
 

International Workshop 
“Stochastic Programming for Implementation  
and Advanced Applications”  
(STOPROG-2012) 
July 3–6, 2012, Neringa, Lithuania 

ISBN 978-609-95241-4-6 
L. Sakalauskas, A. Tomasgard, S. W.Wallace (Eds.):  
Proceedings. Vilnius, 2012, pp. 6–12 
© The Association of Lithuanian Serials,  
Lithuania, 2012 
doi:10.5200/stoprog.2012.02 

 

 6

 
 

RISK AVERSE TWO-STAGE STOCHASTIC OPTIMIZATION MODEL FOR THE ELECTRIC 
POWER GENERATION CAPACITY EXPANSION PROBLEM 

Marida Bertocchi1, Maria Teresa Vespucci2, Stefano Zigrino3, Laureano F. Escudero4 
1, 2, 3University of Bergamo,Via Marconi 5A, 24044 Dalmine (BG), Italy 

4Universidad Rey Juan Carlos, c/Tulipan, 28933 Mostoles (Madrid), Spain 
Emails: 1marida.bertocchi@unibg.it; 2maria-teresa.vespucci@unibg.it; 

3stefano_zigrino@unibg.it; 4laureano.escudero@urjc.ep 
Abstract. We consider the optimal electric power generation capacity expansion problem, over a multi-
year time horizon, of a price-taker power producer who has to choose among thermal power plants and 
power plants using renewable energy sources (RES), while taking into account regulatory constraints on 
CO2 emissions, incentives to generation from RES and risk due to fuel price volatility which affects the 
generation variable costs. A two-stage stochastic mixed integer model is developed that determines the 
number of new power plants for each chosen technology, as well as the years in which the construction of 
the new power plants is to begin. The solution allows determining the evolution of the power producer’s 
generation system along the time horizon, so that the expected total profit is maximized, with revenues 
from sale of electricity and of Green Certificates and costs for the annual debt repayment of new power 
plants, purchase costs of CO2 emission permits and of Green Certificates, fixed and variable production 
costs of new power plants and of power plants owned by the producer at the beginning of the planning pe-
riod. Alternative risk measures are considered and tested. 
Keywords: power generation capacity expansion, stochastic mixed-integer model, risk measures. 

1. Introduction 
The incremental selection of power generation capacity is of great importance for energy planners. In 

this paper we deal with the case of a price taker power producer, who has to determine the optimal mix of 
different technologies for power generation, ranging from coal, nuclear and combined cycle gas turbine to 
hydroelectric, wind and photovoltaic, taking into account the existing plants, the cost of investment in 
new plants, the maintenance cost, the purchase and sales of CO2 emission trading certificates and green 
certificates to satisfy regulatory requirements over a long term planning horizon (generally, 30 years or 
more). Uncertainty of prices (fuels, electricity, CO2 emission permits and Green Certificates) should be 
taken into account, see [1, 2, 4, 9, 15]. We propose a two-stage stochastic model for finding an optimal 
trade-off between expected profit and the risk of getting a negative impact on the profit due to the occur-
rence of a not-wanted scenario. The model can be seen as a generalization of the Levelized Cost of Elec-
tricity (LCoE), the standard business tool that finds the technology which provides the lowest electricity 
selling price to break even: indeed the model finds the technology mix that provides the highest expected 
profit taking into account risk. 

2. The risk-neutral two-stage stochastic model 
Given a planning horizon consisting of a set I of years, the two-stage stochastic model determines the 

optimal power generation expansion plan, i.e. the number of new power plants of candidate technology j, 
belonging either to the set JT of thermal technologies or to the set JR of Renewable Energy Sources (RES) 
technologies, whose construction is to start in year i∈I, taking into account the set KT of thermal plants 
and the set KR of RES plants already owned by the producer at the beginning of the planning horizon. The 
uncertainty of prices and of power producer’s market share along the planning horizon is represented by a 
set Ω of scenarios on the following stochastic parameters: 

GC
i ωπ ,

: electricity price in year i in scenario ω ; 
GC
i ωπ ,

: price of Green Certificates in year i in scenario ω ;  
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2
,

