Statistical models for species richness in the Ross Sea
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Abstract. In recent years, a large international effort has been placed in compiling a complete list of
Antarctic mollusc distributional records based both on historical occurrences, dating back to 1899, and
on newly collected data. Such dataset is highly asymmetrical in the quality of contained information,
due to the variety of sampling gears used and the amount of information recorded at each sampling
station (e.g. sampling gear used, sieve mesh size used, etc.). This dataset stimulates to deploy all
statistical potential in terms of data representation, estimation, clusterization and prediction.

In this paper we aim at selecting an appropriate statistical model for this dataset in order to explain
species richness (i.e. the number of observed species) as a function of several covariates, such as gear
used, latitude, etc.. Given the nature of data, we preliminary implement a Poisson regression model
and we extend it with a Negative Binomial regression to manage over-dispersion. Generalized linear
mixed models (GLMM) and generalized additive models (GAM) are also explored to capture a possible
extra explicative power of the covariates. However, preliminary results under them suggest that more
sophisticated models are needed. Therefore, we introduce a hierarchical Bayesian model, involving a
nonparametric approach through the assumption of random effects with a Dirichlet Process prior.
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1 Introduction

Since many years, an international team of researchers has focused its attention on distributional data
of Ross Sea (Antarctica) Mollusca, compiling a large dataset based on revised species identification and
classification. The selection of this geographical position is crucial, especially in the light of the effects
that climate changes might have on the biodiversity of the area. The dataset is the result of several
scientific expeditions, performed with different goals, that span for a temporal timeframe of more than
one century, specifically from 1899.

This dataset results to be highly asymmetrical in terms of available information. Expeditions in the
last century essentially aimed at making a census of the Antarctic species while recent expeditions apply
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balanced sampling designs that enable better statistical analyses and are focused on the study of species
spatial and geographical distribution.

Hence, there have been some difficulties in the treatment and the adaption of the data collected before
2004, for instance due to the lack of information about species picked up dead or alive. Moreover, from
1899 to 2004, there is no record of “zero occurrences”, i.e. stations that have been properly investigated
but where no molluscs were found. This inevitably affects species richness, i.e. the number of different
species observed in each sampling unit or station, which is the most used variable in biodiversity studies.

Despite these limitations, collected data remain a precious and unique source of information (see
[8]) and several papers are going to be published based on these data, as [12]. Here we focus on species
richness: our response variable Y. We also consider covariates such as the tools employed to collect
sampling units. They can be grab, towed gears, Rauschert dredge (i.e. a towed dredge with a very fine
mesh), or even “unknown” (i.e. where the gear was not recorded in the data log) or “multiple” (i.e. where
more gears were deployed at the same station). In addition, geographical variables such as longitude,
latitude, depth and distance from the nearest scientific station are taken into account. Successively, a
factor geographical covariate, referred to as box', has been introduced.

2 Methods and results

We investigate the explanatory and predictive power of a large number of models and methods for count
data. The simple Poisson regression model, inadequate because of over-dispersion, absence of zeros and
excess of 1s in the data (see Figure 1 for a representation), has been variously enriched and made more
flexible [3].

First, we introduce random effects of different nature alongside the effects of the covariates described
in Section 1. In particular, we assume that y; ~ Poisson(y;), fori =1,...,n and log(u;) = X;3 + ¢;, where
X; represents a g x 1 vector of covariates, 3 is a ¢ x 1 vector of fixed effects, and ¢; denotes a random
effect accounting for observation specific deviations. In regarding the distribution of ¢;, denoted by G,
two parametric assumptions are compared: ¢; YN (0,62) and e* % Gamma(a,b) with a = b, so that
E(e%) =1 and Var(e®) = 1/a. The latter assumption introduces extra-variability on a different scale as
ordinary predictors ([1], p.556) and leads to the Negative Binomial regression model [3, 9]:

y,-wNB(a,Hﬁ),izl,...,n. (1)
where E(Y;) = ¢%P and Var(Y;) = 5P (14 ¢%P /a). As count data in ecology are often clumped (if the
rate of capture of individuals varies randomly), producing an expected variance that is greater than the
mean, in such literature [2] the parameter a is often referred to as the clumping parameter [2, 13].

We also explicitly consider special generalized linear mixed models, GLMM, where subsets of the n
observations are given the same random effect, as for instance observations in the same box.

Given the absence of zeros, we explore truncated versions of the models just described and, for
comparisons, we also apply linear mixed models to a log-transformation of the respose variable, a con-
troversial practice very often recommended in the ecological literature.

Moreover, in stations where the gear is unknown, we try to impute its value in order to improve such
a covariate.

Then, trying to increase the potential of all available covariates to explain the species richness, we
explore more general parametric models such as generalized additive models, GAM [14].

IBoxes are defined with 1 degree of latitude and 1 of longitude. In the dataset 112 boxes are identified in which there have
been at least the observation of one species.
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Figure 1: We compare the species richness, represented in plot a, respectively with Y ~ Poisson(4.932) in
graph b and with ¥ ~ NB(0.977,0.165) in plot ¢. The parameters of the Poisson and Negative Binomial
distribution are estimated from the observed data.

Although, in terms of reduction of the residual deviance and AIC, all the strategies illustrated above
provide appreciable contributions, their predictive power turns out to be further improvable, precisely
because of the clumping of the data. In order to make the model able to capture the multimodal distribu-
tion of species richness (see Figure 1.a), we decided to re-interpret the described GLMMs as Bayesian
hierarchical models and add the further level described below to the hierarchy.

We relax the assumption on the parametric form of the distribution function of random effects G and
we model it by a Dirichlet Process prior 2 with base probability measure Gy and total mass parameter
m [7],

0G% G, G~ D(m,Gy), m>0. )
Considering that E(G) = G and m controls the variance of the process, in practice Gy specifies one’s
“best guess” about an underlying model of the variation in ¢, and m identifies the extent to which Gy
holds ([6], p. 638). Within the class of models just defined, we consider specifications of Gy that lead
to direct generalizations of the GLMMs described above, namely Gy = N(a,62) and Gy = LG(a,b).

LG denotes the distribution of ¢;, being % P Gamma(a,b) with a = b as already discussed. Moreover,
vague priors are assumed on 3, a and m [4].

Under the previous assumptions, the likelihood function turns out to be a sum of terms where all
possible partitions (clusterings) of the n observations into nonempty clusters are considered [10, 11].
This fact implies that:

i. to learn about a given observation/station, additional information to the one provided by covariates
is borrowed from observations/stations belonging to the same subset, for each subset to which the
observation can be assigned in the context of all possible partitions in nonempty subsets of the n
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observations;

. the results under a hierarchical semi-parametric model with Dirichlet process random effects

can be interpreted as averages over GLMMs, corresponding to all possible clusterizations of the
N(0,6?) or LG(a,b) parametric random effects.

Conclusions

The natural implementation of discussed parametric statistical models — Poisson regression, Negative
Binomial regression, GAM or GLMM - only partially explain our variable of interest. Multimodality
and over-dispersion of species richness can be jointly modeled by adopting a more general non parametric
hierarchical Bayesian approach as confirmed by the encouraging preliminary results we have obtained.
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