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Hydraulic actuators are commonly adopted in machines and structures to provide translating forces with significant magnitudes.
Although their application dates back to the industrial revolution, their bending behavior under compression is typically addressed
by simple Euler’s instability analysis on the rod, neglecting effects such as the cylinder inertia and stiffness, the presence of contact
elements in the cylinder-rod junction and on the piston, geometrical misalignments and imperfections, and friction moments at
the support. Such simplifications lead to unjustified reduced critical load calculations on the component. In the present paper,
a complete mathematical formulation, which accounts for such effects, is presented and validated against experimental data. A
numerical sensitivity analysis is conducted, to assess the contributions of initial rectilinear imperfections, wear rings stiffness
and dimension, and supports friction on the actuator’s limit buckling load and bending behavior under compression. Results
are presented, including the effect of the cited parameters on the buckling load, providing a reliable tool for the mechanical
designer. In particular, an optimumposition for thewear ring distance is found.Moreover, increasedwear ring stiffness and reduced
imperfections increase the buckling load and reduce the bending stresses before the critical load.

1. Introduction

Hydraulic actuators have been widely adopted to apply and
multiply translating forces in mechanical systems. Their
usage can be traced back at least to the First Industrial
Revolution, with the patent of Joseph Bramah in 1795, related
to the design of a hydrostatic press based on Blaise Pascal
concept [1, 2]. In modern times, hydraulic actuators are
adopted in several applications in the mechanical and civil
engineering fields. In particular, their usage is natural when-
ever a translating linear load of high magnitude is required,
due to the elevated hydraulic pressure that can be applied in
the cylinder. Despite the wide application fields and the long
history of these components, few researchers have addressed
the behavior of hydraulic actuators under compression loads.

The bending behavior as well as buckling effect of these
devices was considered at first starting from the second
half of the XX century, their instability being analyzed

by conservative Euler’s method. The first models analyzed
the bending behavior under compression by considering a
single beam instability [3–8]. In such cases, two strategies
to model the instability behavior were adopted: a single
beam with rod inertial properties and a length equal to
the whole actuator [3], or a two-beam structure, with rod
and hollow cylinder section definitions [4, 5]. The results
found in classic literature, related to the definition of the
actuator critical buckling load, have been demonstrated to be
overconservative, as in the single-beam Euler model [3], or
overestimating, as the instability model with infinite stiffness
hollow cylinder [4]. The limitation of such classical models
is the lack of correlation to actual buckling limit load found
on working examples, leading often to component oversizing
in the best situation, or to unreliable buckling load values,
higher than the experimental ones. Besides, the stresses
induced by the bending behavior under compression loads
were not matching experimental values.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 3781397, 17 pages
http://dx.doi.org/10.1155/2016/3781397



2 Mathematical Problems in Engineering

Moreover, these classical models, as will be seen in
their detailed analysis in Section 2.1.1, do not include several
effects, which may severely affect the buckling behavior of
hydraulic actuators. Indeed, significant factors, such as the
operating pressure of the component, its own weight, the
actual realization of the cylinder-rod joint at the cylinder
gland, and the presence of nonideal, friction pin links have
not been considered in these theoretical models.

Further research was hence carried out on the influence
of operating parameters and other factors on the actuators
buckling. In particular, Flügge [6] and Hoblit [7] included in
the model the contribution of the actuator pressure during
the compressive load. The effect of the internal pressure
resulted as negligible, in terms of its influence on the buckling
load value, so that the approximation of considering the
cylinder as a hollow component is substantially correct.

Moreover, the cylinder-rod contact in the gland is usually
realized by a couple of wear rings, which are the physical
supports of the rod. Wear rings can be mounted also on the
piston, between the piston outer surface and the cylinder
inner surface. Wear rings are adopted to guide the piston
and the rod on a reduced wear surface, avoiding metal-to-
metal contact, reducing friction, and improving the sealing
performance, by reducing oil leakage between the compo-
nents. The presence of wear rings has a nonnegligible impact
on the system bending stiffness, and the calculation of its
contribution is vital for the determination of the wear rings
effects on the bending behavior of the actuator. Theoretical
models presenting a welded connection between the rod
and the cylinder are obviously not suitable for this kind of
analysis.

