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Abstract

A strategy for choosing the forcing terms in inexact Newton iterations is
presented. The final goal is to obtain fast steady state marching strategies
for the solution of PDEs. The new approach is analysed and tested in the
context of inexact Newton methods but is also well suited to be applied in the
pseudo-transient continuation framework. To validate the strategy and assess
its gains in terms of computational costs we seek approximate solutions of the
Incompressible Navier-Stokes equations at high-Reynolds numbers. In par-
ticular we consider the well known 2D lid-driven cavity flow and backward-
facing step problem focusing on the efficiency of the time marching strategy.
Residual history and computation time are monitored and compared with
many fixed and adaptive forcing term choices of reference.
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1. Introduction

In this work we devise an effective strategy to define the forcing terms
of inexact Newton iterations with application to globalisation strategies like
global inexact Newton methods and pseudo-transient continuation algorithms.
Globalisation of inexact Newton solvers is necessary to ensure convergence
when the initial iterate is far from the solution. The technique is widely em-
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ployed for the computation of steady-state solutions of non-linear differential
equations, see e.g. [3, 6, 8, 9, 17, 25] for some recently published applications.

As a distinctive feature inexact Newton methods do not require to ex-
actly solve the Newton equations. In iterative Newton or truncated Newton
methods iterative solvers are employed to solve linear systems, resulting in a
nested inner loop at each outer Newton iteration. Clearly the more effort is
spent to solve the system the better its solution is approximated. Neverthe-
less, if the solution guess is not sufficiently near the exact solution, oversolv-
ing the Newton equations might result in significant linearisation errors and
unsatisfactory convergence rates.

Forcing terms control the expense of the inner loop by prescribing a ter-
mination condition for the linear solver. They also influence the local con-
vergence of inexact Newton methods, see Dembo, Eisenstat and Steihaug
[11], and the robustness of globalisation strategies. In all the applications in
which the cost of the inner iterations is high the choice of forcing term is of
primary importance for the efficiency of the whole algorithm.

Many forcing term choices has been proposed in literature to optimize
the computational costs involved in inexact Newton methods. Dembo and
Steihaug [12] and Brown and Saad [7] devised the first adaptive strategies
for decreasing the forcing terms while approaching the exact solution. Later
Eisenstat and Walker [14] introduced two effective forcing term choices for
inexact Newton methods [13] that are still widely used. Fast local conver-
gence was demonstrated theoretically and the ability to avoid oversolving
was analyzed by means of numerical test cases. Recently An, Mo and Liu
[2] proposed an approach for choosing the forcing term based on the agree-
ment between the linear and non-linear model at the each Newton iteration.
They demonstrated q-superlinear convergence of the resulting Newton strat-
egy and obtained satisfactory numerical results as compared with the choices
by Eisenstat and Walker.

Up to the author knowledge, none of the adaptive forcing term choices
proposed in the context of inexact Newton methods was systematically ap-
plied to pseudo-transient continuation. On one hand, the modification of the
Jacobian matrix induced by the discretization of the time derivative reduces
the burden of numerically solving the Newton equation while marching with
small timesteps. On the other hand, when the timestep is large, the compu-
tational cost associated with the inner linear iteration increases to the point
that tight termination conditions might be difficult to meet in practice. Sev-
eral authors favored fixed forcing terms choices, see e.g. Tidriri [28], while
others opted for a constant work and storage per timestep, e.g. Venkatakr-
ishnan and Mavriplis [30] suggested to fix the amount of inner iterations
renouncing to control the solution accuracy. Aiming for a prescribed termi-
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nation condition but exiting irrespectively of the its fulfillment after a fixed
amount of iterations is a common practice, see e.g. Gropp, Keyes, McInnes,
and Tidriri [18]. An adaptive approach based on the evolution of the Courant
number was proposed by Ajmani, Ng and Liou [1] in the context of Com-
putational Fluid Dynamics (CFD) applications. The role of forcing terms
in inexact pseudo-transient continuation was analyzed in detail by Kelley
and Keyes [21] with specific recommendations for each phase of the global
convergence.

In this work a new prediction-correction strategy for computing the forc-
ing terms is proposed. The correction enforces the best possible agreement
between the linear and the non-linear model at the current Newton iterate
while the prediction modifies the forcing term based on the convergence im-
provements expected at the next iterate. The material is organized as follows.
In Section 2 we briefly formalize inexact Newton methods focusing on com-
putational costs and reporting some theoretical results regarding convergence
rates. Section 3 reviews existing forcing term choices and describes in detail
the new strategy analyzing the local convergence of the inexact Newton al-
gorithm that results from it. In Section 3.2.4 the forcing term strategies are
challenged testing their response to artificially manufactured nonlinear con-
vergence rates typically observed at early stages of a global Newton iteration.
In Sections 4 and 5 we consider the new choice in the context of globalization
strategies and perform numerical test cases. First we apply global inexact
Newton methods to non-linear model problems comparing the new choice
with other forcing term choices of reference, see Section 4. Thus, in Section
5, we adapt the new adaptive forcing term choice to pseudo-transient con-
tinuation and apply the pseudo-time marching strategy to a discontinuous
Galerkin discretization of the incompressible Navier-Stokes equations. We
seek steady-state solutions of the 2D lid-driven cavity and backward-facing
step problems at high-Reynolds numbers showing how the new forcing term
algorithm behaves as compared with other forcing term choices.

2. Inexact Newton methods

Consider the system of (nonlinear) equations

F (x) = 0, (1)

where x ∈ Rn is the global vector of unknown, F (x) : Rn → Rn is the
vector of residuals, i.e. the vector of nonlinear functions of x resulting from
the discrete space operators of a finite element discretization.

A classical way of finding x∗ |F (x∗) = 0 is Newton’s method. Starting
from an initial guess x0 sufficiently close to x∗ a sequence of approximations
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{xk} is obtained repeatedly solving the linear Newton equation

F
′
(xk)sk = −F (xk), (2)

and setting xk+1 = xk+sk. In practice, since equation (2) can be expensive to
solve due to the size, the structure and the condition number of the Jacobian
matrix F ′

(xk), it is convenient to compute approximate solutions. In inexact
Newton methods equation (2) is solved inexactly, usually by means of an
iterative method, subject to the following condition on the linear system
residual ∣∣∣∣∣∣F (xk) + F

′
(xk)sk

∣∣∣∣∣∣ ≤ ηk ||F (xk)|| , (3)

where η ∈ [0, 1) is the so called forcing term. In inexact Newton methods η
controls how accurately sk solves the Newton equation (2). A proper choice of
η is of primary importance to ensure computational efficiency and maintain
the local convergence properties of Newton’s algorithm. As a matter of fact,
while η too small negatively impacts computational costs, see Section 2.1, a
too loose η value affects Newton method’s local convergence rates, see Section
2.2.

2.1. Computational cost and oversolving
When solving equation (2) by means of an iterative solver, condition (3)

provides a stopping criteria based on the decrease of the relative residual,

i.e.
∣∣∣∣∣∣F (xk)+F

′
(xk)sk

∣∣∣∣∣∣
||F (xk)|| ≤ ηk. A smaller ηk typically involves additional expense

on the iterative solution process that might fail to pay off in terms of global
convergence, a phenomenon known as oversolving.

Oversolving occurs when stringent requirements on the residual reduction
cause a significant disagreement between F (x) and its local linear model, see
Eisenstat and Walker [14]. First note that R(xk, sk) = F (xk) + F

′
(xk)sk is

the residual of the Newton equation, as well as the local linear model of F (x),
i.e. F (xk+1) ≈ F (xk) + F

′
(xk)sk. Once sk has been computed, the norm of

the linearisation error E(xk, sk) can be evaluated as follows

||E(xk, sk)|| =
∣∣∣∣∣∣F (xk+1)− F (xk)− F

′
(xk)sk

∣∣∣∣∣∣ = ||F (xk+1)−R(xk, sk)|| . (4)

Following Eisenstat andWalker [13], we define the predicted reduction, predk(sk),
and the actual reduction, aredk(sk), at the kth iteration

aredk(sk)
def
= ||F (xk)|| − ||F (xk+1)|| , (5)

predk(sk)
def
= ||F (xk)|| − ||R(xk, sk)|| . (6)
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To justify the computational effort required to solve Equation (2), aredk(sk) '
predk(sk) should be obtained, meaning that the linear and non-linear model
for F (xk) are in good agreement. Indeed the computational expense required
to lower R(xk, sk) in the inner linear iteration contributes to lower F (xk+1)
in the outer Newton iteration. The disagreement between aredk(sk) and
predk(sk) is closely related to the linearisation error E(xk, sk), indeed

|aredk(sk)− predk(sk)| =
∣∣||F (xk+1)|| − ||R(xk, sk)||

∣∣ ≤ ||E(xk, sk)|| (7)

Elaborating on the nonlinear residual ratio

||F (xk+1)||
||F (xk)||

=

∣∣∣∣F (xk) + F
′
(xk)sk + E(xk, sk)

∣∣∣∣
||F (xk)||

≤
∣∣∣∣F (xk) + F

′
(xk)sk

∣∣∣∣+ ||E(xk, sk)||
||F (xk)||

(8)

≤ ηk +
||E(xk, sk)||
||F (xk)||

, (9)

we easily infer that a tight ηk might be pointless if the last term on the right
hand side dominates. In particular the risk of oversolving must be taken into
account when the initial guess x0 is not sufficiently close to the solution x∗,
which might induce a significant linearisation error.

2.2. Local convergence rates
Local convergence of inexact Newton methods has been demonstrated by

Dembo, Eisenstat and Steihaug [11] under the weak assumption that the
forcing sequence {ηk} is uniformly less than one. We consider the following
standard assumptions on F .

i Equation (1) has a solution x∗.
ii F : Rn → Rn is continuously differentiable
iii F ′

(x∗) is nonsingular.

