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Abstract 

Tool wear is one of the most important topic in cutting field. Its interest is due to the influence of tool wear on surface integrity of 
the final parts and on tool life, and, consequently, on the substitution policies and production costs. Analytical models, able to 
forecast the tool wear with a satisfactory accuracy, can give to the companies working in the material removal field a valid 
instrument to optimize the cutting processes. In the present work a comparison between response surface methodology (RSM) and 
artificial neural networks (ANNs) fitting techniques for tool wear forecasting was performed. For developing these predictive 
models, tool life tests, consisting of longitudinal turning operations of AISI 1045 steel bars using uncoated tungsten carbide inserts 
and variable cutting parameters, were conducted. Both flank (VB) and crater wears (KT) of the tool were monitored. The models 
were validated comparing the calculated tool wear values with the experimental ones, showing that ANNs model provides better 
approximation than RSM in the prediction of the amount of the tool wear parameters. So, from an industrial point of view, this 
model should be implemented into a production management software in order to correctly define the tool substitution policy 
during batch production. 
 
© 2013 The Authors. Published by Elsevier B.V. 
Selection and/or peer-review under responsibility of The International Scientific Committee of the 14th CIRP Conference on 
Modeling of Machining Operations" in the person of the Conference Chair Prof. Luca Settineri 
 
Keywords: tool wear; analytical model; Response Surface Methods; Artificial Neural Networks. 

1. Introduction 

In manufacturing field, turning operation is a very 
common material removal technique. Researches on this 
topic take into account several aspects, such as: 
geometrical and metallurgical characteristics of the 
cutting tool, workpiece material influence on the process 
and process parameters (cutting speed, feed rate, depth 
of cut). The interaction of all these factors during a 
cutting operation causes a series of physical, chemical 
and thermo-mechanical phenomena that influence the 
wear of the tool. In cutting operations it is difficult to 
establish a dominant cause [1] of tool wear. In fact, a 
simultaneous combination of several and different wear 
mechanisms like abrasion, adhesion, diffusion or 
oxidation, can be observed. The ISO 3685 standard 
describes how tool wear can be measured providing a 

description of the parameters to control during tool life 
tests. 

Typically, flank wear (VB) and K ratio (ratio between 
depth of the crater wear – KT – and the position of the 
maximum depth of crater – KM), are the most used ones 
because of their influence on tool life, substitution 
policy, manufacturing costs and surface integrity of the 
final part in terms of surface roughness [2], residual 
stress distribution [3-5] and strain hardening [6]. 

For these reasons, a good way to optimize a turning 
process is the possibility of predicting the tool wear. 
Since the on-line evaluation of the tool wear parameters 
during a turning process is a very expensive and time 
consuming effort for industries, it is very important to 
provide models able to predict these parameters with a 
good accuracy. For this purpose response surface 
methodology (RSM) [7,8] or artificial neural networks 
(ANNs) [9] can be utilized. The RSM technique fits data 
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coming from experimental tests with a suitable 
analytical function applying statistical rules and 
regression modeling techniques. While ANNs are global 
optimization algorithms employed in solving difficult 
problems. 

The aim of the present research is to apply RSM and 
ANNs techniques in order to obtain models able to 
predict flank wear (VB) and crater depth (KT) when 
turning AISI 1045 steel bars with uncoated tungsten 
carbide (WC) tools. Experimental tests provided the tool 
wear data, needed for developing the models. 
Longitudinal turning operations were carried out and the 
development of flank wear (VB) and depth of crater 
wear (KT) was measured. The considered variables are 
the cutting time and the main process parameter (i.e., 
cutting speed and feed rate). Design of experiments 
(DOE) technique was utilized for planning the 
experimental campaign. 

For evaluating the influence of the selected variables 
on the tool wear, a preliminary ANOVA analysis was 
performed on the data collected during the experimental 
campaign. After that, the RSM analysis was carried out, 
defining a second order analytical model for VB and KT 
prediction. 

ANN’s, based on backpropagation and feed-forward 
algorithm, were tested too. The wear models validation 
was performed using tool wear data collected 
performing additional experimental tests using cutting 
conditions different from those used during the training 
and the validating phases.  

The models are able to forecast VB and KT with a 
good accuracy. The best performances were obtained 
when using ANNs technique. 

2. Experimental campaign 

The experimental campaign was performed on a CNC 
lathe. Longitudinal turning operations on cylindrical bars 
made of AISI 1045 steel, with an initial diameter of 98 
mm and a length of 275 mm, were realized. Tungsten 
carbide ISO P40 inserts (ISO specification SPUN 
120308) with a nose radius of 0.8 mm and a flank angle 
( ) equal to 11° was utilized during the tests. Even if the 
ISO P40 inserts quality is not the best choice for cutting 
AISI 1045 steel, this insert material quality was chosen 
for obtaining high wear rate. The selected toolholder 
(ISO specification CSBPR 2020K12) is characterized 
by: 

 rake angle ( ) equal to +1°; 
 inclination angle ( ) equal to +7°; 
 entering angle ( ) equal to 75° 

Figure 1 shows the experimental set-up, while 
Table 1 summarizes the chemical composition and the 
mechanical characteristics of tool and workpiece 
materials. 

