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Abstract. This paper focuses on the spatio-temporal pattern of Leishmaniasis incidence in Afghanistan.
We hold the view that correlations that arise from spatial and temporal sources are inherently distinct.
Our method decouples these two sources of correlations, there are at least two advantages in taking this
approach. First, it circumvents the need to inverting a large correlation matrix, which is a commonly
encountered problem in spatio-temporal analyses (e.g., Yasui and Lele, 1997) [3]. Second, it simplifies
the modelling of complex relationships such as anisotropy, which would have been extremely difficult
or impossible if spatio-temporal correlations were simultaneously considered. The model was built on
a foundation of the generalized estimating equations (Liang and Zeger, 1986) [1]. We illustrate the
method using data from Afghanistan between 2003-2009. Since the data covers a period that overlaps
with the US invasion of Afghanistan, the zero counts may be the result of no disease incidence or lapse
of data collection. To resolve this issue, we use a model truncated at zero.
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1 Introduction

Leishmaniasis is the third most common vector-borne disease and a very important protozoan infection.
The disease is contracted through bites from sand flies, which are themselves not poisonous, but the
parasitic Leishmania in its saliva can result in chronic and non-healing sores. Some of the risk factors
identified include household construction materials, design, density and presence of the disease in the
neighborhoods and high rodent infestations. The impact of environmental influences on Leishmaniasis
cannot be ruled out and human activities play a significant role in the dispersion of the vectors thereby
changing the geographical distribution of the disease.

The present study was motivated by Leishmaniasis cases in the provinces of Afghanistan between
2003 and 2009. One of the most challenging issues in modelling spatio-temporal data is the choice of
a valid and yet flexible correlation (covariance) structure. The correlation structures fall into one of two
types: separable in which case it is assumed that the space-time correlation can be written as a product of
a correlation for the space dimension and one for the time dimension or non-separable where the space-
time correlation is modelled as a single entity. Mostly, space-time correlations are considered jointly, a
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step that we believe is unnecessary or unrealistic in our data.

In this study we shall decouples these two sources of correlations, an approach that separates the
modelling of the space- and time-correlations. There are at least two advantages in taking this approach.
First, it circumvents the need to inverting a large correlation matrix, which is a commonly encountered
problem in spatio-temporal analyses. Second, it simplifies the modelling of complex relationships such
as anisotropy, which would have been extremely difficult or impossible if spatio-temporal correlations
were simultaneously considered.

Our method is based on the framework of generalized estimating equations (GEE) where the spatial
dependency is accounted for by re-weighting the standard GEE so that locations that are highly correlated
with each other would receive less weight. Apart from the spatial dependency in our data, the data is
also characterized by a high percentage of zero disease counts which introduced over-dispersion. Since
the data covers a period that overlaps with the US invasion of Afghanistan, the zero counts may be the
result of no disease incidence or lapse of data collection. It is often practiced to truncate the values
that are bigger than a constant to overcome over-dispersion [2]. The analysis of truncated often arises
from a subsidiary set of results that treat a practical problem of how data are gathered and analyzed
and incompleteness of this data requires special estimators of the regression coefficients. To resolve this
issue, we use a model truncated at zero.

The rest of the paper is structured as follows. Section 2, describes the materials and methods that will
be used in the study. In Section 3 we shall give the results of the data analysis and conclude the paper

2 Data Sources and Methods

2.1 Data Sources

The data used in this study were monthly cases of Leishmaniasis reported to the Afghanistan Health
Management Information System (HMIS) under the National Malaria and Leishmaniasis Control Pro-
gramme (NMLCP) of the Ministry of Public Health (MoPH). The data consists of 148,945 new cases of
Leishmaniasis from 20 provinces in Afghanistan between 2003 and 2009 (of these, 41,072 occurred in
2009). We used satellite-derived environmental data- Normalized difference vegetation index (NDVI),
land surface temperature (LST) and rainfall as explanatory variables.

2.2 Model Formulation and Parameter Estimation

We begin by considering the disease counts y = (¥, ...,y’S‘)T and observed covariates at different loca-
tions X = (x] , ...,xg,)T as a set of longitudinal data over S spatial locations. Let y be independent and
assumed to follow a Poisson model and stacked as a S x T vector. The covariance matrix of y is V and
\7_;}3,,[, is the (st,st')-th element of V!, the dimension of V is ST x ST.

~ For the dataset we are working with, § = 20 represents the number of provinces and T = 7 represents
the number of years with recorded data. Using the monthly data, then 7 =84 and so S x T =20 x 84 =
1680 and therefore V would be a matrix that cannot feasibly be handled. Moreover, the correlation
between y(s,7) and y(s',7") often does not have any practical meaning. For a fixed s, vy, t,t' =1t1,...,t7
are the elements of the variance covariance matrix of disease counts between times.

The modelling is a 2-step process, we first needed to find the variance covariance matrix, v, and
spatial weight, w,y. We compute empirical temporal variograms at different spatial locations and then
average all temporal variograms with the same temporal lag. We applied the empirical semivariogram
based on the Pearson residuals and fitted a parametric semivariogram models. For two different times,
say t,1', that are r = |t — ¢’| months apart, the correlation between the two times, ¢,7' could be written as:

C(t,t') =C(1) (1)
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where Cg (t)= (=) is the temporal covariance function with months apart. The parameters 6 = 12,62,
represents the nugget, sill, and range, respectively.

