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Abstract We investigate the connection between Grav-
ity’s Rainbow and Hořava–Lifshitz gravity, since both the-
ories incorporate a modification in the ultraviolet regime
which improves their quantum behavior at the cost of
the Lorentz invariance loss. In particular, extracting the
Wheeler–De Witt equations of the two theories in the case
of Friedmann–Lemaître–Robertson–Walker and spherically
symmetric geometries, we establish a correspondence that
bridges them.
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1 Introduction

The idea that general relativity (GR) is not the fundamen-
tal gravitational theory and that it needs to be modified

a e-mail: remo.garattini@unibg.it
b e-mail: Emmanuel_Saridakis@baylor.edu

or extended is quite old. On the one hand, the idea of a
small-scale, ultraviolet (UV) modification of GR arises from
the non-renormalizability of the theory and the difficulties
towards its quantization [1]. In particular, since the usual
loop-expansion procedure gives rise to UV-divergent Feyn-
man diagrams, the requirement for a UV-complete gravita-
tional theory, which has GR as a low-energy limit, becomes
necessary. On the other hand, we know that the large-scale,
infrared (IR) modifications of GR might be the explanation
of the observed late-time universe acceleration (see [2] and
references therein) and/or of the inflationary stage [3]. Due
to their significance, both directions led to a huge amount of
research.

Concerning the modification of the UV behavior, it was
realized that the insertion of higher-order derivative terms
in the Lagrangian establishes renormalizability, since these
terms modify the graviton propagator at high energies [1].
However, this leads to an obvious problem, namely that the
equations of motion involve higher-order time derivatives
and thus the application of the theory leads to ghosts. Never-
theless, based on the observation that it is the higher spa-
tial derivatives that improve renormalizability, while it is
the higher time derivatives that lead to ghosts, some years
ago Hořava had the idea to construct a theory that allows
for the inclusion of higher spatial derivatives only. In order
to achieve this, and motivated by the Lifshitz theory of
solid state physics [4], he broke the “democratic treating” of
space and time in the UV regime, introducing an anisotropic,
Lifshitz scaling between them [5–8]. Hence, higher spatial
derivatives are not accompanied by higher time ones (defi-
nitely this corresponds to Lorentz violation), and thus in the
UV the theory exhibits power-counting renormalizability but
still without ghosts. Finally, the theory presents GR as an IR
fixed point, as required, where Lorentz invariance is restored
and space and time are handled on equal footing.

On the other hand, in [9] the authors followed a different
approach. In particular, instead of modifying the action, they
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constructed an UV modification of the metric itself, in a con-
struction named Gravity’s Rainbow (GRw) [9]. Hence, the
deformed metric in principle exhibits a different treatment
between space and time in the UV, namely on scales near the
Planck scale, depending on the energy of the particle prob-
ing the space-time, while at low energies one recovers the
standard metric, and General Relativity is restored. Physi-
cally, one can think of it as a deformation of the metric by
the Planck-scale graviton. This deformation has been shown
to cure divergences (at least to one loop) avoiding any reg-
ularization/renormalization scheme [10,11]. Hence, due to
this advantage, a large amount of research has been devoted
to GRw [12–33].

In the present work we are interested in examining whether
there is a correspondence between Hořava–Lifshitz gravity
and GRw, since both directions result in a modification of
the equations in the UV regime, while they both present GR
as their low-energy limit. In particular, since GR provides
a natural scheme for quantization of the gravitational field,
namely the Wheeler–De Witt (WDW) equation [34], which
is a quantum version of the Hamiltonian constraint obtained
from the Arnowitt–Deser–Misner decomposition of space-
time, we will impose the requirement that the WDW equa-
tion must be satisfied by GRw and Hořava–Lifshitz gravity,
respectively. We will examine this correspondence on the
Friedmann–Lemaître–Robertson–Walker (FLRW) metric at
the mini-superspace level, where the problem with the scalar
graviton is absent, as well as in spherically symmetric geome-
tries.

The manuscript is organized as follows: in Sect. 2 we
review the basic elements of Hořava–Lifshitz theory, while
in Sect. 3 we extract the corresponding WDW equation in the
case of FLRW space-time. In Sect. 4 we extract the WDW
equation for GRw in the case of FLRW space-time. In Sect.
5 we establish the correspondence between the two theo-
ries, while in Sect. 6 we obtain this relation for spherically
symmetric space-times. Finally, we summarize our results in
Sect. 7.

Throughout this manuscript we use units in which h̄ =
c = k = 1.

2 Hořava–Lifshitz gravity

We start with a brief review of Hořava–Lifshitz gravity [5–8].
As we stated in the Introduction, the central idea of the theory
is the different treatment of space and time, which allows
us to introduce higher spatial derivatives without inserting
also the annoying higher time derivatives. Thus, a convenient
framework to perform the construction in is the Arnowitt–
Deser–Misner (ADM) metric decomposition, namely

ds2 = −N 2dt2 + gi j (dx
i + Nidt)(dx j + N jdt). (2.1)

The dynamical variables are the lapse N and shift Ni func-
tions, and the spatial metric gi j (Latin indices denote spa-
tial coordinates). The coordinate scaling transformations are
written as

t → �3t and xi → �xi , (2.2)

i.e. it is a Lifshitz scale invariance with a dynamical critical
exponent z = 3.

The breaking of the four-dimensional diffeomorphism
invariance allows for a different treatment of the kinetic and
potential terms for the metric in the action, namely the kinetic
term can be quadratic in time derivatives while the potential
term can have higher-order space derivatives. Thus, in gen-
eral, the action of Hořava–Lifshitz gravity is written as

S = 1

2κ

∫
�×I

dtd3x (LK − LP ) , (2.3)

with κ = M−2
pl the Planck mass, where the kinetic term reads

LK = N
√
g

(
Ki j Ki j − λK 2

)
, (2.4)

with Ki j the extrinsic curvature defined as

Ki j = 1

2N

{−ġi j + ∇i N j + ∇ j Ni
}
, (2.5)

K = Ki j gi j its trace, and g is the determinant of the spa-
tial metric gi j . The constant λ is a dimensionless running
coupling, which takes the value λ = 1 in the IR limit. The
potential part LP can in principle contain many terms. How-
ever, one can make additional assumptions in order to reduce
the possible terms, thus resulting to various versions of the
theory. In the following we review the basic ones.

