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Abstract

Multi step prediction using high frequency environmental data is
considered. The complex dynamics of ground ozone often requires
models involving covariates, multiple frequency periodicities, long me-
mory, nonlinearity and heteroscedasticity. For these reasons paramet-
ric models which includes seasonal fractionally integrated components,
self exciting threshold autoregressive components, covariates and au-
toregressive conditionally heteroscedastic errors with heavy tails have
been recently introduced. Here to obtain a h step ahead forecast for
these models we use a Monte Carlo approach. The performance of the
forecast is evaluated on different nonlinear models comparing some
statistical indices with respect to the prediction horizon. As an ap-
plication of this method, the forecast precision of a two years hourly
ozone data set coming from an air traffic pollution station located in
Bergamo, Italy, is analyzed.
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1 Introduction

The aim of this paper is to present the capability of some stochastic nonlin-
ear models to make multi step ahead forecast of hourly ozone concentration.
In an environmental context nonlinear models have been recently proposed,
mainly for descriptive and interpretative purposes. For modeling daily ozone
and nitrogen dioxide concentration, a nonlinear model based on the one step
prediction was proposed by Graff-Jaccottet and Jaunin (1998). Lewis and
Ray (1997) have used multivariate adaptive regression splines for nonlinear
regression models applied to daily sea temperature. The nonlinear mod-
els discussed here try to explain the complexity of ground ozone dynamics
encompassing multiple seasonality, long memory, heteroscedasticity, nonlin-
earity, covariates and good performance on the right tail (see Fasso and Negri
2000). They can be used in order to monitor the phenomenon, detect mea-
surements errors and capture in advance dangerous trends. Here, we focus
on medium and long term prediction of future values of ozone concentration.

It is well known that for nonlinear models, multi step ahead forecasting
presents various difficulties especially from a computational point of view.
Despite the fact that forecasting is one of the principal purposes in time
series modeling, this subject has received little attention in the literature of
applied nonlinear models. This is due to the fact that, except for the one step
ahead case, where the classical idea of Box and Jenkins (1970) and extended
by Priestley (1988) can be used, the analytical evaluation of the prediction
becomes intractable for a longer horizon (see for example Peel and Speight,
2000).

De Groijer and Kumar (1992) pointed out two main questions arising in
the problem of multi step ahead forecasting for nonlinear models. The first is
how to compute the exact forecast for more than two steps ahead. The second
is concerned with the gaining of prediction accuracy when a nonlinear model
is used rather than a linear one. Considering the last question, De Groijer
and Kumar (1992) concluded that there is no clear evidence in favour of
nonlinear over linear model in terms of forecasting capability. More recently,
analyzing a number of self exciting threshold autoregressive models (SETAR)
proposed in the econometric literature, Clements and Smith, (1999) seem to
agree with these conclusions. They found that the forecasting capability of
these nonlinear models is usually better when the predictions are evaluated
conditionally on the state of the system but not always as good as in linear
models when the state is not considered.

Computational problems are discussed in Tong (1995), where two meth-
ods are suggested to evaluate the best predictor given by the conditional
expectation. One is based on the Chapman-Kolmogorov relation and con-



sists in the calculation of high order integrals that give recursive formulas
for conditional expectations. In general, these integrals do not admit ana-
lytic solutions and numerical integration is adopted. The alternative method
consists in a Monte Carlo study based on a long record of data simulated
according to the proposed model. The last approach seems to give better
results in terms of forecasting accuracy and computation costs (see Clements
and Smith, 1997 and 1999). In particular, in the former reference, the au-
thors make a useful comparison of the most popular methods for nonlinear
multi step forecasting, namely the normal approximation method due to Al
Qassam and Lane (1989), (see also De Groijer and De Bruin, 1991, De Groi-
jer and Kumar, 1992 and references therein) the skeleton method presented
in Tong (1995), the bootstrap method and the dynamic estimation method
discussed by Granger and Terdsvirta (1993). Our idea starts from a revised
Monte Carlo approach (see Clements and Smith, 1997) that seems to give
better results in multi step ahead forecasting for SETAR models. We use
a modification of this approach based on the consideration that the errors
generated in the simulated paths have zero conditional mean.

The evaluation of the prediction accuracy and capability is formulated
from two different points of view. The first is the classical measure given by
the R? statistic and by the mean square or the absolute forecasting error.
These global performance measures have been discussed in Bhansali (1993,
1999) and used for example by Bordignon and Lisi (2000) for nonlinear mod-
eling of hydrological time series. The second method, which could be called
local, goes inside to our true and predicted data and considers the global in-
dices conditionally on the state of the system. The proportion of correct and
false forecast alarms are also considered as indicators of the local accuracy
in prediction of the models. This last approach permits to evaluate the fore-
casting performance of the models in the medium and high pollution levels
which are the most important for human and environmental protection.