Another effect of the presence of the wear rings, com-
bined with tolerances coming from the actuator components
production process, is the presence of initial rectilinear
imperfections. The geometrical clearances found on the
practical realization of the actuator lead indeed to an initial
transversal displacement, affecting the maximum buckling
load at which the actuator can resist.

Finally, the theoretical models present an ideal pin con-
straint on the actuator ends. However, in practical situations,
such assumption is not always negligible. Material pin con-
nections can indeed lead to significant influences on the stress
state of the actuator under compression and bending. Even
if supported by ball bearings, a certain amount of bending
moment is present on the actuator constraints and must be
taken into account when evaluating the overall critical load
and the applied stress that the actuator can withstand.

The first account of geometrical imperfection effects on
actuators was reported by Seshasai et al. [8], where the initial
deformation angle due tomisalignment between the cylinder
and the rod is taken into account. Further investigation on
this aspect was carried out by Baragetti and Terranova [9, 10].
In [9], a first modification of the two-beam model presented
by Timoshenko and Gere [5] is proposed. The presence of a
rectilinear initial imperfection, due to geometrical clearances,
is inserted in the mathematical model. Besides, the effect of
the stiffness of two wear rings mounted on the rod is added
to the formulation, by means of a bending spring, along with
friction moments on the pin supports.

The results of the numerical model are validated against
experimental data, resulting in a more accurate critical load
prediction with respect to [3], yet with a sufficient safety
factor if compared to [4, 5]. In [10], a more complex rod-
cylinder interaction is considered, bymodeling a systemwith
mounted wear rings not only at the gland-rod interaction,
but also between the piston at the rod’s end and the external
cylinder. The hyperstatic problem associated with this layout
is solved, and a bending stiffness equivalent to the combined
joint is presented. Again, experimental values are used to
validate the model, presenting good agreement with the
model results.

The models presented in [8–10] have been recently
adopted by Gamez-Montero et al. [11, 12], which inserted
the contribution of the actuator own weight and the effect
of the cylinder’s internal pressure on the buckling load
and bending behavior. The model presented in [10] is here
modified considering a partial detachment of the wear rings
from the internal surfaces of the cylinder and of the gland. In
[11], the effects of misalignment are addressed, substantially
confirming the validity of the theoretical approach presented
in [9, 10]. The consideration by Flügge [6], that the internal
pressure resulted in negligible effects, is also confirmed in
[11]. Misalignment produces indeed a remarkable influence
in the final buckling limit load, if compared to internal
pressure. The actuator own weight contribution seems also
to be negligible, providing only a slight modification of the
limit load. Besides, including the actuator own weight might
be questionable, whenever the actuator is not mounted in a
horizontal position, as considered in [11]. In [12], numerical
and experimental pin interactions, which producemoderate-
to-severe friction conditions, are investigated. The results of
[12] are again concurring with [9, 10]. The severe influence
of the friction effect on pin supports regarding the bending
behavior and the final buckling load is hence to be taken
into account and validated against the factual constraint
conditions. To conclude the description of the current state
of the art, a mention of the ISO standard 13725 [13] is needed.
The ISO standard proposes indeed a method to calculate
the cylinders buckling load, but its partial description of the
problem has been highlighted byGamez-Montero et al. in [11,
12]. In particular, ISO standard [13] considers the possibility
of load eccentricity and different boundary conditions, as
well as the structural contribution of the rod. However, the
presence of angular imperfections, of friction on the supports,
and wear ring influence are not considered, according to [11].
Moreover, the current version of the standard [13] is retired,
and a new standard is under development at the moment of
print of the present work.

