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Abstract: Often environmental scientists face the problem of clustering dif-
ferent sites, areas or stations in a monitoring network in order to identify some
common features among data collected at different locations. In a functional data
analysis approach, each location can be seen as a specific individual, on which noisy
observations from a continuous random function are collected at discrete times. The
definition of suitable models for samples of such functional observations, can provide
useful insights about the dynamics of the variables of interest. In such a context, a
cluster can be defined as a group of individuals (i.e. locations, stations, areas etc.)
where the observed trajectories share common salient features. We present some
classification results in a water quality network and focus on some open issues.
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1 Introduction

Often environmental scientists face the problem of clustering different sites, areas
or stations in a monitoring network in order to identify some common features
among data collected at different locations. It is a common practice to use standard
classification methods such as k-means or hierarchical classifiers, by considering
temporal (e.g. annual) averages of one or more variables measured at each site.
This is clearly a limitation, since the whole information about the dynamics of
the observed variables is lost. Moreover, such methods do not take into account the
uncertainty that should characterise any partition based on sample information. The
combination of functional data analysis (Ramsey and Silverman, 2005; Ferraty and
Vieu, 2006) and probabilistic cluster analysis methods (Banfield and Raftery, 1993),
which allow one to estimate the probability that a given object belongs to a given
group, represents, in our opinion, an important step towards a better understanding
of environmental data.

Here, we shall provide a classification of the sites of a water quality monitoring
network located in Venice Lagoon, by using a trophic index (TRIX, Vollenweider
et al. 1998). We apply a classification method based on functional data analysis,
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introduced by James and Sugar (2003), which allows to take into account sample
information about the temporal dynamics of the variable of interest, as well as
quantify the uncertainty in the partition.

2 Classification of functional data

Grossly speaking, functional data analysis methods look at time series of data col-
lected on each individual, in our case on each site, as measurements of a continuous
function taken at a finite number of instants and corrupted by noise. Any observed
trajectory can be seen as the noisy measurement of an unobservable curve, which is
the object of interest. Following the classification method proposed by James and
Sugar (2003), data are modelled as a mixture of Gaussian spline regressions, where
each mixture represents a model for a specific cluster. Spline coefficients are the
sum of a deterministic term, which represents the cluster effect on the mean of the
variable, and a stochastic component, which represents an individual (site-specific)
random effect. Parameters can be estimated via maximum likelihood. Mixture
weights can be seen as prior membership probabilities of any site. The applica-
tion of Bayes theorem, after plugging maximum likelihood estimates into the model,
leads to posterior membership probabilities for each site in the network (Banfield
and Raftery, 1993). A generic monitoring station is then allocated to the group
which encompasses it with highest posterior probability. The number of groups,
i.e. the number of mixture components, is selected by using BIC criterion.

3 Site classification in terms of water quality

The data. Venice Lagoon, with an extension of about 500 km2 is one of the largest
wet areas in Europe. It is a shallow water system with average depth of one meter
crossed by a network of canals which determine a rather complex hydrodynamic
circulation. As other European estuaries and lagoons, it is classified as a transition
water body. Overall, the tributary discharge is about 30 m3/sec. Rivers bring in
freshwater, nutrients and pollutants, whereas tides bring in marine water. Internal
hydrodynamics disperse the pollutants and, eventually, dissolved compounds are
exported to the sea.

Data were collected at 30 monitoring sites which are shown on the map in figure
1. The first chacter of site labels identifies a particular category: letter B means
that the site is located in a shallow area, letter C indicates that the site is located on
a canal and letter M identifies sites located in the coastal area, next to the Lagoon.
The same figure shows (in blue) the network of canals which are very influential in
the Lagoon hydrodynamics and must be taken into account when interpreting clas-
sification results. Measurements were repeated in time at 38 subsequent instants
(in the period ranging from January 16th, 2001 to December 17th, 2003) corre-
sponding to neap tides. We considered a subset of the variables which have been
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monitored, namely: chlorophyll-a (CHL-a), dissolved oxygen (DOX), total nitrate
(NIT) and reactive phosphorus (PPO4). CHL-a and DOX can be taken as proxies
for actual primary production. Even though in shallow lagoons and coastal areas,
including the lagoon of Venice, macroalgae and seagrasses usually account for the
major fraction of the production, phytoplanctonic production is extremely impor-
tant, since the planktonic compartment represents a source of food for fish juvenils
and shellfish. The concentrations of dissolved oxygen, total nitrate and reactive
phosphorus provide information about the trophic potential of a water body. In
fact, an excess of these chemicals could enhance the primary production of phyto-
plankton and macroalgae and cause the symptoms of eutrophication, as happened
in Venice Lagoon in the 1970ies an 1980ies.

TRIX. TRIX is a widely used trophic index for marine coastal waters proposed
by Vollenweider et al. (1998). It considers both factors that are direct expressions of
productivity (chlorophill-a and dissolved oxigen) and nutritional factors (nitrogen
and phosphorous). Some alternative formulations have been proposed. Here we
consider the following one:

TRIX =
log10(CHL-a×DOX× NIT× PPO4) + 1.5

1.2
, TRIX ∈ [1, 10]

where DOX is the absolute deviation of oxygen from saturation and the other sym-
bols indicate the concentrations, in mg/m3, of the compounds mentioned above.
The values of TRIX range from 1 to 10: low values indicate oligotrophy (scarcity of
nutrients); high values indicate hypertrophy (exeedence of nutrients). A water body
in a good trophic state should not exceed the value 5.

4 Results

In our application we identified two groups: the first one characterised by good val-
ues of TRIX and the second one exhibiting high TRIX values for the most part of
the sample period. Figure 1 shows the raw data, the group specific mean trajectories
and individual mean trajectories. The same figure shows a map where two spatial
clusters are clearly identified. It is worth to note, however, that the posterior mem-
bership probabilities of sites B11, C06, C01, and C05 range between 0.54 and 0.87,
indicating a rather strong uncertainty in their allocation to one of the two groups
(for the remaining sites, the allocation probability was always higher than or equal
to 0.99).

An explicit treatment of spatial dependence has not yet been developed for the
class of models we have considered here. Important advances in this direction have
been made in the Bayesian nonparametrics literature and research in this field is
under way.
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Figure 1: Plots of raw data, group specific mean trajectories, individual mean tra-
jectories and map of monitoring sites (red=“high TRIX”; blue=“low TRIX”).
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