The rest of the paper is organized as follow. In the next section we re-
call the models of interest and in section 3 the problem of multi step ahead
forecast for nonlinear models is analyzed. Section 4 is devoted to the pre-
sentation of the Monte Carlo method. In section 5, we give a preliminary
analysis of our data set and, in section 6, we describe and discuss the results
of multi step forecasting for the models presented in section 2. Conclusions
are given in the final section 7, where some further developments are also
proposed. In the appendix computational details are presented.



2 The SFI-SETARX-ARCH models

We consider time series model that can be acronymized by SFI-SETARX-
ARCH from Seasonal Fractionally Integrated Self-Exciting AutoRegressive
processes with eXogenous variables and AutoRegressive Conditionally Het-
eroscedastic errors. When we do not consider thresholds, or we do not use ex-
ogenous variables or both, the model becomes, respectively SFI-ARX-ARCH,
SFI-SETAR-ARCH and SFI-AR-ARCH. In particular the last model, hav-
ing a linear forecast frame, is considered as the base model in comparing the
prediction capability of the four kinds of nonlinear models.

Let us recall the form of these models. Powers of backward operator
B are defined as B*y, = y,_y, k = 1,2,..., where vy, t = 0,+1,£2, ...
denotes the process of interest. The vector of the exogenous and deterministic

variables is denoted by u; = (14, .-, urt)’, 7 > 0, where prime denote vector
transposition. Let us define the polynomials in B, V(B) = (1 — B)%(1 —
B*)®4 (0 < dy,dyy < 1/2, a(B) =1—yB — ... — @,B?, p > 1 and the

polynomial vector v(B) = (y1(B),...,7(B)). If we introduce the vector
B = (6o, B1,---,04), ¢ >1, the SFI.ARX-ARCH model can be written as

xy = V(B)y, (1)
a/(B)xt = ’)/(B) CUp + ‘Stht—la (2)
q
hi—1 = Bo + Zﬁj‘et—j‘a (3)
j=1

where e, = a(B)zy — y(B) - u; and ¢; are independent and identically dis-
tributed random variables with E|e;| = 1.

In the SFI-SETARX-ARCH model it is assumed that variable ¥, follows
a SFI-ARX-ARCH model depending on the value of lagged value of y;. De-
noting with Dy, Do, ... D,, an appropriate partition of the sample space S,
the threshold model reads as

z, = VY (B)y, (4)

aD(B)z, = v (B) - uy + £,h{?)] (5)
q

h =69 +3" 821, (6)
=1

for y,.1 € D;, j = 1,...m. Usually, when § is a subset of the real line,
the sets D, called regimes, are defined through thresholds as D; = {a,;_; <
yi_1 < a;}, with all a; belonging to 8. Here ¢!} = a)(B)z, — y9(B) - u,
and ¢; are independent and identically distributed random variables such
that Ele,| = 1.



In a previous work (see Fasso and Negri, 2000) we have studied the stabil-
ity conditions for these kinds of models. Identification has been carried out
with classical Box-Jenkins and AIC-BIC criteria, analyzing R? statistics both
in the sample and in the cross validation data set. The parameter estimations
have been computed using a nested weighted least square approach.

3 Multi step forecast for nonlinear models

To explain the problem arising in multi step forecast for nonlinear models,
let us rewrite in a different way the models presented in the previous section.
From equations (1) and (2) we have

a(B)V(B)y; = v(B) - uy + ethy 1.

Taking the inverse of the convolution between the operators a and V the
model can be rewritten as

Y= (Y1, Y—2s - - s Ut @, 7Y, d1, doa) + €1hy 1,

where f is a linear function involving an infinite power series of the operator
B, see Beran (1994). In a similar manner, we can rewrite the mean part of
SFI-SETARX-ARCH model, given by equation (4) and (5), as

Yt = Z]IDj(ytfl) (f(j)(ytflaytf% Uy @y, dr,dog) + Sthgj_%) ]
j=1

where the ), j =1,...,m are again linear functions involving an infinite
power series of the operator B and I,4 denotes the indicator function of a
set A. In the following this function is denoted more simply with y;, | =
f(ys—1) + ethy 1, where f is not a linear function. For the sake of simplicity
we will denote (6) as hy—1 = h(e;—1).

