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Abstract 

In this paper, we present different approaches to evaluate the presence of the arbitrage 

opportunities in the market. In particular, we investigate empirically the well-known put-call 

parity no-arbitrage relation and the state price density. First, we measure the violation of the put 

call parity as the difference in implied volatilities between call and put options. Then, we 

examine the nonnegativity of the state price density. We evaluate the effectiveness of the 

proposed approaches by an empirical analysis on S&P 500 index options data. Moreover, we 

propose alternative approaches to estimate the state price density under the classical hypothesis 

of the Black and Scholes model. To this end, we use the classical nonparametric estimator 

based on kernel and a recent alternative the so called OLP estimator that uses a different 

approach to evaluate the conditional expectation consistently.  

Key words 

Arbitrage opportunities, put-call parity, state price density, conditional expectation estimators 

JEL Classification: C14, G13 

1. Introduction  

The pioneering work of Black and Scholes (hereafter BS) has a central rule in modern 

finance and a great importance for improving research on the option pricing techniques. The 

main idea behind BS option pricing model is that the price of an option is defined as the least 

amount of initial capital that permits the construction of a trading strategy whose terminal 

value equals the payout of the option. In other words,  if options are correctly priced in the 

financial market, it should not be possible for investors to set up a riskless arbitrage position 

and earn more than the risk free rate of return.Unfortunately, widespread empirical analyses 

point out that a set of assumptions under which BS model built, particularly normally 

distributed returns and constant volatility, result in poor pricing and hedging performance. 

However, using BS principle different generalizations have been proposed – see e.g. Merton 

[14], Heston [15] and Bates [7] for more details. Generally, most models that have been 

proposed so far mainly relax some assumptions of BS model and then trying to be justified via 

general fundamental theorem of asset pricing-FTAP, Harrison and Kreps [12].                        

Two fundamental entities in assets pricing theory are the put-call parity no-arbitrage 

relation and the so called State Price Density (hereinafter SPD). The first contribution of this 

                                                           
1
 This paper has been supported by the Italian funds ex MURST 60% 2014 and 2015 and 

MIUR PRIN MISURA Project, 2013–2015. The research was also supported through the 

Czech Science Foundation (GACR) under project 15-23699S and through SP2015/15, an SGS 

research project of VSB-TU Ostrava, and furthermore by access to the supercomputing 

capacity, and the European Social Fund in the framework of CZ.1.07/2.3.00/20.0296 
2
 Noureddine Kouaissah, University of Bergamo, Italy – VSB – TU of Ostrava, Czech Republic, 

noureddine.kouaissah@unibg.it  

Sergio Ortobelli Lozza, University of Bergamo, Italy – VSB – TU of Ostrava, Czech Republic, 

sol@unibg.it  

mailto:noureddine.kouaissah@unibg.it
mailto:sol@unibg.it


10
th

 International Scientific Conference Financial management of Firms and Financial Institutions Ostrava 

VŠB-TU of Ostrava, Faculty of Economics, Department of Finance  7
th

 – 8
th

 September 2015 
 

583 

 

paper is to ascertain whether arbitrage opportunities can be directly detected via the violation 

of the well-known put-call parity no arbitrage relation. Indeed, the first examinations of the 

put-call parity relationship were conducted by Stoll [17]. If the observed put or call price 

should deviate substantially from the parity price, an opportunity exists for investors to set up 

a riskless arbitrage position and earn more than the risk free rate of return. Therefore, 

violations of the put-call parity no-arbitrage relations contain information about the possibility 

of free lunch in the market. In this context, under BS model, we use the difference in implied 

volatility between pairs of call and put options to measure these violations. Then, one can 

compare this result with that obtained from the violation of the nonnegativity of the SPD. This      

is important, because negative values of the SPD immediately corresponds to the possibility of 

free-lunch in the market, e.g. Benko et al [2]. 

Among no-arbitrage models, the SPD is frequently called risk-neutral density, which is the 

density of the equivalent martingale measure with respect to the Lebesgue measure. The 

existence of the equivalent martingale measure follows from the absence of arbitrage 

opportunities, while its uniqueness demands complete markets. Breeden and Litzenberger [4] 

proposed an excellent framework to fully recover the SPD in an easy way. In this method, the 

SPD is simply equal to the second derivative of a European call option with respect to the 

strike price, see among others Brunner and Hafner [5] for other estimation technique. 