Theorem 2.1 (Dembo et al. [11] Theorem 2.3). Assume that the standard
assumptions hold. Let {ηk} be such that ηk ≤ ηmax < t < 1 for all k, then
there exist δ > 0 such that, for any x0 ∈ Nδ(x∗)

def
= {x : ||x− x∗|| ≤ δ},

the sequence of inexact Newton iterates {xk} converges to x∗ in the weighted
norm || · ||∗

def
=
∣∣∣∣F ′

(x∗) ·
∣∣∣∣, that is
||xk+1 − x∗||∗ ≤ t ||xk − x∗||∗ . (10)
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A similar result was also devised by Kelley [20, Theorem 6.1.4]. Moreover,
as remarked by Kelley, q-linear convergence with respect to the norm || · ||∗
is equivalent to q-linear convergence of the sequence of nonlinear residuals
{||F (xn)||}. Kelley formalized this result in the following Proposition.

Proposition 1 (Kelley [20] Proposition 6.1.1). Assume that the standard
assumptions hold and let xk → x∗. Then ||F (xk)|| converges q-linearly to 0
if and only if ||xk − x∗||∗ does.

A proof of Proposition 1 is given in Appendix A.

Theorem 2.2 (Dembo et al. [11] Corollary 3.5). Assume that F : Rn → Rn

is continuously differentiable in a neighborhood of x∗ |F (x∗) = 0 and F ′
(x∗)

is nonsingular. If the sequence of inexact Newton iterates {xk} converges to
x∗, then

1. {xk} converges to x∗ superlinearly if ηk → 0

2. the convergence is q-quadratic if ηk = O (||F (xk)||) and F ′
(x) is Lips-

chitz continuous at x∗.

Accordingly the forcing term choice might limit the convergence rate of
the sequence {xk} if not carefully selected, in particular when the initial guess
xk is close to x∗ and the linearisation error is small.

3. Forcing term choice

3.1. Review of existing approaches
In their breakthrough work about forcing term choice in inexact Newton

methods Eisenstat an Walker [14] proposed and analyzed two strategies for
choosing η. The first couple of alternatives (EW1a and EW1b respectively)
reads

ηk+1 =
||E(xk, sk)||
||F (xk)||

, (11)

and
ηk+1 =

|predk(sk)− aredk(sk)|
||F (xk)||

. (12)

They directly reflect the agreement between F (x) and its local linear model
at the previous step. The convergence of the resulting Newton method is
q-superlinear and two-step q-quadratic for choices (11) − (12), see [14] for
details. The second approach by Eisenstat and Walker (EW2) relates η to
the actual residual decrease

ηk+1 = γ

(
||F (xk + sk)||
||F (xk)||

)α
(13)
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where γ ∈ [0, 1] and α ∈ (1, 2] drive the rate of decrease of the sequence {ηk}.
For inexact Newton with choice (13) the convergence is of q-order α if γ < 1,
and of q-order p for ever p ∈ [1, α) if γ = 1, see [14] for details. The authors
tested several combination of γ and α and also suggested some safeguards
that prevents the forcing term from becoming too small too quickly.

Later An, Mo and Liu [2] proposed a different approach (AML) based
on agreement between aredk(sk) and predk(sk). Defining tk = aredk(sk)

predk(sk)
their

forcing term choice reads

ηk+1 =


1− 2p1, if tk < p1

ηk, if p1 ≤ tk < p2,
0.8ηk, if p2 ≤ tk < p3,
0.5ηk, if tk > p3,

(14)

where p1, p2, p3 are user defined parameters such that 0 < p1 < p2 < p3 < 1
and p1 ∈ (0, 0.5). In [2] q-superlinear convergence was proved for inexact
Newton with choice (14).

3.2. The new choice
In this work we introduce the following new choice for η. Given ηk=0 ∈

(0, 1) and α ∈ (1, 2], compute

ηk+1 =
||R(xk, sk)||

||R(xk, sk)||+ α(||F (xk)|| − ||F (xk + sk)||)
. (15)

The strategy in (15) is here interpreted as prediction-correction strategies for
computing ηk+1 where

• prediction should guarantee satisfactory local convergence of the inex-
act Newton algorithm, see Section 3.2.2,

• correction attempts to enforce aredk(sk+1) ' predk(sk+1) so to avoid
oversolving and obtain the best efficiency from the computational costs
viewpoint, see Section 3.2.1.

The user defined parameter α controls the behaviour of the sequence {ηk}
with respect to ||F (xk+sk)||

||F (xk)|| , in particular ηk → 0 if ||F (xk+sk)||
||F (xk)|| ≤ α−1

α
, see

Section 3.2.4 for details.

3.2.1. Correction
As a first step, once sk is obtained according to condition (3), we compute

η̄k and ck such that

predk(sk) = ||F (xk)|| − ||R(xk, sk)|| = (1− η̄k) ||F (xk)|| , (16)
aredk(sk) = ||F (xk)|| − ||F (xk + sk)|| = ckη̄k ||F (xk)|| . (17)
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We obtain
η̄k =

||R(xk, sk)||
||F (xk)||

, (18)

and
ck =

||F (xk)|| − ||F (xk + sk)||
η̄k ||F (xk)||

=
||F (xk)|| − ||F (xk + sk)||

||R(xk, sk)||
. (19)

Thus we correct η̄k based the optimal condition aredk(sk) = predk(sk).
To this end we introduce the correction η̂k such that

(1− η̂k) ||F (xk)|| = ckη̂k ||F (xk)|| . (20)

We obtain η̂k = 1
1+ck

, which upon substitution of (19), leads to

η̂k =
||R(xk, sk)||

||R(xk, sk)||+ ||F (xk)|| − ||F (xk + sk)||
. (21)

Note that, according to condition (3), ηk ≥ η̄k but the two are expected
to be comparable since the linear solver terminates as soon as condition (3) is
satisfied. Nevertheless, since in the early stages of the Newton iterations one
might get ||R(xk, sk)|| � η ||F (xk)||, we also mention about the possibility
to use

ĉk =
||F (xk)|| − ||F (xk + sk)||

ηk ||F (xk)||
. (22)

as a practical safeguard to avoid an unintended η decrease. Proceeding as
above with ĉk instead of ck we get

η̂k =
ηk ||F (xk)||

ηk ||F (xk)||+ ||F (xk)|| − ||F (xk + sk)||
(23)

instead of (21).

3.2.2. Prediction
Once the correction η̂k has been obtained based on the convergence achieved

at the current iterate, ηk+1 is computed based on a prediction of the conver-
gence rate improvements expected at the next iterate. Indeed the correction
alone would enforce q-linear convergence of the nonlinear residual impairing
the convergence rate of the Inexact Newton Method when x is sufficiently
close to x∗, see Theorem 2.2.

The prediction is obtained setting ηk+1 = 1
1+αck

, which leads to (15). To
further motivate this choice we consider the limit case α = 2. For c ∈ (0, 0.8],
leading to a predicted η ∈ (1,' 0.38), we have(

1

1 + c

)2

≤ 1

1 + 2c
≤
(

1

1 + c

)(1+
√

5)/2

,
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where 1 +
√

5/2 and 2 correspond to the local convergence of the Secant and
the Newton method, respectively, see Figure 1. c values smaller than one
are indicative of a significant disagreement between the linear and nonlinear
model for F (x). As opposite c� 1 is obtained in the limit of a vanishing lin-

0.1 1 10
c

0

0.2

0.4

0.6

0.8

ƞ

1/(1+2c)
(1/(1+c))^((1+sqrt(5))/2)
(1/(1+c))^2

0.1 1 10
c

0.01

0.1

1

ƞ

1/(1+2c)
(1/(1+c))^((1+sqrt(5))/2)
(1/(1+c))^2
0.5/(1+c)

Figure 1: Behaviour of different forcing term prediction strategies for c ∈ [0.1, 10]. Left,
logarithmic-linear chart to appreciate the differences for a predicted η close to unity. Right,
logarithmic-logarithmic chart to appreciate the differences for η → 0.

earisation error. Since ||E(xk, sk)|| → 0 implies ||F (xk + sk)|| ' ||R(xk, sk)||,
from (15) we get

ηk+1 '
||R(xk, sk)||

||R(xk, sk)||+ 2 ||F (xk)|| − 2 ||R(xk, sk)||
,

' ||R(xk, sk)||
2 ||F (xk)|| − ||R(xk, sk)||

,

' ηk
2− ηk

, (24)

which mimics the strategy to reduce η in the terminal phase of (14), that is
ηk+1 = 0.5ηk. This strategy prevents η to decrease too fast when x→ x∗, see
Figure 1.

3.2.3. Theoretical results
The following Theorem demonstrates that the strategy in (15) allows to

obtain a locally convergent inexact Newton method. The proof is inspired by
[2, Theorem 2.1] and requires the following Lemmas formulated by Orthega
and Rheinboldt [26].

Let Nδ(z)
def
= {x : ||x− z|| ≤ δ}.
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Lemma 3.1. Orthega and Rheinboldt [26, 2.3.3]. Assume F : Rn → Rn is
continuously differentiable and x ∈ Rn. If F ′

(x) is nonsingular, then for any
ε > 0, there exists δ > 0, such that F ′

(y) is nonsingular and∣∣∣∣∣∣F ′
(y)−1 − F ′

(x)−1
∣∣∣∣∣∣ < ε,

whenever y ∈ Nδ(x).

Lemma 3.2. Orthega and Rheinboldt [26, 3.2.10]. Assume F : Rn → Rn

is continuously differentiable. Then for any z ∈ Rn and ε > 0, there exists
δ > 0, such that∣∣∣∣∣∣F (x)− F (y)− F ′

(y)(x− y)
∣∣∣∣∣∣ < ε ||x− y|| ,

whenever x, y ∈ Nδ(z).

Theorem 3.1. Assume that the standard assumptions hold. Let η0 < 1 and
compute ηk>0 using the forcing term strategy in (15). If x0 is sufficiently
close to x∗, then the sequence {xk} produced by the inexact Newton method
converges to x∗ q-superlinearly.

Proof. We first prove that q-linear convergence of sequence {xk} in the weighted
norm || · ||∗, that is

||xk+1 − x∗||∗ ≤ t ||xk − x∗||∗ . (25)

t ∈ (0, 1), implies ηk < 1 for all k. If ||F (xk+1)|| < ||F (xk)|| it is readily
inferred that (15) leads to ηk+1 < 1. Since, under the hypothesis of Proposi-
tion 1, ||F (xk)|| converges q-linearly to 0 if and only if ||xk − x∗||∗ does, the
proof is completed. This means that, by Theorem 2.1, the sequence {xk}
converges to x∗.

