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Abstract—At the market, we can identify various kinds of 
options. Some of them are traded at organized exchanges and are 
quite liquid. Others are traded only between particular parties. 
The current market practice is to obtain implied volatility of 
liquid options as based on Black-Scholes type (BS hereafter) 
models. Such volatility is subsequently used to price illiquid or 
even exotic options. It therefore follows that the BS model at one 
time moment can be related to the whole set of IVs as given by 
maturity/moneyness relation of tradable options. One can 
therefore get IV curve or surface (a so called smirk or smile). 
Since the moneyness and maturity of IV often do not match the 
data of valuated options, some sort of estimating and local 
smoothing is necessary. However, it can lead to arbitrage 
opportunity, if no-arbitrage conditions on state price density 
(SPD) are ignored. In this paper, using option data on DAX index, 
we aim on the analyses of the behavior of IV and SPD with 
respect to different choices of bandwidth parameter h and 
identification of a set of bandwidths which violates no-arbitrage 
conditions. We document that the change of h implies interesting 
changes in the violation interval of moneyness. Finally, we also 
show the impact of h on the total area of SPD under zero, which 
can be seen as a degree of no-arbitrage violation. 
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I.  INTRODUCTION  
At the market, we can identify various kinds of options. 

Some of them are traded at organized exchanges and are quite 
liquid. Others are traded only between particular parties. The 
volume of traded options increased sharply in 70’s just after 
introducing the famous Black and Scholes model [3]. Thus, at 
that time the practice was to assume Gaussian distribution as a 
reliable proxy to the empirical observations of stock price or 
FX rate returns. Soon however, it was documented that the 
returns can be very far from the assumption of Gaussianity 
and thus the Black and Scholes model can be used only 
indirectly – take the market price of liquid option, invert the 
Black and Scholes formula, obtain a volatility (ie. implied 
volatility), put it into the formula by setting the parameters of 
illiquid option and get the price.  

For example, [6] or [1] show for S&P 500 options (ie one 
of the most liquid underlying assets) that implied volatility is 

not flat but can be strongly curved with changing maturity 
or/and moneyness. We call the behavior of the implied 
volatility its curve (assuming just one variable, ie. moneyness) 
or surface (assuming both the maturity and moneyness). 
Clearly, the behavior can be very different for various markets 
and underlying assets, which is probably related to particular 
market imperfections, such as restricted borrowing or lending. 
Such differences are evident especially when FX rate options 
are compared with equity options. Obviously, the set of 
parameters is not continuous and therefore, some non-
parametric smoothing (and extrapolation) is needed to 
estimate the implied volatility function. 

When we extract the implied volatility curve or surface 
from market prices of liquid options, we can use them to price 
the illiquid options or even options exotic, which we can trade 
only OTC. These, however, mostly have different parameters 
(moneyness, maturity) than those of traded options.  

Notwithstanding, the implied volatility function must be 
calculated carefully – there exist several conditions on the 
price of call and put options, that must be fulfilled. Otherwise 
an arbitrage opportunity can arise, i.e., riskless profit higher 
than common riskless return. Clearly, there exist many 
technics that can be used to adjust the observations and 
transform them into smooth function. 

In this paper, and in line with [2], we apply relatively 
classic approach of local polynomial smoothing techniques and 
study the bandwidth selection process in more details of recent 
data of DAX option prices (December 2011). In particular, we 
change h and examine the impact on the interval of moneyness 
that brings arbitrage opportunity and on the total degree of no-
arbitrage violation.  

We proceed as follows. In the following section we briefly 
review the problem of option pricing [7]. Next, we provide 
some basic facts about the implied volatility modeling and 
analyze the behavior of the implied volatility surface and 
potential arbitrage error for a given day using DAX options 
data. 
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II. OPTION VALUATION AND THE CONCEPT OF IMPLIED 
VOLATILITY 

Options are nonlinear types of financial derivatives, which 
gives the holder the right (but not the obligation) to buy the 
underlying asset in the future (at maturity time) at prespecified 
exercise price. Simultaneously, the writer of the option has to 
deliver the underlying asset if the holder asks. 

Options can be classified due to a whole range of 
criterions, such as counterparty position (short and long), 
maturity time, complexity of the payoff function, etc. The 
basic features are the underlying asset (S), which should be 
specified as precisely as possible (it is important mainly for 
commodities), the exercise price (K), and the maturity time (T). 