In order to model spatial correlation and overdispersion, we assume there is a nonnegative weakly
stationary latent process e and conditioned on this process, the y’s are independent and follow a log-
linear model given below. Consider the following; suppose we remove all y, = 0, then conditioned
on y; > 0, we have E(yy|eq) = cug (B)es, and var(yy|es) = [cus(B) + c(1 — ¢)us (B)*]es where ¢ =
1/[1 —exp(—ux(B))], leading to

E(ye) = cus(B)=0x(B), (2)
var(yg) = cug(B)+c(1 —c)uy(B)? + c*uy (B)>c>. (3)

where [3 are unknown parameters. We assume E(ey ) to be 1 so that uy () represents the marginal mean
of yg.

Let ={d(s,t) = dy }sxr be a matrix of indicators such that dy = 1 if y; > 0 and dy, = 0 otherwise.
Note that y;; = 0 could mean the count was zero or count was not taken. For a particular set of spatial
weight Wy, the spatial GEE conditioned only on those observations with y,, > 0 can be written as

Ss Ss it tr aq)st

Z Z Z Z aBT dsi Wy stt’{)’vt' q)st’}:Ov 4)

s=s18'=s11=t1t'=1

where v, is the #,7-th element of Vj, the covariance matrix of y,.. The matrix V; can be ex-

pressed as ALY ?R; ()AL, where A, = diagleus: (B) +c(1 — st (B)? + st (B)262, ..., cutsr (B) + (1 —

o)ust(B)? + usr (B)?02] and Ry(ot) is a matrix with its (¢,#')-th element representing the correlation
between times 7 and ¢” at location s.

Our primary interest lies in the parameters 3 but we also must deal with the nuisance parameters o.
Let R(ot) be a 84 x 84 matrix where o contains the parameters (0) estimated via weighted least square
method. The parameters are estimated via a Newton-Raphson iteration method. To solve for (a,f)
jointly. Let Bk and Gy be the estimates of B and a at the k-th iteration. We first fitted a GEE with an
independence working correlation structure, we then solve the estimating equation for a, and we then
iterate until convergence. This step gives the values vg,. Denoting Y v, v = Y& Y - yir L Z
we estimate an initial estimate BO using (4) by assuming an identity matrix for Rs(ot), equivariance, i.e.,
vy n, =1 and, spatial weight.

Then at iteration k,

A A —1 A
B A J st ~ -1 /p J st J st ~ — A
BkJrl = Bk — Z ¢a[§Ek> dst’wss’vwltl(ﬁk) ¢aéEk>] [ Z q)af()?k) dst’Wss’V”lt/ {yst’ - q)st’(Bk)}

5
Since we are using an AR(1) correlation structure, we take the slope of the linear regression of log(#, rst,)
on log(|t —'|) as . We then iterate between (4) and (5) until convergence.
The standard errors for the s were obtained using large-sample properties.

3 Illustration

We shall illustrate our method using the Leishmaniasis cases data reported to the Afghanistan Health
Management Information System (HMIS) of the Ministry of Public Health (MoPH) between 2003 and
2009. We observe higher disease incidence around the Kabul area (North Eastern). Similar patterns were
observed in 2003-2008 (maps not shown here but are available on request). The monthly profile of cases
of Leishmaniasis revealed two peaks in the disease occurrence in Afghanistan between 2003 and 2009 —
January to March and September to December — which coincide with the cold period while July is the
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Table 1: Parameter estimates together with the standard errors from GEE with different correlation struc-

tures of Leishmaniasis incidence in Afghanistan

Risk factors GEESpatial GEETemporal GEESpatio—temporal
Intercept -0.52289 (0.07342) -9.09746 (0.08526) -9.09818 (0.02206)
Altitude (m) -0.00012 (0.00023)  0.00026 (0.00001)  0.00026 (0.00001)
Temperature (°C) -0.42460 (0.00022) -0.00118 (0.00035) -0.00113 (0.00017)
Precipitation (Inches)  1.58830 (0.00785) -0.03920 (0.00066) -0.03895 (0.00210)
Wind (Knot) 0.53639 (0.00528)  0.02089 (0.01566)  0.02078 (0.00112)
2 trace($; '3) 69.33 87.054 19.38
AIC 103.112 179.39 46.511

hottest month and March is the wettest month. The time series plot for the number of Leishmaniasis cases
reveal upward trend and regularly repeating patterns of highs and lows related to the months of the year
which suggests seasonality in the data. The variogram of space-time autocorrelation is obtained by con-
sidering time as discrete. This method models the cross-variograms between data with time replication
(months/years) and captures the variability in space and time. We hold the view that correlations arising
from spatial and temporal sources are inherently distinct. Our method makes it possible to combine the
specific provincial rate with the influence of the spatial neighborhood. Three different models were fitted
namely; spatial only, temporal only and spatio-temporal model. In Table 1, perhaps the most distinctive
results are from the model with spatial correlation; the model parameter estimates are remarkably dif-
ferent from others. The result may not be surprising as it has been assumed that the correlation remains
the same across time. This also suggests that spatial correlation only may not be sufficient for the data,
because it involves the specification of spatial correlation across time. The results have shown that the
specified spatio-temporal function is more suitable and appropriate for this data (smaller 2 trace(il_l)iR)).
Moreover, the model with the spatio-temporal correlation function significantly improves the model fit
when compared to other specifications, as judged by the smaller AIC. Although the parameter estimates
from both temporal and spatio-temporal models are similar, significant differences can be observed in
their precision estimation. The technique used is this study allow for correct specification of correlation
structures to improve the efficiency of the GEE method. The Leishmaniasis data presented several prob-
lems with modelling issues, ranging from correlation/covaraince specification to issues with "imputed"
or "non true" zeros. The high percentage of zero disease counts may be the result of no disease incidence
or lapse of data collection. Moreover, the dependency in the data may be a result of spatial variation,
temporal or both. To resolve this issue, a renowned method was used to address the many issues that the
data presented in a very novel way. A model truncated at zero was fitted while allowing for dependency
in the data via a working correlation matrix using the technique of GEE.
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