Furthermore, it is well known that option prices carry important information about market 

conditions and about the risk preferences of market participants. In this context, the SPD 

function derived from observed standard option prices have gained considerable attention in 

last decades. Indeed, an estimate of the SPD implicit in option prices can be useful in different 

contexts, see among others Ait-Sahalia and Lo [1]. The most significant application of the 

SPD is that it allows us computing the no-arbitrage price of complex or illiquid option simply 

by integration techniques. 

This paper contributes to the literature in several ways. Firstly, we show that violations of 

the put-call parity no-arbitrage relation can be used to evaluate the presence of the arbitrage 

opportunities in the market. To do so, we calculate the difference in implied volatility between 

call and put options that have the same underlying asset, the same strike price and the same 

maturity. We examine the effectiveness of the proposed approach by an empirical analysis on 

S&P 500 index options data.  Our results can be easily compared with that obtained from the 

nonparametric estimation of the SPD. Secondly, we propose different approaches to estimate 

the SPD based on futures data. Differently from previous studies we estimate SPD directly 

from the underlying asset under the hypothesis of the BS model. To this end we follow two 

distinguished approaches to recover SPD, the first one based on nonparametric estimation 

techniques “kernel” which are natural candidates (see among others [1], [2]), then a new 

method based on conditional expectation estimator proposed by [16]. First, we examine the so 

called real mean return function using local polynomial smoothing technique. Then, we 

estimate the conditional expectation under real probability density. According the hypothesis 

of BS model, we are able to derive a closed formula for approximating the conditional 

expectation under risk neutral probability. The main goal of this contribution is to examine 

and compare the conditional expectation method and the nonparametric technique. These 

methods allow us extrapolating arbitrage opportunities and relevant information from 

different markets (futures and options) consistently with the analysis of the underlying. 

The rest of this paper is organized as follows. Section 2 reviews the main theoretical 

properties and describes our methodology. Section 3 presents the main empirical results on the 

valuation of the arbitrage opportunities, using  the violations of the put-call parity relationship, 

and the SPDs estimation. Section 4 concludes 
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2. Alternative methods to evaluate the arbitrage opportunities  

2.1 Black and Scholes methodology  

Fisher Black and Myron Scholes [3] achieved a major breakthrough in European option 

pricing. In this model we assume that the price process follows a standard geometric 

Brownian motion defined on filtered probability space  
0

( , ,P, )t t
   , where  

0t t
  is the 

natural filtration of the process completed by the null sets. Under these assumptions we know 

that E(S | ) E(S |S )T t T t   as consequence of Markovian property. The model of stock price 

behavior used is defined as: 

                                                      ,dS Sdt SdB                                                     (1) 

where,  is the expected rate of return,  is the volatility of stock return and B denotes a 

standard Brownian motion. Under this hypothesis we know that the log price is normally 

distributed: 

                                             
 2 2

0ln ln 0.~ T5 , T ,TS S     
 

                                 (2) 

where, TS  is the stock price at future time T, 0S  is the stock price at time 0 and   denotes a 

normal distribution. Please note that   in equation (1) represents the expected rate of return 

in real world, while in BS model (risk neutral world) it becomes risk-free rate r .
3
 

2.2 Put-call parity no-arbitrage relation 

Under the condition of no-arbitrage, it is well known that put-call parity relation must hold 

for European options on non-dividend-paying stocks: 

                                                         0 ,rtC P S Ke                                                         (3) 

where, 0S  is the current stock price, C and P are the call and put prices, respectively, that have 

the same strike price K , the same expiration date and the same underlying asset.    

To illustrate the arbitrage opportunities when equation (3) does not hold, we measure the 

violation of put-call parity as the difference in implied volatility between call and put options 

that have the same strike price, underlying asset and expiration date. In this context, it well 

known that the BS model satisfies put-call parity for any assumed value of the volatility 

parameter . Hence, 

                                                   0( ) ( )BS BS rtC P S Ke        0,                            (4) 

where, ( )BSC   and ( )BSP   denotes BS call and put prices, respectively, as a function of the 

volatility parameter . At this point, from equation (3) and (4) we can deduce that: 

                                                  ( ) ( ) C PBS BSC P        0,                                   (5) 

By definition, the implied volatility (IV) of a call option ( )callIV  is that value of the 

volatility of the underlying instrument, which matches the BS price with the price actually 

observed on the market. In formal way:  

                                                         ( ) ,BS callC IV C                                                         (6) 

Now, it is straightforward form equation (5) that: 

                                                        ( ) ,BS callP IV P                                                         (7) 

this in turn implies that: 

                                                          .call putIV IV                                                           (8) 

                                                           
3
 For more details about BS assumptions we refer to Hull (2015)  
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In this paper, we will carry the analysis on the European options style. Since put-call parity 

is one of the best known no-arbitrage relations, we use the difference in implied volatility 

between pairs of call and put options in the spirit of equation (8) in order to detect the 

presence of arbitrage opportunities in the market. Intuitively, lower call implied volatilities 

relative to put implied volatilities means that calls are less expensive than puts, and lower put 

implied volatilities with respect to call implied volatilities suggest the opposite.  

