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Abstract

After discussing some recent modeling approaches in environmental time se-
ries analysis, a new time-varying heteroscedastic model is introduced. It is based
on exponentially weighted recursive least squares adjusted for estimated het-
eroscedasticity. Examples based on simulated data show some of its capabilities
both for autoregressive conditional heteroscedasticity estimation and for robust
recursive estimation in presence of smooth heteroscedasticity. An environmen-
tal application, related to ground ozone hourly data, shows that this method is
capable of tracking heteroscedastic time varying environmental systems.

1 Introduction

In environmental time series analysis, a number of dynamical stochastic models have
been used so far. In particular, for modelling high frequency air pollution and mete-
orological data, e.g. daily or hourly data, both parametric and nonparametric models
of increasing complexity have been proposed.
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For example, parametric conditionally autoregressive heteroscedastic models (ARC'H)
have been used by Tol (1996) for daily temperature modelling and by Graff-Jacottet
& Jaunin (1998) for daily sulphur dioxide and ozone linear forecasting and by Fasso &
Negri (2000a and b) for hourly ground ozone time series nonlinear modelling with long
memory and heteroscedasticity.

Moreover, some nonparametric homoscedastic models have been considered in envi-
ronmental literature. For example, Bordignon & Lisi (2000) used the nearest neighbor
based smoothing for modelling hydrological time series. Cai & Tiwari (2000) considered
BOD weekly data nonparametric modelling and, using local linear kernel smoothing
over time, they found a time-varying homoscedastic autoregressive model description.

Nonparametric heteroscedastic models have been used in environmental regression
analysis with independent data. For example in air pollution remote sensing, a semi-
parametric heteroscedastic kernel regression model has been proposed by Holst et al.
(1996) and, recently, Lindstrom et al. (2000) used the approach of Ruppert et al.
(1997) for local polynomial variance estimation of sulphur dioxide concentrations at
volcano Etna, Sicily. In the Econometrics literature, local polynomial heteroscedastic
time series models have been considered for example in Hérdle et al. (1998) and Hafner
(1998).

For framing the above models, it is important to distinguish between predictive and
retrospective models. In this paper, we call predictive a time series model which uses
only past values of the observed process y; to compute both the forecasting function
and the actual estimated forecast. This kind of model can be used in practice for on-
line forecasting. Both in the parametric or nonparametric setup’s, this usually leads
to invariant causal models. In this case a model is fitted on an estimation data set and
then used for forecasting as if it was the ”true model” on new data.

Retrospective models use both past and future data to fit the forecasting function
and/or the actual estimated forecasts. For example, Cai & Tiwari (2000) used smooth-
ing over time models based on a symmetric kernel. Hence at each time ¢ the process
dynamics is explained using both future and past observations in a symmetric way.

As long as one is interested in time-varying or evolutionary predictive models, the
parametric approach needs to be completed with some recursive estimation techniques.
Recursive estimation and predictive modelling with homoscedastic innovations are in-
herently related to least squares (LS) and the Kalman filter. These methods have been
recently discussed by Grillenzoni (1997a) and Xing-Qi Jiang (1999) with main empha-
sis on engineering applications. In environmental analysis, monitoring and forecasting,
these methods may be useful for time-varying problems due to climatic and anthropic
changes or for periodical moving of air pollution stations and the related re-start up.

In this paper, we consider recursive estimation of smoothly changing autoregressive
models with heteroscedastic innovations. In particular in section 2, the recursive het-
eroscedastic algorithm is introduced and commented upon. In sections 3.1-3.3, some
synthetic examples illustrate the techniques while, in section 3.4, an environmental
case study based on tropospheric ozone data is presented. Finally, some conclusions
and open problems are given in section 4.



2 RLS-ARCH Approach

In order to track and forecast a time-varying heteroscedastic model, we introduce the
following ARC'H extension of the standard recursive least square approach (RLS).

Let the process of interest, 1, be given by the following time-varying ARX — ARCH
equations

Yo = 001 + ey (1)
/
hi—1 = By1mi1-
In the first or mean equation, &, is and independent sequence with Fe = 0 and

Elel =1, ¢, is the regressor vector including both covariates and lagged process
observations, namely ¢, = (z¢-1,1, ..., Tt—1,g, Yt—1, ...,yt,p)’. In the second or scedastic
equation, we have n, ; = (1,|e;_q],...,|ewr|), and e, = y, — 0,0, ;. The quantities
0, and 3, = (ﬁo,tv Bigs e ﬁr,t) are unknown slowly time-varying coefficient vectors.

In this model, the time-varying conditional mean function ¢, = 6;p, ; has time-
varying precision given by its conditional mean absolute error h;, which is a function
of previous forecast errors.

When no heteroscedastic component is present, i.e. h; = h* say, by assuming some
stochastic linear dynamics for 6;, e.g. 6, is a random walk, it is possible to get the
estimate 6, using the Kalman filter, see e.g. Xing-Qi Jiang (1999). This is optimal
for the particular Gaussian model assumed. Alternatively, one can use exponentially
weighted RLS tracking or robustified versions of it.

