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Abstract

Revisiting and extending a recent result of M.Huxley, we estimate the Lp
(
Td
)

and

Weak−Lp
(
Td
)

norms of the discrepancy between the volume and the number of integer

points in translated domains.

In this paper we estimate different norms of the discrepancy between the volume and

the number of integer points in dilated and translated copies RΩ−x of a bounded convex

domain Ω ⊂ Rd having positive measure. The above number of integer points is a periodic

function of the translation variable x, with Fourier expansion

∑
k∈Zd

χRΩ−x(k) =
∑
n∈Zd

∫
Td

∑
k∈Zd

χRΩ−y(k) exp(−2πiny)dy

 exp(2πinx)
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=
∑
n∈Zd

(∫
Rd
χRΩ(y) exp(−2πiny)dy

)
exp(2πinx)

=
∑
n∈Zd

Rdχ̂Ω(Rn) exp(2πinx).

These equalities are in the L2 sense. It follows that the discrepancy function

D (RΩ− x) =
∑
k∈Zd

χRΩ−x(k)−Rd |Ω|

has Fourier expansion ∑
n∈Zd\{0}

Rdχ̂Ω(Rn) exp(2πinx).

If Ω is a bounded convex domain in Rd with smooth boundary having positive Gaussian

curvature then

|χ̂Ω(ξ)| 6 C |ξ|−(d+1)/2
.

See [16, Chapter 8]. Kendall [11] observed that the Fourier expansion of the discrepancy

and the above estimate for the Fourier transform of a convex domain give{∫
Td
|D (RΩ− x)|2 dx

}1/2

6 CR(d−1)/2.

Using a smoothing argument and the Poisson summation formula, Herz [8] and Hlawka

[9] (see also [18]) proved that

sup
x∈Td

{|D (RΩ− x)|} 6 CRd(d−1)/(d+1).

Interpolating the above two upper bounds between L2 and L∞ gives a poor estimate.

Indeed when d = 2 interpolation gives{∫
T2

|D (RΩ− x)|p dx
}1/p

6 CR(2p−1)/(3p),

while M.Huxley [10] has recently showed a more interesting estimate: If Ω is a planar

convex body having boundary with continuous and positive curvature then{∫
T2

|D (RΩ− x)|4 dx
}1/4

6 CR1/2 log1/4 (R) .

That is, the upper estimate for the L2 discrepancy extends, up to a logarithm, to L4.

Huxley’s proof seems to be tailored for the planar case and for the exponent p = 4,

where one can apply Parseval equality to the square of the discrepancy function. Huxley

also asked for an analog of his result for d > 2. Here we will give a possible answer and

our approach will be to obtain Lp results through Weak−Lp techniques.

We recall that the spaces Lp (X, µ) and Weak−Lp (X, µ), 0 < p < +∞, are defined by

the quasi norms

‖f‖Lp(X,µ) =

{∫
X
|f (x)|p dµ (x)

}1/p

,

‖f‖Weak−Lp(X,µ) = sup
t>0
{tpµ {x ∈ X, |f (x)| > t}}1/p .
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The space Weak−Lp (X, µ) is the case q = +∞ of the Lorentz spaces Lp,q (X, µ) (see

e.g. [1, Chapter 1, §3] or [17, Chapter 5, §3]). Finally, the space L∞ (X, µ) is defined by

the norm

‖f‖L∞(X,µ) = inf {t > 0 : µ {x ∈ X : |f (x)| > t} = 0} .

In what follows (X, µ) will be the torus Td or the integers Zd with the respective

translation invariant measures.

If X has finite measure and p < s, then both Lp (X, µ) and Ls (X, µ) are intermediate

between L∞ (X, µ) and Weak−Lp (X, µ):

L∞ (X, µ) ⊆ Ls (X, µ) ⊆ Lp (X, µ) ⊆Weak−Lp (X, µ) .

The following is a sharp quantitative counterpart of these inclusions.

Lemma 1. (1) If X has finite measure, then

‖f‖pLp(X,µ) 6 ‖f‖
p
Weak−Lp(X,µ)

{
1 + log

(
µ (X) ‖f‖pL∞(X,µ)

‖f‖pWeak−Lp(X,µ)

)}
.

(2) If p < s < +∞, then

‖f‖sLs(X,µ) 6
s

s− p
‖f‖pWeak−Lp(X,µ) ‖f‖

s−p
L∞(X,µ) .

Proof. (1) Observe that

µ {x ∈ X, |f (x)| > t} 6 µ {X} ,
µ {x ∈ X, |f (x)| > t} 6 ‖f‖pWeak−Lp(X,µ) t

−p,

µ {x ∈ X, |f (x)| > t} = 0 if t > ‖f‖L∞(X,µ) .