Let us denote with y,(h) the prediction of y;;, when we are currently
standing at time t. The best predictor in the sense of mean square error
forecast is

Z‘/t(h) = E(yt+h|yt),

where conditioning on y; stands for conditioning on the o-algebra generated
by the observations up to time ¢.
For h =1, y;(1) can be calculated explicitly

yi(1) = E(yr1lye) = f(ye)-



In fact to predict the value of y;,; conditionally on y;, the regime is known
exactly. Thus, when y; € D; we have

?Jt(l) = f(j)(yta Ye—2y - v Ugy O, d1, d24) = f(yt)-

In general, for a nonlinear model, when A > 1 this conditional expectation
cannot be calculated explicitly. In fact to predict the value y;1o the best
forecast is

Y¢(2) = E(f (Y1) + err2hir1|ye) = BOf (Yer1)|ve)- (7)

To compute this conditional expectation we need ¥;,; that is not available.
We know only y;(1) which differs from the true value by an error, that,
according to the arch model, is £,,1h, where h; follows equation (6). The
best predictor of y;. 5 is then

Y1(2) = BE(f (Y1) [ye) = E(f(f () + €041h0) Y1) (8)

In general E(f(yi1)|y:) # f(y:(1)) because f is not linear. For the general
h step ahead forecast the situation described by (8) becomes even more
complicate. We have

Yi(h) = B(f (Ysrn-1) + ertnburn—1lye) = BOf (Yrn-1)|vt), 9)

where ;.1 has to be obtained recursively going backward for k =1,2,... h—
1 according to the following equation

Yerh—k = f Yern—(kb+1)) T Etrh—kPrh—(k41)- (10)

There is a sort of convolution A times of function f involving A — 1 random
variables €;11,€4190, ... ,&t1n—1. Written explicitly for h = 3 is

Ye(3) = E(f (Yera)y:) = ECf(f(f (02) + eeq1he) + €r12hera)|ys)-

To calculate this conditional expectation we can proceed by numerical calcu-
lation but, as discussed in Clements and Smith (1999), simulation method,
as Monte Carlo, it gives more satisfactory results from a statistical point of
view.

4 Monte Carlo forecasting

The idea is to evaluate the expected value in (8) via the Monte Carlo method
by generating n values of the error €,,;. In the general case for h > 2
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the expected value in the right hand side of (9) is calculated generating n
values for each of the h —1 random variables €;11, €449, ... ,€41n-1, appearing
recursively by equation (10).

In the sequel we distinguish between the unknown value y;,, and the
best forecast in the sense of mean square error forecast y;(h). The ¢ — th
simulation of y;,; is denoted by +h, the i — th simulation used for the h
step ahead forecast by #;,,. Finally the estimation of the best forecast is
denoted by 7;(h) and obtained as the average over ¢ of the ¢; ,. For h =1
the estimate 9;(1) of the best forecast coincide with y;(1) and we do not
need any simulation. For h = 2, to give a forecast of y;,o we estimate the
expectation in (8) simulating i = 1,2,... ,n values for y;;1. So we have

yz—f—l = f(y) + 5§+1ht,

where h; = h(e;) is known and has to be calculated from (6). Then we
calculate a Monte Carlo simulation for the two step ahead forecast. This is
given by . .

Yipo = f(y§+1)
and the Monte Carlo estimate for the two step ahead best forecast is given
by

" 1~
9(2) = " Zyiﬂ-
i=1

For the next ahead forecast (h=3), we need the simulations of possible values
of yer2. These are yip = f(yi41) + €johi,y, where by = h(ef,,), with
ei.y =€} 1. So a simulation for the 3 step ahead forecast is ¢}, = f(¥},)
and the estimation of the best forecast is the average of these values. The
calculation of §f., = f(yi,,_1), £ > 3, is now straightforward and we have

X 1~
Ji(k) = n Zy;+k-
i=1
Note that the simulated values y; +k—1 Of Y41, 1 are obtained recursively by

i _ i i i
Yk 1 = fWhn o) T e 1 - Pig o
where
i _ i i i i
t+k—2 = h(€t+k—2)a €irk-2 = Eyh2 " Niyk_3-

The algorithm is presented in details in appendix.
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Figure 1: Series of the hourly ozone concentration in ppb

b years | last 2 years | summer
N 43824 17544 8640

Mean 19.0643 17.9062 27.8444

Variance | 510.1663 | 413.4888 | 555.9180
Median 11 10.8 22.7
Max 249.7 218.8 218.8

Table 1: Descriptive statistics

5 Preliminary data analysis

The application data set considered is the time series of hourly ozone con-
centration measured in a air pollution traffic station located in the city of
Bergamo near Milan in Italy. The meteorological covariates and the precur-
sor pollutants available in the same air station that have been used in the
models were nitrogen oxide and dioxide, total solar radiation, temperature,
humidity and wind’s velocity. The sample period runs from 1st January 1993
to 31 December 1997.