2.1 Detailed-balance version

The assumption of “detailed balance” [7] allows for the
establishment of a quantum inheritance principle [5], that
is, the (D+ 1)-dimensional theory exhibits the renormaliza-
tion properties of the D-dimensional one. Physically, it cor-
responds to the requirement that the potential term should
arise from a superpotential. This condition reduces signifi-
cantly the potential part of the action, resulting in

LPdb = N
√
g

{
κ2

w4Ci jC
i j − 2κ3/2μ

w2

εi jk√
g
Ril∇ j R

l
k

+μ2

κ
Ri j R

i j − μ2

1−3λ

[
1−4λ

4
R2+�R− 3�2

κ

]}
,

(2.6)

where Ci j = εikl∇k

(
R j

l − δ
j
l R/4

)
/
√
g is the Cotton ten-

sor (it is concomitant with the metric and in three dimensions
it is the analog of the Weyl tensor), the covariant derivatives
are defined with respect to the spatial metric gi j , and εi jk is
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the totally antisymmetric unit tensor. Finally, apart from the
running coupling λ, we have three more constants, namely
w, μ and �. We mention that the detailed-balance condition,
apart from reducing the possible terms in the potential part
of the action, additionally correlates their coefficients, and
thus the total number of coefficients is smaller than the total
number of terms.

2.2 Projectable version

Independently of the detailed-balance condition one can
impose the “projectability” condition, which is a weak ver-
sion of the invariance with respect to time reparametriza-
tions, namely that the lapse function is just a function of
time, i.e. N = N (t) [7]. Such a condition allows also for a
significant reduction of terms in the potential, since it elim-
inates the spatial derivatives of N . In this case, and neglect-
ing parity-violating terms, the potential part of the action
becomes [35,36]

LP = N
√
g

{
g0κ

−1 + g1R + κ
(
g2R

2 + g3R
i j Ri j

)

+ κ2
(
g4R

3 + g5RR
i j Ri j + g6R

i
j R

j
k R

k
i + g7R∇2R

+ g8∇i R jk∇ i R jk
)}

, (2.7)

where the couplings ga (a = 0 . . . 8) are all dimensionless
and running; moreover, we can set g1 = −1. Finally,
note that if, apart from the projectability condition, one
additionally imposes the detailed-balance condition, then it
will again result in the potential term (2.6) but with N =
N (t).

2.3 Non-projectable version

In the general case where neither the detailed-balance nor
the projectability conditions are imposed, one can have in the
potential part of the action many possible curvature invariants
of gi j and, moreover, invariants including also the vector
ai = ∂i ln N , which is now non-zero. In this case the potential
part of the action becomes [37]

LPnp = N
√
g

{
−ξ R − ηaia

i − 1

M2
A

L4 − 1

M2
B

L6

}
, (2.8)

where aiai is the lowest-order new term, of the same order
as R, and L4 and L6, respectively, contain all possible fourth
and sixth order invariants that can be constructed byai and gi j
and their combinations and contractions. Clearly, the above
potential term contains much more terms than the projectable
or the detailed-balance versions. Lastly, in order to recover
GR in the IR limit, apart from the running of λ to 1, η should
run to zero too, while ξ can be set to 1.

We close this section by mentioning that in all versions of
Hořava–Lifshitz gravity, Lorentz invariance is violated due
to both the kinetic term (since λ is in general not equal to
1) and the terms in the potential. It is approximately and
asymptotically restored in the IR, where λ runs to 1 and the
potential terms will be significantly suppressed. Thus, one
can apply Hořava–Lifshitz gravity in order to investigate its
implications, which indeed are found to be rich and interest-
ing at both cosmological [38–84] and black hole applications
[85–91].

3 The WDW equation in Hořava–Lifshitz gravity

In this section we examine the Wheeler–De Witt (WDW)
equation in the framework of Hořava–Lifshitz gravity. For
convenience, and in order to simplify the calculations, we
focus on the projectable version of the theory, without the
detailed-balanced condition, although an extension to the
full, non-projectable theory is straightforward.

The WDW equation is a quantum version of the Hamil-
tonian constraint obtained from the Arnowitt–Deser–Misner
decomposition of space-time. Hence, let us consider a sim-
ple mini-super-space model described by the FLRW line ele-
ment,

ds2 = −N 2dt2 + a2 (t) d�2
3, (3.1)

describing a homogeneous, isotropic, and closed universe.
d�2

3(k) is the metric on the spatial sections, which have con-
stant curvature k = 0,±1, defined by

d�2
3 = γi jdx

idx j . (3.2)

Additionally, N = N (t) is the lapse function and a(t)
denotes the scale factor. In this background, the three-
dimensional Ricci curvature tensor and the scalar curvature
read

Ri j = 2

a2 (t)
γi j and R = 6

a2 (t)
, (3.3)

respectively. With the help of Eq. (2.7), the resulting Hamil-
tonian is computed by means of the usual Legendre transfor-
mation, leading to

H =
∫

�

d3xH =
∫

�

d3x [πaȧ − LP ] , (3.4)

where πa is the canonical momentum. By inserting the
FLRW background into LP one obtains

LP = N
√
g

[
g0κ

−1 + g1
6

a2 (t)
+ 12κ

a4 (t)
(3g2 + g3)

+ 24κ2

a6 (t)
(9g4 + 3g5 + g6)

]
. (3.5)
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The term g0κ
−1 plays the role of a cosmological constant.