Hence,

‖f‖pLp(X,µ) =

∫ +∞

0

ptp−1µ {x ∈ X, |f (x)| > t} dt

6 pµ (X)

∫ µ(X)−1/p‖f‖Weak−Lp(X,µ)

0

tp−1dt

+ p ‖f‖pWeak−Lp(X,µ)

∫ ‖f‖L∞(X,µ)

µ(X)−1/p‖f‖Weak−Lp(X,µ)

dt

t

= ‖f‖pWeak−Lp(X,µ)

{
1 + log

(
µ (X) ‖f‖pL∞(X,µ)

‖f‖pWeak−Lp(X,µ)

)}
.

(2) As before,

‖f‖sLs(X,µ) =

∫ +∞

0

sts−1µ {x ∈ X, |f (x)| > t} dt

6 s ‖f‖pWeak−Lp(X,µ)

∫ ‖f‖L∞(X,µ)

0

ts−1−pdt

=
s

s− p
‖f‖pWeak−Lp(X,µ) ‖f‖

s−p
L∞(X,µ) .
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The first inequality in the above lemma is sharp. Indeed, if the measure is not atomic, one

can always choose a function with distribution function that turns the above inequalities

into equalities. Also the second inequality is sharp if the measure is not atomic and

infinite, but it can be slightly improved when the measure is finite.

Our first result is a simple application of the Hausdorff-Young inequality.

Theorem 2. Let Ω be a bounded open set in Rd.

(1) If 2 6 p < +∞ and 1/p+ 1/q = 1, then

‖D (RΩ− x)‖Lp(Td) 6 Rd
∥∥∥{χ̂Ω(Rn)}n 6=0

∥∥∥
Lq(Zd)

.

(2) If 2 < p < +∞ and 1/p+ 1/q = 1, then

‖D (RΩ− x)‖Weak−Lp(Td) 6 CRd
∥∥∥{χ̂Ω(Rn)}n 6=0

∥∥∥
Weak−Lq(Zd)

.

(3) If 2 < p < +∞ and 1/p+ 1/q = 1, then

‖D (RΩ− x)‖Lp(Td) 6 CRd log1/p (2 +R)
∥∥∥{χ̂Ω(Rn)}n6=0

∥∥∥
Weak−Lq(Zd)

.

(4) If 1 6 p 6 +∞, then

‖D (RΩ− x)‖Lp(Td) > sup
n 6=0

{∣∣Rdχ̂Ω(Rn)
∣∣} .

Proof. Point (1) readily follows from the Fourier expansion of the discrepancy and the

Hausdorff-Young inequality: If 2 6 p 6 +∞ and 1/p+ 1/q = 1, then

‖f‖Lp(Td) 6
∥∥∥f̂∥∥∥

Lq(Zd)
.

The case (p, q) = (2, 2) is Parseval’s identity. The case (p, q) = (+∞, 1) is immediate. The

intermediate cases follow by the Riesz-Thorin interpolation theorem. See [1, Theorem

1.1.1] or [17, Chapter V, §1]. Similarly, point (2) follows from the Hausdorff-Young

inequality for Lorentz spaces: If 2 < p < +∞ and if 1/p+ 1/q = 1, then

‖f‖Weak−Lp(Td) 6 C
∥∥∥f̂∥∥∥

Weak−Lq(Zd)
.

The proof of this inequality is by real interpolation between the extreme cases L2 → L2

and L1 → L∞. See the general Marcinkiewicz interpolation theorem [1, Theorem 5.3.2] or

[17, Chapter V, §3]. Point (3) follows from point (2), Lemma 1, and the trivial estimate

|D (RΩ− x)| 6 CRd. Finally, a Fourier coefficient is dominated by the norm of the

function, and point (4) follows.

The above theorem is quite abstract. In order to obtain explicit results, one has to

estimate the norms of the sequences {χ̂Ω(Rn)}n6=0. The interest in case (3) is when the

Lq
(
Zd
)

norm is infinite and the Weak−Lq
(
Zd
)

norm is finite.

In order to introduce the next result, we recall that the modulus of continuity of a

characteristic function shows that such a function does not belong to a Sobolev class

Wα,2
(
Rd
)

whenever α > 1/2. See [15, Chapter 5, §5]. Moreover, in [12, Corollary 2.2]

it is proved that for every set Ω with finite positive measure, without any regularity

assumption, there exists a constant C such that∫
|ξ|>R

|χ̂Ω (ξ)|2 dξ > CR−1.
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It follows that a uniform inequality of the kind |χ̂Ω(ξ)| 6 C |ξ|−β cannot hold with

β > (d+ 1) /2. On the other hand, this estimate holds with β = (d+ 1) /2 if Ω is a

bounded convex domain with smooth boundary with non-vanishing Gaussian curvature.

