−8 4.974 2683.1 −23.8

T/200 6.743e−9 4.913 6.863e−9 4.968 3881.2 −21.5

T/250 2.328e−9 4.766 2.321e−9 4.859 4750.7 −21.5

T/320 9.248e−10 3.740 8.959e−10 3.856 4750.7 −19.1

R
O

6
-6

T/125 4.129e−7 - 3.611e−7 - 2103.6

1
e−

8

−26.1

T/160 9.218e−8 6.074 8.091e−8 6.060 2474.4 −25.1

T/200 2.276e−8 6.269 2.005e−8 6.252 3054.6 −22.9

T/250 5.533e−9 6.337 4.906e−9 6.306 3527.8 −23.2

T/320 1.300e−9 5.868 1.191e−9 5.734 4343.6 −20.4
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dt
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Figure 3: Isentropic vortex, ROq-s–DG P
6 solutions - L2 norm of the flow variables error vs. time step

doubly-periodic unit square [0.25, 1.25] × [0.5, 1.5]

u1 (x, y, t) = 1 + 2cos (2π (x − t)) sin (2π (y − t)) e−8π2νt, (44)

u2 (x, y, t) = 1 − 2sin (2π (x − t)) cos (2π (y − t)) e−8π2νt, (45)

p (x, y, t) = − (cos (4π (x − t)) + cos (4π (y − t))) e−16π2νt, (46)

with ν = 1e−2. The initial velocity field is shown in Figure 2(b). The solution has been computed

on a uniform 50 × 50 quad mesh, using a P
6 DG space approximation (70000 DOFs), enough

to keep the space discretization error well below the time integration error and to reliably assess

the order of convergence of the time integration schemes, [53]. In the incompressible case,

the convergence of the iterative solver was more difficult than in the compressible case and the

GMRES parameters, nrst and nmax, had to be set to quite large values, namely nrst = 480 and

nmax = 960, in order to satisfy the tolerance tolr = 1e−14. The important issue of improving the

efficiency of the GMRES solver in the incompressible case was beyond the scope of this paper

and will be addressed in a future work.

The results reported in Table 2 and shown in Figure 5 prove that the Rosenbrock schemes de-

signed for DAEs verify the formal order of convergence for all the variables, while, as expected,
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Figure 4: Isentropic vortex ROq-s–DG P
6 solutions - L2 norm of the error with respect to the exact solution

vs. Work Units(WU)

the RO4-4 and RO6-6 schemes, designed for ODEs, exhibit order reduction for the L2 error norm

on pressure.

The values ∆%WU in Table 2 highlight the substantial reduction of computational cost related

to the increase of the acceptable values of relative tolerance tol1% for the Rosenbrock schemes up

to order 4. Notice that, compared to the compressible test case, the values of tol1% are smaller,

while the reduction of the computational cost is much larger. This can be explained by con-

sidering that, in the incompressible case, the computational cost of the GMRES iterations is a

comparatively large part of the overall computational cost in one time step, due to the large num-

ber of iterations required to satisfy the reference tolerance tolr = 1e−14. On the other hand, since

tol1% for the scheme RO5-8 is quite close to tolr = 1e−14, ∆%WU is rather small.

As for the compressible isentropic vortex test case, the numerical experiments confirm that

higher-order time integration schemes are preferable in terms of efficiency and accuracy.

4.3. Transitional flow around the SD7003 airfoil

The reliability of the proposed implicit and globally high-order approach to the simulation of

unsteady flows is here demonstrated on the ILES of the transitional flow around the SD7003
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Table 2: Travelling waves, ROq-s–DG P
6 solutions - L2 norm of the error with respect to the exact solution for pressure

and x-,y-component of velocity, Work Units (WU), maximum tolr ensuring a convergence rate close to (within 1%)

the convergence rate with tolr = 1e−14 (tol1%), computational cost percentage reduction with respect to tolr = 1e−14

(∆%WU).

