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Abstract

This paper proposes a methodology to synthesize sea surface temperature data collected by remote sensing,
in order to identify homogeneous areas of the ocean surface and to derive a minimal network for point
monitoring. A recently introduced clustering algorithm is adopted, which is based on state-space modelling
and which enables clustering of millions of time series with respect to their temporal pattern.
When the clustering algorithm is applied to sea surface temperature time series and the clusters mapped in
space, we observe that the ocean surface divides into a relatively small number of clusters, with time series
in each cluster sharing the same temporal pattern.
In this work, sea surface temperature clustering for the North Atlantic basin and time period 2003-2009 is
provided. The clustering result is used to define the minimal network, in terms of number of buoys and their
spatial locations. The minimal network derived following this approach consists of 25 nodes, each located
within a cluster. Spatial representativeness of data collected using such network has been validated using
remote sensing data from 2010 to 2012, computing bias and root mean squared prediction errors over space.
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1. Introduction and aims
Sea surface temperature (SST) is recognised as an essential climate variable by the Global Climate Observ-
ing System programme. Therefore, SST is extensively measured at the global level using both monitoring
networks (buoys) and satellites (Emery, 2015). The buoy systems measure SST at a few thousand spatial
locations scattered over the ocean surface. The remote sensing data, on the other hand, are available at a
daily or weekly level and with high spatial resolution (e.g. 9 km grid cell). Remote sensing data sets are thus
very large, with several million time series.
Temporal variability of SST is induced by many causes, some of them well known and others not fully
understood or yet discovered. In this regard, remote sensing data represent a precious source of information
as they cover the entire globe and they should help deepen the mechanisms at the basis of the SST variability.
When remote sensing data sets are considered, however, it may not be easy to extract useful information as
data are dense in both space and time. Spatially, SST data may also be redundant as points of the ocean
only a few kilometers away are likely to behave in a very similar way. The aim of this work is twofold: first,
to understand whether the ocean surface can be partitioned into homogeneous areas with respect to the SST
temporal pattern, and second, to define a minimal network of buoys for point monitoring. The main idea
is that, if the partition exists, than observations at the network nodes can well describe the SST variability
over the entire ocean surface, with possibly a small error.

2. Data set
SST data are taken from the “MODIS Terra Level 3 SST Thermal IR Nighttime” product (persistent ID:
PODAAC-MODST-T8D9N), covering the entire ocean surface with around 9 km spatial resolution and 8 day
temporal resolution. In this work we focus on the North Atlantic basin and the temporal period 2003−2012,
for a total of 460 time steps. For each time step, data are provided as a gridded map with possible missing
observations.
As data will be clustered with respect to their temporal pattern, it is useful to consider them as spatially
registered time series, for a total of around 488′000 time series covering North Atlantic. Time series with
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Figure 1: North Atlantic basin partition with respect to SST temporal coherence and minimal
monitoring network (red crosses).

more than 60% of missing observations are removed from the data set as they may produce artifacts in the
analysis results.

3. Methodology
This section describes the statistical method adopted to partition SST time series, the strategy to derive the
minimal monitoring network and the validation approach. In order to validate the network using independent
data, the data set described above is partitioned into the estimation data set YE , from 2003 to 2009, and
into the validation data set YV , from 2010 to 2012.

3.1 Ocean surface partition
Let yBi (t), t = 1, ..., T , be the time series of remote sensing SST measurements at the generic pixel Bi ∈
{B1, ..., BN}. The model-based clustering method introduced in Finazzi et al. (2015) is used here to cluster
the time series of YE with respect to their temporal coherency. In particular, a group of time series are said
to be jointly coherent when, apart from random noise, they share the same temporal pattern along the entire
temporal frame of observation. As only the temporal pattern is of interest, each time series is standardized
with respect to its own mean and variance.
The result provided by the clustering method consists of the number of clusters p̂, the average time series
ẑj (t), j = 1, ..., p̂ and the cluster membership of each time series yBi

(t). This gives rise to a partition of the
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Data set YE YV

Temporal period 2003-2009 2010 2011 2012

Bias - 1th perc. 0.00 −1.27 −0.95 −1.29
Bias - 50th perc. 0.00 −0.09 −0.07 −0.26
Bias - 99th perc. 0.00 0.93 1.02 0.93

RMSE - 1th perc. 0.37 0.36 0.33 0.40
RMSE - 50th perc. 0.70 0.81 0.73 0.82
RMSE - 99th perc. 2.00 2.31 2.30 2.40

Table 1: Minimal monitoring network validation. Percentiles of the bias and RMSE distributions
over the 488’000 pixels and different temporal periods. All results in ◦C.