To prove q-superlinear convergence let β =
∣∣∣∣F ′

(x∗)
−1
∣∣∣∣ and

η̄k =
||R(xk, sk)||
||F (xk)||

<= ηk.

By Lemmas 3.1 and 3.2, there exist δ > 0, such that F ′(x) is invertible and
the inequalities ∣∣∣∣∣∣F ′

(x)−1
∣∣∣∣∣∣ < 2β, (26)

and∣∣∣∣∣∣F (xk+1)− F (xk)− F
′
(xk)(sk)

∣∣∣∣∣∣ = ||E(xk, sk)|| <
(
√
α− 1)(1− η̄k)√
α2β(1 + η̄k)

||sk|| ,

(27)
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hold whenever xk, xk+1 ∈ Nδ(x
∗). The existence of a positive integer K such

that xk ∈ Nδ(x∗) for all k > K, follows from q-linear convergence of the
sequence {xx}. Therefore, for k > K, by the inexact Newton condition (3)
and (26), we get

||sk|| =
∣∣∣∣∣∣F ′

(xk)
−1
(
F

′
(xk)sk + F (xk)− F (xk)

)∣∣∣∣∣∣ ≤ 2β(1 + η̄k) ||F (xk)||
(28)

Substituting the expression for sk in (27) we get

||E(xk, sk)|| <
√
α− 1√
α

(1− η̄k) ||F (xk)|| , (29)

and, from (8), we infer

||F (xk+1)||
||F (xk)||

≤ η̄k +
||E(xk, sk)||
||F (xk)||

< η̄k +

√
α− 1√
α

(1− η̄k)

=
η̄k√
α

+

√
α− 1√
α

< 1.

Using the above result in choice (15) we obtain

ηk+1 =
||R(xk, sk)||

||R(xk, sk)||+ α (||F (xk)|| − ||F (xk+1)||)
||F (xk)||
||F (xk)||

=
η̄k

η̄k + α
(

1− ||F (xk+1)||
||F (xk)||

) (30)

<
η̄k

η̄k + α
(

1− η̄k√
α
−
√
α−1√
α

)
=

η̄k
1 + (

√
α− 1)(1− η̄k)

(31)

where (
√
α − 1)(1 − η̄k) > 0. According to (31), for a sufficiently large k,

the sequence {ηk} converges to zero, hence q-superlinear convergence follows
thanks to Theorem 2.2.

Note that taking

||E(xk, sk)|| <
α− 1

α
(1− η̄k) ||F (xk)||
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in place of (29) is sufficient to demonstrate that the sequence {ηk} is strictly
decreasing. Indeed, proceeding as above, we get

ηk+1 =
η̄k

η̄k + α
(

1− ||F (xk+sk)||
||F (xk)||

)
<

η̄k

η̄k + α
(
1− η̄k − α−1

α
(1− η̄k)

)
= η̄k

≤ ηk.

3.2.4. Asymptotic forcing terms analysis
The theoretical results of Section 3.2.3 confirms that the new strategy

provides satisfactory convergence properties in the terminal phase of the
Newton iteration, when x is sufficiently close to x∗. This is no surprise since
many of the strategies proposed in literature, and in particular all the strate-
gies considered in Section 3.1, provide similar, or even better, convergence
properties. Nevertheless, in view of their application in the context of global-
isation strategies, it is of primary importance to analyse how they behave at
early stages of the global iteration, when stagnation of the nonlinear residual
might be observed. In this phase the forcing term choices differ in how they
react to linear model improvement and worsening.

For the sake of comparison we consider a fixed nonlinear residual ratio

r =
||F (xk + sk)||
||F (xk)||

that is we assume that the nonlinear residual converges q-linearly with q-
order r ∈ (0, 1) for all k. Imposing ηk+1 = ηk = η̄k, it is possible to compute
the asymptotic forcing term value ηa(r) that should be attained for k →∞.
For each strategy the results are as follows.

• The EW1a strategy in (11) is not rewritable in terms of r. For the
EW1b strategy in (12), which is closely related to (11), we get

ηk+1 =
|predk(sk)− aredk(sk)|

||F (xk)||

=
|||F (xk + sk)|| − ||R(xk, sk))|||

||F (xk)||
= |r − η̄k|
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Imposing ηk+1 = ηk = η̄k, we infer ηa(r) = r/2. Convergence towards
the asymptotic value is not guaranteed, the sequence {ηk} oscillate
around ηa(r).

• The EW2 strategy in (13) reads ηk+1 = ηa(r, α) = rα < r. Sudden
convergence towards ηa(r, α) is observed indeed the asymptotic value
is the forcing term at the next iterate.

• For the AML strategy in (14) we get t = aredk(sk)
predk(sk)

= 1−r
1−η̄ and

ηa(r, η, p1, p2) =


1− 2p1, if r > 1− 2p2

1,
(0,max(η, 1− 2p1)] if 1− p2 < r ≤ 1− 2p2

1,
0 if r ≤ 1− p2.

(32)
Even if an analytic expression for the asymptotic forcing term is not
available we obtain ηa(r, η, p1, p2) <= r. The convergence towards the
asymptotic value is piecewise linear. Since the asymptotic value is a
function of η, the same residual ratio r might be associated to different
asymptotes.

• The new strategy in (15) reads

ηk+1 =
η̄k

η̄k + α (1− r)
. (33)

see also (30). Imposing ηk+1 = ηk = η̄k, we get

ηa(r, α) =

{
α
(
r − α−1

α

)
, if r > α−1

α
,

0, if r ≤ α−1
α
.

(34)

Note that, since 0 < α−1
α
≤ 0.5, we get ηa(r, α) < r. The sequence {ηk}

converges smoothly and monotonically to ηa(r, α).

Not only the asymptotic forcing term is different for each of the strategies
but, most importantly, the way it is approached changes. To outline how the
strategies behaves we analyse how they react to artificially manufactured r
loads in the following tests.

• Test 1. In order to simulate an improvement in nonlinear convergence,
from r = 0.7 to r = 0.65, we start from η0 = ηa(0.7) and analyse the
convergence towards ηa(0.65) for k = {1, 2, ..., 10}. To conclude for
k = {11, 12, ..., 20} we switch back to r = 0.7 to simulate a worsening
of the nonlinear convergence.
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Figure 2: Behaviour of different forcing term prediction strategies (EW1b, EW2, AML,
New) under artificially conceived nonlinear residual loads (Test 1 and 2), see text for
details.

• Test 2. We consider an oscillatory convergence rate, for k = {1, 2, ..., , 20}
we set r = 0.7 and r = 0.65 if k is even and uneven, respectively.

Note that a nonlinear convergence q-factor r ∈ [0.65, 0.7] might be commonly
observed at the early stages of a global strategy.

We considered the following parameters. For EW2 we set γ = 1 and
α = (1+

√
(5))/2; for New we set α = 1.5; for AML we set p1 = 0.1, p2 = 0.4,

p3 = 0.7 and we consider η0 = 0.55 instead of η0 = ηa(0.7, η0, p1, p2).
The results are reported in Figure 2. EW2 and New show the better
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behavior in Test 1. They converge monotonically towards ηa(0.65) and also
converge back towards ηa(0.7). As a plus New smoothly reacts to sudden
changes of r. EW1 oscillates around ηa(0.65) without converging to it. AML,
after having reached ηa(0.65), does not react to the sudden increase of r.

In Test 2 New and EW2 end up oscillating around (ηa(0.65)+ηa(0.7))/2.
New oscillates with modest amplitude as compared to the extremes values
ηa(0.65) and ηa(0.7) whereas EW2 oscillates between ηa(0.65) and ηa(0.7).
EW1 shows big oscillations and rapidly goes out of scale while AML converges
towards ηa(0.65). Similarly to what observed in Test 1 AML displays an
asymmetric way to react to an oscillatory load r.

We remark that in these artificial tests we disregarded the practical safe-
guards proposed by Eisenstat and Walker in [14] as well as the safeguard
proposed by An, Mo and Liu in [2]. While the safeguard proposed for EW2
and AML does not influence their behavior in Test 1 and Test 2, the safe-
guard for EW1 keeps the oscillations under control in Test 2. Nonetheless
the amplitude of the oscillations is much wider than ηa(0.7)−ηa(0.65), which
is the amplitude observed for EW2.

4. Global inexact Newton method

Besides the computational costs, the major drawback of Newton’s method
and inexact Newton methods is that the convergence is only local, meaning
that the sequence {xk} might not converge to x∗ if the initial guess x0 is not
sufficiently close to x∗. Since the local convergence properties are attractive
several globalization strategies was devised to improve the likelihood of con-
vergence from arbitrary starting points. To prove that the eta choice here
proposed are effective in practice we consider numerical test cases based on
globally convergent inexact Newton methods and compare with forcing term
choices proposed by in literature.

A general framework for globally convergent inexact newton methods
was introduced by Eisenstat and Walker [13]. Globalization can be achieved
augmenting the inexact Newton condition (35) with a sufficient decrease con-
dition on ||F (x)||. In many applications the forcing term ηk is specified first,
then sk is computed, inexactly solving equation (2) according to condition
(35). At last the residual decrease is enforced, possibly damping sk and
modifying ηk.

We consider the following Inexact Newton Backtracking method (INB)
method
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Algorithm 4.1 INB
set xk ← x0, choose p ∈ (0, 1) and 0 < θmin < θmax < 1
for k = 0 step 1 until ||F (xk)|| is too large do
choose an initial ηk ∈ [0, ηmax), ηmax < 1, and determine sk such that∣∣∣∣∣∣F (xk) + F

′
(xk)sk

∣∣∣∣∣∣ ≤ ηk ||F (xk)|| (35)

set η∗k = ηk
while

||F (xk + sk)|| ≥ [1− p(1− η∗k)] ||F (xk)|| (36)

do
choose θ ∈ [θmin, θmax]
update sk ← θsk and η∗k ← 1− θ(1− η∗k)

end while

set ηk ← η∗k (37)

set xk+1 ← xk + sk
end for

Theorem 6.1 of Eisenstat and Walker [13] states that if {xk} generated
by Algorithm INB has a limit point x∗ such that F ′

(x∗) is invertible, then
F (x∗) = 0 and xk → x∗. Moreover in this case, for a sufficiently large k,
the choice of ηk and sk is accepted without modification in the backtracking
phase. This allows to compare different strategies for computing ηk without
any backtracking bias in the terminal phase of the convergence. Nevertheless
the forcing term choice might influence the number of backtracking steps
when x in far from x∗, see Table 2.