∆t ‖errp‖2 orderp ‖erru1,2
‖2 orderu1,2

WU to
l 1

%

∆%WU

R
O

2
-2

T/50 6.119e−3 - 1.036e−2 - 4130.3

1
e−

6

−88.2

T/80 2.392e−3 1.999 4.050e−3 1.998 6722.9 −88.1

T/100 1.531e−3 2.000 2.592e−3 1.999 8567.2 −88.1

T/160 5.981e−4 2.000 1.013e−3 2.000 14720.7 −88.2

T/200 3.827e−4 2.000 6.481e−4 2.000 18489.9 −87.9

R
O

3
-3

T/50 3.460e−3 - 5.439e−3 - 6753.5

1
e−

6

−87.5

T/80 8.750e−4 2.925 1.376e−3 2.925 9983.6 −88.5

T/100 4.519e−4 2.961 7.104e−4 2.961 12763.5 −89.0

T/160 1.114e−4 2.979 1.752e−4 2.979 23244.2 −89.1

T/200 5.721e−5 2.988 8.993e−5 2.988 25591.6 −90.2

R
O

3
-4

T/50 8.513e−4 - 1.326e−3 - 9931.6

1
e−

6

−90.7

T/80 2.094e−4 2.984 3.262e−4 2.984 17548.1 −92.0

T/100 1.074e−4 2.992 1.673e−4 2.992 22178.1 −92.1

T/160 2.629e−5 2.995 4.094e−5 2.995 40257.5 −92.3

T/200 1.347e−5 2.997 2.097e−5 2.997 53782.4 −92.5

R
O

4
-4

T/50 5.059e−4 - 1.932e−4 - 8096.0
1
e−

7
−86.2

T/80 1.775e−4 2.229 3.024e−5 3.945 13623.5 −87.4

T/100 1.101e−4 2.141 1.247e−5 3.970 19732.3 −88.8

T/160 4.135e−5 2.083 1.919e−6 3.982 27476.0 −86.7

T/200 2.619e−5 2.046 7.880e−7 3.989 34849.0 −86.2

R
O

4
-6

T/50 8.882e−6 - 1.374e−5 - 15177.6

1
e−

1
0

−83.4

T/80 1.348e−6 3.998 2.089e−6 3.998 25255.6 −81.8

T/100 5.521e−7 3.999 8.597e−7 3.999 32653.3 −81.8

T/160 8.426e−8 4.000 1.312e−7 4.000 58771.3 −77.4

T/200 3.451e−8 4.000 5.375e−8 4.000 74145.3 −66.8

R
O

5
-8

T/50 1.320e−7 - 2.050e−7 - 23066.5

1
e−

1
3

−16.7

T/80 1.263e−8 4.992 1.965e−8 4.990 38139.9 −5.2

T/100 4.144e−9 4.995 6.448e−9 4.993 48088.9 −3.8

T/160 3.958e−10 4.997 6.162e−10 4.996 79646.1 −3.5

T/200 1.297e−10 5.000 2.021e−10 4.997 101180.1 −3.5

R
O

6
-6

T/50 1.484e−4 - 3.388e−7 - 12246.4

1
e−

1
3

+0.3

T/80 5.739e−5 2.021 2.058e−8 5.960 21881.5 +7.4

T/100 3.660e−5 2.016 5.421e−9 5.977 26139.5 −1.4

T/160 1.422e−5 2.011 3.253e−10 5.986 47660.7 +9.0

T/200 9.085e−6 2.008 8.550e−11 5.988 55352.9 −2.1
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Figure 5: Travelling waves, ROq-s–DG P
6 solutions - L2 norm of the error with respect to the exact solution

vs. time step and Work Units (WU)

airfoil, one of the test cases proposed within the “International Workshop on High-Order CFD

Methods”, [57]. No subgrid-scale (SGS) model is included in the governing equations, which

are simply the equations outlined in Sec. 2, with the DG space discretization and time integration

described in Secs. 3.2 and 3.3. The flow around the SD7003 airfoil has been computed for the

conditions M∞ = 0.1, α = 8◦ and chord-based Rec = 60000 on the computational mesh with

20064 50-node hexahedral elements (quartic edge representation) and first cell height ∆n/c =

0.00029, corresponding to ∆n+ ≈ 1, shown in Figure 6(a).