If the option can be exercised only at maturity time T, we 
call it the European option. By contrast, if it can be exercised 
also at any time prior the maturity day, ie. t  [0,T], we refer 
to it as the American option. A special type of options, 
possible to be classified somewhere between European and 
American options is the Bermudan option, which can be 
exercised at final number of times during the option life. 

In dependency on the complexity of the payoff function, 
we usually distinguish simple plain vanilla options (PV) and 
exotic options. However, by a plain vanilla option we 
generally mean call and put options with the most simple 
payoff function. Sometimes, by plain vanilla options we mean 
any option which is regularly traded at the market, ie. it is 
liquid and no special formula is needed to obtain its price. 

Thus,  

 
for vanilla call, and 

 
for vanilla put, where . 

Due to the definition of an option – it gives a right, but not 
an obligation to make a particular trade – we can deduce basic 
differences between the short and the long position. While the 
payoff resulting from the long position is non-negative, either 
0 or , the payoff of the short position will never be 
positive, ie. it is either  or 0. Moreover, it is obvious, 
that the long call payoff is not limited from above, but the 
short position payoff function goes only up to the exercise 
price (underlying asset price is zero).  

Options are quite important type of financial derivatives 
since they allow to fit even very specific fears (hedging) and 
outlooks (speculation) about the future evolution. Due to the 
nonlinear payoff function and potential high sensitivity to 
changes in the input factors, such as volatility or even maturity, 
options are very challenging also for modeling purposes. 

Obviously, since the standard option valuation model of 
Black and Scholes (and Merton) was based on the assumption 
of normally distributed returns, the presence of skewness and 
kurtosis at the market complicates the situation significantly. 
A common market practice is to use the market price as an 
exogenous variable to be put into the BS formula [3]. Thus, a 
so called implied volatility is obtained, ie. a number that 
assures that BS model provides the right price. Such implied 

volatility can subsequently be used to value even exotic 
options, which are not traded at the market. 

Generally, the price of European option f at time t with 
maturity T and payoff function Ψ is given by the payoff 
expected under risk neutral probabilities Q discounted by the 
risk less rate to the beginning (t), ie. by setting  = T − t: 

 
since the payoff at maturity is obviously identical to the 
European option value at the same time. 

For example, assuming the payoff function of plain vanilla 
call and the normal distribution we get the valuation formula 
as follows (BS model for vanilla call): 

 
Here, S is the underlying asset price at the valuation time (t) 
and it is supposed to follow log-normal distribution,  is the 
time to maturity, r is riskless rate valid over ,  is the 
volatility expected over the same period, both per annum, and 
FN(x) is distribution function for standard normal distribution. 

If the price of some options is available from the market, 
we can invert the formula to obtain the implied volatility, ie. 
the number that makes the formula equal to market price. 
Besides the important works, whose authors analyzed the 
impact of implied volatility on option price, belongs, besides 
others Dupire [4], who formulated a process followed by the 
underlying asset price in dependency on the moneyness and 
maturity, and Rubinstein [6], who formulated a discrete time 
model, the implied binomial tree. 

Obviously, the implied volatility will differ for various 
input data, especially due to the moneyness (relation of the 
spot price and exercise price) and the time to maturity – 
otherwise the model could not provide correct price. The 
dependency of the implied volatility on these two factors can 
be explained by the risk of jumps in the underlying asset price 
or other deviations from the assumption of Gaussianity. For 
example, Yan [8] carefully analyzed the impact of jump risk 
on the slope of the implied volatility function, which is 
informally referred to as the smile, and showed some 
interesting relations between the returns and the slope.  

Although there exist many various approaches for the 
construction of the volatility curve or surface, including some 
recent alternatives, such as the application of radial basis 
function (see eg. [5] and references therein), we follow here 
relatively conservative approach adopted by [2]. 

III. ANALYSIS CONCERNING THE THREE DIMENSIONS CASE 
In this section we present the analysis concerning the three 

dimensions case. We use as dataset all the options on DAX 
listed on 30 December 2011 with all the maturities. Following 
[2] we compute the unconstrained estimation of the IV surface. 
In Figure 1 we show the estimation with Epanechnikov kernel 
function, for moneyness bandwidth 0.04hκ = and for 

maturity (calendar) bandwidth 1hτ = . The historical data 
(black dots) are well described by the estimated surface. The 
IV smile is clear for small maturities and becomes less 
noticeable as the maturity increases. 
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Figure 1. 3D estimation of Implied volatility of DAX options 
 
 

In order to analyze the arbitrage presence, we produce the 
corresponding estimations for the state price density (SPD) 
again using fixed calendar bandwidth 1hτ = . 