 

 = 75° 

 = 7° 

 

Fig. 1. Cutting operation set-up. 

Table 1. AISI 1045 and ISO P40 chemical and mechanical 
specifications. 

AISI 1045 chemical (% weight) and mechanical 
specifications 
%C 0.42÷0.50 
%Mn 0.60÷0.90 
%P <0.040 
%S <0.050 
Hardness Brinell [HB] 170 
Ultimate Tensile Strength [MPa] 515 
Yield Tensile Strength [MPa] 485 
Elongation at break [%] 10.0 
Reduction of area [%] 25.0 
Modulus of elasticity [GPa] 200.0 
Poisson ratio 0.290 
Shear modulus [GPa] 80.0 
ISO P40 chemical (% weight) mechanical 
specifications 
%W 82.8 
%C 5.2 
%Co 12.0 
Hardness Rockwell A [HRA] 90 
Ultimate Tensile Strength [MPa] 344 
Modulus of elasticity [GPa] 670 
Compressive Strength [MPa] 2683 

 
DOE technique was applied for planning the 

experimental campaign. In this manner the influence of 
cutting speed (VC), feed rate (f) and cutting time (t) on 
tool wear parameters was investigated.  

Figure 2 shows the conduced experimental tests and 
the corresponding process parameters. Three levels were 
set for cutting velocity and feed rate (squares in 
Figure 2). As far as the cutting time is concerned, each 
test was carried out for 7 minutes and stopped at regular 
intervals of 30 seconds for measuring the extension of 
flank wear (VB) and the depth of crater wear (KT) for a 
total of fourteen intervals. 
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Fig. 2. Experimental test. 

For validating the models three additional tests (dots 
in Figure 2) were performed. In these tests the time 
intervals for tool wear measurement were set as follow: 
steps of 45 seconds till reaching 6 minutes of cutting 
time followed by two steps of 30 seconds. 

Depth of cut was kept constant to 1.5 mm; no 
lubrication was used, in order to accelerate the tool wear, 
according to the ISO standard 3685 suggestions. Every 
test was repeated three times for testing the process 
repeatability. 

Flank wear (VB) was measured using an optical 
CMM (Mitutoyo QS200Z). This machine guarantee a 
measurement accuracy of 0.5 m. Figure 3 shows the 
flank wear measuring technique. 

The tool crater wear was measured using a 
profilometer with an accuracy of 0.01 m. Crater 
profiles were acquired along sections orthogonal to the 
cutting edge and to the rake face, spaced by 0.1 mm for a 
total length of 2.1 mm. Typically, the profiles are 
characterized by peaks and valleys due to the workpiece 
material adhesion (Figure 4a). For this reason, each 
profile was filtered by a band-pass filter, with the band-
centre around the medium trend of the profile, obtaining 
a cleaner profile. The so elaborated profiles were utilized 
for generating a three dimensional model of the tool 
crater (Figure 4b). From this three dimensional 
representation it is possible to measure the depth of the 
crater wear (KT) as distance between the rake surface 
and the deepest point of the crater as shown in Figure 4b. 

The evolution of flank (VB) and crater (KT) wear 
parameters for each test is reported in Figure 5. 

 

 

Aligned to  
unworn tool surface 

 
Fig. 3. VB measuring technique (vc=230m/min; f=0.20mm/rev; 
t=120 s). 
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Fig. 4. (a) unfiltered crater profile; (b) 3D representation of the crater 
of the insert. 
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Fig. 5. Evolution of VB (a) and KT (b) wear parameters. 
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3. Tool wear models 

3.1. Response surface model (RSM) 

Minitab® software was used for the statistical 
analyses. First of all, the ANOVA analysis was applied 
on the experimental data to evaluate the influence of VC, 
f and t on VB and KT. This analysis allows to verify the 
normal distribution of residuals and to test the normality 
of experimental data. If necessary, it is also possible to 
optimize the representation of the experimental data 
using a tool of Minitab® called “Box-Cox 
transformation” [10] that minimizes the standard 
deviation of a standardized transformed variable. After 
“Box-Cox transformation”, the experimental values of 
VB were substituted by the square root of their values 
while the values of KT by the natural logarithm of 
experimental data. The so transformed data passed the 
normality test as shown in Figure 6a and Figure 6b. 
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Fig. 6. Probability plots for VB (a) and ln(KT) (b). 

The ANOVA F-test was performed on the “Box-Cox” 
transformed data for analyzing the significant effects of 
input variables. The analysis was carried out for a level 
of significance of 5%, so for a level of confidence of 
95%. Table 2 shows the ANOVA results for the 

transformed data of VB and KT. By observing the P-
value of Table 2, it is possible to state that all the factors 
and their interactions affect the amount of VB and KT. 
Only the interaction between feed rate and cutting time 
showed a light influence on VB. 

Table 2. ANOVA results for VB and ln(KT). 