At these flow conditions, a laminar separation bubble (LSB) develops on the suction side of the

airfoil, transition takes place in the free shear layer above the airfoil and the flow then reattaches

by virtue of the enhanced momentum transport.

Non-reflecting boundary conditions have been imposed at the farfield boundary, located at a

distance of ∼100 c from the wing, no-slip isothermal wall condition with Twall/T∞ = 1.002 at

the airfoil surface, and periodic boundary conditions over a width s/c = 0.2 in the spanwise

direction.

This test case has been computed by using the highly accurate RO5-8 scheme of Di Marzo,

[27], coupled with P
3 and P

4 DG space approximations, resulting in 401280 DOFs and 702240
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DOFs
LSB details Aerodynamic loads

x1/c x2/c L/c H/c CD CL Cm

RO5-8–DG P
3 401280 0.027 0.268 0.241 0.017 0.0423 0.9615 -0.0233

RO5-8–DG P
4 702240 0.027 0.294 0.267 0.021 0.0454 0.9534 -0.0224

DGSEM P
3 [35] 4.26M 0.027 0.310 - - 0.045 0.923 -

DGSEM P
7 [35] 4.55M 0.030 0.336 - - 0.050 0.932 -

Comp. FD O(6) [33] 53.4M 0.031 0.303 0.272 0.020 0.0447 0.917 -0.0187

SBP-SAT O(4) [34] 4.48M 0.037 0.200 - - 0.034 0.968 -

Table 3: SD7003 - Details of the laminar separation bubble and mean aerodynamic loads with number of degrees of

freedom per equation (DOFs). x1 and x2 are the separation and reattachment points coordinates, L and H the separation

bubble length and height

DOFs, respectively. The solutions have been advanced in time with a time step equal to a fraction

f = 4.4e−3 of the convective time, i.e., ∆t = f (c/U∞), which corresponds to CFL ≈ 15, where

the CFL-number has been defined as CFL = ∆tU∞/∆n. The P
3 solution has been initialized

from a p-sequence of lower-order, not fully statistically converged solutions. The mean results

shown below have been obtained by averaging both in time and spanwise direction.

For the P3 and P
4 solutions, the Figures 6(b) and 7 show the contours of the mean x-component

of velocity around the airfoil and a detailed view of the flow field and of detachment and reattach-

ment points of the laminar separation bubble. The dimensions of the laminar separation bubble

are reported in Table 3 and, along with the mean skin friction and pressure coefficient distribu-

tions shown in Figure 9, highlight the noticeable difference of the size of the separation bubble

predicted by the P
3 and P

4 solutions. The mean drag, lift and moment coefficients of the airfoil,

are also reported in Table 3 together with results available in the literature.

(a) mesh and measurements locations (b) mean x-component of velocity

Figure 6: SD7003 - Computational mesh with 20064 50-node hexahedral elements (yellow cubes indicate

the chordwise locations of the velocity profiles) and contours of the x-component of velocity, RO5-8–DG

P
3,4 solutions

Figure 8 displays the mean velocity profiles at the chordwise locations indicated in Figure 6(a).

The significant difference between the P
3 and P

4 results clearly requires to assess such results
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Figure 7: SD7003 - Contours of mean x-component of velocity, detail of the laminar separation bubble with

indication of the separation and reattachment points, RO5-8–DG P
3,4 solutions

against those of more accurate space discretizations, which is the subject of ongoing work. The
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Figure 8: SD7003 - Profiles of mean x-component of velocity at chordwise locations x/c = {0.1, . . . , 0.9},
RO5-8–DG P

3,4 solutions

instantaneous Q = 500 isosurface of Q-criterion for the P
3 and P

4 solutions is displayed in Fig-

ure 10 and shows how a higher-order approximation is able to provide a much better resolution

of the vortical structures above the airfoil.

There are several published papers on the LES of this challenging test case, showing a cer-

tain dispersion of results due to the complex physical features related to the laminar separation

bubble. Unfortunately, no reference DNS database is available for a more reliable comparison.

Although it can be expected that our results would improve with p- or h-refinement, nevertheless

their reasonably good agreement with those reported in [33] and [35] is quite promising.