The plot of the time series (see Figure 1) displays some characteristics
of the phenomenon. We see very clearly a multiple seasonal components
(annual cycles are evident) and some cluster of variability seems to appear.

The analysis of the sample auto correlation function (see Figure 2) shows
an evident daily cycle and a long memory component. The whole data set
have been split into two subsamples. The first one (the estimation data set)
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Figure 2: Autocorrelation of ozone concentration for 10 days lags

has been used for identification and estimation, the second one (the validation
data set) for the analysis of the obtained model and for prediction. The data
of the last two years amounts to 17544 observations and the 8640 summer
data have been used for testing the forecasting performance.

Table 1 summarizes some descriptive statistics of the time series in the
subsets considered.

6 Forecast accuracy comparisons

The forecasting performance of the four proposed models is carried out from
two different points of view, the first called global and the other local. For each
of the N = 8640 hours t of the validation data set, we have calculated the
hourly h step ahead predictions (h = 1,2,...48) based of the pre-identified
models and their values have been compared with the true actual values.
The Monte Carlo study has been carried out on n = 100 simulations for each
step h. The simulated errors, according to Fasso and Negri (2000), have the
t” distribution, where ¢, is a Student’s ¢ random variable with v > 4 degrees
of freedom and m, is its absolute expected value.

The first criterion is based on the comparison, for each value of A, of
all predicted and actual values, according to the statistics R*(h) = 1 —

7E(y§;r£};&()h))2, Mean Absolute Error MAE(h) = Ely,n — 9:(h)| and Mean

Square Error MSE(h) = E(ysn — 9:(h))2. The estimated mean E and vari-
ance VAR(y;) are computed over all the ¢ in the validation data set. The
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Figure 3: R? and MSE for SFI-AR-ARCH (-), SFI-SETAR-ARCH (-), SFI-
ARX-ARCH (o), SFL.SETARX-ARCH ().

results are reported in Figure 3, where we see that the global R (h)” statistic
decreases from 0.94 to 0.40 for the nonlinear SFI-SETARX-ARCH predictor
and from 0.90 to 0.46 for the linear autoregressive SFI-AR-ARCH one. The
related R (h)2 curves cross around h = 30 hours. This reversed performance
at short and long horizons is not new and agrees with mentioned results of
De Groijer and Kumar (1992), and Bordignon and Lisi (2000).

For the Italian protection environmental law, there is an attention and
an alarm level for the ozone concentration given respectively by 90 ppb and
180 ppb. In our sample period the ozone was 204 times over the attention
level and 14 times over the alarm level. From the local point of view we have
calculated the three above global statistics in the two subsets defined by the
attention and the alarm level. The results for the mean absolute errors are
reported in Figure 4. In particular, from the global point of view of Figure 4
(a), it is confirmed that in the short term prediction SETAR and SETARX
perform better than the corresponding models without thresholds. This per-
formance is reversed in the medium and long term where the simplest model
is the better. The same happens when comparing the models with covariates
with respect to the corresponding pure time series models. Moreover, from
the local MAE analysis of Figure 4 (b), the nonlinear pure time series SFI-
SETAR-ARCH is very close to the linear plus covariate SFI-ARX-ARCH for
medium to high pollution and, from Figure 4 (c), the former outperforms the
latter for very high pollution. Hence the superiority of input output mod-
els over the pure time series ones is not uniform over forecast horizon and
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Figure 4: MAE global (a) and in the attention (b) and alarm (c) level. SFI-
AR-ARCH (-), SFI-SETAR-ARCH (- ), SFI-ARX-ARCH (o), SFI-SETARX-
ARCH (+).

pollution levels.

The bias in the predicted values is reported in Figure 5. In particular,
note how in Figure 5 (a) is pointed out a moderate overestimation whilst
local biases in Figure 5 (b) and (c) show corresponding underestimation of
high pollution. This opposite behaviour is partly due to the high skew of the
data distribution. Moreover, local MAE is equal to the corresponding bias
at the alarm level. This is obviously due to the fact that y;,, > ¢, (h) for all
Yern > 180 in our data set.