In our case, suppose for a moment that 3, is known. Hence the weighted RLS at
time t = 1,2, ... is given by

t
0;|hs<; = arg min (Z(ys — 9’¢81)2A§sw51> (2)
s=1
where
O<A<l1 1
We] = ——.
1 ) 1 hgil

This is the solution of a weighted LS problem where the weights decrease both with
time remoteness and size of previous forecast errors. The recursive solution of (2) can
be handled by the Kalman filter algorithm as in section 6.3.1 of Mosca (1997). In
particular, this is the state estimates of a state space representation where the state
is #; = 6 and the observation equation is given by (1) with the scedastic equation

replaced by h* | = /A "fw ), say.
In practice, 3,_, is unknown and we need some estimate for hs. As in the empirical

WLS for time-invariant ARC'H models, this can be done by using the following LS
estimates

Bt|‘98§t = argmin (Z(|68| - 6/7731)2)‘3_8> (3)

s=1



where
0< )\2 < 1.

Extending the standard Kalman filter techniques developed for homoscedastic RLS
problems, estimates (2) and (3) have recursive formulations as follows.

2.1 RLS — ARCH algorithm

Fix initial values for RO,SO,hO,gjl,goo,éo and @0 then, for t = 1,2,..., the recursive
algorithm is as follows:

1. ARX computations

€t =Yt — Yt
1
Wt—1 =
hi_q
1 R—l © g0/ R—l
R;l _ =+ (Rtll — Wy t—1 tfll t—l_lt—l )
Al Al +wi1oy R

ét = ét_l + Rt_lgotfletwt_l

2. ARCH computations

My = (L 18l s é])

T 1 (511 _ 5;1177#1772—115;11 )
A2 A2+ 115 41

X N B 5 At
By =By + 5, 177t—1(|et| — By 1)

Where the matrices R; and S; are estimates of the covariance matrices of 9t and Bt
respectively. With these values the one step ahead forecast is simply given by

N ~l

Yi+1 = thot
and its precision can be evaluated by

~ ~ [l

hy = Bn;.

In particular, if & in equation (1) is Gaussian distributed, then E (¢}) = % and the
95% approximated forecast interval is given by ;.1 £ / ohy.
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2.2 Robust Recursive Estimates

The RLS — ARCH algorithm, has some connections to recursive M-estimates of Gril-
lenzoni (1997) which are robust against innovation outliers. The innovation outlier
scheme can be paraphrased by innovations with heavy tails or by some random mecha-
nism which produces large innovations in an independent manner. For example we can
use model (1) with the scedastic equation replaced by independent random variables
as follows

b — 00 with probability 1 — ¢
P71 k>>00  with probability e

where o( is the non outlier innovation standard deviation. In other situations, the
scedastic function h; varies smoothly in an unspecified way. In these cases nonpara-
metric estimates of h; may be obtained from the RLS — ARCH algorithm with r = 0.
Hence we have h; = (3, and the RLS — ARC H estimate of 3, is simply the exponentially
weighted moving average EW M A of |e,|.

From this point of view, 3, may be considered both as a nuisance parameter for the
(robust) estimation of ; or as an important parameter for predicting the precision of

A

Y-

3 Case Studies

In order to illustrate the method proposed, we discuss both synthetic and real data
cases. In particular in the first two synthetic examples the smoothing factors \; =
A2 = A = 0.99 have been, the third one is an example of smooth heteroscedasticity
with Ay = 1 # Ay < 1 and A = 0.995 has been found appropriate in the last real
data example. Although some estimation techniques have appeared in the literature
(see e.g. Grillenzoni (1997b)), we have chosen these values by looking at the forecasting
capability, given by the R? statistic, and at the periodic behavior of the data. A regular
periodic path has been used for the first three simulation examples whilst the last real
data example is characterized by a strong and irregular daily and seasonal pattern.

3.1 Simulation A

The first synthetic example is given by n = 10,000 observations from the slowly oscil-
lating heteroscedastic AR(1) system given by the following equations

Y = O+ ey

0, = cos (£6W>
n

€t = €tht71 (4)
t
hi—1 = 1+ 2cos (—67r)
n
et NID (0,1).
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Figure 1: Simulation A. System observations

The corresponding highly nonlinear stochastic pattern is displayed in Figure 1. More-
over the resulting AR function 6, and scedastic function h; are given in Figures 2 and 4
respectively. Note that the scedastic function is deterministic and has been estimated
by the EW M A of |e;| reported in Figure 4 which results from the RLS — ARCH al-
gorithm of previous section with p = 0. Taking account of heteroscedasticity improves
both parameter uncertainty and smoothness. This can be seen from Figure 3, where
0, is estimated by the traditional homoscedastic RLS algorithm.

3.2 Simulation B

The second exercise is given by equations (4) with the scedastic equation replaced by
the following time-varying ARC'H component:

2
t
ht,1 = 2 4 cos (E6ﬂ-) |€t71ht72| .

