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Abstract. Due to the high wells drilling cost, monitoring sites are usually selected among existing 

wells; nevertheless, the resulting monitoring network must assure a good assessment of the main 

characteristics of the considered aquifer. Groundwater managers, need to find a good balance between 

two conflicting objectives: maximizing monitoring information and minimizing costs. In this paper, a 

couple of groundwater monitoring optimization methods are presented, related to the local shallow 

aquifer of the Alimini Lakes, located in Apulia (South-Eastern Italy) where a large number of existing 

wells have been pinpointed and the need of optimally reducing exists. The proposed methods differ 

each other for the required amount of prior information. The first proposed method, namely Greedy 

Deletion, just requires the geographical position of the available sites, while the second, the Simulated 

Annealing, also requires the knowledge of the spatial law of the considered phenomenon. The 

managerial need was to halve the number of monitoring sites minimizing the information loss. 
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1 Introduction  
 

Groundwater monitoring is generally rather expensive due to the wells drilling costs. Usually, 

monitoring networks (MNs) are designed selecting those most capable of representing the groundwater 

status among a wide number of wells. Nevertheless, the available wells are often irregularly spread and 

an unwise selection of them may cause a biased understanding of the monitored water body (Barca et 

al., 2015). However, a wise selection of wells is strongly driven by the a priori knowledge of the 

considered water body. Different approaches can be found in scientific literature, related to the OMNR, 

whose application is driven by the available information (Nunes et al., 2002; Wu, 2004). In general, the 

OMNR is an optimisation problem that is solvable through the quantitative formulation of one or more 

Objective Functions (OFs). The choice of the OF is strongly dependent on the available information. 

Nevertheless, this information is not always available simultaneously and constrains the choice of the 

optimization methodology driving the OF selection (Barca et al., 2015). In practice, when the spatial 

behaviour of the monitored parameter is known, a model-based method can be used and the OF will be 

strongly dependent on the variable. Conversely, when the a priori knowledge is poor, only a design-

based approach applies, since these latter methods exploit geometric characteristics as OF. In this 

paper, two OMNR methods are presented belonging to model-based and design-based categories, 

respectively. In particular, the GD and the SSA methods are applied to the optimal downsize of the 

Alimini Lakes groundwater monitoring network, initially made of 85 wells, covering a planar area of 

about 80 km2. Theoretical and applicative issues are reported referred to halving the original network. 
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2 Materials and Methods 
 

Optimization methods 

The OMNR issue can be brought back to a combinatorial problem of extracting a subset of cardinality k 

with some specified properties (i.e., number of locations to be removed), from a set of cardinality N 

(i.e., the initial network size) (Barca et al., 2015). The exhaustive exploration of the whole solution 

space SN is almost always unfeasible because it is too computationally demanding. Consequently, the 

use of an optimization heuristics capable of reducing the solution space becomes necessary in order to 

simplify the issue. In practice, given the general monitoring aim and the a priori available information, 

a quantitative criterion  
 

 𝜙(𝑆): 𝑆𝑁 → 𝑅+ (1) 

 

where ϕ(S) is the OF, must be defined which automatically leads to a specific optimization method 

category (model/design-based). In general, the stages of an optimization method can be summarized as 

follows, independently from its category: 
 

1. a starting reduced configuration 𝑆0 is defined; 

2. a new candidate configuration Si is generated by means of a sequential neighbouring search; 

3. a decision rule checks each generated configuration and selects the optimal transient solution 𝑆∗; 

4. a stop criterion states the convergence to the optimal solution, 𝑆O. 
 

In this paper, the GD method and the SSA method belonging to the model-based and design-based 

categories, respectively, are presented and applied. 
 

Greedy Deletion 

The GD method is a greedy heuristic for the optimal reduction of the monitoring network. The initial 

configuration S0  is made up of all the locations of the original network. This method substantially 

operates three nested loops. The outer loop is governed by the problem size, namely the k locations to 

be removed. The second intermediate loop identifies the two closest locations sa
∗ and sb

∗  of the current 

optimal solution S∗. This step can actually be viewed as the generation of two candidate configurations, 

each made up of S∗ reduced by sa
∗ and sb

∗ , respectively. Finally, at the inner loop, a simple decision rule 

is applied, which accepts as the optimal transient configuration one of the two which minimizes the OF: 
 

 𝜙̂𝑁𝑃𝐷(𝑠𝑖, 𝑆𝑁−𝑙\{𝑠𝑖}) =
1

|𝑆𝑁−𝑙\{𝑠𝑖}|
∑ 𝑑(𝑠𝑖, 𝑠𝑗)

𝑠𝑗∈𝑆𝑁−𝑙\{𝑠𝑖}

 
(2) 

where SN−l\{si} is the monitoring network under reduction deprived of si and 1 < 𝑙 < 𝑘 (Ortner et al. 