Using definitions (5)-(6) conditions (35)-(36) can be rewritten as

predk(sk) ≥ (1− ηk) ||F (xk)|| (38)
aredk(sk) ≥ p(1− ηk) ||F (xk)|| (39)

respectively, see [13] for details, and sk is accepted if aredk(sk) ≥ p predk(sk).
We follow the choice of Eisenstat and Walker [14] and set p = 10−4, which
seek to minimize the occurrence of backtracking.

In the while loop each θ is computed minimizing over [θmin, θmax] the
quadratic v(θ) for which v(0) = g(0), v′

(0) = g
′
(0), and v(1) = g(1), where

g(θ)
def
= ||F (xk + θsk)||22, as proposed by Eisenstat and Walker [14]. The

parameters θmin = 0.1 and θmax = 0.5 are used in practice. Convergence is
declared when ||F (xk)|| ≤ 10−6 or ||sk|| ≤ 10−12. F

′
(x) is computed ana-

lytically for each of the model problems considered. The GMRES algorithm
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without restarting [27] is employed for the solution of linear systems which
is generally achieved in less than 30 iterations, see Table 2. Additional safe-
guard conditions might be required depending on the initial η choice to ensure
ηk < ηmax, the practical limits will be detailed in the next Section.

4.1. Comparison of forcing term choices in Global Inexact Newton
To evaluate the performance of the forcing term choices presented in

Section 3 we use them in combination with Algorithm 4.1. We complete
the definition of each strategy by setting the relevant parameters and we
introduce the following notation for reporting the results.

1. New1.3, New1.5, New2, the new strategy in (15) with α = 1.3, 1.5, 2;
2. EW1a, the first strategy given by Eisenstat and Walker, see (11);
3. EW1b, the second variant of the first strategy given by Eisenstat and

Walker, see (12);
4. EW2, the second strategy given by Eisenstat and Walker with α =

(1 +
√

5)/2 and γ = 1, see (13);
5. AML, the strategy devised by An, Mo and Liu with p1 = 0.1, p2 = 0.4

and p3 = 0.7, see (14);
6. Fixed, we consider the following set of fixed eta values {0.5, 10−1, 10−2,

10−3, 10−4}.

We set ηmax = 0.99 and η0 = 0.9, while ηk>0 is computed according to
the adaptive choices. We verified that further reduction of ηmax in Algorithm
4.1 has a detrimental effect in most cases. Note that the choice of ηmax does
not affect AML since according to (14) we have ηk <= 0.8 for all k > 0. We
implement the safeguards proposed by Eisenstat and Walker [14] to avoid η
to become too small too quickly, that is

• EW1a and EW1b: Modify ηk+1 by ηk+1 ← max{ηk+1, η
(1+
√

5)/2
k } when-

ever η(1+
√

5)/2
k > 0.1;

• EW2: Modify ηk+1 by ηk+1 ← max{ηk+1, γη
α
k } whenever γηαk > 0.1.

As suggested by An, Mo and Liu [2] we safeguard their strategy to avoid
stagnation of the sequence {ηk}

• AML: Modify ηk+1 by 0.5ηk, if tk, tk−1 < p1 and ηk, ηk−1 > 0.1,.

We also introduce a safeguard for the new choice having the goal to avoid an
excessive η decrease in the early stages of the Newton iteration, see Section
3.2.1.
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• New: Modify ηk+1 by ηk+1 ← ηk||F (xk)||
ηk||F (xk)||+α(||F (xk)||−||F (xk+sk)||) whenever

k < 4 and ||R(xk, sk)|| < 0.5ηk ||F (xk)||;

For the sake of comparison we also include a computation with the New
strategy, α = 1.3 and no safeguard, the notation is New1.3ns.

Since the New strategy does not resort to ηk, the backtracked forcing term
η∗k in algorithm INB has no direct influence on ηk+1. Note that, even if the
safeguard relies on ηk, backtracking is never triggered during the first itera-
tions. As opposite the other strategies and safeguards might be influenced
by the choice to omit line (37). We verified that in practice discarding η∗k has
a detrimental effect in case of EW1a and EW1b, doest not influence EW2
and New, while AML might perform slightly better. In what follows only the
AML results have been obtained obtained without the update, in agreement
with the INB algorithm proposed by An, Mo and Liu in [2]. Note that all
choices are influenced by the backtracked value of sk, in particular F (xk+sk),
R(xk, sk) and E(xk, sk) need to be recomputed after having updated sk.

To compare the forcing term choices here considered we apply the INB
Algorithm 4.1 for the solution of the following test problems proposed in
literature, each with its own standard initial guess xs.

Problem 4.1 (Three Diagonal system of Rosenbrock [2]).
f1(x) = −4c(x2 − x2

1)x1 − 2(1− x1),
fi(x) = 2c(xi − x2

i−1)− 4c(xi+1 − x2
i )xi − 2(1− xi), i = 2, 3, ..., n− 1,

fn(x) = 2c(xn − x2
n−1), c = 2

with xs = (1.2, 1.2, ..., 1.2)T .

Problem 4.2 (Three Diagonal system of Li [22], TD Li).
f1(x) = 4(x1 − x2

2),
fi(x) = 8xi(x

2
i − xi−1)− 2(1− xi) + 4(xi − x2

i+1), i = 2, 3, ..., n− 1,
fn(x) = 8xn(x2

n − xn−1)− 2(1− xn),

with xs = (12, 12, ..., 12)T .

Problem 4.3 (Five Diagonal system of Li [22], FD Li).

f1(x) = 4(x1 − x2
2) + x2 − x2

3,
f2(x) = 8x2(x2

2 − x1)− 2(1− x2) + 4(x2 − x2
3) + x3 − x2

4,
fi(x) = 8xi(x

2
i − xi−1)− 2(1− xi) + 4(xi − x2

i+1)+
+x2

i−1 − xi−2 + xi+1 − x2
i+2, i = 3, 4, ..., n− 2,

fn−1(x) = 8xn−1(x2
n−1 − xn−2)− 2(1− xn−1) + 4(xn−1 − x2

n)+
+x2

n−2 − xn−3,
fn(x) = 8xn(x2

n − xn−1)− 2(1− xn) + x2
n−1 − xn−2,
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with xs = (−2,−2, ...,−2)T .

Problem 4.4 (Seven Diagonal system of Li [22], SD Li).

f1(x) = 4(x1 − x2
2) + x2 − x2

3 + x3 − x2
4,

f2(x) = 8x2(x2
2 − x1)− 2(1− x2) + 4(x2 − x2

3)
+x2

1 + x3 − x2
4 + x4 − x2

5,
f3(x) = 8x3(x2

3 − x2)− 2(1− x3) + 4(x3 − x2
4)

+x2
2 − x1 + x4 − x2

5 + x2
1 + x5 − x2

6,
fi(x) = 8xi(x

2
i − xi−1)− 2(1− xi) + 4(xi − x2

i+1)+
+x2

i−1 − xi−2 + xi+1 − x2
i+2+

+x2
i−2 + xi+2 − xi−3 − x2

i+3, i = 4, 5, ..., n− 3,
fn−2(x) = 8xn−2(x2

n−2 − xn−3)− 2(1− xn−2) + 4(xn−2 − x2
n−1)+

+x2
n−3 − xn−4 + xn−1 − x2

n + x2
n−4 + xn − xn−5,

fn−1(x) = 8xn−1(x2
n−1 − xn−2)− 2(1− xn−1) + 4(xn−1 − x2

n)+
+x2

n−2 − xn−3 + xn + x2
n−3 − xn−4,

fn(x) = 8xn(x2
n − xn−1)− 2(1− xn) + x2

n−1 − xn−2+
+x2

n−2 − xn−3,

with xs = (−3,−3, ...,−3)T .

Problem 4.5 (Three Diagonal system of Broyden [23], TD Br).
f1(x) = x1(0.5x1 − 3) + 2x2 − 1,
fi(x) = xi(0.5xi − 3) + xi−1 + 2xi+1 − 1, i = 2, 3, ..., n− 1,
fn(x) = xn(0.5xn − 3)− 1 + xn−1,

with xs = (−1,−1, ...,−1)T .

Problem 4.6 (Three Diagonal Trigonometric Exponential system [29], TD
TrEx).

f1(x) = 3x3
1 + 2x2 − 5 + sin(x1 − x2)sin(x1 + x2),

fi(x) = 3x3
i + 2xi+1 − 5 + sin(xi − xi+1)sin(xi + xi+1)+

+4xi − xi−1exp(xi−1 − xi)− 3, i = 2, 3, ..., n− 1,
fn(x) = 4xn − xn−1exp(xn−1 − xn)− 3,

with xs = (0, 0, ..., 0)T .
Each of the six problems is tested for n = 5000. The number of Newton

iterations (Nit), the total number of GMRES iterations (Git), the average
number of GMRES iterations per Newton step (Git/Nit), and the number
of backtracking iterations (BTit) are reported in Tables 1 and 2 for all fixed
and adaptive forcing term strategies, respectively.
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Eta TD Li TD Ros TD TrEx TD Broy FD Li SD Li

0.5

Nit 204 19 18 15 27 28
Git 1592 62 20 29 72 67∗

Git/Nit 7.8 3.7 1.1 1.9 2.7 2.4
BTit 2153 0 1 0 5 6

10−1

Nit 44 9 9 7 15 19
Git 330 53 18∗ 25∗ 67∗ 77
Git/Nit 7.5 5.9 2 3.6 4.5 4.1
BTit 118 0 2 0 5 19

10−2

Nit 21 6 7 5 16 13
Git 148 45∗ 18∗ 27 115 80
Git/Nit 7.04 7.5 2.6 5.4 7.2 6.2
BTit 17 0 2 0 14 2

10−3

Nit 15 5 6 4 14 17
Git 110∗ 45∗ 28 28 141 330
Git/Nit 7.3 9 4.7 7 10.1 19.4
BTit 1 0 2 0 6 22

10−4

Nit 19 5 6 4 16 17
Git 226 62 38 38 289 447
Git/Nit 11.9 12.4 6.33 9.5 18.1 26.3
BTit 11 0 2 0 25 22

Table 1: Iterations count for the INB algorithm with different fixed forcing term choices.
Git: GMRES iterations, Nit: Newton iterations, BTit: Backtracking iterations. ∗ indicates
the lowest number of GMRES iterations among the fixed η choices considered.

