
On the Approximation of a Conditional Expectation 

TOMMASO LANDO 
Dipartimento di Scienze aziendali, economiche 

e metodi quantitativi 
University of Bergamo 

Via dei Caniana 2, Bergamo 
ITALY 

tommaso.lando@unibg.it

SERGIO ORTOBELLI 
Dipartimento di Scienze aziendali, economiche 

e metodi quantitativi 
University of Bergamo 

Via dei Caniana 2, Bergamo 
ITALY 

sergio.ortobelli@unibg.it
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1 Introduction 
This paper discusses different methods to estimate 
the conditional expected value. Let  be a random 
variable with finite mean, and let  be some other 
random variable defined on the same probability 
space. The conditional expectation  is a 
random variable and it is a function of . In 
particular,  can be intuitively interpreted as 
the function of  that “best” approximates , in that 
it represents the best approximation as to the value 
of , given the only value of the random variable .
On the one hand, several well known methods are 
aimed at estimating the regression function 

, which represents just a realization of 
, namely: parametric regression methods, 

semi-parametric and non-parametric regression 
methods such as kernel regression [1],[2], 
smoothing splines [3], or various generalizations of 
these models, see e.g. [4]. On the other hand, in 
many real world problems (see e.g.[5]) we are 
interested in approximating the random variable 

, and estimating its distribution 
function. Provided that  has a density with 
respect to the Lebesgue measure, a method to 
estimate the density function of  have been 
recently introduced in the literature by Steckey and 
Henderson [6] (see also [7]). In particular, this 
method is based on a sort of conditional sampling 
which consists in i) sample ; and ii) sample 
from the conditional distribution of  given . 

Then, it is possible to estimate the density of 
with the kernel method. Nevertheless, we observe 
that in several situations it would not be possible to 
satisfy these sampling assumption, as we only have 
available a bivariate random sample from .
Therefore, in this paper we attempt to estimate the 
distribution of  simply using a random sample 
of independent observations  
from the bi-dimensional variable . Obviously, 
if we had available a sample of independent and 
identically distributed random variables from ,
then it would be trivial to estimate the distribution 
of . Hence, our idea is that we can use the 
observations  form  in 
order to generate vector of outcomes ,
which approximate the realizations of . For 
this aim, we propose to use two different methods, 
namely the OLP method, recently introduced by [8], 
and the well known kernel method, as recently 
suggested by [9]. The OLP method consists in 
approximating the sigma algebra generated by 
(denoted by ) with a sigma algebra generated 
by a suitable partition of the sample space, 
according to a given number ( ) of percentiles 
of . Hence, by averaging the observed values of 
over the above defined intervals, we can 
approximate the random variable  and thereby 
its distribution function. Differently, the kernel non-
parametric regression (see [1] and [2]) allows to 
estimate  as a locally weighted 



average, based on the choice of an appropriate 
kernel function. Therefore, by applying the kernel 
method to each observation of  ( ,
etc.), we obtain n outcomes, which can be similarly 
used to estimate the distribution of the random 
variable . In this paper we compare the two 
methods with a simulation analysis. Then we study 
the properties of the OLP estimator and propose 
some practical rules to enhance its performance. In 
particular, while it is well known that the kernel 
method depends on the choice of the kernel function 
and the bandwidth parameter, the OLP method 
depends on the choice of the number of intervals ,
used for approximating . The choice of  is 
crucial in order to obtain an accurate approximation. 
First, we propose a rule for determining  under 
general assumptions, and then we compare the 
kernel and OLP methods with a simulation study, 
under assumption of normality. Indeed, if we know 
the joint distribution of  and the true 
distribution  of  (which, for instance, can 
be easily computed in the Gaussian case), then we 
can generate a bivariate random sample from 

, and finally investigate which estimated 
distribution better fits to . In the Gaussian case, the 
performance of the kernel method can be optimized 
quite easily (in terms of kernel density function and 
bandwidth parameter). Thus, we compare the 
“optimal” kernel method with the OLP method, 
where the number of intervals  is determined 
without using any information on the joint 
distribution. The results show that, even in this 
“adverse” situation for the OLP method, the two 
methods provide comparable outputs. In the last 
section we study further properties the OLP 
estimator in the Gaussian case.  In particular, we 
argue that the performance of the OLP estimator can 
be further enhanced if the number of intervals used 
for approximating  is determined according to 
the correlation between the variables. In the last 
section we briefly summarize the paper and we 
propose some possible financial applications.  