CO
i ωπ : price of CO2 emission permit in year i in scenario ω ; 
J
jv ω, : fuel costs of candidate thermal power plant j∈ JT U JR in scenario ω ; K

kv ω, : fuel costs of existing 
thermal power plant k∈ KT U KR in scenario ω ; 

ω,iM : power producer’s market share in year i in scenario ω. 
The optimal power generation expansion plan is defined by the nonnegative integer variables wj,i, 

that represent the number of new power plants of candidate technology j whose construction is to start in 
year i. Variables Wj,i represent the number of power plants of candidate technology j∈JTUJR available for 
production in year i∈I. The optimal values of the following decision variables are also determined by the 
model:  

J
ijE ω,, : electricity produced by a plant of technology j∈JT U JR in year i∈I under scenario ω∈Ω; 

K
ikE ω,, : electricity produced by power plant k∈KT U KR in year i∈I under scenario ω∈Ω; 
ω,iG : Green Certificates sold  (Gi,ω ≥ 0) or bought  (Gi,ω ≤ 0)  in year i∈I under scenario ω∈Ω; 
ω,iQ : CO2 produced in year i∈I under scenario ω∈Ω. 

 
The risk-neutral two-stage stochastic model is as follows.  

 ω
ω

ω FpF ∑
Ω∈

=max   (1) 
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∈ ∈

= θ ⋅ + θ ⋅ ∈ ω∈Ω∑ ∑ .  (11) 

Constraints (3) impose integrality of nonnegative variables wj,i. Constraints (4) state that for every 
candidate technology j the total number of new power plants constructed along the planning horizon is 
bounded above by the number jZ of sites ready for construction of new power plants of that technology, 
i.e. sites for which all necessary administrative permits have been released. Constraints (5) define the 
number Wj,i of new power plants of technology j available for production in year i, i.e. plants for which 
construction is completed and industrial life is not ended. Constraint (6) states that the sum of actualized 
annual debt repayments RjWj,i cannot exceed the available budget B. Constraints (7) require the annual 
electricity production of all new power plants of technology j to be nonnegative and bounded above by 
the capacity of new power plants of technology j available for production in year i, which is the product 
of Wj,i times the capacity of one plant of technology j. Analogous restrictions are imposed by constraints 
(8) on the annual production of existing power plants k∈KTUKR. Constraints (9) require the total electrici-
ty generated in every year i not to exceed the power producer’s market share in that year. The Green Cer-
tificates incentive scheme is taken into account by contraints (10). The ratio βi is required in year i 
between the electricity produced from RES and the total electricity produced: if the power producer pro-
duces less energy using RES, he must buy Green Certificates (Gi,ω < 0); if he produces more electricity 
from RES than the required amount, he can sell Green Certificates (Gi,ω > 0). Constraints (11) define the 
amount Qi,ω of CO2 emissions for which he must buy emission permits in year i under scenario ω, being 
θk and θj the CO2 emission rates of thermal power plant k∈KT and thermal power plant of candidate tech-
nology j∈JT respectively. The total profit Fω under scenario ω∈Ω is given by equation (2). The variable 
production costs J

jv , of a RES power plant of candidate technology j∈JR, and K
kv , of the RES power plant 

k∈KR, are assumed to be known with certainty. Parameters fk and fj represent the fixed production costs of 
power plant k∈KT and of a power plant of technology j∈JT, respectively. In the risk neutral approach the 
expected profit (1) over scenarios ω∈Ω  is maximized subject to constraints (3)–(11). 

3. Risk aversion strategies 
We evaluate the impact of introducing five alternative risk measures in our model.  

3.1. Risk aversion strategy 1: Conditional Value at Risk (CVaR) 
The objective function (1) is substituted by  

 


 


−+


− ∑∑
Ω∈Ω∈ ω

ωω
ω

ωω α
ρρ dpVFp 1)1(max   (12) 

i.e. by the convex combination of the expected profit and of a term that equals the CVaR [12, 13] at the 
optimal solution. The auxiliary variables dω and V are defined by constraints  
 Ω∈≥−≥ ωωωω ,0, dFVd ,  (13)  
the parameter ρ∈[0, 1] is the risk aversion factor and α∈[0, 1] is the confidence level. The optimal value 
of V is the Value-at-Risk (VaR). 