The fixed η results allows to appreciate the influence of the forcing term on
the iteration counts and to identify the optimal η for each model problem.
The best η is chosen as the one that provides the smaller Git count, here
considered as an indication of the total computation time. A great variability
is observed, from a stringent 10−3 for the Three Diagonal Rosenbrock system
up to 0.5 for the Seven Diagonal case. For the Five and Seven Diagonal
systems a significant Git counts increase is observed moving towards stringent
forcing terms. For the Three Diagonal Li system a clear Git minimum is
present at 10−3 with a significant Git increase is observed departing from this
value. The Li system appears quite pathological being the sole case in which
less stringent forcing terms increase the number of backtracking iterations.
Indeed this tridiagonal system has the farthermost initial guess with respect
to the exact solution, which increases the possibility to encounter some local
minima.
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Eta TD Li TD Ros TD TrEx TD Broy FD Li SD Li

New1.3

Nit 15 9 8 7 15 18
Git 72∗ 45∗ 18∗ 28 62∗ 67∗

Git/Nit 4.8 5 2.3 4 4.1 3.7
BTit 1 0 1 0 5 7

New1.5

Nit 15 8 8 7 15 17
Git 73∗ 49 18∗ 28 64∗ 59∗

Git/Nit 4.9 6.1 2.3 4 4.3 3.5
BTit 1 0 1 0 5 7

New2

Nit 15 7 8 7 15 15
Git 80∗ 48 18∗ 34 74 65∗

Git/Nit 5.3 6.6 2.3 4.9 4.9 4.3
BTit 1 0 1 0 5 8

New1.3ns

Nit 12 5 6 6 18 15
Git 109∗ 38∗ 17∗ 26 70 72
Git/Nit 9.1 7.6 2.8 4.3 3.9 4.8
BTit 0 0 1 0 6 1

EW1a

Nit 91 12 8 9 23 18
Git 256 53 17∗ 35 65∗ 53∗

Git/Nit 2.8 4.4 2.1 3.9 2.8 2.9
BTit 78 0 1 0 5 2

EW1b

Nit 89 11 11 9 22 21
Git 268 44∗ 21 44 58∗ 46∗

Git/Nit 3 4 1.9 4.9 2.6 2.2
BTit 75 0 1 0 5 2

EW2

Nit 75 6 7 5 15 14
Git 246 39∗ 21 31 61∗ 65∗

Git/Nit 3.3 6.5 3 6.2 4.1 4.6
BTit 71 0 1 0 5 2

AML

Nit 17 8 8 7 18 14
Git 129 48 16∗ 28 63∗ 65∗

Git/Nit 7.6 6 2 4 3.5 4.6
BTit 5 0 1 0 5 2

Table 2: Iterations count for the INB algorithm with different adaptive forcing term
choices, see text for details. Git: GMRES iterations, Nit: Newton iterations, BTit: Back-
tracking iterations. ∗ indicates a number of GMRES iterations equal lower than the best
result obtained with a fixed forcing term, see Table 1.

The New strategy provide the smallest number of GMRES iterations if
we consider all the model problems (Gitsum = 292, 291, 319 for α = 1.3, 1.5, 2,
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respectively), smaller than the sum of GMRES iterations obtained consider-
ing the best fixed η for each problem (Gitsum = 332). Also New1.3ns with
α = 1.3 and no safeguard performs relatively well with Gitsum = 332. EW1a
and EW1b highly reduce the average number of GMRES iteration per New-
ton step (Git/Nit), minimizing the risk of oversolving. This behaviour causes
a relatively high number of GMRES iterations on the Three Diagonal Li case
(TD Li), as opposite very good results are obtained for the Five and Seven
Diagonal Li systems.

It is very hard (and out of the scope of this comparison) to indicate which
is the best performing forcing term strategy based on the limited number of
model problems here considered. Some might be more suited than others
depending on the practical application at hand. Nevertheless the results
in Table 2 confirms that the new strategy provides good local convergence
properties and controls the expense of the inner iterations. Interestingly
the iteration count is not highly sensitive to the choice of the parameter α.
The results are satisfactory in each of the model problems, even if the INB
algorithm requires different forcing term choices to perform at best.

5. Pseudo-transient continuation

In this section we consider globalization by means of pseudo-transient
continuation methods which have proved well suited for CFD applications.
In order to obtain a globally convergent Newton algorithm for the solution
of equation (1) pseudo-transient continuation (Ψtc) exploits the following
system of (nonlinear) ODEs

∂x

∂t
+ F (x) = 0, (40)

which is simply the unsteady analogue of problem (1). Equation (40), sup-
plemented with a suitable initial condition x(0) = x0, can be numerically
integrated to steady state repeatedly solving(

1

δk
M + F

′
(xk)

)
sk = −F (xk), (41)

and setting xk+1 = xk + sk. In (41) F ′
(xk) is the Jacobian matrix, M is the

Mass matrix, e.g. a block diagonal or a diagonal matrix, depending on the
finite element discretization, and δk is the variable timestep to be adapted
during the time marching strategy. Small timesteps are commonly employed
in the initial phase, which is dominated by the incorrectness of the initial
guess, while the timesteps are increased as F (xk) approaches 0.
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As in the case of inexact Newton methods it is convenient to solve Equa-
tion (41) by means of an iterative solver, subject to the following condition
on the relative residual decrease∣∣∣∣∣∣∣∣F (xk) +

(
1

δk
M + F

′
(xk)

)
sk

∣∣∣∣∣∣∣∣ ≤ ηk ||F (xk)|| , (42)

where RΨtc(xk, sk, δk) = F (xk) +
(

1
δk
M + F

′
(xk)

)
sk is the linear system

residual. Accordingly the forcing term ηk has a strong influence on the num-
ber of iteration required to satisfy condition (42) and on the computational
costs of the whole algorithm.

We refer the reader to Kelley and Keyes [21] for a detailed derivation
of the time marching strategy and to Section 5.1 for an overview of the
algorithm. Here we remark that Equation (41) can be interpreted an inexact
Newton’s method for F (x) = 0 where the exact Jacobian F

′
(x) has been

modified according to the following considerations

i) Introducing

G(x)
def
= M

x− xk
δk

+ F (x) , (43)

equation (41) can be rewritten as xk+1 = xk − G
′
(xk)

−1F (xk), which
is the first Newton iterate for G(x) = 0. A small δk in equation (43)
guarantees that xk+1 is sought sufficiently close to the current solution
xk. The timestep controls the solution increment so that the dynamics
of the physical transient are tracked sufficiently well and the sequence
{xk} is globally convergent.

ii) The sole difference between the inexact Newton equation (2) and (41) is
the presence of the term M

δk
. If the timestep choice is such that δk →∞

as F (x)→ 0, xk is sufficiently close to x∗ and ηk is small enough, pseudo-
transient continuation maintains the local convergence properties of the
Newton’s method, see Kelley and Keyes [21].

iii) From the algebraic viewpoint the term M
δk

increases the diagonal dom-
inance of the system matrix simplifying the solution Equation (41) by
means of an iterative solver. Since equation (2) might be very expensive
to solve up to the prescribed accuracy, the timestep choice is of primary
importance to control the computational costs.

The Selective Evolution Relaxation (SER) strategy introduced by [24],
see also Section 5.2, is a standard and effective strategy to control timesteps
in pseudo-transient continuation algorithms. In [21] Kelley and Keyes thor-
oughly analyzed the convergence rates of pseudo-transient continuation cou-
pled with SER based time stepping. In what follows we briefly summarize
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their findings regarding the three distinct phases taking place during the
numerical integration towards the steady state.

i) Initial phase. x is far from the steady state solution and a small δ is
required to guarantee global convergence. The convergence rates are
not relevant but, nevertheless, an accurate time integration should be
performed according to stability considerations.

ii) Midrange phase. Here pseudo-transient continuation should produce an
accurate x and a large δ. During this phase xk converges at most q-
linearly to x∗.

iii) Terminal phase, δ is large and x is near the steady state solution. Here
the local convergence properties of Newton’s method can be fruitfully
exploited.

Kelley and Keyes [21] also analyzed how the choice of η in (42) influences
the convergence rates in each phase. Their estimates suggest that specific
care must be devoted to the choice of η. While in the initial and midrange
phase it is of primary importance to avoid oversolving, in order to reduce
the computational expense, in the terminal phase, Newton like convergence
should be guaranteed.

5.1. Inexact SER pseudo-transient continuation with backtracking
We employ the following pseudo-transient continuation algorithm

Algorithm 5.1 Ψtc
1: set xk ← x0, δk ← δ0, ηk ← η0 ∈ (0, 1), fmin = ||F (x0)||
2: for k = 0 step 1 until ||F (xk)|| is too large do
3: possibly find sk such that∣∣∣∣∣∣∣∣(Mδk + F

′
(x)

)
sk + F (x)

∣∣∣∣∣∣∣∣ ≤ ηk ||F (x)|| (44)

4: compute δk+1

5: if ||F (x+ sk)|| < 1.2 fmin then
6: set xk+1 ← xk + sk
7: compute ηk+1

8: set fmin ← ||F (xk + sk)||
9: end if
10: end for

Algorithm 5.1 fits in the general framework analyzed by Kelley and Keyes
[21] but was modified to include the safeguard condition at line 5. A 20%
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residual increase is considered as an indication of the inability to follow the
dynamics of the physical transient due to excessively large timesteps, the
solution update is discarded to avoid the break down of the algorithm and
the timestep is updated (read reduced, as will be clear in what follows).
This very rough form of backtracking is usually invoked during the very first
iterations due to the inconsistency of the initial solution x0. As a matter of
fact the rapid settlement of boundary conditions usually leads to a strong
residual decrease involving an uncontrolled early timestep increase.

In practice line (44) implies the solution of (41) by means of an iterative
solver. If the solver fails to converge but the safeguard condition at line 5
is satisfied, it is effective to update the solution without recomputing sk.
The solver and/or the preconditioner options are possibly tuned for the next
iteration.