2 Problem Formulation 
Let  be an integrable random variable on the 
probability space  and let  be a sub-
sigma-algebra of  (i.e. . The conditional 
expectation of  given  is the unique (P a.s.) 
random variable  such that: 

i)  is -measurable; 
ii) .

Let  and  be integrable random 
variables in the probability space . When 

 is the sigma algebra generated by X we 
write . Generally, the 
distribution of  is unknown, unless the joint 
distribution of the random vector  follows 
some special distribution, e.g. the Gaussian 
distribution or the multivariate t distribution (note 
that, except for trivial text book examples, an exact 
expression for  is rare). However, if we assume 
that  and  are jointly normally distributed, i.e. 

, (where obviously  is 
the vector of the means, and 

 is the 
variance-covariance matrix1) we can obtain the 
distribution of the random variable  quite 
easily. Indeed, it is well known that 

,   and thus,   

      (1) 

is still Gaussian distributed with mean   and 
variance   . Clearly, when the correlation of a 
couple of random variables (X,Y) is   then 

  P almost surely and 
equation (1) holds for any joint distribution of the 
vector (X,Y). Equation (1) holds also for joint 
Student’s t bivariate vector, as pointed out by [10].  
Basically, if the bivariate random vector  is 
Gaussian or t-distributed, we also know the general 
form of the distribution of , and therefore we 
can estimate it quite easily. For instance, we could 
approximate  by estimating the unknown 
parameters  and  respectively with the 
sample mean, the sample covariance coefficient and 
the sample variance. 
Unfortunately, in most of the cases we do not know 
the form of  the distribution of , thus we cannot 
estimate it with parametric methods. Moreover, we 
cannot even use non parametric methods, unless 
having available a random sample drawn from the 
random variable , which is surely uncommon 
and difficult to obtain. For these reasons, the aim of 
this paper is to provide a method for estimating 

 and its distribution using a “standard” 
bivariate random sample  of 
independent observations from the bi-dimensional 

1 For simplicity, in this paper we write, with a little abuse of 
notation, the dispersion matrix of  (X,Y) as: 

.



variable . For this purpose, we use two 
different methods, namely the OLP method, recently 
introduced by [8], and the kernel non parametric 
regression method. 

2.1 The OLP Method 
The OLP method has been recently introduced by 
[8] (see also [11]) to approximate the conditional 
expectation, based on an appropriate partition of the 
sample space. The method, as defined in [8], 
requires the knowledge of the probability measure 

: in this paper we do not rely on this assumption 
and we propose an “estimator” for the random 
variable .
Define by  the -algebra generated by X (that 
is, , where  is 
the Borel -algebra on ). Observe that the 
regression function is just a “pointwise” realization 
of the random variable . The following 
methodology is aimed at approximating 
rather than estimating . The -algebra  can 
be approximated by a -algebra generated by a 
suitable partition of . In particular, for any ,
we consider the partition  of 

 in  subsets, described as follows: 
,

.

The partition  is practically determined by a 
number ( ) of percentiles of . Furthermore, 
note that, by definition of percentile, each interval 

 have equal probability, that is, , for 
. Starting with the trivial sigma algebra 
, we can obtain a sequence of sigma 

algebras generated by these partitions, for different 
values of k. Generally:  

                  (2) 

Hence, it is possible to approximate the random 
variable  by 

,                      (3) 

where . Indeed, by definition of 
the conditional expectation, observe that is 
a -measurable function such that, for any set 

, (that can be seen as a union of disjoint sets, 
in particular  we obtain the equality 

          (4) 

It is proved in [8] that  converges almost 
certainly to the random variable , that is: 

 a.s..            (5) 

Hence, if we approximate , then we also 
approximate , for sufficiently large k. 
However, in practical situations, we do not know the 
probability measure  used to approximate
in (3). Hence, in this paper, we propose to 
approximate the random variable , which in 
turns approximates , based on the 
observations of a random sample. Let 

 be a random sample of 
independent observations from the bi-dimensional 
variable . First, as we generally do not know 
the marginal distribution of , we can determine the 
partition  using the percentiles of the 
empirical distribution, obtained from the 
observations . The number of intervals 
should be basically an increasing function of the 
number of observations , as discussed below. 
Then, if we assume to know the probability ,
corresponding to the i-th outcome , we obtain: 