5. Conclusions

In this work we have shown that linearly implicit Rosenbrock-type Runge-Kutta schemes,

coupled with a high-order DG space discretization, represent a flexible and effective approach to

a globally high-order numerical solution of compressible and incompressible unsteady flows.
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Figure 9: SD7003 - Mean Cp and c f distributions, RO5-8–DG P
3,4 solutions

Figure 10: SD7003 - Instantaneous Q = 500 isosurface of Q-criterion, RO5-8–DG P
3,4 solutions

It has been proposed an implementation of Rosenbrock schemes for systems of equations

with a solution dependent block diagonal matrix multiplying the time derivative, a situation that

occurs if a set of primitive variables is chosen for the unknowns in the governing equations of

compressible flows. If primitive variables are used as working variables, we have also suggested

a simple way to ensure the positivity of all thermodynamic variables at the discrete level.

The assessment of temporal accuracy and performance of several Rosenbrock schemes leads

us to conclude that higher-order schemes are much more efficient than lower-order ones if low

levels of time integration error are being sought. Applied to the DG ILES of a transitional flow,

Rosenbrock schemes provided solutions which are in reasonable good agreement with reference

results, proving to be numerically stable and accurate for a time step size significantly larger than

that used by other authors in lower order temporal schemes.

Ongoing work is devoted to improve the efficiency of Rosenbrock schemes, by implementing

automatic time step adaptation techniques and by increasing the efficiency of iterative solvers,

and to a thorough validation of high-order space- and time-accurate DG methods for the simu-

lation of underresolved turbulent flows by means of ILES and hybrid RANS-LES approaches,
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Appendix A. Effect of logarithmic variables on spatial accuracy

The effect of using logarithmic variables on the accuracy and convergence rate of numerical

solutions has been assessed by computing the well-known Ringleb flow problem, see e.g. [59].

In order avoid inaccuracies related to the treatment of slip boundary conditions, which is quite a

critical issue for this test case, [60], the exact solution has been set on all the boundaries of the

computational domain.

(a) Mach (b) p and p̃

Figure A.11: Ringleb flow - Mach number, pressure, and logarithm of pressure contours, P6 solution on the

16 × 4 17-node quadrilateral elements mesh

Numerical solutions have been computed on a set of eight grids with 16i×4i, i = 1, · · · , 8, 17-

node quadrilateral elements, and up to P
6 polynomial approximation, i.e. with (k+1)(k+2)/2·64i2

degrees of freedom (DOFs) per equation. Figure A.11 displays the results of the P
6 solution,

computed on the i = 1 grid, represented in terms of Mach number, pressure, and logarithm of

pressure contours.

Figure A.12 compares the convergence rate and accuracy of solutions computed using polyno-

mial approximations both for p and T and for their logarithms p̃ and T̃ . Despite slightly higher

L2 error norms of the solutions based on polynomial approximations for p̃ and T̃ , nevertheless

the formal order of spatial convergence appears to be equally well verified by both choices of

variables. This provides some confidence that using polynomial approximations for p̃ and T̃ in

place of p and T does not impair the ability of predicting physically correct solutions.

In the authors’ experience this approach proved useful to enhance the robustness of high-order

simulations of complex transonic flows, as those addressed within the EU FP7 IDIHOM project,

see [61, 6]. Nevertheless, it is not to be intended as a substitute for shock-capturing techniques.
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Appendix B. Sets of coefficients of the Rosenbrock schemes considered in this paper

Iannelli-Baker (RO2-2) [23]

γ = 1 −
√

2
2

a21 = 4 − 8γ

c21 = 0

m1 = 1
γ

(
1 − 1

8γ

)

m2 = 1
8γ2

Lang-Verwer ROS3P (RO3-3) [24]

γ = 1
2
+
√

3
6

a21 = γ−1

a31 = γ−1

a32 = 0

c21 = −γ−2

c31 = −γ−1
(
1 + γ−1

(
2 − 1

2γ

))

c32 = −γ−1
(
2 − 1

2γ

)

m1 = γ−1
(
1 + γ−1

(
2
3
− 1

6γ

))

m2 = γ−1
(

2
3
− 1

6γ

)

m3 = 1
3γ

Hairer-Wanner RODAS3 (RO3-4) [25]