In order to make contact with the ordinary Einstein–Hilbert
action in 3 + 1 dimensions, we set without loss of generality

g0κ
−1 ≡ 2�

g1 ≡ −1. (3.6)

Note that in the case where one desires to study the negative
cosmological constant, the identification will (trivially) be
g0κ

−1 ≡ −2�.
Having set N = 1, the Legendre transformation leads to

H = πaȧ − LK + LP , (3.7)

and the Hamiltonian constraint becomes [54]

H =
∫

�

d3xH = − κπ2
a

12π2a (3λ − 1)

+2π2a3 (t)

[
2�κ−1 − 6κ−1

a2 (t)
+ 12b

a4 (t)
+ 24κc

a6 (t)

]

= π2
a + (3λ − 1)

κ2 24π4a4 (t)

[
6

a2 (t)
− 12κb

a4 (t)

−24κ2c

a6 (t)
− 2�

]
= 0, (3.8)

where

3g2 + g3 = b

9g4 + 3g5 + g6 = c. (3.9)

General relativity is recovered when b = c = 0, which does
not necessarily mean that all the couplings are vanishing.
Moreover, all the higher-curvature terms are automatically
suppressed, since the curvature becomes small [35]. Let us
mention here that the scenario described by the distorted
potential Lagrangian (2.7), in the specific case of FLRW
geometry, which we are interested in, could be considered
to arise equivalently in the framework of f (R) gravity, with
R the three-dimensional scalar curvature [11]. Indeed, if one
starts from the Lagrangian

L f R = N
√
g f (R) (3.10)

with

f (R) = g0κ
−1 + g1R − κb

3
R2 − κ2c

9
R3,

= 2� + R

(
1 − 2πb

R

R0
− 4π2c

R2

R2
0

)
, (3.11)

and b and c given by (3.9), and extracts the correspond-
ing field equations in the case of FLRW geometry, one will
obtain the same equations as those extracted fromLP in (2.7).
Lastly, note that we have used the definitions (3.6), while we
have furthermore set R0 ≡ 6/G = 6/ l2p.

4 The WDW equation in Gravity’s Rainbow

In this section we review briefly GRw [9], focusing on the
Hamiltonian analysis and the WDW equation. In this formu-
lation, the space-time geometry is described by the deformed
metric

ds2 = − N 2 (t)

g2
1 (E/EPl)

dt2 + a2 (t)

g2
2 (E/EPl)

d�2
3 , (4.1)

where g1(E/EPl) and g2(E/EPl) are functions of energy,
which incorporate the deformation of the metric. Concerning
the low-energy limit one is required to consider

lim
E/EPl→0

g1 (E/EPl) = 1 and lim
E/EPl→0

g2 (E/EPl) = 1,

(4.2)

and thus to recover the usual FLRW geometry. Hence, E
quantifies the energy scale at which quantum gravity effects
become apparent. For instance, one of these effects would
be that the graviton distorts the background metric as we
approach the Planck scale.

As has been extensively shown in the literature [10–33],
GRw can be used to cure or alleviate the usual GR diver-
gences, at least to one loop, avoiding any regularization
and renormalization schemes. If one allows the energy E to
evolve depending on t , one finds that the extrinsic curvature
of the metric (4.1) reads

Ki j = −g1 (E (a (t)) /EP )

2N

d

dt

[
gi j

g2
2 (E (a (t)) /EP )

]

= g1 (E (a (t)) /EP )

g2
2 (E (a (t)) /EP )

[
K̃i j + g̃i j

A (t)

N (t)
ȧ (t)

]
, (4.3)

where

A (t)= 1

g2 (E (a (t)) /EP ) EP

d

dE

[
g2 (E (a (t)) /EP )

]dE

da
,

(4.4)

dots denoting differentiation with respect to time. In the
above expressions the tildes indicate the quantities computed
in the absence of the rainbow’s functions.

The next step is to find the corresponding canonical
momentum. After a short calculation, presented in Appendix
A, the canonical momentum can be written

πa = δSK
δȧ

= g2
1 (E (a (t)) /EP )

g3
2 (E (a (t)) /EP )

f (A (t) , a) π̃a, (4.5)

where

f (A (t) , a) =
[
1 − 2a (t) A (t) + A2 (t) a (t)2

]
(4.6)

and

π̃a = 6π2

κ

(1 − 3λ)

N (t)
ȧa. (4.7)
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Finally, we can now assemble the Hamiltonian density,
which is defined as

H = πaȧ − LK + LP , (4.8)

where LP is the potential term whose form is

LP = N (t)
√
g̃

16πGg2 (E (a (t)) /EP )

[
R̃ − 2�

g2
2 (E (a (t)) /EP )

]
.

(4.9)

Concerning the kinetic term we have

HK = πaȧ − LK = κN (t)

12π2a

[
g3

2 (E (a (t)) /EP )

g2
1 (E (a (t)) /EP )

]

× π2
a

(1 − 3λ) f (A (t) , a)

=
[
κN (t)

12π2a

] [
π̃2
a

(1 − 3λ)

] [
g2

1 (E (a (t)) /EP )

g3
2 (E (a (t)) /EP )

]

× f (A (t) , a) , (4.10)

thus the classical Hamiltonian constraint reduces to

H = κ

12π2a

π̃2
a

(1 − 3λ)

g2
1 (E (a (t)) /EP )

g3
2 (E (a (t)) /EP )

f (A (t) , a)

− π2a3 (t)

κg2 (E (a (t)) /EP )

[
6

a2 (t)
− 2�

g2
2 (E (a (t)) /EP )

]

= 0. (4.11)

It is then straightforward to see that the Hamiltonian density
reduces to

H = π̃2
a + 12 (3λ − 1) π4a4 (t)

κ2g2
1 (E (a (t)) /EP ) f (A (t) , a)

×
[
g2

2 (E (a (t)) /EP )
6

a2 (t)
− 2�

]
= 0, (4.12)

where we have integrated out all degrees of freedom apart
from the scale factor.

5 Correspondence of Gravity’s Rainbow
with Hořava–Lifshitz gravity

In the previous sections we have extracted the WDW equa-
tion in the cases of Hořava–Lifshitz gravity and GRw, for
a FLRW background, that is, Eqs. (3.8) and (4.12), respec-
tively. Hence, observing their forms we deduce that it is pos-
sible to create a formal correspondence between the two for-
mulations provided that

g2
1 (E (a (t)) /EP ) f (A (t) , a) = 1 (5.1)

and

g2
2 (E (a (t)) /EP )

6

a2 (t)
= 6

a2 (t)

[
1 − 2κb

a2 (t)
− 4κ2c

a4 (t)

]
.