.                (6) 

Otherwise, we can give uniform weight to each 
observation, and thus we can use the following 
estimator of : 

                        (7) 

where  is the number of observations in , that 
is,  (to 
clarify the explanation, for  we obtain the 
three quartiles, and therefore  and similarly 

 can be estimated by ). Note that, fixed , as 

the number of observations n grows,
 and  is an asymptotically unbiased 

estimator of : 



.          (8) 

Therefore, we are always able to approximate 
, and thereby the conditional expectation 

, by using the following estimator : 

.                       (9) 

where X is assumed independent from the i.i.d. 
observations . Note that  is a simple 

function, and it is conceptually 
different from the classical estimators, which are 
generally aimed at estimating an unknown 
parameter rather than a random variable. A further 
property of the OLP estimator is that 

: 

     (10) 

because it satisfies the basic properties of the 
conditional expectation, that is, 

.
Observe that, given a bivariate sample of size , the 
OLP estimator yields  distinct values for 

,, i.e. the ’s, where each one has 
frequency , for . These 
outcomes can be used to estimate the unknown 
distribution function of .

2.2 The Kernel Method 
The kernel method, typically used to estimate the 
probability density of an unknown random variable 
(see, for instance, [11]), can also be applied to 
estimate the regression function 

. In particular,  if we do not know the 
general form of , except that it is a continuous 
and smooth function, then we can consider the 
following kernel estimator: 

,                    (11) 

where , denoted by kernel, is a density function 
(typically unimodal and symmetric around zero) 
such that i) ; ii) 

 (see, among others, [1] and [2]). Moreover, 
is the smoothing parameter, often referred to as the 
bandwidth of the kernel, and it is a positive number 
such that  when . When the kernel 

 is the probability density function of a standard 
normal distribution, then the bandwidth is the 
standard deviation. It was proved in [1] that if  is 
quadratically integrable (see also [12]) then  is 
a consistent estimator for . In particular, 
observe that, if we denote by  the joint 
density of , the denominator of (11) converges 
to the marginal density of ,  while the numerator 
converges to . As a 
consequence, we know that .
From a practical point of view, if we apply the 
kernel estimator to the bi-variate random sample 

 we obtain the vector 
. In other words, 

each value  is a weighted average of kernels, 
centered at each sample observation . Since we 
know that  when , then we 
can also estimate the distribution function (say 

) of  with any parametric 
or non-parametric method, based on the outcomes 

.

3 A Simulation Comparison 
In this section, we compare the OLP and the 

Kernel method with a simulation study. It is worth 
noting that the comparison between these methods 
is not really balanced. Indeed, the main difference 
between the two procedures is that the OLP method 
generates  distinct outputs, each one with 
frequency , while the kernel method generally 
yields  different outputs, one for each observation 
of . Hence, if the kernel density and the bandwidth 
parameter are suitably chosen, then the kernel 
method should outperform the OLP method in terms 
of accuracy. On the other hand, the OLP estimator 
yields a set of distinct outputs  where 
each value  is a conditional average over the set 

. Therefore, the values ’s are generally robust 
estimates.  
As pointed out in section 2, if we know that the 
random vector  is jointly Gaussian (or t-



distributed), then we also know the true distribution 
of . The main motivation of this study is that, if 
we show that a method provides a good estimate in 
the normal case, when  is known, then we 
argue that it can provide similar results in many 
other cases, when the distribution of  is 
unknown. This is especially true for the OLP 
method, which does not depend on any particular 
specification except from the choice of the number 
of intervals . Hence, assuming that 

, (where   and 
) we propose to 

simulate a bivariate random sample from  and 
to apply the OLP and the Kernel methods to the 
observed data, just as described in section 2, in 
order to evaluate which method yields a better 
approximation of the distribution of . Indeed, 
in both cases we obtain n outcomes ,
which are used to estimate the probability 
distribution  of the r.v. 
(i.e. the Gaussian distribution   in this 
particular case). For this purpose, we simply apply 
the empirical distribution function to the vector 

. The empirical distribution is actually 
the natural consistent estimator of  (see e.g. [13]), 
and it is defined by  