3.2. Risk aversion strategy 2: Shortfall Probability (SP) 
Given a profit threshold φ, the shortfall probability, see [14], is the cumulative probability of the sce-

narios with a profit smaller than φ, i.e.  
 ∑

Ω∈
⋅

ω
ωω µp   (14) 

where the binary variable µω, defined by the constraint 
 Ω∈∀⋅≤− ωµφ ωω MF   (15) 
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takes value 1 if  Fω ≤ φ, i.e. if ω is a non-wanted scenario, with M sufficiently large constant. The profit 
risk can be hedged by simultaneously pursuing expected profit maximization and shortfall probability 
minimization: this is done by maximizing the objective function, with 0 ≤ ρ ≤ 1, 

 


−


− ∑∑
Ω∈Ω∈ ω

ωω
ω

ωω µρρ pFp)1(   (16) 
subject to (2)–(11). 

3.3. Risk aversion strategy 3: Expected Shortage (ES) 
Given a profit threshold φ, the expected shortfall, see [4], is given by  

 ∑
Ω∈ω

ωωdp  (17) 

where dω is a nonnegative variable that satisfies constraint 
 Ω∈∀≥≤− ωφ ωωω ,0, ddF   (18) 

The expected shortage is then defined as 

 


− ∑∑ Ω∈
≤Ω∈

ω
ωω

φω
ω

ω

φ dpp
F|

1  (19) 

The profit risk is hedged by simultaneously pursuing expected profit maximization and expected 
shortfall minimization: this is done by maximizing the objective function, with 0 ≤ ρ ≤ 1, 

 


−


− ∑∑
Ω∈Ω∈ ω

ωω
ω

ωω ρρ dpFp)1(  (20) 

subject to (2)–(11). 

3.4. Risk aversion strategy 4: First-Order Stochastic Dominance (FOSD) 
A benchmark is given by assigning a set P of profiles (φ p, τ p), p∈P, where φ p is the threshold to be 

satisfied by the profit at each scenario and τ p is its failure probability. The profit risk is hedged by max-
imizing the expected value of profit (1), while satisfying the so called first-order stochastic dominance 
constraints, see [11], 
 PpMF pp ∈∀Ω∈∀≤− ,ωµφ ωω   (21) 
where p

ωµ are 0–1 variables by which the shortfall probability with respect to the threshold φ p is computed, 
 ∑

Ω∈
∈∀≤

ω
ωω τµ Ppp pp   (22) 

and equations (2)–(11). This risk measure is related to Shortfall Probability. The drawback of this ap-
proach is the increase of the number of constraints and binary variables. 

3.5. Risk aversion strategy 5: Second-Order Stochastic Dominance (SOSD) 
A benchmark is assigned which is defined by a set of profiles (φ p, ep), p∈P, where φ p is the thresh-

old to be satisfied by the profit at each scenario and ep is the upper bound to the expected shortfall over 
the scenarios. The profit risk is hedged by maximizing the expected value of profit (1), while satisfying 
the so called second-order stochastic dominance constraints, see [10], 
 PpddF ppp ∈∀Ω∈∀≥≤− ,,0, ωφ ωωω   (23) 
 ∑

Ω∈
∈∀≤

ω
ωω Ppedp pp   (24)  
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This measure is closely related to the risk measure introduced in [8], where the thresholds p∈P are 
considered as the benchmark. It is interesting to point out that in the risk aversion strategies 4 and 5 the 
hedging is represented by the requirement of forcing the scenario profit to be not smaller than a set of 
thresholds with a failure probability for each of them in strategy 4 and an upper bound on the expected 
shortage in strategy 5. The price to be paid is the increase of the number of constraints and variables (be-
ing 0–1 variables in strategy 4).   