(5.2)

Since we preserve the freedom to fix g2 (E (a (t)) /EP ), we
impose the requirement that

g2
2 (E (a (t)) /EP ) = 1 − 2bκ

a2 (t)
− 4κ2c

a4 (t)

= 1 − 16bR

R0
− 256cR2

R2
0

, (5.3)

where R0 has been defined in (3.11) as R0 ≡ 6/G =
6/ l2p. Although at first sight identification (5.3) seems to be
imposed ad hoc, it can be supported by invoking the disper-
sion relation of a massless graviton, which, as we show in
Appendix B, for a FLRW background acquires the form

E2 = k2

a2 (t)
, (5.4)

with k the constant dimensionless radial wavenumber, and
thus in the present case of GRw it is modified to

E2

g2
2 (E (a (t)) /EP )

= k2

a2 (t)
. (5.5)

Since the dispersion relation (5.5) is valid at the Planck scale
too, we can write

E2

g2
2 (E (a (t)) /EP )

→ E2
P

g2
2 (EP/EP )

= E2
P = k2

a2
P

. (5.6)

Hence, Eq. (5.3) becomes

g2
2 (E (a (t)) /EP ) = 1 − 16bπR

R0
− 256cπ2R2

R2
0

= 1 − c1
E2 (a (t))

E2
P

− c2
E4 (a (t))

E4
P

.

(5.7)

Therefore we deduce that

E2 = R/6k2 (5.8)

with

E2
P = G−1, c1 = 16bπ and c2 = 256cπ2. (5.9)

We mention here that the fact that a relation between the
energy of a particle and the scalar curvature can come into
play directly in the metric, is not a novelty. Indeed in [92]
the scalar curvature enters into the metric via the trace of the
Einstein’s field equations connecting the energy-momentum
tensor with the 4D scalar curvature. Moreover, note that the
energy-momentum tensor has dimensions of energy density.
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Thus, and in order to take the comparison on general grounds,
one can assume that g2 (E (a (t)) /EP ) can be represented by
a formal expansion in powers of E/EP , identifying the coef-
ficients order by order. However, since in the present work we
are comparing GRw with the Hořava–Lifshitz gravity with
z = 3, the formal Taylor expansion is truncated at the second
order.

6 Correspondence in spherically symmetric
backgrounds

The discussion on the WDW equations in GRw and Hořava–
Lifshitz gravity of the previous section was presented in
homogeneous and isotropic backgrounds, namely on the
FLRW metric. One could wonder whether these results are
an artifact of the space-time symmetries and not of the fea-
tures of the two theories. Thus, in the present section we
repeat the above analysis in the case of spherically symmet-
ric backgrounds. In particular, we consider metrics of the
class

ds2 =−N 2 (r) dt2+ dr2

1 − b(r)/r
+ r2 (dθ2+sin2 θ dφ2),

(6.1)

where N (r) andb(r) are arbitrary functions of the radial coor-
dinate r , denoted as the lapse function and the form function
respectively. In this case, the energies now depend on the
shape function b (r) and the radial coordinate r , namely

g1 (E/EP ) ≡ g1 (E (b (r)) /EP )

g2 (E/EP ) ≡ g2 (E (b (r)) /EP ) . (6.2)

Hence, the metric modification appearing for the scalar cur-
vature R is given by

R = gi j Ri j = 2b′ (r)
r2 , (6.3)

where the prime denotes derivative with respect to r , and we
have used the mixed Ricci tensor Ra

j with components

Ra
j =

{
b′ (r)
r2 − b (r)

r3 ,
b′ (r)
2r2 + b (r)

2r3 ,
b′ (r)
2r2 + b (r)

2r3

}
.

(6.4)

When GRw is switched on, the line element (6.1) becomes

ds2 = − N 2 (r)

g2
1 (E (b (r)) /EP )

dt2

+ dr2

g2
2 (E (b (r)) /EP ) (1 − b(r)/r)

+ r2

g2
1 (E (b (r)) /EP )

(dθ2 + sin2 θ dφ2), (6.5)

and the scalar curvature transforms as

R →
[

1 − b (r)

r

] {
r4 g2 (E (b (r))) R̃2

×
{

d2g2 (E (b (r)))

dE2

[
dE (b (r))

db

]2

+dg2 (E (b (r)))

dE

d2E (b (r))

db2

}

−3

2
r4 R̃2

[
dE (b (r))

db

]2 [
dg2 (E (b (r)))

dE

]2

+ 4 g2 (E (b (r)))
dE (b (r))

db

dg2 (E (b (r)))

dE

d2b (r)

dr2

}

× g2 (E (b (r)))
dg2 (E (b (r)))

dE

dE (b (r))

db

×
[
−r3

2
R̃2 − 3b (r) R̃ + 4r R̃

]
+ g2

2(E (b (r))) R̃,

(6.6)

where the tildes indicate that the quantities are computed
in the absence of the rainbow’s functions. Although this is
not necessary, for simplification we focus on the case where
there is no explicit dependence of E on b (r), that is, we
assume dE (b (r)) /db = 0. In this case the scalar curvature
simplifies to

R → g2
2 (E (b (r)) /EP ) R̃. (6.7)

Since the extrinsic curvature Ki j becomes

Ki j = − ġi j
2N

= g1 (E (b (r)) /EP )

g2
2 (E (b (r)) /EP )

K̃i j , (6.8)

even in this case the kinetic term does not contribute at the
classical level and the GRw distortion is completely encoded
in the potential term. Hence, if we assume the validity of Eq.
(5.7) for the spherically symmetric case too, we find

g2
2 (E (a (t)) /EP ) = 1 + g2

E2 (b (r))

E2
P

+ g4
E4 (b (r))

E4
P

= 1 + g2
R

R0
+ g4

R2

R2
0

. (6.9)

Therefore, we conclude that one can establish a correspon-
dence between GRw and Hořava–Lifshitz gravity in the
spherically symmetric geometries too. Although we have
shown this correspondence in the case of scalar curvature,
we expect it to hold in the general case too, although such a
feature needs to be proven formally.
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7 Conclusions

In this work we explored the connection between two
Lorentz-violating theories, namely GRw and Hořava–Lifshitz
gravity. In GRw, it is the metric that incorporates all the dis-
tortion of the space-time when one approaches the Planck
scale, while in Hořava–Lifshitz gravity, it is the potential
part of the action (or the Hamiltonian) that acquires higher-
order curvature terms. Usually GRw is switched on because a
Planckian particle distorts the gravitational metric tensor gμν .
However, since in the present application we have neglected
any matter fields, the only particle appearing is the graviton.
Since the graviton is the quantum particle associated with
the quantum fluctuations of the space-time, we conclude that
it is the gravitational field itself that is responsible for such
a distortion. This is also enforced by the dispersion relation
relating the graviton energy and the scale factor, namely the
scalar curvature, in the case where an FLRW background is
imposed, or the graviton energy and the shape function in the
case where a spherically symmetric background is imposed.