The computation is done again with Epanechnikov kernel 
function and with three representative bandwidths for 
moneyness 0.03, 0.04, 0.06hκ = and bandwidth 1hτ = for 
maturity. Besides each surface we propose also cuts for 
maturities equal to 168 days and 266 days. The negative parts 
of SPD violates the moneyness arbitrage free condition, see [2] 
for more details. Hence, the results show some arbitrage 
behavior for moneyness around 0.8. We study more in deep 
the case with hx = 0.04 (see Figure 2).   

 
Figure 2. Arbitrage intervals for various maturities 
 
 

In Figure 2 we show the arbitrage moneyness intervals 
(intervals with negative SPD) for each maturity. It is clear that 
the arbitrage chance is real and does not depend on the 
maturity. Indeed, the critical situations seem to be persistent 
among the increasing maturities. To evaluate the size of the 
arbitrage we compute Arbitrage measure as the volume of 
negative SPD for all considered moneyness bandwidths (0.03 
– 0.08). The larger the measure is, the stronger arbitrage free 
violation is presented.  

 

 
Figure 3. Arbitrage measure for DAX options IV surface 
 
 

From Figure 3 we can notice that the curve is not strictly 
decreasing and this reinforce the idea that the magnitude of the 
arbitrage is not depending by the choice of the bandwidth but 
it is a genuine feature of the market. Moreover, to investigate 
the Arbitrage measure for various types of the kernel functions, 
we compare the Arbitrage measure for the different kernel 
functions and for three bandwidths used previously in Table 1. 
 
Table 1. Arbitrage measure volume for DAX options IV surface 
 0.03 0.04 0.06 
Uniform 0.086534731 0.168944387 0.044107563 
Triangular 0.248191625 0.240079842 0.019563879 
Epanechnikov 0.271915343 0.321858436 0.015571478 
Quartic 0.255419517 0.076459075 0.033375721 
Triweight 0.330617447 0.188661291 0.055776335 
Tricube 0.295160775 0.04851035 0.041241646 
Gaussian 0.128209034 0.202579582 0.025291028 
Cosine 0.261047996 0.295535463 0.017971944 
Logistic 0.158502473 0.193299944 0.033554477 
 

We compute again the IV and SPD surface using 
unconstraint semiparametric estimation proposed in [2], but 
now with a non fixed calendar bandwidth. In Figure 5 the 
results are computed using the following calendar bandwidth: 

0.4hτ = for 0.5τ ≤ , 0.6hτ = for 0.5 1τ< < and 

1hτ = for 1τ ≥ . 
The computations are done again with Epanechnikov 

kernel function and with three representative moneyness 
bandwidths 0.03, 0.04, 0.06.hκ =  If we compare these 
results with those we obtained for fixed calendar bandwidth 
we can notice that the arbitrage measure seems to smaller for 
all choices of moneyness bandwidth. This behavior is due to 
the fact that the main arbitrage occurs for long maturities so a 
smaller bandwidth doesn’t include those maturities in the 
estimations. On the other hand, with a large fix calendar 
bandwidth the estimation for the shorter maturities are in some 
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way disturbed by the turbulence that persist for the long 
maturities. 

Finally we compute also the Calendar arbitrage measure as 
the volume of negative first derivative of total variance, see 
[2]. In this case we do not observe any violation of Calendar 
arbitrage free condition. We demonstrate it in Figure 4 where 
we show that indeed the total variance is strictly increasing in 
the calendar (maturity) direction for all moneyness values. 
 

 
Figure 4. Arbitrage Measure for fixed calendar bandwidth (blue line) versus 
Arbitrage Measure for increasing calendar bandwidth (red line)     
 

 
Figure 5. Total variance 
 

IV. CONCLUSION 
In many cases, there is no way to valuate an option but to 

use implied volatility extracted from market prices. Since the 
moneyness and maturity of implied volatilities often do not 
match the data of valuated options, some sort of smoothing 
and interpolation is necessary. However, it can lead to 
arbitrage opportunity, if no-arbitrage conditions (non-
negativity of SPD) are ignored. In this paper, we analyzed the 
behavior of SPD (state price density) with respect to changes 
in bandwidth parameter. Using option data on DAX index it 
was documented that the no-arbitrage violating intervals of 
moneyness as well as the total area of SPD under zero heavily 
depends on the choice of this parameter. We observed that as 
the bandwidth parameter increases the degree of no-arbitrage 
violation decreases. Moreover, for h  > 0.053 the no-arbitrage 
conditions were satisfied, because the intervals of violations 
disappeared. 
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