4. Numerical results 
The stochastic model introduced in Section 2 jointly with the risk aversion strategies presented in 

Section 3 have been implemented in GAMS and CPLEX 12.1.0 has been used for computing the optimal 
solution. Only scenarios on fuel prices are considered, with gas price more volatile than coal price and 
with the nuclear fuel price being the less volatile among the three. All other parameters are deterministic. 
The obtained results are shown in Tables 1–5. When the power producer is risk neutral, the technology of 
choice is CCGT; as the risk aversion increases, CCGT plants are gradually substituted by coal plants first 
and by RES plants eventually. Nuclear plants are never chosen as the budget is not large enough; wind 
power is the only renewable plant technology in the optimal mix, as other RES technologies either are not 
economically convenient or there are no sites ready for construction. 
 
Table 1. Results with CVaR: α = 5%, budget B = 3.84 G€ 

ρ 0 0.072 0.1 0.15 0.4 0.6 
CCGT 9 7 4 2 1 0 
Coal 1 2 4 5 5 0 
Wind 0 0 1 2 4 24 

Expected Profit [G€] 12.43 12.01 11.34 10.79 10.26 7.24 
VaR [G€] –3.40 –0.60 3.48 5.87 6.30 7.24 
CVaR [G€] –14.80 –9.33 –1.22 3.43 4.57 7.24 

 
Table 2. Results with SP: φ = 6 G€, budget B = 3.84 G€  

ρ 0 0.07 0.8 0.9 
CCGT 9 7 4 2 
Coal 1 2 4 5 
Wind 0 0 1 2 

Expected Profit [G€] 12.43 12.01 11.34 10.79 
Shortfall Probability 0.12 0.10 0.047 0 

 
Table 3. Results with ES: φ = 6 G€, budget B = 3.84 G€  

ρ 0 0. 578 0. 866 0. 958 0.976 
CCGT 9 4 2 1 0 
Coal 1 4 5 5 2 
Wind 0 1 2 4 17 

Expected Profit [G€] 12.43 11.34 10.79 10.26 8.22 
Expected Shortage [G€] –6.51 1.92 3.86 4.42 5.30 
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Table 4. Results with FOSD: budget B = 3.84 G€ 
 Benchmark 1 Benchmark 2 

(φ 1, τ 1) (3, 0.02) (5.0, 0.02) 
(φ 2, τ 2) (6, 0.08) (6.5, 0.08) 
(φ 3, τ 3) (8, 0.28) (7.5, 0.28) 
(φ 4, τ 4) (9, 0.90) (8.0, 0.90) 
CCGT 2 0 
Coal 5 2 
Wind 2 17 

Expected Profit [G€] 10.79 8.22 
Expected Shortage [G€] 3.86 5.30 

 
Table 5. Results with SOSD: Budget = 3.84 G€  

 Benchmark 1 Benchmark 2 
(φ 1, τ 1) (2, 0.01) (4.0, 0.01) 
(φ 2, τ 2) (5, 0.05) (6.0, 0.05) 
(φ 3, τ 3) (6, 0.10) (6.5, 0.10) 
(φ 4, τ 4) (7, 0.20) (7.0, 0.20) 
CCGT 0 0 
Coal 4 2 
Wind 10 17 

Expected Profit [G€] 10.79 8.22 
Expected Shortage [G€] 3.86 5.30 

5. Conclusions  
Risk neutral strategy could be “a fiasco”, if there is a great variability in the scenario objective func-

tion values, so any risk aversion measure presented above is a better choice for risk minimization. When 
choosing the risk measure three aspects are relevant: ease of implementation, model complexity and in-
formation on the risk level. As regard to the ease of implementation, CVaR is the easiest to be used, since 
it only requires assigning the confidence level α (tipical values are 1%, 2% o 5%); ES and SP require a 
profit threshold, which needs to be carefully chosen; FOSD and SOSD require more information, since a 
set of thresholds (benchmark) needs to be chosen. As regard to model complexity, CVaR, ES and SOSD 
do not use binary variables, while SP and FOSD need binary variables. Finally, concerning the infor-
mation on the risk level, SOSD forces the shape of profit distribution which is particularly useful for 
modeling the left tails; CVaR and ES give information about the expected value of left tail of distribution; 
FOSD focuses only on where distributions intersect the thresholds and SP focuses only on where distribu-
tions intersect the profit threshold. When the problem dimension increases, ad hoc algorithms are re-
quired for computing the optimal solution, see [3, 5, 6, 7]. 
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