See [16]. See also [6] for possible generalizations to convex bodies with smooth bound-

ary containing isolated points with vanishing Gaussian curvature. This motivates the

following.

Corollary 3. Assume that Ω is a bounded convex domain such that

|χ̂Ω(ξ)| 6 C |ξ|−(d+1)/2
.

(1) If p < 2d/ (d− 1) and R > 2, then

‖D (RΩ− x)‖Lp(Td) 6 CR(d−1)/2.

(2) If p 6 2d/ (d− 1) and R > 2, then

‖D (RΩ− x)‖Weak−Lp(Td) 6 CR(d−1)/2.

(3) If p = 2d/ (d− 1) and R > 2, then

‖D (RΩ− x)‖Lp(Td) 6 CR(d−1)/2 log(d−1)/(2d) (R) .

(4) If p > 2d/ (d− 1) and R > 2, then

‖D (RΩ− x)‖Lp(Td) 6 CRd(pd−p−d+1)/p(d+1).

Proof. Points (1), (2) and (3) follow from Theorem 2, and the observation that the

sequence
{
|n|−α

}
n 6=0

is in Lq
(
Zd
)

if and only if qα > d, and it is in Weak−Lq
(
Zd
)

if

and only if qα > d. Point (4) follows from point (2) with p = 2d/(d − 1), the pointwise

estimate |D (RΩ− x)| 6 CRd(d−1)/(d+1) proved in [8] and [9], and (2) in Lemma 1.

The estimates in the above Corollary for p < 2d/ (d− 1) are essentially sharp. In

order to show this, we first recall the following result on the Fourier transform of the

characteristic function of a convex set.

Theorem 4. Let Ω ⊂ Rd be a convex body with smooth boundary having everywhere

positive Gaussian curvature. For every ξ ∈ Rd \ {0} let σ (ξ) be the unique point on

the boundary ∂Ω with outward unit normal ξ/ |ξ|. Also let K (σ (ξ)) be the Gaussian

curvature of ∂Ω at σ (ξ). Then, as |ξ| → +∞, the Fourier transform of χΩ (x) has the

asymptotic expansion

χ̂Ω (ξ)

= − 1

2πi
|ξ|−

d+1
2

[
K−

1
2 (σ (ξ)) e−2πi(ξ·σ(ξ)− d−1

8 ) −K− 1
2 (σ (−ξ)) e−2πi(ξ·σ(−ξ)+ d−1

8 )
]

+O
(
|ξ|−

d+3
2

)
.

Proof. See e.g. [7], [8], or [9].

The following result partially complements Corollary 3.

Theorem 5. Let Ω ⊂ Rd be a convex body with smooth boundary having everywhere

positive Gaussian curvature.
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(1) If Ω is not symmetric about a point, or if the dimension d 6≡ 1 (mod 4), then for

every p > 1 there exists C > 0 such that for every R > 2,

‖D (RΩ− x)‖Lp(Td) > CR
d−1
2 .

(2) If Ω is symmetric about a point and if d ≡ 1 (mod 4) then

lim sup
R→+∞

{
R−

d−1
2 ‖D (RΩ− x)‖Lp(Td)

}
> 0 if p > 1,

lim inf
R→+∞

{
R−

d−1
2 ‖D (RΩ− x)‖Lp(Td)

}
= 0 if p <

2d

d− 1
.

More precisely, if p < 2d/ (d− 1) there exist C > 0, and a sequence Rj → +∞, such that

‖D (RjΩ− x)‖Lp(Td) 6 CR
d−1
2

j

(
log (Rj)

log (log (Rj))

) d−1
2d −

1
p

.

Proof. In order to prove point (1) observe that, by Theorem 2,

‖D (RΩ− x)‖Lp(Td) > sup
n 6=0

{∣∣Rdχ̂Ω(Rn)
∣∣} .

Moreover, by Theorem 4, for n 6= 0,

Rdχ̂Ω(Rn) =

−1

2πi
R
d−1
2 |n|−

d+1
2

[
K−

1
2 (σ (n)) e−2πi(Rn·σ(n)− d−1

8 ) −K− 1
2 (σ (−n)) e−2πi(Rn·σ(−n)+ d−1

8 )
]

+O
(
R
d−3
2 |n|−

d+3
2

)
.