As we have shown, one can indeed establish a correspon-
dence between the two theories, through the examination
of their Wheeler–De Witt equations. However, although we
have explicitly shown this in the case of two physically inter-
esting space-times, namely the FLRW and the spherically
symmetric ones, and thus we have a strong indication that this
correspondence is not an artifact of the space-time symme-
tries but rather it arises from the features of the two theories,
a general proof (or disproof) in the case of arbitrary metrics is
still needed. In order to handle this issue, one might use the
well-known relation between Hořava–Lifshitz gravity and
Einstein-aether theory [93–95].

It is interesting to mention that GRw, in the FLRW back-
ground, generates Hořava–Lifshitz gravity under a specific
form of f (R) theory, with R the three-dimensional scalar
curvature. A similar result was pointed out in [92], where a
connection between the rainbow’s functions and a specific
f (R) form seems to be evident. In our analysis we saw that
the obtained correspondence includes information even for
the terms of the type Ri j Ri j , RRi j Ri j and Ri

j R
j
k R

k
i , which

were not explicitly included. Hence, we deduce that in order
to incorporate higher-curvature terms, it is likely that the
rainbow’s functions must include terms of the form Ri j Ri j

etc., a possibility that could be encoded in the Kretschmann
scalar. These issues reveal that the bridge between GRw and
Hořava–Lifshitz gravity could be much richer, and it deserves
further investigation.

We close this work by mentioning that in the above anal-
ysis we have remained at the background level, as a first step
towards bridging the two theories. However, it is required
and it is interesting to examine their relation at the perturba-
tion level too, since there are many examples of theories that
coincide at the background level, while being distinguish-

able or different when one incorporates the perturbations.
Furthermore, relating the perturbations between GRw and
Hořava–Lifshitz gravity becomes necessary having in mind
the problems of the extra mode propagation that appears in
the simple versions of the latter [96–99]. Since such a detailed
analysis lies beyond the scope of the present manuscript it is
left for a future investigation.
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ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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Appendix A: Kinetic term in Gravity’s Rainbow
with a time-dependent energy term

In the case where E ≡ E (a (t)), the extrinsic curvature of
the metric (4.1) acquires the form of Eq. (4.3), namely

Ki j = −g1 (E (a (t)) /EP )

2N

d

dt

[
gi j

g2
2 (E (a (t)) /EP )

]

= g1 (E (a (t)) /EP )

g2
2 (E (a (t)) /EP )

[
K̃i j + g̃i j

A (t)

N (t)
ȧ (t)

]
, (A.1)

where

A (t)= 1

g2 (E (a (t)) /EP ) EP

d

dE

[
g2 (E (a (t)) /EP )

]dE

da
,

(A.2)

and with dots denoting differentiation with respect to time.
In the above expressions the tildes indicate the quantities
computed in the absence of the rainbow’s functions. The trace
of the extrinsic curvature becomes

K = gi j Ki j = g2
2 (E (a (t)) /EP ) g̃i j Ki j

= g1 (E (a (t)) /EP )

[
K̃ + 3

A (t)

N (t)
ȧ (t)

]
, (A.3)

while raising the indices in Ki j we obtain

Ki j = gil g jmKlm = g2
2 (E (a (t)) /EP ) g1

× (E (a (t)) /EP )

[
K̃ i j + g̃i j

A (t)

N (t)
ȧ (t)

]
. (A.4)
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Hence, the kinetic term becomes

Ki j Ki j − λK 2 = g2
1 (E (t) /EP )

{
K̃ i j K̃i j − λK̃ 2

+ (1 − 3λ)

{
2K̃

N (t)
A (t) ȧ (t) + 3

[
A (t)

N (t)
ȧ (t)

]2
}}

.

(A.5)

For the specific case of a FLRW metric we find that

K̃i j = − g̃i j
N (t)

ȧ

a
, (A.6)

and thus

K̃ i j K̃i j − λK̃ 2 = 3
(1 − 3λ)

N 2 (t)

(
ȧ

a

)2

. (A.7)

In this case Eq. (A.5) becomes

Ki j Ki j − λK 2 = 3g2
1 (E (t) /EP )

(1 − 3λ)

N 2 (t)

(
ȧ

a

)2

× f (A (t) , a) , (A.8)

where

f (A (t) , a) =
[
1 − 2a (t) A (t) + A2 (t) a (t)2

]
. (A.9)

It is now possible to calculate the kinetic part of the action,
which is defined as

SK =
∫

�×I
dtd3xLK , (A.10)

where

LK = N

2κ

√
g

(
Ki j Ki j − λK 2

)
. (A.11)

Inserting (A.8) into SK we obtain

SK = 3

κ
π2

∫
I

dt N (t) aȧ2 g2
1 (E (a (t)) /EP )

g3
2 (E (a (t)) /EP )

(1 − 3λ)

N 2 (t)

× f (A (t) , a) , (A.12)

and thus the canonical momentum reads

πa = δSK
δȧ

= g2
1 (E (a (t)) /EP )

g3
2 (E (a (t)) /EP )

f (A (t) , a) π̃a, (A.13)

where

π̃a = 6π2

κ

(1 − 3λ)

N (t)
ȧa. (A.14)

To be definite, we restrict ourselves to the case λ �= 1
3 , since

in the special case where λ = 1
3 the ultralocal metric (the one-

parameter family of supermetrics, which allows one to disen-
tangle gauge modes from physical deformations) [100,101],
is not invertible and becomes a projector onto the tracefree
subspace.