2007). The method stops when the required number of locations (k) has been removed from the original 

network. 
 

Spatial Simulated Annealing 

The SSA is basically structured as a pre-processing stage followed by two nested loops. In the pre-

processing, some parameters are estimated, needed to trigger the actual optimization method, namely 

the initial configuration S0 and the initial temperature T0. The outer loop is governed by the temperature 

and stops when this approaches zero. The inner loop is related to the problem size, that is, if k is 

defined as the number of locations to be added or removed, the inner loop consists of k iterations for a 

given temperature value. Within the inner loop, the candidate solutions are generated and subjected to 

the decision rule (Barca et al. 2015). Concerning the OF, the Average Ordinary Kriging Variance 

(AKV) has been used. The well-known ordinary kriging variance formulation in a generic unsampled 

location xi is (Isaaks and Srivastava 1989): 
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 𝜎𝑅
2(𝑥𝑖) = ∑ 𝜆𝑗(𝑥𝑖)

𝑁

𝑗=1
𝛾(𝑥𝑗, 𝑥𝑖) − 𝜇(𝑥𝑖) (3) 

 

where λj(xi) are the kriging estimation weights, γ(xj, xi) is the variogram value for the location pair 

(xj, xi), and μ(xi) are the Lagrange multipliers. Consequently, the OF can be written as: 

 

 𝜙𝐴𝐾𝑊 =
1

𝑁
∑ 𝜎𝑅

2(𝑥𝑖)
𝑁

𝑖=1
 (4) 

 

It is assumed that a priori knowledge about the spatial law (variogram model) of the variable to be 

monitored is available. Monitoring-network optimization based on AKV tends to remove locations 

where the monitoring information is redundant (Barca et al. 2008). 
 

3 Study area  
 

The Alimini lakes are two shallow coastal lakes located in the South-Eastern part of the Apulia Region 

along the Adriatic Sea coast (Figure 1). Actually, the Northern Lake, named Alimini Grande, is a 

lagoon, since it is directly connected to the Adriatic Sea through a narrow entrance. The smaller Lake is 

connected to the other by a natural channel. Both of them are mainly and constantly fed by groundwater 

recharge, through a number of coastal springs, but also, by surface runoff collected by a network of 

channels as well as directly by rainfall. In this study, the shallow aquifer has been considered, which is 

the only one directly connected to the Lakes. From a geological standpoint it is made by Plio-

Pleistocene sediments, consisting of an alternating sequence of calcarenites, sands and sandy clays 

(Margiotta & Negri, 2005). The geometry of aquifer is often hard to determine, since the water lies in 

limited intervals of permeable rock in a more general context of impermeable deposits. With the aim of 

investigating the qualitative and quantitative features of the shallow aquifer, 76 agricultural and 

domestic wells were selected among those located in the neighbourhood of the lakes (Figure 1). This 

monitoring network is mostly made by dug wells and seldom by drilled wells, whose main 

characteristics, (e.g. depth, stratigraphy, etc.) are often unknown. 

 

 
Figure 1: Study area 

4 Results and Discussion 
 

The two chosen optimization methods have been applied to the original monitoring network composed 

by 85 sites. Both the methods have been constrained to halve the network and after the optimization, 41 
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monitoring sites have been discarded. The network configuration produced by the SSA has an average 

kriging variance (AKV) which compared with the original network AKV has a percentage of worsening 

of about 0.9%. As it can be drawn from Figure 2, the two reduced configurations are very similar each 

other; in fact, they share about the 86% of the same sites. Consequently, it can be expected that, from the 

representativeness standpoint, the two reduced configurations behave in a similar fashion. In effect, if we 

try to re-estimate the respective discarded sites values by means of the two reduced network 

configurations, we obtain the following results: 

 

 
MBE RMSE RMAE 

Greedy Deletion 0.302 1.358 23.161 

SSA 0.028 1.367 21.917 

Table 1: Summary statistics of network configurations performances. 

 

Analyzing the Table I, we can see that the values estimated by means of SSA show to be significantly 

less biased than the GD ones. Furthermore, the percentage error (RMAE) is slightly better with respect 

the GD one. In summary, two out of three indices are very close each other. Consequently, we can 

conclude that the two reduced configurations perform as expected. A possible explanation of the similar 

structure and behavior of two configurations can be the extreme clustering of the complete network. 

Since, the two applied optimization methods tend to intervene on the geometrical configuration of the 

network; this can explain the obtained result. 

 

  
Figure 2: Downsizing results: (a) – Greedy Deletion method; (b) – Spatial Simulated Annealing method. 
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