,                  (12) 

where  is the indicator function for the set . In 
this paper we propose to use  as a non-parametric 
estimator for the distribution of . Obviously, 
according to how the outcomes  are 
generated (OLP or Kernel) we obtain two different 
empirical distributions ’s, which approximate the 
true distribution, given by . Then, in 
order to evaluate which method provides the best 
fitting distribution, we compute two different 
descriptive measures of fit based on probability 
distances, namely the Kolmogorov-Smirnov (or 
uniform) metric, defined by  

,        (13) 

and the Kantorovich metric [14] (i.e. the  metric 
for distribution functions), defined by 

.         (14) 

Generally, provided that both methods can capture 
the shape of , we would expect that the kernel 
method yields a better fit, because of its larger 
number of distinct outcomes ’s. Indeed, a 

continuous distribution is typically better estimated 
by a large number of distinct observations. 
However, it should be stressed that the OLP method 
has several other advantages compared to the Kernel 
method. While the OLP method only requires that 
is an integrable random variable, the kernel method 
is suitable only for continuous random variables and 
requires also the assumption of finite variance. 
Moreover, for the OLP method we only need to 
specify how to determine the number of intervals k, 
while, for the kernel method, we have to choose the 
“best” kernel density and bandwidth parameter. In 
particular, for the proposed analysis we used the 
following specifications. 

i) OLP - number of intervals 
Obviously, the selected number of intervals k
can vary between 1 and n and, in order to 
improve the accuracy of the estimate it must 
generally be an increasing function of n (we 
shall discuss this point in the next section). 
Note that, for  we approximate the 
random variable  with a number, i.e. the 
sample mean , which is obviously not 
appropriate. On the other hand, for   we 
approximate  with the marginal 
distribution of , given by , which is 
also generally inappropriate. Hence, in order to 
maximize i) the number of intervals, and ii) the 
number of observations in each interval ( ), 
in this analysis we propose to use: 

,                     (15) 
where  is the integer part of . By doing so, 
we obtain  intervals containing 
(approximately)  observations. If we do not 
have any information about the dependence 
between  and , this method is actually the 
most robust, in that it provides the largest 
possible number of conditional averages , 
where each  is computed based on the largest 
possible number of values ( ). In the next 
section we prove that the rule identified by (14) 
is actually appropriate and yields a consistent 
estimator. Moreover, in section 4 we propose a 
new rule for the choice of , based on the 
correlation value between  and , that might 
further enhance the performance of the OLP 
estimator. 

ii) Kernel – density and bandwidth
Generally, the choice of the kernel density and 
especially the bandwidth parameter can be 
really troublesome and this could be a 
drawback of the method. Indeed, there are 
several sophisticated techniques to choose the 



optimal bandwidth, which is still an open 
problem in the literature (see e.g. [15]). Since 
we know that  is jointly normally 
distributed, we simply use the normal kernel, 
which is obviously the most appropriate choice 
in this particular case. As for the bandwidth 
parameter, we can use the Sturge’s or the 
Scott’s rule (see [16] and [17]) which are 
especially suitable under normality assumptions 
(see also [18]). In particular, in what follows we 
shall show just the results obtained by applying 
the Scott’s rule, because it provided better 
approximations of  in our analyses. We recall 
that the optimal bandwidth, according to the 
Scott’s rule, is given by .

Note that, in the Gaussian case, the distribution of 
the conditional expectation, that is, 

, mainly depends on the 
correlation between the variables. Hence, we 
generated several random samples of different sizes 
from  (where we assume the 
marginals be standard normal random variables, 
i.e.,   for different 
(positive) values of , and analyzed the results 
accordingly. The Table 1 shows the results in terms 
of the probability metrics defined above. First, note 
that the K-S distance is quite high (about 0.5) for 

. The obvious reason is that  yields 
, which is a degenerate distribution 

(at 0, in this case) and therefore the Kolomogorov-
Smirnov metric  is generally close to 
0.5, while the Kantorovich metric, which is based 
on the area between the functions, better captures 
the distance between the distributions in this 
particular case. Note also that the consistency of 
both methods is apparent from tables 1 and 2, in that 
increasing the sample size (from  in Table 1 
to  in Table 2) the distance between the true 
and the estimated distribution approaches zero, for 
any fixed value of  (except for the Kolomogorov-
Smirnov distance at , as explained above). 
However, we observe that the kernel method 
generally outperforms the OLP method. Although in 
several cases the results are similar (the OLP 
method is better only in some rare cases), as 
expected and discussed above. In particular, note 
that the kernel method generally provides more 
accurate estimates than the OLP for small or large 
values of : indeed, the value of  will be critical 
for the optimal choice of , as discussed in the next 
section. Nevertheless, if we consider that the kernel 
method has been calibrated just to provide the best 
possible estimates under assumption of normality, 

the results of the OLP method are surprisingly 
valiant.  