Appendix B: The Lichnerowicz equation for the graviton

In 3 + 1 dimensions the graviton operator is described by

Oik jl = �ik jl
L − 4Ril gk j + Rgikg jl + ∂2

∂t2 g
ikg jl , (B.15)

where we have assumed the absence of mixing of time and
space, which naturally follows from the structure of the
FLRW metric (3.1). The Riemann tensor in three dimensions
becomes

Rik jl = gi j Rkl − gil Rk j − gkj Ril + gkl Ri j

− R

2

(
gi j gkl − gil gk j

)
, (B.16)

and for a FLRW background the three-dimensional Ricci
curvature tensor and the scalar curvature read

Ri j = 2

a2 (t)
γi j and R = 6

a2 (t)
, (B.17)

where γi j is the metric on the spatial sections which have
constant curvature k = 0,±1, defined by

d�2
3 = γi jdx

idx j . (B.18)

Hence, the Riemann tensor reduces to

Rik jl = − 2

a2 (t)

(
γi jγkl − γilγk j

)
. (B.19)

Then the operator Oik jl on transverse traceless tensors
reduces to

Oik jl = a−2 (t)
(
−∇a∇aγ

ikγ jl+2γ ilγ k j
)
+ 1

N 2

∂2

∂t2 γ ikγ jl ,

(B.20)

and the dispersion relation becomes

k2

a2 (t)
= E2, (B.21)

where, as usual, in the end of the calculation we have set the
lapse function N to 1. Finally, as shown in [10], in the case
of GRw the above dispersion relation has to be modified to

k2

a2 (t)
= E2

g2
2 (E/EP )

. (B.22)

References

1. K.S. Stelle, Renormalization of higher derivative quantum gravity.
Phys. Rev. D 16, 953 (1977)

2. S. Capozziello, M. De Laurentis, Extended theories of gravity.
Phys. Rep. 509, 167 (2011). arXiv:1108.6266

3. S.’i. Nojiri, S.D. Odintsov, Modified gravity with negative and
positive powers of the curvature: unification of the inflation and
of the cosmic acceleration. Phys. Rev. D 68, 123512 (2003).
arXiv:hep-th/0307288

123

http://arxiv.org/abs/1108.6266
http://arxiv.org/abs/hep-th/0307288


Eur. Phys. J. C (2015) 75 :343 Page 9 of 11 343

4. E.M. Lifshitz, On the theory of second-order phase transitions I
and II. Zh. Eksp. Toer. Fiz. 11, 255, 269 (1941)

5. P. Horava, Quantum criticality and Yang–Mills Gauge theory.
Phys. Lett. B 694, 172 (2010). arXiv:0811.2217

6. P. Horava, Membranes at quantum criticality. JHEP 0903, 020
(2009). arXiv:0812.4287

7. P. Horava, Quantum gravity at a Lifshitz point. Phys. Rev. D 79,
084008 (2009). arXiv:0901.3775

8. P. Horava, Spectral dimension of the universe in quantum grav-
ity at a Lifshitz point. Phys. Rev. Lett. 102, 161301 (2009).
arXiv:0902.3657

9. J. Magueijo, L. Smolin, Gravity’s Rainbow. Class. Quantum Grav.
21, 1725 (2004). arXiv:gr-qc/0305055

10. R. Garattini, G. Mandanici, Modified dispersion relations lead to
a finite zero point gravitational energy. Phys. Rev. D 83, 084021
(2011). arXiv:1102.3803

11. R. Garattini, Distorting general relativity: Gravity’s Rainbow and
f(R) theories at work. JCAP 1306, 017 (2013). arXiv:1210.7760

12. P. Galan, G.A. Mena Marugan, Quantum time uncertainty in a
Gravity’s Rainbow formalism. Phys. Rev. D 70, 124003 (2004).
arXiv:gr-qc/0411089

13. J. Hackett, Asymptotic flatness in rainbow gravity. Class. Quan-
tum Grav. 23, 3833 (2006), arXiv:gr-qc/0509103

14. Y. Ling, X. Li, H.B. Zhang, Thermodynamics of modified black
holes from Gravity’s Rainbow. Mod. Phys. Lett. A 22, 2749
(2007). arXiv:gr-qc/0512084

15. P. Galan and G.A. Mena Marugan, Entropy and temperature of
black holes in a Gravity’s Rainbow. Phys. Rev. D 74, 044035
(2006). arXiv:gr-qc/0608061

16. Y. Ling, S. He, H.B. Zhang, The kinematics of particles mov-
ing in rainbow spacetime. Mod. Phys. Lett. A 22, 2931 (2007).
arXiv:gr-qc/0609130

17. S. Weinfurtner, P. Jain, M. Visser, C.W. Gardiner, Cosmological
particle production in emergent rainbow spacetimes. Class. Quan-
tum Grav. 26, 065012 (2009). arXiv:0801.2673

18. H. Li, Y. Ling, X. Han, Modified (A)dS Schwarzschild black holes
in Rainbow spacetime. Class. Quantum Grav. 26, 065004 (2009).
arXiv:0809.4819

19. R. Garattini, Modified dispersion relations and black hole entropy.
Phys. Lett. B 685, 329 (2010). arXiv:0902.3927

20. R. Garattini, P. Nicolini, A noncommutative approach to the cos-
mological constant problem. Phys. Rev. D 83, 064021 (2011).
arXiv:1006.5418

21. R. Garattini, G. Mandanici, Particle propagation and effective
space-time in Gravity’s Rainbow. Phys. Rev. D 85, 023507 (2012).
arXiv:1109.6563

22. R. Garattini, F.S.N. Lobo, Self-sustained wormholes in mod-
ified dispersion relations. Phys. Rev. D 85, 024043 (2012).
arXiv:1111.5729

23. R. Garattini, Modified dispersion relations: from black-hole
entropy to the cosmological constant. Int. J. Mod. Phys. Conf.
Ser. 14, 326 (2012). arXiv:1112.1630