γ = 1/2

a21 = 0

a31 = 2

a32 = 0

a41 = 2

a42 = 0

a43 = 1

c21 = 4

c31 = 1

c32 = −1

c41 = 1

c42 = −1

c43 = −8/3

m1 = 2

m2 = 0

m3 = 1

m4 = 1

Shampine ROS4 (RO4-4) [28]

γ = 1/2

a21 = 2

a31 = 48/25

a32 = 6/25

a41 = 48/25

a42 = 6/25

a43 = 0

c21 = −8

c31 = 372/25

c32 = 12/5

c41 = −112/125

c42 = −54/125

c43 = −2/5

m1 = 19/9

m2 = 0.5

m3 = 25/108

m4 = 125/108

Steinebach RODASP (RO4-6) [26]

γ = 0.25D + 00

a21 = 3D + 00

a31 = 1.831036793486759D + 00

a32 = 4.955183967433795D − 01

a41 = 2.304376582692669D + 00

a42 = −5.249275245743001D − 02

a43 = −1.176798761832782D + 00

a51 = −7.170454962423024D + 00

a52 = −4.741636671481785D + 00

a53 = −1.631002631330971D + 01

a54 = −1.062004044111401D + 00

a61 = −7.170454962423024D + 00

a62 = −4.741636671481785D + 00

a63 = −1.631002631330971D + 01

a64 = −1.062004044111401D + 00

a65 = 1.0D + 00

c21 = −1.2D + 01

c31 = −8.791795173947035D + 00

c32 = −2.207865586973518D + 00

c41 = 1.081793056857153D + 01

c42 = 6.780270611428266D + 00
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c43 = 1.953485944642410D + 01

c51 = 3.419095006749676D + 01

c52 = 1.549671153725963D + 01

c53 = 5.474760875964130D + 01

c54 = 1.416005392148534D + 01

c61 = 3.462605830930532D + 01

c62 = 1.530084976114473D + 01

c63 = 5.699955578662667D + 01

c64 = 1.840807009793095D + 01

c65 = −5.714285714285717D + 00

m1 = −7.170454962423024D + 00

m2 = −4.741636671481785D + 00

m3 = −1.631002631330971D + 01

m4 = −1.062004044111401D + 00

m5 = 1.0D + 00

m6 = 1.0D + 00

Di Marzo, RODAS5-Rod5 1 (RO5-8) [27]