 Kernel OLP 
D K D K 

0 0.784 0.059 0.565 0.207 
0.09 0.894 0.070 0.609 0.203 
0.18 0.255 0.044 0.284 0.088 
0.27 0.227 0.073 0.122 0.060 
0.36 0.225 0.105 0.177 0.085 
0.45 0.059 0.031 0.118 0.085 
0.54 0.076 0.057 0.111 0.069 
0.63 0.111 0.103 0.169 0.122 
0.72 0.103 0.106 0.072 0.078 
0.81 0.098 0.129 0.094 0.091 
0.9 0.067 0.132 0.077 0.082 

Table 1: simulations with  from a multivariate 
normal distribution 

 Kernel OLP 
D K D K 

0 0.601 0.009 0.502 0.045 
0.09 0.067 0.008 0.062 0.015 
0.18 0.038 0.011 0.030 0.009 
0.27 0.034 0.013 0.033 0.011 
0.36 0.017 0.008 0.029 0.010 
0.45 0.017 0.009 0.017 0.010 
0.54 0.012 0.010 0.017 0.013 
0.63 0.013 0.010 0.015 0.013 
0.72 0.009 0.010 0.014 0.012 
0.81 0.007 0.009 0.015 0.013 
0.9 0.005 0.008 0.014 0.014 
Table 2: simulations with  from a multivariate 

normal distribution 

Similarly, we performed a simulation analysis also 
for the Student’s t distribution. We generated 
several random samples of different sizes from 

 (with  and 
): in this case, we know that .

The results confirms what discussed above, as 
shown in Table 3, for . In particular, 
observe that the OLP estimator outperforms the 
kernel estimator for values of  between  0.18 and 
0.45, but in the other cases the kernel estimator is 
more accurate. 
Finally, Fig. 1 and Fig. 2 show that the OLP 
estimator well captures the shape of the distribution 



but approximates it with a simple function which 
has an inferior number of addends. Differently in 
Fig.3 we observe that the kernel method yields more 
accurate results for small values of . 

 Kernel OLP  
D K D K 

0 0.670 0.023 0.590 0.057 
0.09 0.079 0.015 0.069 0.017 
0.18 0.056 0.019 0.039 0.014 
0.27 0.025 0.019 0.027 0.016 
0.36 0.021 0.017 0.020 0.015 
0.45 0.019 0.018 0.021 0.017 
0.54 0.011 0.013 0.025 0.019 
0.63 0.014 0.018 0.017 0.024 
0.72 0.011 0.016 0.024 0.023 
0.81 0.005 0.010 0.012 0.022 
0.9 0.006 0.012 0.013 0.023 

Table 3: simulations with  from a multivariate t
distribution 

Fig. 1. , ,  and 
. Green=true dist ,Red= estimated dist (Kernel), 

Blue=estimated dist (OLP) 

Fig. 2. , ,  and 
. n=10000, Green=true dist ,Red= estimated dist 

(Kernel), Blue=estimated dist (OLP) 

Fig. 3 ,   and 
. n=1000, Green=true dist ,Red= estimated dist 
(Kernel), Blue=estimated dist (OLP) 

4 On the Optimal Number of 
Intervals 
The simulation comparison in section 3 was 
apparently “rigged” in favor of the kernel method. 
Indeed, we used the information about the 
distributional assumptions (normality) to improve 
the results of the kernel method as much as possible, 
i.e. using the normal kernel and the optimal 
bandwidth. On the other hand, this information was 
not used also to enhance the performance of the 
OLP estimator. However, in this adverse situation, 
we obtained that the OLP estimator yields surprising 
results. Differently, in this section we propose to use 
the information about the joint distribution in order 
to further improve the OLP estimator, under some 
particular conditions.  
As discussed in section 3, the number of intervals k
for the OLP method can vary between 1 and n.
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However, if we assume that the random vector 
 is jointly normally distributed, then we know 

that, for , we obtain , and 
therefore the distribution of  can be better 
estimated by a number, that is, the sample mean .
Hence, in this particular case, the optimal value of k
is exactly 1, rather than . On the other hand, for 
|  (i.e. ), we obtain 