Figure 2: Density functions of the SST reconstruction RMSE for the North Atlantic basin and
different temporal periods. Expected value of the distributions depicted by the vertical segments
at the base of the x axis.

ocean surface as each yBi
(t) is assigned to one and only one cluster. Also note that each ẑj (t) is related to

a cluster but not to a precise point/pixel in space.

3.2 Minimal network
As the time series in each cluster share the same temporal pattern, the minimal network is simply derived
selecting a reference pixel in each cluster. In particular, for each cluster j, the temporal correlation between
ẑj (t) and each yBi

(t) in the cluster is computed and weighted with respect to the fraction fBi
of non-missing

observations. The reference pixel obtained as

B̂j = arg max
Bi∈Bj

corr (yBi
(t) , ẑj (t)) · fBi

where Bj is the set of pixels in the j-th cluster. It follows that the minimal network of p̂ nodes is given by

B̂ =
{
B̂1, ..., B̂p̂

}
.
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Figure 3: Spatial distribution of the SST reconstruction RMSE for the North Atlantic basin and
the temporal period 2003− 2009. Red circles depicts areas with RMSE higher than 3 ◦C

3.3 Network validation
The estimated minimal network B̂ is validated using both YE and YV . First of all, for each Bj and each
(non-standardised) time series yBi

(t), the following regression model is estimated

yBi
(t) = b0,Bi

+ b1,Bi
· yB̂j

(t) + εBi
(t) , Bi ∈ Bj

with b0,Bi and b1,Bi the regression coefficients and εBi (t) ∼ N
(
0, σ2

Bi

)
. In practice, the time series yB̂j

(t)

at the reference pixel B̂j is used to describe all the other time series in cluster j through a simple regression
model with spatially varying coefficients. Bias and root mean squared error (RMSE) are eventually assessed
at each Bi as

biasBi
= E [yBi

(t)− ŷBi
(t)] , (1)

RMSEBi = E
[
(yBi (t)− ŷBi (t))

2
]

(2)

where
ŷBi

(t) = b̂0,Bi
+ b̂1,Bi

· yB̂j
(t) , Bi ∈ Bj .

Note that b̂0,Bi
and b̂1,Bi

are estimated using the outputs of the clustering approach when applied to YE .
When YV is considered, prediction bias and prediction RMSE are computed in the same way of (1) and
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(2), considering the same minimal network B̂ and the same regression coefficients estimated on YE . To all
the effects, regression coefficients are associated with the network and they allow to reconstruct SST at each
pixel using measurements at the network nodes.

4. Results
Clustering of the SST time series for the North Atlantic basin and the temporal period 2003− 2009 has been
carried out using the D-STEM software (Finazzi and Fassò, 2014) and required 16 hours of computing time
on a server machine equipped with 128 GB of RAM and 16 CPU cores.
Ocean surface partition and minimal monitoring network are depicted in Figure 1. The partition consists of
25 clusters and they are characterized by a quite compact structure in space. Following the strategy described
above, network node spatial locations are identified within each cluster.
Bias and RMSE are computed for each of the 488′000 pixels covering the basin, for the time period 2003−2009
and for each year from 2010 to 2012. Results are reported in Table 1 in terms of three percentiles of the bias
and the RMSE distributions. Considering the estimation data set YE , SST time series of the North Atlantic
basin are reconstructed with a median RMSE equal to 0.7 ◦C. As expected, both bias and RMSE slightly
increase when the validation data set YV is considered but the minimal monitoring network seems to well
describe SST even during the period 2010− 2012.
Figure 2 depicts the probability density functions of the RMSE obtained by kernel-smoothing the RMSE
observed over the pixels. Distributions related to the validation period have a heavier tail but the average
RMSE never exceeds 1 ◦C, with 2011 performing better than 2010 (see also Table 1).
Figure 3 shows the spatial distribution of the RMSE for the period 2003 − 2009. It is possible to note that
the RMSE is low for most of the basin with the exception of the ocean area affected by the Gulf Stream,
where RMSE is around 2.2 ◦C. This value has to be compared with the SST standard deviation in the same
area which ranges between 7 and 11 ◦C.

5. Conclusions
Preliminary results obtained for the North Atlantic basin are promising and they will help to derive a minimal
network for SST monitoring at the global level. Prediction bias and RMSE assessed using validation data
sets are particularly useful as they can help to identify areas not well represented, and thus to improve the
network by eventually adding nodes where needed. Globally, the SST data set includes around 5 million time
series and the clustering algorithm will be optimized to deal with this more challenging problem.
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