γ = 1.9D − 01

a21 = 2.0D + 00

a31 = 3.040894194418781D + 00

a32 = 1.041747909077569D + 00

a41 = 2.576417536461461D + 00

a42 = 1.622083060776640D + 00

a43 = −9.089668560264532D − 01

a51 = 2.760842080225597D + 00

a52 = 1.446624659844071D + 00

a53 = −3.036980084553738D − 01

a54 = 2.877498600325443D − 01

a61 = −1.409640773051259D + 01

a62 = 6.925207756232704D + 00

a63 = −4.147510893210728D + 01

a64 = 2.343771018586405D + 00

a65 = 2.413215229196062D + 01

a71 = −1.409640773051259D + 01

a72 = 6.925207756232704D + 00

a73 = −4.147510893210728D + 01

a74 = 2.343771018586405D + 00

a75 = 2.413215229196062D + 01

a76 = 1.0D + 00

a81 = −1.409640773051259D + 01

a82 = 6.925207756232704D + 00

a83 = −4.147510893210728D + 01

a84 = 2.343771018586405D + 00

a85 = 2.413215229196062D + 01

a86 = 1.0D + 00

a87 = 1.0D + 00

c21 = −1.031323885133993D + 01

c31 = −2.104823117650003D + 01

c32 = −7.234992135176716D + 00

c41 = 3.222751541853323D + 01

c42 = −4.943732386540191D + 00

c43 = 1.944922031041879D + 01

c51 = −2.069865579590063D + 01

c52 = −8.816374604402768D + 00

c53 = 1.260436877740897D + 00

c54 = −7.495647613787146D − 01

c61 = −4.622004352711257D + 01

c62 = −1.749534862857472D + 01

c63 = −2.896389582892057D + 02

c64 = 9.360855400400906D + 01

c65 = 3.183822534212147D + 02

c71 = 3.420013733472935D + 01

c72 = −1.415535402717690D + 01

c73 = 5.782335640988400D + 01

c74 = 2.583362985412365D + 01

c75 = 1.408950972071624D + 00

c76 = −6.551835421242162D + 00

c81 = 4.257076742291101D + 01

c82 = −1.380770672017997D + 01

c83 = 9.398938432427124D + 01

c84 = 1.877919633714503D + 01

c85 = −3.158359187223370D + 01

c86 = −6.685968952921985D + 00

c87 = −5.810979938412932D + 00

m1 = −1.409640773051259D + 01

m2 = 6.925207756232704D + 00

m3 = −4.147510893210728D + 01

m4 = 2.343771018586405D + 00

m5 = 2.413215229196062D + 01

m6 = 1.D + 00

m7 = 1.D + 00

m8 = 1.D + 00
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Kaps and Wanner. ROW6A (RO6-6) [29]

γ = 3.341423670680504D − 01

a21 = 2.0D + 00

a31 = 1.751493065942685D + 00

a32 = −1.454290536332865D − 01

a41 = −1.847093912231436D + 00

a42 = −2.513756792158473D + 00

a43 = 1.874707432337999D + 00

a51 = 1.059634783677141D + 01

a52 = 1.974951525952609D + 00

a53 = −1.905211286263863D + 00

a54 = −3.575118228830491D + 00

a61 = 2.417642067883312D + 00

a62 = 3.050984437044573D − 01

a63 = −2.346208879122501D − 01

a64 = −1.327038464607418D − 01

a65 = 3.912922779645768D − 02

c21 = −1.745029492512995D + 01

c31 = −1.202359936227844D + 01

c32 = 1.315910110742745D + 00

c41 = 2.311230597159272D + 01

c42 = 1.297893129565445D + 01

c43 = −8.445374594562038D + 00

c51 = −3.147228891330713D + 00

c52 = −1.761332622909965D + 00

c53 = 6.115295934038585D + 00

c51 = 1.499319950457112D + 01

c62 = −2.015840911262880D + 01

c63 = −1.603923799800133D + 00

c64 = 1.155870096920252D + 00

c65 = 6.304639815292044D − 01

c66 = −1.602510215637174D − 01

m1 = 3.399347452674165D + 01

m2 = −2.091829882847333D + 01

m3 = −1.375688477471081D + 01

m4 = −1.113925929930077D + 01

m5 = 2.873406527609468D + 00

m6 = 3.876609945620840D + 01
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Appendix C. Stability of Rosenbrock schemes: di j parameters and G(s) matrices

di j parameters for s ≤ 4

d11 = γ

d21 = γ (1 + c21d11)

d22 = γ (−γ + a21d11)

d31 = γ (1 + c31d11 + c32d21)

d32 = γ (−2γ + a31d11 + a32d21 − c31d11γ + c32d22)

d33 = γ
(
γ2 − a31d11γ + a32d22

)

d41 = γ (1 + c41d11 + c42d21 + c43d31)

d42 = γ
[−3γ + a41d11 + a42d21 + a43d31 − 2c41d11γ + c42 (−d21γ + d22) + c43d32

]

d43 = γ
[
3γ2 − 2a41d11γ + a42 (−d21γ + d22) + a43d32 + c41d11γ

2 − c42d22γ + c43d33

]

d44 = γ
(
−γ3 + a41d11γ

2 − a42d22γ + a43d33

)

G(s) matrices for s ≤ 4

G(1) = f11d11

G(2) =

[
f21d11 f22d11γ

f11d21 f11d22

]

G(3) =


f31d11 f32d11γ f33d11γ

2

f21d21 f22d21γ + f21d22 f22d22γ

f11d31 f11d32 f11d33



G(4) =



f41d11 f42d11γ f43d11γ
2 f44d11γ

3

f31d21 f32d21γ + f31d22 f33d21γ
2 + f32d22γ f33d22γ

2

f21d31 f22d31γ + f21d32 f22d32γ + f21d33 f22d33γ

f11d41 f11d42 f11d43 f11d44


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