To go inside our data, for each step h and for each model, we have com-
puted the proportion of correct forecast alarms

_ f# correctly forecast exceedings

CA(h) =

f total actual exceedings
and the proportion of false forecast alarms

FA(h) = f# uncorrectly forecast exceedings

f total forecast exceedings

These indices have been evaluated in the two subset given by attention
and alarm levels. The results for the four models and 6 hours ahead forecast
are reported in Table 2, where the first two columns report the total number
of forecasting exceedings F'E; for each of the two threshold (i = 1,2). Then

11
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Figure 5: Bias global (a) and in the attention (b) and alarm (c) level. SFI-
AR-ARCH (-), SFI-SETAR-ARCH (- ), SFI-ARX-ARCH (o), SFI-SETARX-
ARCH (+4).
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Figure 6: Correct Alarm and False Alarm in the attention level. SFI-AR-
ARCH (-), SFI-SETAR-ARCH (-—), SFI-ARX-ARCH (o), SFI-SETARX-
ARCH (+).
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the correct (CA;, i = 1,2) and the false alarms (FA;, i = 1,2) follow.
The proportion of correct and false alarms in the attention level are given
in Figure 6. It clearly follows that the model which better forecasts the
attention and alarm exceedings is the SFI-SETARX-ARCH. This superiority
is uniform from the short to the long term.

7 Conclusions and further developments

In this paper, it has been shown how to perform multi step forecast of hourly
air quality data using a general nonlinear heteroscedastic model.

The results are encouraging as the overall R? statistic, very high at short
forecast horizons, is still about 0.50 after 30 steps. The role of nonlinear
forecasts of the threshold type is especially motivated for environmental pro-
tection where correct predictions for right tail data, i.e. high pollution, are
important. On the relevance of this aspect see for example Bloomfield et al.
(1996). This holds true both for the short and long horizon forecasts.

The conditional heteroscedastic component is important in order to study
the varying forecast precision. For one step ahead prediction it can be easily
assessed through the heteroscedastic component h;. Whenever the analytical
study of the forecasting precision for multi step nonlinear predictions needs
further insight, from the practical point of view, it is useful to note that
the prediction standard errors can easily be computed using the same data
simulated for the forecast computations.

From the operational pollution forecasting point of view one has to use
forecasted covariates and this could weaken our performance results. Nev-
ertheless from the previous discussion of Figure 4, the nonlinear pure time
series model SFI-SETAR-ARCH can be used as a reference curve for models
with predicted inputs.

Moreover, our models with concomitant covariates are intended to de-
scribe unknown ozone dynamics after adjusting for all the covariates and to
show how this kind of complex dynamics can be handled.

An alternative and promising way for practical applications is to use a
different model for each prediction horizon h. This may be done by extending
the approach of Bhansali (1993) to the nonlinear case.

Appendix: The Monte Carlo algorithm

The Monte Carlo scheme can be resumed as follows:

for (¢ in summer period) do

13



Model |lags | FE, | FE, | CA; | CAy | FA, | FA,
1 186 9 159 9 27 0
SFI 2 149 4 130 4 19 0
AR 3 131 0 111 0 20 0
ARCH 4 121 0 99 0 22 0
) 105 0 86 0 19 0
6 98 0 81 0 17 0
1 192 | 12 | 164 | 11 28 1
SFI 2 170 | 10 | 142 6 28 4
SETAR 3 157 4 126 2 31 2
ARCH 4 156 2 120 1 36 1
) 148 0 109 0 39 0
6 149 0 110 0 39 0
1 194 | 11 | 170 | 10 24 1
SFI 2 166 3 145 3 21 0
ARX 3 145 0 124 0 21 0
ARCH 4 137 0 113 0 24 0
) 122 0 98 0 24 0
6 111 0 90 0 21 0
1 195 | 11 | 174 9 21 2
SF1 2 181 | 12 | 158 7 23 Y
SETARX | 3 181 4 148 3 33 1
ARCH 4 177 2 137 2 40 0
) 161 0 129 0 32 0
6 155 0 120 0 35 0

Table 2: Forecast Exceedings (F'E;); Correct Alarm (C'4,;); False Alarm
(FA;); i = 1 attention level; i = 2 alarm level.
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compute y;(1) = f(y:)
compute h; = h(e;)
for (i = 1 to length MC simulation n) do

{

generate a random number &%
for (k =2 to horizon h) do

{
compute €, 1 = &y 1hiip o
compute y;, . 1 = f(Yip o) + €hip1
compute g7, = f(Yf5_1)
generate a random number &}
compute A1 = hlej 1)

}

end (cycle k)

}

end (cycle 1)
. (RO N
compute (k) = - Zka = Z S Wik
i=1 i=1

}

end (cycle t)
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