24. R. Garattini, M. Sakellariadou, Does Gravity’s Rainbow induce
inflation without an inflaton? Phys. Rev. D 90, 043521 (2014).
arXiv:1212.4987

25. R. Garattini, F.S.N. Lobo, Gravity‘s Rainbow induces topology
change. Eur. Phys. J. C 74 (2014). arXiv:1303.5566

26. R. Garattini, B. Majumder, Electric charges and magnetic
monopoles in Gravity’s Rainbow. Nucl. Phys. B 883 (2014).
arXiv:1305.3390

27. B. Majumder, Singularity free rainbow universe. Int. J. Mod. Phys.
D 22, 1342021 (2013). arXiv:1305.3709

28. G. Amelino-Camelia, M. Arzano, G. Gubitosi, J. Magueijo, Rain-
bow gravity and scale-invariant fluctuations. Phys. Rev. D 88(4),
041303 (2013). arXiv:1307.0745

29. A. Awad, A.F. Ali, B. Majumder, Nonsingular rainbow universes.
JCAP 1310, 052 (2013). arXiv:1308.4343

30. J.D. Barrow, J. Magueijo, Intermediate inflation from rainbow
gravity. Phys. Rev. D 88(10), 103525 (2013). arXiv:1310.2072

31. R. Garattini, B. Majumder, Naked singularities are not singular in
distorted gravity. Nucl. Phys. B 884, (2014). arXiv:1311.1747

32. A.F. Ali, Black hole remnant from Gravity’s Rainbow. Phys. Rev.
D 89, 104040 (2014). arXiv:1402.5320

33. A.F. Ali, M. Faizal, M.M. Khalil, Remnant for all black objects
due to Gravity’s Rainbow. Nucl. Phys. B 894, 341–360 (2015).
arXiv:1410.5706

34. B.S. DeWitt, Quantum theory of gravity. 1. The canonical theory.
Phys. Rev. 160, 1113 (1967)

35. T.P. Sotiriou, M. Visser, S. Weinfurtner, Quantum gravity without
Lorentz invariance. JHEP 0910, 033 (2009). arXiv:0905.2798

36. A. Wang, R. Maartens, Linear perturbations of cosmological mod-
els in the Horava–Lifshitz theory of gravity without detailed bal-
ance. Phys. Rev. D 81, 024009 (2010). arXiv:0907.1748

37. D. Blas, O. Pujolas, S. Sibiryakov, Consistent extension of Horava
gravity. Phys. Rev. Lett. 104, 181302 (2010). arXiv:0909.3525

38. G. Calcagni, Cosmology of the Lifshitz universe. JHEP 0909, 112
(2009). arXiv:0904.0829

39. E. Kiritsis, G. Kofinas, Horava–Lifshitz cosmology. Nucl. Phys.
B 821, 467 (2009). arXiv:0904.1334

40. R. Brandenberger, Matter bounce in Horava–Lifshitz cosmology.
Phys. Rev. D 80, 043516 (2009). arXiv:0904.2835

41. H. Nastase, On IR solutions in Horava gravity theories.
arXiv:0904.3604

42. S. Mukohyama, K. Nakayama, F. Takahashi, S. Yokoyama, Phe-
nomenological aspects of Horava–Lifshitz cosmology. Phys. Lett.
B 679, 6 (2009). arXiv:0905.0055

43. E.N. Saridakis, Horava–Lifshitz dark energy. Eur. Phys. J. C 67,
229 (2010). arXiv:0905.3532

44. S. Mukohyama, Dark matter as integration constant in
Horava–Lifshitz gravity. Phys. Rev. D 80, 064005 (2009).
arXiv:0905.3563

45. A. Wang, Y. Wu, Thermodynamics and classification of cosmo-
logical models in the Horava–Lifshitz theory of gravity. JCAP
0907, 012 (2009). arXiv:0905.4117

46. S. Nojiri, S.D. Odintsov, Covariant Horava-like renormalizable
gravity and its FRW cosmology. Phys. Rev. D 81, 043001 (2010).
arXiv:0905.4213

47. Y.F. Cai, E.N. Saridakis, Non-singular cosmology in a model of
non-relativistic gravity. JCAP 0910, 020 (2009). arXiv:0906.1789

48. T. Harko, Z. Kovacs, F.S.N. Lobo, Testing Horava–Lifshitz gravity
using thin accretion disk properties. Phys. Rev. D 80, 044021
(2009). arXiv:0907.1449

49. K. Yamamoto, T. Kobayashi, G. Nakamura, Breaking the scale
invariance of the primordial power spectrum in Horava–Lifshitz
cosmology. Phys. Rev. D 80, 063514 (2009). arXiv:0907.1549

50. T. Kobayashi, Y. Urakawa, M. Yamaguchi, Large scale evolu-
tion of the curvature perturbation in Horava–Lifshitz cosmology.
JCAP 0911, 015 (2009). arXiv:0908.1005

51. G. Leon, E.N. Saridakis, Phase-space analysis of Horava–Lifshitz
cosmology. JCAP 0911, 006 (2009). arXiv:0909.3571

52. A. Wang, D. Wands, R. Maartens, Scalar field perturba-
tions in Horava–Lifshitz cosmology. JCAP 1003, 013 (2010).
arXiv:0909.5167

53. S. Dutta, E.N. Saridakis, Observational constraints on Horava–
Lifshitz cosmology. JCAP 1001, 013 (2010). arXiv:0911.1435

54. R. Garattini, The cosmological constant as an eigenvalue of the
Hamiltonian constraint in Horava–Lifshits theory. Phys. Rev. D
86, 123507 (2012). arXiv:0912.0136