Algorithm 5.1 requires ad-hoc strategies to update the timestep and the
forcing term at each iteration. The update procedures for δ and η are de-
scribed in detail in Section 5.2 and Section 5.3, respectively. In particular the
new forcing term choice proposed in Section 5.3 is the adaptation of strategy
(15) to the Ψtc framework.

5.2. Timestep choice
As for the timestep update the well known Successive Evolution Relax-

ation (SER) method [24] is here modified to take into account the backtrack-
ing introduced in Algorithm 5.1. The timestep update is as follows

Algorithm 5.2 B-SER (Backtracking-SER)
1: if ||F (xk + sk)|| > 1.2 ||F (xk)|| then
2: δk+1 ← 4

5
δk

3: else
4: δk+1 ← δk

||F (xk)||
||F (xk+sk)||

5: end if

If the residual stays within the safeguard limit the timestep increases in
inverse proportion to the residual reduction (as in the standard SER strat-
egy). As opposite, based on the observation that the solution increment sk
will be discarded in the event of backtracking, we also disregard the tenta-
tive residual F (x + sk) and simply reduce the timestep by 20%. This fixed
relaxation procedure is based on the observation that backtracking is often
an indication of an uncontrolled residual increase which risks to impact the
timestep too severely. While in SER δk = δ0

||F (x0)||
||F (xk)|| , in B-SER we lose this

property as a consequence of backtracking.

25



5.3. Algorithm for forcing term choice
In this Section we devise an algorithm for choosing forcing terms in in-

exact pseudo-transient continuation based on the strategy in (15). As a first
step we remark that, in the context of pseudo-transient continuation, condi-
tions (16)-(17) can be rewritten as follows

predk(sk) = ||F (xk)|| − ||RΨtc(xk, sk, δk)|| = (1− η̄) ||F (xk)|| , (45)
aredk(sk) = ||F (xk)|| − ||F (xk + sk)|| = ckη̄k ||F (xk)|| . (46)

Here the achievement of aredk(sk) ' predk(sk), that is q-linear convergence
with q-factor ηk for the nonlinear residuals, is even more attractive. Indeed,
as demonstrated by Kelley and Keyes in [21], q-linear convergence for the
sequence {xk} is the best possible result in all but the terminal phase, see
Section 5.

Proceeding as in Section 3.2.1 we get once again η̂k = 1
1+ck

, where ck =
||F (xk)||−||F (xk+sk)||
||RΨtc (xk,sk,δk)|| . Thus setting α = 2, see Section 3.2.2, we predict ηk+1 =

1
1+2ck

. As compared to global inexact Newton, in Ψtc additional care is re-
quired to safely deal with residual increase, commonly observed and tolerated
when x is far from x∗. We propose the following algorithm

Algorithm 5.3 Forcing term choice (Variable Eta)
if k < 10 then
set ck ← 1−ηmax

2ηmax

set ηk+1 ← ηmax {safeguard}
else

compute c̄k = ||F (xk)||−||F (xk+sk)||
||RΨtc (xk,sk,δk)||

if c̄k ≥ ck−1 then
set ck = 0.5ck−1 + 0.5c̄k {deferred correction}

else
set ck = 0.75ck−1 + 0.25c̄k {deferred correction}

end if

set ηk+1 ← min( 1
1+2ck

, ηmax) {prediction}
end if

To avoid an excessive forcing term decrease in the initial phase of the
global convergence we rely on the maximum admissible forcing term value
ηmax. As a consequence of small timesteps and loose values of ηmax just a few
linear solver iterations are usually required in the first ten Ψtc iterations. In
order to obtain a smoother behavior of the sequence ηk and possibly account
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for residual increase the correction c̄k is deferred based on the previous iter-
ate. Negative c̄k values are admitted whenever ||F (xk)|| < ||F (xk + sk)|| <
1.2 ||F (xk)||, while the practical safeguard on the prediction ensures that
ηk <= ηmax. The deferred correction also avoids a sudden increase of ηk+1 in
case of linear convergence failure, that is the inability to solve the modified
Newton equation using the prescribed η.

Linear convergence failure is common practical issue. As remarked in
Section 5, the ease of solving (44) as compared to (35) when the timestep
is small, is a big advantage of Ψtc. As opposite, in the terminal phase,
the amount of work required to satisfy condition (44) increases dramatically,
being comparable to the expense required to satisfy condition (35) in inexact
Newton methods. As a result, in the late midrange and terminal phase of
the convergence, the number of iterations performed by the linear solver
typically increases and the solver might fail to converge within the (user
defined) maximum number of linear iterations. As detailed in Section 5.1 the
occurrence of linear convergence failure is acknowledged without discarding
the solution increment in order to optimize the computational effort.

5.4. Inexact pseudo-transient continuation for incompressible fluid flow prob-
lems

In order to demonstrate the effectiveness of the proposed forcing term
strategy we apply the inexact pseudo-transient continuation Algorithm 5.1 to
find steady state numerical solutions of convection dominated incompressible
fluid flow problems. In particular we deal with the well known lid-driven
cavity and backward-facing step problems at high-Reynolds numbers in two
space dimension.

In the context of steady-state incompressible flow computations inexactly
solving the Newton equations can be considered as an effective means of intro-
ducing artificial compressibility at the discrete level and alleviate the expense
of solving saddle point problems. Indeed, since at each pseudo transient con-
tinuation iteration the continuity equation is approximatively solved, the
incompressibility constraint is not fulfilled and only the final (steady state)
solution is truly divergence free. Overall the computational burden associ-
ated to the solution process is strongly reduced without impacting the final
accuracy.

To spatially discretize the Incompressible Navier-Stokes (INS) equations
we rely on the dG formulation proposed by Bassi et al. [4]. The method
relies on a local artificial compressibility perturbation of the equations to
compute the inviscid numerical fluxes and provides a convergence rate of
hk+1 and hk for the velocity and pressure error in L2 norm, respectively, when
using a polynomial expansion of degree k. The accuracy of the scheme was

27



checked comparing with accurate reference computations of the lid-driven
cavity problem available in literature, see [4] for details.

To solve the modified Newton equation (41) resulting from the application
of the discrete dG space operators we use an ILU preconditioned GMRES(i)
solver [27] restarted after i iterations and we set the maximum number of
linear iteration is set to 2i. If the solver fails to converge within this limit
convergence failure is detected and we set i += 20, starting from i = 120 at
k = 0. This practice allows to deal with stringent termination conditions,
permitting to reach optimal convergence rates in the terminal phase.

The choice of the preconditioner side deserves specific attention. Let’s
consider the Newton equation F ′

(x)s = −F (x), where the termination con-
dition for the linear solver reads∣∣∣∣∣∣F ′

(x)s+ F (x)
∣∣∣∣∣∣ = ||R(x)|| ≤ η ||F (x)|| , (47)

see Section 2 for details. While a left preconditioned GMRES solver mini-
mizes P−1

l R(x), where P−1
l is the left preconditioner matrix, a right precon-

ditioner minimizes the linear system residual R(x) = F (x) + F
′
(x)P−1

r Prs.
Left preconditioning is usually cheaper but is clearly not compatible with
condition (47). The forcing term choice here proposed requires a relative
residual based stopping criteria which in turn requires right precondition-
ing. In order to fairly compare with fixed forcing terms strategy, lid-driven
computations are performed considering both left and right preconditioning
options.

Global convergence of the sequence xk is detected if ||xk+1 − xk|| < 10−11

or F (xk) < 10−11. These tight tolerances allows to analyze all the conver-
gence phases, in particular the terminal one could not have been observed
with looser conditions. All the simulations but the higher-order computation
of Section 5.6 are performed in serial. All the runs are performed and profiled
on a Intel Xeon workstation.

5.4.1. Lid-driven cavity
Many publications have demonstrated the possibility to obtain accurate

solutions of the lid-driven cavity problem at high-Reynolds numbers, see
e.g. [4], [5], [16] and [31]. This model problem is widely employed to test
the approximation capabilities of numerical schemes due to the simplicity of
the computational domain and the complexity of the flow structures. The
achievement of steady state solutions of lid-driven cavity is challenging from
the marching strategy viewpoint as the counter-rotating vortices localized
at the corners of the cavity and the main vortex itself need time to develop
and reach a stable equilibrium. Clearly the higher the Reynolds number the
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higher the flow complexity and the difficulty to reach a steady state solution.
We remark that the 2D lid-driven cavity problem was also included in the
test suite of Eisenstat and Walker, see [14].

For all the computations we employ second degree polynomial expansions
for both the velocity and the pressure unknown over a fine 1002 quadrilateral
elements grid. The computational domain is the unit square.

To demonstrate the effectiveness of our forcing term choice coupled with
SER based pseudo-time stepping we compare it with many fixed forcing
term computations and we evaluate the residual decrease versus the number
of Newton iteration and the simulation time. Thus, in order to compare with
the adaptive forcing term strategies proposed in literature, we consider the
forcing term choices presented in Section 3 and use them in combination with
Algorithm 5.1.

Comparison with fixed forcing term choices
For the sake of comparison we consider the lid-driven cavity problem at

three Reynolds numbers {104, 2 ·104, 3 ·104}, and in addition to the variable η
strategy here proposed, we simulate 4 to 5 fixed η choices for each Reynolds
number. Besides freezing η and possibly changing the preconditioner side,
the B-SER algorithm for time step choice, see Section 5.2, the Ψtc marching
strategy, see Section 5.1, and the linear solver options are kept unchanged.
In all the computations consider fluid at rest as initial guess and start with
a pseudo timestep δ0 = 0.1. As for the variable η strategy we set ηmax = 0.9.

The η, δ and ||F (x)|| values at each Ψtc iteration, and the number of
Krylov Spaces of the restarted GMRES solver (that is the number i of it-
eration before restart), are represented in Figure 3. Each increase in the
number of Krylov spaces is an indication of linear convergence failure, and it
is possible to appreciate that higher-Reynolds number computations require
an higher number of Krylov Spaces, more linear iterations, and also more
outer Ψtc iterations. In all the computations the final timestep grows above
1010 and the final residual is below 10−11, while the forcing term is below 0.1.
It is possible to appreciate that almost each iteration of the terminal phase
is associated with linear convergence failure and triggers an increase of the
number of Krylov Spaces. As a consequence smaller values of η would not
have improved convergence rates.