The simulated data, residuals and studentized residuals, given by pol-, are reported

in column 1 to 3 of Figure 5 respectively. In Figure 6, the 3 functions show that the
estimation of the scedastic component is more erratic than 6; function and Ay < 1
prevents from consistent estimation of 8,, = 2. As a matter of fact, the oscillations of

the actual h, are shared between BO,t and Bl,t and the latter underscores the variations

of the actual 3, ;. The estimate 0; is quite similar to Figure 2 of the previous case and
has not been reported.



Figure 2: Simulation A. 8, with estimated 95% confidence intervals and actual 6;.

Figure 3: Simulation A. 0, and estimated 95% confidence intervals estimated without
ARCH component
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Figure 4: Simulation A. Observed volatility ﬁt\/g and actual h;.

3.3 Simulation C

The third synthetic example illustrates the use of RLS — ARC'H as a semi-parametric
recursive estimator robust against smooth heteroscedasticity.

To see this, we consider the time-invariant predictor model given by equation (4)
with 6, = 0.7 and scedastic function

; 6
hi—1 =1+ 10cos (—2#) )
n

We then use the RLS — ARCH algorithm with » =0, Ay = 1 and \y = 0.95. Figures
7 and 8 show the estimated path 0, for the usual homoscedastic RLS and the RLS —
ARCH respectively. It is clear that the high heteroscedasticity shown in Figure 9 has
a reduced influence on the RLS — ARCH estimator.

3.4 The Ozone Data

The third example is concerned with ground ozone hourly data collected in Bergamo,
Italy, 1993-1997. This data set has already been discussed in details (see Fasso &
Negri (2000a, b) and is now depicted in the first column of Figure 11 and summarized
in Table 1.

M ean Varance Skewness Kur tosis
O 3 19,064 510, 155 2,482 12, 049
residuals 0,367 37,774 0, 896 13, 647
studentized residulas 0, 037 1,287 0, 344 4,339

Table 1. Ozone and residuals statistics.
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Figure 5: Simulation B. Time series, histogram and autocorrelation of simulated data,
residuals and studentized residuals
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Figure 6: Simulation B. Estimated ARCH functions with superimposed actual values
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Figure 7: Simulation C. 8; = 0.7 estimated by homoscedastic RLS with A = 1.

10



0.76

0.74

o WWWWW
0.7+

|

AR 1

0.68

0.66

2000 4000 6000 8000 10000

Figure 8: Simulation C. #, = 0.7 estimated by robust RLS — ARC'H with \; =1 and
A2 = 0.95.
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Figure 9: Simulation C. Estimated vs. actual scedastic function.
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Figure 10: Ozone Data. Maximum absolute root function.

The model adopted here contains the four AR components of Figure 12 and the
three covariates given by the lagged values of total solar radiation, relative humidity
and nitrogen dioxide of Figure 13. These figures show a marked seasonal nonlinearity
of the conditional mean. In particular, the seasonal variation of the 6 coefficients
is more apparent for the covariates then the AR components. Similarly the ARC H
components of Figure 14 indicate a strong seasonal nonlinear heteroscedasticity.

The ordinary and studentized residual graphical analysis is reported in column 2
and 3 of Figure 11. Although some daily periodicity is still present, the small residual
autocorrelations and absolute studentized residual autocorrelations suggest that the
model fitting is satisfactory. From top right of Figure 11, we see that this is generally
true except for an outlier occurring in the studentized residuals during the highly
polluted summer 1995. Moreover, in order to perform a stability analysis as discussed
e.g. by Grillenzoni (1997a), we plotted the maximum of absolute roots of the AR
polynomial at time ¢ in Figure 10. This quantity is given by

py = max |root(ay(z))]
where
a(z)=1— z’10t7q+1 — =2 PO gy

is the AR polynomial at time ¢. It follows that, being u, < 1 except for a sparsely finite
set, the system is stable. A similar diagnostic can be done on the ARC H component
by plotting 1 — 37, (3, as in the third line of Figure 14.
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Figure 11: Ozone data. Time series, histograms, autocorrelations and autocorrelations
of absolute values.
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Figure 13: Ozone Data. 6; functions for covariates with approximated 95% intervals
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Figure 14: Ozone Data. (3, functions, Stability plot and estimated scedastic function.
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4 Conclusions and Further Developments

In this paper, the problem of on-line prediction with time-varying heteroscedastic mod-
els has been considered using a time-varying scedastic function which may be of de-
terministic or ARC'H type. The model proposed seems adequate to track slowly time-
varying heteroscedastic dynamical systems and has been applied to an air pollution
high frequency monitoring problem.

The approach used here is essentially based on W LS and may be extended to
fully cover model complexity estimation by means, for example, of time-varying AIC'
statistics.

Although our approach is related in some way to Kalman filtering, further ex-
tensions could lead to an appropriate heteroscedastic state space representation and
connected nonlinear Kalman filter.
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