, and therefore the 
distribution of  can be estimated with the 
marginal observations of , . Thus, when 

 the optimal value of k is exactly n: in this 
case we would get the maximum possible number 
( ) of distinct observations,  
From these considerations, we argue that, also in the 
case that , the dependence between  and 

 should influence the choice of the number of 
intervals k. In particular, k should be chosen 
according to the mean-dependence structure 
between the random variables. We recall that 
generally stochastic independence implies mean-
independence, which in turn implies uncorrelation 
(nevertheless, if  is jointly Gaussian the three 
conditions are equivalent). In the following 
proposition we derive the formula of the mean 
squared error (MSE) between the OLP estimator 
and the conditional expectation  in the 
Gaussian case. It should be stressed, that generally 
the MSE is intended as the expectation of the 
squared error between an estimator, that is, a 
random variable, and a number. Interestingly, in this 
special case the MSE is based on the difference 
between two random variables. We show that the 
MSE is a mathematical function of the correlation 
coefficient, and therefore we can provide a simple 
rule of thumb for determining the optimal number of 
intervals , also in the case . Without 
loss of generality, we focus on the special case that 

 with ,  to simplify the 
computation. Obviously, if  then 
and  is the optimal choice, if  then 

 and  is the optimal choice, 
as discussed above. For the proof of the following 
proposition we assume to know the true percentiles 
of  and thereby the true intervals .

Proposition 1. Let  be a bivariate Gaussian 
vector,  with 
(i.e.  ), and let  be a 
random sample of independent observations from 

. Assume to know the  percentiles 
 of , for , and thereby the 

intervals , . Then, the mean squared 
error of the OLP estimator is given by: 

, (16)
where  is the (Gaussian) marginal density of X. 

Proof 
We know that: . Moreover, 

, where 

because .

Note that 

where  
,

and the equality 

 holds for the independence between 
the observations. Observe also that 



. Then: 

Furthermore, since 

we obtain 

which yields the thesis. 

Obviously, in practical cases we do not know the 
true percentiles, but we estimate them with the 
empirical distribution: these estimates are 
consistent, that is, for fixed  and for  the 
sample percentiles converge to the true ones (as an 
obvious consequence of the law of large numbers). 
Nevertheless, we also need that  in order to 
obtain a consistent estimator of , therefore if 
the number of estimands grows as fast as  does, 
then the MSE of OLP method will not converge to 
0. In view of Proposition 1, it is apparent that, in the 
case , the necessary and sufficient conditions 
for the convergence of the OLP estimator are: i) 

; iii) .  This is stated in the 
following corollary, which is a straightforward 
consequence of Proposition 1. 

Corollary 2. Let  be a bivariate Gaussian 
vector, i.e.  where , and 
let  be a random sample of 
independent observations from . A necessary 
and sufficient condition for  is 
that  and .

In other words, the general rule is that the number of 
percentiles (which have to be estimated) must grow 

slower than the number of observations. Corollary 1 
gives necessary and sufficient conditions for the 
consistency of the OLP estimator in the Gaussian 
case. We argue that the same rule holds also if the 
joint distribution is not normal. Obviously, the rule 

 where  (e.g. , used in 
the simulation analysis) satisfies the conditions of 
Corollary 1. In order to further increase the 
convergence rate of the OLP estimator, we argue 
that, when  is close to 0 the exponent  should be 
close to 0, and when  is close to 1 the exponent 
should be close to . Indeed, observe that the second 
term in the MSE expression approaches zero only as 

 tends to infinity, but it can be negligible for small 
values of , while in this case the asymptotic 
behavior of the first term is critical. On the other 
hand, we obtain the exactly opposite situation when 
the variables are highly correlated, thus, in this case, 
a larger value of  would increase the convergence 
rate. Hence, as a rule of thumb, we propose to use 

                        (17) 
(where  is the value of the empirical correlation 
between the data) which yields  for ,

 for , and ensures that 
 for any different value of .

The possible usefulness of this simple rule is well 
described by the following examples. 