If Ω is not symmetric, then also K (σ (u)) is not symmetric (see [2, §14, p. 133]). Since

the set
{
n
|n| : n ∈ Zd \ {0}

}
is dense in the unit sphere, by continuity there exists m ∈ Zd

such that K (σ (m)) 6= K (σ (−m)) . Then, for this m and R large enough,∣∣Rdχ̂Ω(Rm)
∣∣

>
1

2π
R
d−1
2 |m|−

d+1
2

∣∣∣K− 1
2 (σ (m))−K− 1

2 (σ (−m))
∣∣∣+O

(
R
d−3
2 |m|−

d+3
2

)
> CR

d−1
2 .

Assume now that Ω is symmetric, and translate the center of symmetry to the origin, so

that for every ξ we have σ (−ξ) = −σ (ξ) and K (σ (ξ)) = K (σ (−ξ)). Choose n 6= 0 and

observe that

n · (σ (n)− σ (−n)) = 2n · σ (n) 6= 0.

Indeed, n · σ (n) = 0 would imply that the center belongs to the hyperplane tangent to

∂Ω at σ (n), hence Ω should have measure 0. We have∣∣Rdχ̂Ω(Rn)
∣∣

> CR
d−1
2 |n|−

d+1
2 K−

1
2 (σ (n))

∣∣∣e2πi(2Rn·σ(n)− d−1
4 ) − 1

∣∣∣+O
(
R
d−3
2 |n|−

d+3
2

)
.

Let ‖x‖ denote the distance of a real number x from the integers. If∥∥∥∥2Rn · σ (n)− d− 1

4

∥∥∥∥ > 1

10
,
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then
∣∣∣e2πi(2Rn·σ(n)− d−1

4 ) − 1
∣∣∣ > c and we have∣∣Rdχ̂Ω(Rn)

∣∣ > cR
d−1
2 .

Assume now that ∥∥∥∥2Rn · σ (n)− d− 1

4

∥∥∥∥ 6
1

10
.

Then ∥∥∥∥4Rn · σ (n)− d− 1

2

∥∥∥∥ 6
1

5
.

Since d 6≡ 1 (mod 4), we have ∥∥∥∥4Rn · σ (n)− d− 1

4

∥∥∥∥ >
1

20
.

Applying the previous argument with 2n in place of n provides the estimate∣∣Rdχ̂Ω(R2n)
∣∣ > cR

d−1
2 .

In order to prove point (2), assume that Ω is symmetric and d ≡ 1 (mod 4). From the

asymptotic estimate of χ̂Ω (ξ) we obtain∣∣Rdχ̂Ω(Rn)
∣∣ =

1

π
R
d−1
2 |n|−

d+1
2 K−

1
2 (σ (n)) |sin (2πRn · σ (n))|+O

(
R
d−3
2 |n|−

d+3
2

)
.

Since n · σ (n) 6= 0,

lim sup
R→+∞

{
R−

d−1
2 ‖D (RΩ− x)‖Lp(Td)

}
> lim sup

R→+∞

{
R−

d−1
2

∣∣Rdχ̂Ω(Rn)
∣∣} =

1

π
|n|−

d+1
2 K−

1
2 (σ (n)) > 0.

The last part of the proof relies on the ideas of Parnovski and Sobolev in [13]. We need

a variant of Dirichlet’s theorem on simultaneous diophantine approximation (see [13]).

Let α1, . . . , αm be real numbers, then for every positive integer j there exist integers

s1, . . . , sm and r such that

j 6 r 6 jm+1 and |rαk − sk| < j−1 for every k = 1, . . . ,m.

Let β = 2p
2d−pd+p , and

{αk}mk=1 = {n · σ (n)}|n|6jβ .

Then there exist integers sn and Rj such that

j 6 Rj 6 jcj
βd+1 6 jCj

βd

and |Rjn · σ (n)− sn| 6 j−1.

It follows that

|sin (2πRjn · σ (n))| = |sin (2π (Rjn · σ (n)− sn))| 6 2πj−1.

By the Hausdorff-Young inequality in Theorem 2, for p > 2 and 1/p+ 1/q = 1, we have

{∫
Td
|D (RjΩ− x)|p dx

}1/p

6

 ∑
0 6=n∈Zd

∣∣Rdχ̂Ω (Rn)
∣∣q

1/q

.
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If 2 6 p < 2d
d−1 then the above estimates of χ̂Ω (Rjn) yield∑

n 6=0

∣∣Rdj χ̂Ω (Rjn)
∣∣q

6 CR
(d−1)q/2
j

∑
n 6=0

|n|−(d+1)q/2 |sin (2πRjn · σ (n))|q +
∑
n 6=0

O
(
R

(d−3)q/2
j |n|−(d+3)q/2

)

6 CR
(d−1)q/2
j

j−q ∑
0<|n|6jβ

|n|−(d+1)q/2
+
∑
|n|>jβ

|n|−(d+1)q/2

+O
(
R

(d−3)q/2
j

)
6 CR

(d−1)q/2
j

(
j−q + jβ(d−(d+1)q/2)

)
+O

(
R

(d−3)q/2
j

)
.