    We compute the difference in implied volatilities between call and put options that have 

the same strike price, the same maturity and are written on the same underlying asset. Hence, 

we refer to such difference as volatility spread (VS) which may represent a valid indicator of 

the possibility of free lunch in the market, especially close to at-the-money options. Formally, 

given call and put options with the same strike price and expiration date, we compute the VS 

as: 

                                              max | |call putVS IV IV                                                       (9) 

Of course, higher volatility spread is a significant indicator of arbitrage opportunities since 

put-call parity is a fundamental relation of no-arbitrage.   

2.3 State price density  

SPDs estimated from cross-sections of observed standard option prices have gained 

considerable attention during last decades. Since given an estimate of SPD, one can 

immediately price any path independent derivative. Clearly, the well-known arbitrage free 

pricing formula is of vital practical importance. In this approach, the option price is given as 

the expected value of its future payoff with respect to the risk-neutral measure Q discounted 

back to the present time t. Formally, the price (H)t  at time t of a derivative with expiration 

date T and payoff –function H(S )T is given by: 

                          

 ( ) ( )

0

(H) H | H(s) (s)
T

r T t Q r T t
t t Se E e q ds


       

 

 0,t T        (10)
                     

where, (s)
TS

q  denotes the SPD. In this context, one fundamental founding in literature is the 

connection between SPD and implied volatility (IV), e.g. see among others Hafner and 

Brunner [5]. In this paper, in line with Benko et al [2], we apply local polynomial smoothing 

technique to estimate IVs, and then SPD. Now, we describe an alternative approach towards 

estimating the SPD.   

2.3.1 Alternative method to estimate the SPD 

For the sake of clarity, denote RWS  for a real world price and RNS  for the risk neutral 

price. Under the hypothesis of the BS model it is straightforward to write:    

                                                                ( ) ,RN RW r T
T TS S e                                            (11)

                      
 

Since (T t) ( | )r RN
t T tS e E S   , we can write (T t) ( )( | )r RW r T

t T tS e E S e      from which 

we obtain:  

                                                    ( | ) ( | ),RN T rt RW
T t tE S e E S                                  (12) 

If we assume  changes over time in model (1), then equation (12) becomes  

                                                 
 

0
( )

( | ) ( | ),
T

r d Q
T t T te E S E S

                                  (13) 

where, ( | )Q
T tE S   denotes expectation under risk neutral world and (S | )T tE  the 

conditional expected price under real world. Moreover, (13) is equivalent to:  
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                                                       0
( )

0 0
(s) (s)ds,

T
d rT

RW RNe sq ds e sq
                        (15) 

where, q (s)RW  and ( )RNq s  denotes SPDs under real and risk neutral world respectively. 

Please note that under the BS hypothesis T tS   has the same distribution as .tTS e


 
The first step in this approach is to propose a direct method of estimating the real mean 

return function. Therefore, we use a local estimator that automatically provides an estimate of 

the real mean function and its derivatives. The input data are daily prices. Denoting the 

intrinsic value by i and the true function by ( )it , 1,...., ,i n  we assume the following 

regression model:  

                                                        
( ) ,i i it                                                               (16)

   
 

where, i  models the noise, n denotes the number of data considered.  The local quadratic 

estimator ˆ( )t  of the regression function ( )t  in the point t  is defined by the solution of the 

following local least squares criterion:  

                                 

 
0 1 2

2
0 1 2

, ,
1

min ( ) ( ) ( )
n

i i i h i
i

t t t t k t t
  

   


      ,                       (17) 

where, 
1

( ) i
h i

t t
k t t k

h h

 
   

 
 is kernel function, we refer the reader to Fan and Gijbels [10] 

for more details. Comparing the last equation with the Taylor expansion of   yields: 

                                            0 ˆ( )it  ,
'

1 ˆ ( )it  , 
''

2 ˆ2 ( ),it                                      (18)
                                     

 

which make the estimation of the regression function and its two derivatives possible. The 

second step towards estimating state price density is to use two methodologies, namely OLP 

estimator and kernel estimator, to estimate the quantity (S |S )T tE . 