Example 
Let  with 
and , which yields that . We 
generate a bivariate sample of size 1000 from the 
random vector  and estimate the distribution 
function  of  with the OLP method, using the 
following values of : 1) 
(where ); 2) ; 3) 

; and 4) . Fig. 4 below 
shows that the best performance of the OLP 
estimator is obtained for 1) , as in this 
case the estimated distribution is incredibly well-
fitting to the true one. The other methods surely 
provide inferior performances. Indeed, the estimated 
distributions yielded by 2) and 3) seem to capture 
the shape of the reference distribution  (that is, 

) but approximate it with a “lower 
resolution”, in that the number of intervals (i.e. 
distinct values ) is quite poor (especially in case 
2)). Conversely,  in 4) we have a higher value of 
distinct values of  and consequently a “higher 
resolution” in the plot, but the estimated distribution 
has apparently a different shape from the true one. 
Nevertheless these results also confirm that with 



 we generally obtain a good compromise 
between closeness to the true distribution and 
number of distinct observations .

Fig. 4. Estimated (blue) and true (red) distribution 
functions for different values of k in the Gaussian case. 

Furthermore, we repeat the same experiment for a 
bivariate t distribution, that is 
with  and . In this 
case we obtain . We generate a 
bivariate sample of size 10000 from the random 
vector  and estimate the distribution function 

 of  with the OLP method, using the 
following values of : 1)  (where 

); 2) ; 3) ; 
and 4) . Fig. 5. shows that in case 
1) and 3) we apparently obtain the best 
approximations. However, the Kantorovich metric 
(  for case 1 and  for case 3) confirms that 
the best choice is  .

Fig. 5. Estimated (blue) and true (red) distribution 
functions for different values of k in the Student’s t case. 

We finally argue that the proposed rule can be 
appropriate for dealing with distributions which are 
approximately Gaussian, and therefore can be 
usefully applied to several kinds of data, because of 
the central limit theorem for random vectors. 
Indeed, the multidimensional central limit theorem 
states that the standardized sum of i.i.d random 
vectors (with finite variance) converges to 
a multivariate normal distribution. Therefore, just 
based on the assumption that  have a joint 
distribution (i.e. they are defined on the same 
probability space), we can generally use the 
empirical correlation between the observations of 
and  in order to get information about the 
dependence between the variables, and thereby to 
determine the optimal number of intervals for the 
OLP estimator. 

5 Conclusion 
In this paper, we proposed two different procedures 
(OLP and kernel) to estimate the distribution 
function of a conditional expectation, based on a 
bivariate random sample. In particular, the 
properties of the OLP estimator have been studied 
thoroughly. It has been shown that the method can 
provide a consistent approximation of the random 
variable , based on a suitable choice of a 
parameter . Both the OLP and kernel methods 
make it possible to estimate the distribution function 
of  non parametrically. Our simulation 
results show that the methods are comparable. 
However, it should be stressed that the OLP method 
presents several advantages compared to the kernel, 
in that it does not require any particular assumption 
in order to be applied. Conversely, the kernel 
method requires on many restrictive conditions, 
such as continuity and finite variance, and its 
performance depends on a suitable choice of the 
kernel function and bandwidth parameter. Finally, 
since the performance of the OLP estimator depends 
just on the chosen number of intervals , we 
provided some general criteria for the choice of 
under normal assumptions. Consequently, we 
proposed a practical rule in order to optimize the 
performance of the method. 
Both estimators (kernel and OLP) can be used in 
optimization procedures as required in several 
financial applications. In particular, we can use the 
conditional expectation estimators to i) order the 
investors’ choices or ii) evaluate and exercise 
arbitrage strategies in the market (see [10]). In the 
first case, we know that any non satiable risk averse 
investor prefers the future wealth WT at time T with 
respect the wealth Wt at time t (t<T), only if  
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 Thus, by using the proposed 
approximation of the conditional expected value, we 
can attempt to order and optimize the choices of non 
satiable risk averse investors, as suggested by [8]. In 
the second case, as a consequence of the 
fundamental theorem of arbitrage, we know that 
there exists no arbitrage opportunity in the market if 
there exists a risk neutral martingale measure under 
which the discounted price process results to be a 
martingale. So, if we consider the augmented 
filtration  associated to the Markov price 
process , then we obtain  that 

)= ). Therefore, the conditional 
expected value estimator and the fundamental 
theorem of arbitrage can be used to estimate the risk 
neutral measure and to optimize arbitrage strategies 
in the market.  
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