Pseudo-transient continuation in combination with Algorithm 5.3 for forc-
ing term choice (variable eta) yields smaller execution times than any fixed
η choice here considered, see Figure 4 and Figure 5 for right and left precon-
ditioning options, respectively. The first three charts (top row and bottom
row left, one for each Reynolds number) compare the residual history for all
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Figure 3: Steady state solution of the lid-driven cavity problem at high Reynolds number
(Re) by means of a pseudo-transient continuation algorithm with adaptive forcing term
choice (Variable Eta). First row, forcing term history and number of Krylov spaces (ILU
precondtioned GMRES linear solver) history. Second row, timestep history and residual
history.

the η choices, while the last chart (bottom row right) compares the variable
η strategy with the best performing fixed η choice. It is interesting to remark
that in case of right preconditioning the best performing fixed forcing term
is η = 0.5 for all the Reynolds numbers here considered, the effectiveness
of this choice was also mentioned by Kelley in [20]. The gains of variable η
compared to η = 0.5 ranges from 3% at Reynolds 104, up to 17% at Reynolds
3 · 104.

In case of left preconditioning the linear system residual is polluted by
the preconditioner, as a result it is harder to pick a value for η. After some
attempts we identified an effective η range one order of magnitude smaller
than in case of right preconditioning. As opposite to right preconditioning
the best performing fixed η depends on the Reynolds number. The gains
ranges from 1% at Reynolds 104 (fixed η = 0.1), up to 8% at Reynolds 3 ·104
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Figure 4: Steady state solution of the lid-driven cavity problem at high Reynolds number
by means of a pseudo-transient continuation algorithm with inexact right preconditioned
GMRES linear solver. Residual versus computation time for fixed and adaptive forcing
terms (Eta) choices. First row, Re=10000 and Re=20000. Second row, Re=30000 and
summary of best results.

(fixed η = 0.075). Even if the benefits seem limited one has to consider
that the best fixed η is not known a priori and small deviations from the
optimal value might cause significant performance penalty. For example at
Reynolds 3 · 104, compared to η = 0.05 and η = 0.1 the gains are 18% and
50%, respectively, in favor of the adaptive algorithm, see Figure 5.

In Figure 6 we also compare the effects of η on the number of Ψtc iterations
considering right and left preconditioning. Figure 6 shows that the variable
η choice yields a number of global iterations comparable with the tightest
tolerance η = 0.1, meaning that oversolving is avoided without impacting the
residual decrease. Furthermore at Reynolds 30000 the adaptive η strategy
yields the smallest number of Ψtc iterations indicating that forcing the inner
loop according to the confidence in the linear model for F (x) might also
improve the outer loop.

It is possible to appreciate that η = 0.5, the best fixed η in terms of
execution time, leads to a q-linear convergence of the residual in the terminal
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Figure 5: Steady state solution of the lid-driven cavity problem at high Reynolds number
by means of a pseudo-transient continuation algorithm with inexact left preconditioned
(LP) GMRES linear solver. Residual versus computation time for fixed and adaptive
forcing terms (Eta) choices. First row, Re=10000 and Re=20000. Second row, Re=30000
and summary of best results.
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Figure 6: Steady state solution of the lid-driven cavity problem at high Reynolds number
by means of a pseudo-transient continuation algorithm with inexact ILU preconditioned
GMRES linear solver. Residual history for fixed and adaptive forcing terms (Eta) choices.
Left and right, fixed eta computation are performed with right and left preconditioner
options, respectively.

32



phase. Indeed avoiding oversolving in the initial and midrange phases might
be more important than obtaining the theoretical convergence rate in the
terminal phase. This is confirmed by the execution time associated with η =
0.7 at the highest Reynolds. Indeed η = 0.7 is very close to beating the η =
0.5 run despite the poor terminal phase performance. Clearly, while a fixed
η choice must strike a balance between oversolving and optimal convergence
the adaptive strategy has the possibility to prevent the former and achieve
the latter.

Despite the poor performance in terms of execution times, see Figure 5,
choosing a tight fixed η = 0.01 in combination with left preconditioning seems
to reduce the number of Ψtc iterations at the lower Reynolds numbers, see
Figure 6. As opposite, at the highest Reynolds number, the adaptive strategy
allows to complete the computation in less outer iterations. Figure 5 allows
to appreciate that, due to use of a left preconditioner, the linear solver is not
able to drive the global residual norm below 10−11, while the preconditioned
residual is reduced up the numerical precision. As a consequence the iteration
would stagnate around 10−11 and possibly terminate due to satisfaction of
the terminating condition on the solution increment, that is ||xk+1 − xk|| <=
10−11.

It is interesting to remark that tight η values might induce small high-
frequency residual oscillations that are taken into account gracefully without
requiring backtracking by admitting a 20% residual increase, see Section
5.1. On the other hand the oscillation are almost completely healed by the
adaptive η strategy.

Comparison of adaptive forcing term strategies
In this section we consider the application of all the adaptive forcing term

strategy of Section 3 (but we avoid EW1a (11) which behaves similarly to
to (12) but is less trivial to implement, see also [14]) to pseudo-transient
continuation. We complete the definition of each strategy by setting the
relevant parameters and we use the almost same notation of Section 4.1 for
reporting the results.

1. New, the new strategy in (15) with α = 2;
2. EW1, the second variant of the first strategy given by Eisenstat and

Walker, see (12);
3. EW2, the second strategy given by Eisenstat and Walker with α = 2

and γ = 1, see (13);
4. AML, the strategy devised by An, Mo and Liu with p1 = 0.1, p2 = 0.4

and p3 = 0.7, see (14);
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All the strategies can be easily applied to pseudo-transient continuation con-
sidering RΨtc in place of R in the definition of predk(sk), see (6). Note that
we also consider the New strategy as is, in order to outline the improvements
obtained by the deferred correction introduced in Algorithm 5.3 (Variable
Eta in the charts).
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Figure 7: Steady state solution of the lid-driven cavity problem at high Reynolds number
by means of a pseudo-transient continuation algorithm with inexact right preconditioned
GMRES linear solver. Left, residual versus computation time for different adaptive forcing
terms (Eta) choices. Right, η history. First, second and third row, Re=10000, Re=20000
and Re=30000, respectively.
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Eta choice
final Krylov space dimension total Ψtc iterations(linear convergence failures)
Re=10K Re=20K Re=30K Re=10K Re=20K Re=30K

AML 360 (12) 440 (16) 520 (20) 74 113 151
EW1 340 (11) 440 (16) 520 (20) 77 111 139
EW2 360 (12) 380 (13) 480 (18) 79 121 156
New 320 (10) 400 (14) 440 (16) 80 117 151
Variable Eta 340 (11) 400 (14) 420 (15) 78 112 140
η = 0.1 320 (10) 460 (17) 560 (22) 74 110 142

Table 3: Inexact pseudo-transient continuation with SER based timestep choice, see al-
gorithms 5.1 and 5.2, applied to the lid-driven cavity problem. Comparison of different
forcing term choices. First column, GMRES search directions at the last Ψtc iteration and
number of linear convergence failures (each linear convergence failure triggers an increase
of the number of Krylov spaces, see text for details). Second column, total number of Ψtc

iterations required to achieve a steady state solution.

Since we verified that the practical safeguards of Section 4.1 are mostly
detrimental in the context of pseudo-transient continuation, in order to avoid
an excessive η decrease at the early stages of the convergence we fix ηk = ηmax

for all k < 10, see also Algorithm 5.3. We set ηmax = 0.9 for all but AML,
where for consistency we impose ηmax = 1− 2p1 = 0.8.

In Figure 7 it is possible to appreciate that only EW2, New, and the
Variable Eta algorithm designed for pseudo-transient continuation perform
better than the optimal fixed forcing term choice η = 0.5, see also Figure
4. In particular EW2 and New provide comparable execution times thanks
to a similar behavior of forcing terms in the initial and midrange phases
of the global convergence. As opposite, in the terminal phase, EW2 re-
quires tighter termination conditions with EW1 and AML being even more
restrictive. As remarked by Gropp, Keyes, McInnes, and Tidriri [18], the
Eisenstat and Walker forcing term choices, although attractive from the con-
vergence properties viewpoint, might be difficult to meet in practice in large,
ill-conditioned problems. In particular EW1 achieves a steady state solution
with lesser Ψtc iteration as compared to the others adaptive forcing term
choices but requires additional efforts to the linear solver, as can be appre-
ciated in Table 3. Note that a comparable occurrence of linear convergence
failure is obtained choosing η = 0.1.

Overall, the results confirm that New and EW2 allows to optimize the
computational cost associated with the inner iteration, possibly increasing
the number total number of Ψtc iterations and, consequently, the number of
Jacobian matrix assemblies. This strategy seems to pay off in the context of
incompressible fluid flow simulations as the cost of the inner iterations usually
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dominates the matrix assembly cost. Nevertheless, when dealing with other
CFD applications, and in particular with compressible fluids, the relative
weight of inner solves and matrix assemblies on the computation time must
be carefully evaluated. If the latter dominates the former EW1 and AML
might be more appropriate than New and EW2 and, in general, the benefits
of an adaptive forcing term strategy might be less significant.

5.5. Backward-facing step
In addition to the lid-driven cavity flow also the backward-facing step

problem has been widely employed as a benchmark for the validation of INS
solvers. Albeit the simple geometry, the complex flow features associated
with flow separation are fully retained. High Reynolds numbers in two space
dimension have been considered by Erturk [15], where accurate numerical so-
lution up to Reynolds 3000 were presented, and Cruchaga [10], who obtained
steady state solution up to Reynolds 5500.

The achievement of the steady state solutions of the backward-facing
step problem at high Reynolds number is well suited to challenge pseudo-
transient continuation combined with the newly introduced adaptive forcing
term strategy. Indeed, the impulsive start from flow fluid at rest needs to
be dealt with and the pseudo-time integration must be conducted till several
recirculating regions develop downstream from the step. The recirculating
regions alternates, one at the lower and one at the upper wall of the channel,
forcing the bulk of the flow to separate, cross the channel centerline and
reattach, see Figure 11.