3. Emperical analysis 

In this section, we report numerical experiments obtained using the methods introduced to  

estimate the SPD and to detect the presence of arbitrage opportunities in the market. In the 

first empirical application to S&P 500 index options we present the analysis concerning the 

estimation of IVs. For this purpose we use as dataset all options listed on May 13, 2015. The 

options are European style and the average daily volume during the sample day was 82.65 and 

179.01 contracts for call and put respectively. Strike price is at 130 percent and barrier at 70 

percent of the underlying spot price at 2098.48, while strike price intervals are 5 points. 

Throughout this period short-term interest rates exhibit a very low level. The options in our 

sample vary significantly in price and terms, for example the time-to-maturity varies from 2 

days to 934 days.  

The row data present some challenges that must be addressed. Clearly, in-the-money (ITM) 

options are rarely traded relative to at-the -money (ATM) and out-the-money (OTM) options. 

For example, the average daily volume for puts that are 25 points OTM is 2553 contracts, in 

contracts, the volume for puts that are 25 points ITM is 2. This can be justified by the strong 

demand of portfolio managers for protective puts.  

Figure 1 shows the IV surface estimated using put options for the daily data on May 13, 

2015. The IV smile is very clear for small maturities and still evident as time to maturity 

increases.  
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Figure 1: implied volatility surface of S&P put options 

 
To evaluate the presence of arbitrage opportunities, we calculate the difference in implied 

volatilities between call and put options that have the same strike price, the same maturity and 

are written on the same underlying asset. In particular, we consider the differences that are 

greater than 80 percent of the maximum absolute value of the differences between call and put 

implied volatilities. In this way, we rule out some differences due to the noisy data.  Figure 2 

shows the differences in implied volatilities between call and put options. 

 
Figure 2: implied volatility surface differences 

 
In Figure 2, it is clear that the differences are significant at lower moneyness which 

corresponds to OTM put options and ITM call options. However, since the market in increase 

and it is well known that OTM put options and ITM call options are not reliable data to 

evaluate arbitrage opportunities, we focus on at ATM options. From figure 2, we observe even 

at ATM option there are small differences, which may represent arbitrage opportunities.  In 

particular, the differences increase as the maturities increase.  

To compare the size of the arbitrage opportunities released, one can combine the IV 

smoothing with SPD estimation. This is important, because SPD requires some properties in 

order to be consistent with no-arbitrage argument. In particular, the nonnegativity property of 

SPD since negative values immediately corresponds to arbitrage opportunities in the market, 

see Benko et al [2] .  

In the second application, daily price quotations from the September  2015 S&P 500 

futures contrat  for the period 2013  through May, 2015, have been used to estimate the SPD. 

In this context, we use Treasury Bond 3 months as a riskless interest rate for a period 
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matching our selecting data. Firstly, we examine the real mean return function using local 

polynomial smoothing technique (17). Secondly, we evaluate the conditional expected price 

using both estimators, namely kernel estimator and OLP, to estimate (S |S )T tE  as described 

above. Finally, we use the relationship (13) in order to recover the SPD. The results of this 

analysis are reported in Figure 3. 

 
Figure 3: State Price Densities obtained with Kernel and OLP estimators 

 

From Figure 1 we note a slight difference in the result obtained from both estimators.  This 

result can be explained by the nature of the two methodologies. In particular, the OLP method 

proposed by [16] yields a consistent estimator of the random variable ( | )E X Y , while the 

generalized kernel method yields a consistent estimator of the distribution function of 

( | )E X Y .Thus, OLP method that yields consistent estimators of random variables ( | )E X Y  

can be used to evaluate the SPD.   

4. Conclusion  

In this paper, we present different methods to evaluate the presence of arbitrage 

opportunities.  In particular, we examine the violation of the well-known put-call parity no-

arbitrage relation and the nonnegativity of the SPD. Then, we propose different methods to 

estimate SPD. In particular, we use two distinct methodologies for estimating the conditional 

expectation, namely the kernel method and the OLP method recently proposed by [16]. We 

deviate from previous studies in that we estimate SPD directly from the underlying asset 

under the hypothesis of BS model. To this end, firstly we examine the real mean return 

function using local polynomial smoothing technique. Then, we estimate the conditional 

expectation under real probability density. Under the hypothesis of BS model, we are able to 

derive a closed formula for approximating the conditional expectation under risk neutral 

probability. This analysis allows us extrapolating arbitrage opportunities and relevant 

information from different markets (futures and options) consistently with the analysis of the 

underlying.  
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