55. R.G. Cai, A. Wang, Singularities in Horava–Lifshitz theory. Phys.
Lett. B 686, 166 (2010). arXiv:1001.0155

123

http://arxiv.org/abs/0811.2217
http://arxiv.org/abs/0812.4287
http://arxiv.org/abs/0901.3775
http://arxiv.org/abs/0902.3657
http://arxiv.org/abs/gr-qc/0305055
http://arxiv.org/abs/1102.3803
http://arxiv.org/abs/1210.7760
http://arxiv.org/abs/gr-qc/0411089
http://arxiv.org/abs/gr-qc/0509103
http://arxiv.org/abs/gr-qc/0512084
http://arxiv.org/abs/gr-qc/0608061
http://arxiv.org/abs/gr-qc/0609130
http://arxiv.org/abs/0801.2673
http://arxiv.org/abs/0809.4819
http://arxiv.org/abs/0902.3927
http://arxiv.org/abs/1006.5418
http://arxiv.org/abs/1109.6563
http://arxiv.org/abs/1111.5729
http://arxiv.org/abs/1112.1630
http://arxiv.org/abs/1212.4987
http://arxiv.org/abs/1303.5566
http://arxiv.org/abs/1305.3390
http://arxiv.org/abs/1305.3709
http://arxiv.org/abs/1307.0745
http://arxiv.org/abs/1308.4343
http://arxiv.org/abs/1310.2072
http://arxiv.org/abs/1311.1747
http://arxiv.org/abs/1402.5320
http://arxiv.org/abs/1410.5706
http://arxiv.org/abs/0905.2798
http://arxiv.org/abs/0907.1748
http://arxiv.org/abs/0909.3525
http://arxiv.org/abs/0904.0829
http://arxiv.org/abs/0904.1334
http://arxiv.org/abs/0904.2835
http://arxiv.org/abs/0904.3604
http://arxiv.org/abs/0905.0055
http://arxiv.org/abs/0905.3532
http://arxiv.org/abs/0905.3563
http://arxiv.org/abs/0905.4117
http://arxiv.org/abs/0905.4213
http://arxiv.org/abs/0906.1789
http://arxiv.org/abs/0907.1449
http://arxiv.org/abs/0907.1549
http://arxiv.org/abs/0908.1005
http://arxiv.org/abs/0909.3571
http://arxiv.org/abs/0909.5167
http://arxiv.org/abs/0911.1435
http://arxiv.org/abs/0912.0136
http://arxiv.org/abs/1001.0155


343 Page 10 of 11 Eur. Phys. J. C (2015) 75 :343

56. S. Dutta, E.N. Saridakis, Overall observational constraints on the
running parameter λ of Horava–Lifshitz gravity. JCAP 1005, 013
(2010). arXiv:1002.3373

57. J. Kluson, String in Horava–Lifshitz gravity. Phys. Rev. D 82,
086007 (2010). arXiv:1002.2849

58. M. Jamil, E.N. Saridakis, M.R. Setare, The generalized second law
of thermodynamics in Horava–Lifshitz cosmology. JCAP 1011,
032 (2010). arXiv:1003.0876

59. E.J. Son, W. Kim, Smooth cosmological phase transition
in the Horava–Lifshitz gravity. JCAP 1006, 025 (2010).
arXiv:1003.3055

60. S. Carloni, M. Chaichian, S. Nojiri, S.D. Odintsov, M. Oksanen, A.
Tureanu, Modified first-order Horava–Lifshitz gravity: Hamilto-
nian analysis of the general theory and accelerating FRW cosmol-
ogy in power-law F(R) model. Phys. Rev. D 82, 065020 (2010).
arXiv:1003.3925

61. M. Jamil, E.N. Saridakis, New agegraphic dark energy in Horava–
Lifshitz cosmology. JCAP 1007, 028 (2010). arXiv:1003.5637

62. G. Koutsoumbas, E. Papantonopoulos, P. Pasipoularides, M.
Tsoukalas, Black hole solutions in 5D Horava–Lifshitz gravity.
Phys. Rev. D 81, 124014 (2010). arXiv:1004.2289

63. A. Ali, S. Dutta, E.N. Saridakis, A.A. Sen, Horava–Lifshitz cos-
mology with generalized Chaplygin gas. Gen. Rel. Grav. 44, 657
(2012). arXiv:1004.2474

64. G. Koutsoumbas, P. Pasipoularides, Black hole solutions in
Horava–Lifshitz gravity with cubic terms. Phys. Rev. D 82,
044046 (2010). arXiv:1006.3199

65. E. Elizalde, S. Nojiri, S.D. Odintsov, D. Saez-Gomez, Unifying
inflation with dark energy in modified F(R) Horava–Lifshitz grav-
ity. Eur. Phys. J. C 70, 351 (2010). arXiv:1006.3387

66. E.N. Saridakis, Aspects of Horava–Lifshitz cosmology. Int. J.
Mod. Phys. D 20, 1485 (2011). arXiv:1101.0300

67. H. Quevedo, A. Sanchez, S. Taj, A. Vazquez, Geometrothermody-
namics in Horava–Lifshitz gravity. J. Phys. A 45, 055211 (2012).
arXiv:1101.4494

68. A. Abdujabbarov, B. Ahmedov, A. Hakimov, Particle motion
around black hole in Horava–Lifshitz gravity. Phys. Rev. D 83,
044053 (2011). arXiv:1101.4741

69. K. Izumi, S. Mukohyama, Nonlinear superhorizon perturbations
in Horava–Lifshitz gravity. Phys. Rev. D 84, 064025 (2011).
arXiv:1105.0246

70. E.N. Saridakis, Constraining Horava–Lifshitz gravity from neu-
trino speed experiments. Gen. Rel. Grav. 45, 387 (2013).
arXiv:1110.0697

71. T. Zhu, F.W. Shu, Q. Wu, A. Wang, General covariant Horava–
Lifshitz gravity without projectability condition and its appli-
cations to cosmology. Phys. Rev. D 85, 044053 (2012).
arXiv:1110.5106

72. T. Christodoulakis, N. Dimakis, Classical and quantum Bianchi
type III vacuum Horava–Lifshitz cosmology. J. Geom. Phys. 62,
2401 (2012). arXiv:1112.0903

73. F. Briscese, Y. Rodriguez, G.A. Gonzalez, On the true nature of
renormalizability in Horava–Lifshitz gravity. Found. Phys. 42,
1444 (2012). arXiv:1205.1722

74. T. Zhu, Y. Huang, A. Wang, Inflation in general covariant Hořava–
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