Since β = 2q
q(d+1)−2d and Rj > j, we obtain∑

m 6=0

∣∣Rdj χ̂Ω (Rjn)
∣∣q

1/q

6 cR
(d−1)/2
j j−1.

Finally, letting j → +∞ we obtain

lim inf
R→+∞

{
R−

d−1
2 ‖D (RΩ− x)‖Lp(Td)

}
6 lim inf
R→+∞

R− d−1
2

∑
n 6=0

∣∣Rdχ̂Ω (Rn)
∣∣q

1/q
 = 0.

More precisely, if ϕ (t) = tβd log (t) then one can prove that, for large s,

ϕ−1 (s) ≈
(

βds

log (s)

)1/βd

.

This implies that if Rj 6 jCj
βd

then

j−1 6 C

(
log (Rj)

log (log (Rj))

)−1/βd

.

Therefore ∑
m6=0

∣∣Rdj χ̂Ω (Rjn)
∣∣q

1/q

6 C R
(d−1)/2
j

(
log (Rj)

log (log (Rj))

)−1/βd

.

As we said, |χ̂Ω(ξ)| 6 C |ξ|−(d+1)/2
whenever Ω has smooth boundary with positive

Gaussian curvature. However, for domains in the plane this smoothness assumption can

be relaxed. Consider a convex body Ω which can roll unimpeded inside a disc ∆. This

means that for any point x on the boundary ∂∆ there is a translated copy of Ω contained

in ∆ that touches ∂∆ in x.

Theorem 6. If a planar convex set Ω can roll unimpeded inside a disc, then

|χ̂Ω(ξ)| 6 C |ξ|−3/2
.

Proof. In [14] (see also [5, 18]) it is proved that if

λ (δ, ϑ,Ω) =

∣∣∣∣{x ∈ Ω : δ + x · ϑ = sup
y∈Ω
{y · ϑ}

}∣∣∣∣
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Ω

∆

ϑ

δ

(this is the length of the chord perpendicular to the outward direction ϑ and at a small

distance δ from the boundary ∂Ω), then

|χ̂Ω(ρϑ)| 6 diameter(Ω)

2ρ

(
λ
(
(2ρ)−1, ϑ,Ω

)
+ λ

(
(2ρ)−1,−ϑ,Ω

))
.

If Ω can roll unimpeded inside a disc ∆, then λ (δ, ϑ,Ω) 6 λ (δ, ϑ,∆). This implies

that the Fourier transform of Ω is dominated by the chords of a disc, and therefore

|χ̂Ω(ξ)| 6 C |ξ|−3/2
.

A curve can roll unimpeded inside another curve if and only if the largest radius of

curvature of the first is smaller than the smallest radius of curvature of the second. No

smoothness of these curves is required, the rolling curve may also have corners. See [2,

Chapter 17] and the references therein.

In particular, the above results give an alternative proof of the result in [10].

Corollary 7. Let Ω be a planar convex set that can roll unimpeded inside a disc.

For any R > 2 we have{∫
T2

|D (RΩ− x)|4 dx
}1/4

6 CR1/2 log1/4 (R) .

We conclude with a remark. A spherical shell
{
x ∈ Rd : R 6 |x| < R+ 1

}
contains ap-

proximately Rd−1 integer points which lie on the spherical surfaces
{
|x|2 = n

}
with n

integer between R2 and (R+ 1)
2
. Since these integers are at most 2R+1, one of these sur-

faces contains at least cRd−2 integer points. This implies that, if Ω =
{
x ∈ Rd : |x| 6 1

}
,

then ‖D(RΩ− x)‖L∞(Td) > cRd−2 for a diverging sequence of R. On the other hand

we proved that ‖D(RΩ− x)‖Lp(Td) 6 cR(d−1)/2 for p < 2d/(d − 1). Since for d > 3

this Lp estimate is smaller than the L∞ one, there exists a critical index p for which

‖D(RΩ− x)‖Lp(Td) 6 cR(d−1)/2 starts failing. We do not know if this critical index is

2d/(d− 1).
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