For all the computations we employ second degree polynomial expan-
sions for both the velocity and the pressure unknown over a uniform 30K
quadrilateral elements grid. The computational domains follows the recom-
mendations of Erturk [15], in particular the inlet channel is 20 step heights
long while the outflow is located 200 step heights away from the step. We
impose a fully developed Dirichlet boundary condition at the inflow and a
stress-free boundary condition at the outflow, while a no-slip boundary con-
dition is imposed at the channel walls. The Reynolds number is defined as
Re

def
= U 2h

ν
, where U = 2

3
Umax is the mean inlet velocity (two-thirds of the

inlet channel centerline velocity) and h is the inlet channel height (as well as
the step height). We simulate Re=2500 and Re=5000 setting the viscosity
so to obtain a unit Umax.

To demonstrate the effectiveness of our forcing term choice coupled with
SER based pseudo-time stepping we compare it with many fixed forcing
term computations and we evaluate the residual decrease versus the number
of Newton iteration and the simulation time. In addition to the variable η
strategy here proposed, we simulate several fixed η choices for each Reynolds
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Figure 8: Steady state solution of the backward-facing step problem at high Reynolds
number by means of a pseudo-transient continuation algorithm with inexact right precon-
ditioned GMRES linear solver. First row and second, residual history and residual versus
computation time for fixed and adaptive forcing terms (Eta) choices.

number. In all the computations we consider fluid at rest as initial guess and
we start with a pseudo timestep δ0 = 0.1. As for the variable η strategy we
set ηmax = 0.8.

Once again pseudo-transient continuation in combination with Algorithm
5.3 (Variable Eta) yields smaller execution times than any fixed η choice here
considered, see Figure 8. The fastest fixed eta choices are η = 0.7 and η = 0.8
at Reynolds 2500 and 5000, respectively. The gains in terms of computation
times achieved with the adaptive forcing term strategy are less significant
than in the lid-driven cavity case due to the expense of solving the modified
Newton equation in the terminal phase of the global convergence. This is
confirmed by the fact that the best performance are achieved with looser fixed
forcing terms as compared with the lid-driven cavity case (where η = 0.5 is
the gold standard). Nevertheless the reduction in terms of total GMRES
iterations (12% at Reynolds 5000), confirms the ability to avoid oversolving
while maintaining good local convergence properties in the terminal phase,
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Eta choice total GMRES iterations
Re=2500 Re=5000

η = 0.3 12639
η = 0.4 12089 23960
η = 0.5 10233 21216
η = 0.6 9501 19527
η = 0.7 8556 17115
η = 0.8 8659 17677
Variable eta 8015 15539

Table 4: Total number of GMRES iterations required to achieve a steady state solution
of the backward-facing step problem. Inexact pseudto-transient continuation with SER
based timestep choice, see algorithms 5.1 and 5.2.

see Table 4.
Looking at Figure 8 it is clear that the adaptive forcing term strategy

yields smoother residual histories reducing the number of backtracking it-
erations (identifiable as sudden spikes in the residual history). As for the
lid-driven cavity case, the adaptive forcing terms strategy provides a very
competitive number of outer iterations, especially at the highest Reynolds
numbers. This suggests that forcing the inner loop according to the confi-
dence in the linearisation of F (x) allows to avoid oversolving without im-
pacting the residual decrease in the outer loop.

5.6. Higher-order accurate computations
To conclude we also applied the proposed time marching strategy (pseudo-

transient continuation with SER-based time stepping and adaptive forcing
term choice) for the achievement of higher-order accurate steady state solu-
tions of the lid-driven cavity and backward-facing step problems. The lid-
driven cavity computation is performed at Reynolds 5·104 employing a sixths
polynomial degree dG discretization. The backward-facing step is computed
at Reynold 5000 by means of a forth polynomial degree dG discretization.
The same 1002 quadrilateral grid of the unit square and 30K quadrilateral
grid are employed for the lid-driven cavity and backward-facing step, respec-
tively. The computations are initialized with fluid at rest.

To solve the modified Newton equation (41) resulting from the appli-
cation of the discrete dG space operators we use a GMRES(i) solver [27]
and we rely on the same solver options employed for serial runs. The com-
putations are performed in parallel dividing the computational domain in
eight subdomains. The linear solver is preconditioned with an overlapping
Additive Schwartz Method (ASM) setting one level of overlap between the
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Figure 9: Residual history for the steady state solution of the lid-driven cavity problem
(Re 50000, sixth degree dG discretization) and backward-facing step problem (Re=5000,
fourth degree dG discretization).
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Figure 10: Steady state solution of the lid-driven cavity problem at Re=50000. Sixth poly-
nomial degree dG discretization. Left, streamlines and velocity solution. Right, velocity
solutions along the vertical and horizontal centerlines.

subdomains and using an ILU decomposition for each subdomain matrix
(point-block ILU).

The residual history is shown in Figure 9. The Ψtc algorithm continua-
tion algorithm converges in approximatively 400 and 500 iterations for the
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Figure 11: Steady state solution of the backward-facing step problem at Re=5000. Fourth
polynomial degree dG discretization. Top, velocity solution in the whole computational
domain (the axial coordinate is scaled 1:6.25 for the sake of visualization). Bottom, stream-
lines in the recirculation region located after the step (outlined by the red box in the top
figure).

lid-driven cavity and backward-facing step problems, respectively, with a fi-
nal residual of 10−11. The streamlines and the velocity solutions across the
centerlines of the cavity represented in Figure 10 allows to appreciate the
complexity of the flow field and the strong velocity gradients in the bound-
ary layers. Analogously the velocity solution and the streamlines reported
in Figure 11 allows to appreciate the succession of recirculating bubbles in
the channel and the complexity of the vortex structures in the first recircu-
lating region. While some authors failed to achieve steady state solutions of
the lid-driven cavity flow at high-Reynolds, see e.g. [16, 19, 31], the pseudo
time marching strategy here proposed allows to integrate high-order dG dis-
cretizations up to steady state. Moreover the coupling of the time marching
strategy with an adaptive forcing term choice lower the computational costs
providing a satisfactory smooth residual history.

6. Conclusion

We devised an adaptive strategy for choosing the forcing terms in global-
isation strategies. The local convergence properties are demonstrated in the
context of inexact Newton and the behavior of the strategy at early stages of
the convergence is analyzed with numerical test cases. The results obtained
on model nonlinear systems proposed in literature as benchmark problems
were encouraging.

The new strategy is adapted to a backtracked pseudo-transient continua-
tion strategy for the computation of steady state solution of the INS equations
at high-Reynolds numbers. In pseudo-transient continuation particular care
must be devoted to the choice of forcing terms since nonlinear convergence
is highly influenced by the timestep choice in all but the terminal phase. As
a consequence the forcing term strategy must react as smoothly as possible
to linear model improvements to be efficient in practice. Good results are
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obtained applying pseudo-transient continuation in combination with selec-
tive evolution relaxation time stepping and the newly introduced adaptive
forcing terms strategy. In particular, the cost of computing steady state nu-
merical solutions of the lid-driven cavity flow and the backward-facing step at
high-Reynolds number is reduced as compared with the best performing fixed
forcing term choices. The increased efficiency is related to the decrease of
total inner solver iterations which confirms the effectiveness of the proposed
approach. The residual history is smooth and also the number of Newton
iterations is comparable with those obtained setting tight tolerances on the
linear solver convergence.

Appendix A. Proof of Proposition 1

Clearly F (x∗) = 0. Set β =
∣∣∣∣F ′

(x∗)
−1
∣∣∣∣, for any σ ∈ (0, 1] there exist

δ > 0 sufficiently small that∣∣∣∣∣∣F (x)− F (x∗)− F
′
(x∗)(x− x∗)

∣∣∣∣∣∣ ≤ σ

2β
||x− x∗|| ,

whenever x ∈ Nδ(x∗). Such a δ exists by Lemma 3.2. If x ∈ Nδ(x∗) then

||F (x)|| ≥
∣∣∣∣∣∣F ′

(x∗)(x− x∗)
∣∣∣∣∣∣− ∣∣∣∣∣∣F (x)− F (x∗)− F

′
(x∗)(x− x∗)

∣∣∣∣∣∣
≥ 1

||F ′(x∗)−1||
||x− x∗|| −

σ

2β
||x− x∗||

=
2− σ

2β
||x− x∗||

≥ 1

2β
||x− x∗|| ,

so that
||x− x∗|| < 2β ||F (x)|| . (A.1)

Moreover∣∣∣∣∣∣F ′
(x∗)(x− x∗)

∣∣∣∣∣∣ ≤ ||F (x)||+
∣∣∣∣∣∣−F (x) + F (x∗) + F

′
(x∗)(x− x∗)

∣∣∣∣∣∣
≤ ||F (x)||+ σ

2β
||x− x∗|| (A.2)

≤ ||F (x)||+ σ

2β
2β ||F (x)||

= (1 + σ) ||F (x)|| ,
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where we used (A.1) in (A.2), and

||F (x)|| ≤
∣∣∣∣∣∣F ′

(x∗)(x− x∗)
∣∣∣∣∣∣+

∣∣∣∣∣∣F (x)− F (x∗)− F
′
(x∗)(x− x∗)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣F ′
(x∗)(x− x∗)

∣∣∣∣∣∣+
σ

2β
||x− x∗||

≤
∣∣∣∣∣∣F ′

(x∗)(x− x∗)
∣∣∣∣∣∣+

σ

2β

∣∣∣∣∣∣F ′
(x∗)

−1
∣∣∣∣∣∣ ∣∣∣∣∣∣F ′

(x∗)(x− x∗)
∣∣∣∣∣∣

≤
∣∣∣∣∣∣F ′

(x∗)(x− x∗)
∣∣∣∣∣∣+

σ

2

∣∣∣∣∣∣F ′
(x∗)(x− x∗)

∣∣∣∣∣∣
≤ (1 + σ/2)

∣∣∣∣∣∣F ′
(x∗)(x− x∗)

∣∣∣∣∣∣ .
As a result

||F (x)||
1 + σ/2

≤
∣∣∣∣∣∣F ′

(x∗)(x− x∗)
∣∣∣∣∣∣ ≤ (1 + σ) ||F (x)|| , (A.3)

which proves Proposition 1 since 0 < σ ≤ 1.
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