ANOVA results 
 VB  ln(KT) 

Factor F-test P-value F-test P-value 
VC 1262.8 <0.001 9735.7 <0.001 
F 483.8 <0.001 14673.4 <0.001 
T 600.7 <0.001 3085.7 <0.001 
VC x f 64.5 <0.001 439.4 <0.001 
VC x t 7.6 <0.001 6.3 <0.001 
f x t 1.4 0.117 5.5 <0.001 
VC x f x t 2.8 <0.001 5.4 <0.001 

 
Through the RSM analysis analytical full second 

order models of each wear parameter was determined. 
The models are reported in Equations (1) and (2). 
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3.2. Artificial Neural Network (ANN) 

Tool wear models were defined utilizing feed forward 
neural networks based on backpropagation algorithm. 

The cutting test data were provided to the designed 
neural networks in order to train, validate and test them. 
Several configurations of networks, characterized by 
different number of hidden layers and number of 
neurons in the hidden layers, were trained for carrying 
out the best arrangement for the wear parameters 
prediction, in terms of resulting errors as reported in 
Table 3. The input neurons are the investigated cutting 
parameters (VC, f and t), while the output layer 
corresponds to the wear parameters KT and VB. 

For developing ANNs the Neural Network Toolbox 
of Matlab® was used and the Levenberg-Marquardt 
backpropagation algorithm was chosen for its low 
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computational time and good reliability. For training and 
validating the network the input pattern had to be 
divided in two sets, one for each phase. The Matlab® 
toolbox was programmed to divide the input pattern as: 
the 80% for training the network and the 20% for 
validating it. After these two first phases, the ANNs 
giving the lowest MSE were chosen as the right 
predictive instruments. In particular, tool wear data of 
experiments from 1 to 9 were utilized for these two 
phases As shown in Table 3, the 3-14-1 (3 neurons for 
the input layer, 14 neurons for the hidden layer and 1 
neuron for the output layer) ANN architecture provided 
the best results for VB prediction; while the best 
network for KT prediction is the 3-7-1 network. 

A final testing phase was realized using the wear data 
coming from tests 10, 11 and 12. 

Table 3. Performances of trained  and validated ANNs for tool wear 
parameters prediction. 

Performances of trained and validated ANNs for 
VB prediction 
Config. Epochs Emed [ m] EMAX [ m] 
3-10-3-1 79 7.38 41.45 
3-20-3-1 124 9.31 233.20 
3-8-1 5000 8.54 26.90 
3-10-1 1733 8.48 119.66 
3-12-1 65 9.50 84.76 
3-14-1 5000 5.19 20.73 
3-16-1 5000 6.08 39.31 
3-20-1 283 10.03 128.90 
Performances of trained and validated ANNs for 
KT prediction 
Config. Epochs Emed [ m] EMAX [ m] 
3-5-1 5000 6.67 46.54 
3-7-1 5000 1.55 10.19 
3-8-1 2407 16.13 239.37 
3-9-1 5000 5.54 29.29 
3-10-1 5000 2.15 13.47 
3-11-1 154 34.67 903.35 
3-12-1 541 3.40 30.12 
3-13-1 61 5.72 42.22 
3-15-1 83 6.10 238.32 
3-20-1 69 3.86 16.75 

4. Result discussion 

Once obtained the models of flank and crater wear by 
using RMS and ANNs technique, the absolute errors 
with respect to the mean value of the experimental data 
were estimated. Figure 7 shows the absolute errors after 
a cutting time of 7 minutes, when the highest error 
values were observed. The light grey bars refer to the 
errors of DOE tests (form 1 to 9 in Figure 2), while the 
dark grey bars refer to the additional tests (from 10 to 12 
in Figure 2) errors. 
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Fig. 7. VB and KT absolute errors after 7 minutes of cut for RSM (a 
and b) and ANNs (c and d) models. 
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Observing Figure 7, it is evident that ANNs technique 

gives the smallest errors for both VB and KT parameters. 
This is due to the fact that RSM approximates the 
experimental data by means of a second order 
polynomial function. This approximation shows limits 
when the fitting surface of the experimental data 
(Figure 8) is characterized by inflection points as in this 
case. 
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Fig. 8. Fitting surface of experimental data: (a) VB; (b) KT. 

5. Conclusions 

In this study a comparison between two different 
techniques for modeling the behavior of wear parameters 
in turning operations is presented. These methodologies 
are the RSM, that uses the multidimensional regression 
technique, and the artificial neural networks 
approximations. For collecting the experimental data, 
necessary for developing the predictive models, a series 
of longitudinal turning operations, varying the process 
parameters, was performed. 

Several regression models and ANNs configurations 
were built up and verified for selecting the best wear 
parameters representation. By the fitting analysis, it was 
observed that the ANNs technique gives lower errors 
with respect to the RMS method This because ANNs 
technique is able to represent curvature and inflection 
points of the fitting surface with high accuracy. Thus, 

ANNs techniques are the best choice amongst the 
analyzed methodologies, for forecasting the amount of 
the wear parameters. Further studies will be focused on 
improving these models considering other important 
aspects of cutting operations such as the lubrication, the 
tool geometry or the tool coatings. 
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