In order to finalize the findings of the actual state of
the art, as just presented in the previous paragraph [8–12],
the different effects identified in literature works must be
summed up in a single numerical model. A study of the
influence of such parameters is mandatory, to provide a
unified tool for the mechanical designers. Considerations
on the effects of the design parameters on the buckling
load and bending stresses must be also investigated with
sensitivity analyses. The aim of the present paper is hence
to analyze the effect of the actuator design parameters and
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material imperfections on the bending behavior of hydraulic
actuators under compression loads. The theoretical model,
which aims to give insight on the actuator’s design parameters
and practical application phenomena, should include all the
actual effects, which may affect such behavior. The material
actuator realization presents indeed several factors, which
are not negligible in calculating the actuator buckling load
and its bending behavior under compression, according to
[9–12]. The contribution of wear rings on flexural stiffness
will be analyzed according to [9, 10], considering both wear
ring couples mounted on the rod-gland connection and
rings mounted on the piston-cylinder contact. In Section 2,
a review of the classical theoretical methods [3–5] and more
advancedmethods, which include geometrical imperfections
and wear ring stiffness influences [9, 10], is presented. From
the theoretical models, a complete formulation is chosen and
implemented in a commercial code. FE models are produced
to assess with extreme precision the transversal stiffness of
the wear ring components, depending on the material. The
overall results are validated against experimental data. The
numerical model thus obtained is adopted to study the influ-
ence of the presented imperfections and practical realizations
on the bending behavior of the actuator under compression.
The proposed method is suitable to analyze most of the
mechanical effects, which are present due to components
adopted in the modern configuration of hydraulic actuators.
Examples of this complexity may be found in the geometry
well described in [14], concerning a state-of-the-art device
employed in excavator arms. The effects of wear rings and
other mechanical interfaces between the piston and the rod
can be taken into account by means of the mixed numerical
model and FE approach proposed in this work.

2. Materials and Methods

2.1. Numerical Models

2.1.1. Classical Models from Instability Theory. The most
conservative, classic Euler’s critical load for columns [3, 4]
applied to a simplified rod model leads to

𝑃 =
𝜋
2
𝐸𝐽
𝑠

𝑙2
(1)

with 𝐸 Young’s modulus and 𝐽
𝑠
inertial momentum related

to the rod section, and 𝑙 is the unsupported length of column,
to be assumed as the whole length of the actuator if the
extremes are pin supported. Expression (1) leads to the most
conservative buckling load value, and it is considered valid in
the elastic field of thematerial. Quite obviously, (1) completely
neglects the effects of geometrical clearance, initial rectilinear
effects, stiffness effects due to wear rings in the junction,
and friction effects. Moreover, the influence of the cylinder
inertial properties on the system stiffness is not considered at
all. In [4], the hollow cylinder inertia is modeled as infinite,
leading to the transcendental equation:

𝑏√
𝑃

𝐸𝐽
𝑠

+ 𝑡𝑔(𝑎√
𝑃

𝐸𝐽
𝑠

) = 0. (2)

𝑃 is the compression load, 𝐸𝐽
𝑠
is related to the rod’s section

properties, 𝑎 is the length of the extended portion of the
rod outside the cylinder, and 𝑏 the length of the actuator’s
cylinder, as reported in Figure 1. If compared to Euler’s critical
column load presented in (1), the critical load obtained from
(2) produces overestimating load values, individuating the
upper extreme of the actual limit load of the actuator, while
(1) represents the lower, overconservative extreme.

A more sophisticated buckling model, which takes into
account the actual moment of inertia of the cylinder, is
proposed by Timoshenko and Gere [5] and compared to
Euler’s model in Figure 1. The elastic deflection equation
includes the contribution of both the cylinder and the rod
inertial properties.The value of the rod transversal deflection
𝑦
𝑠
, function of the axial coordinate 𝑥, as indicated in Figure 1,

is found according to (3). The rod extended shaft length is
indicated with a and its inertial momentum with 𝐽

𝑠
:

𝑦


𝑠
+
𝑃

𝐸𝐽
𝑠

𝑦
𝑠
= 0, 0 ≤ 𝑥 ≤ 𝑎. (3)

Equation (3) presents the general integral:

𝑦
𝑠
(𝑥) = 𝐴

𝑠
sin (𝛼

𝑠
𝑥) + 𝐵

𝑠
cos (𝛼

𝑠
𝑥) , (4)

𝛼
𝑠
= √

𝑃

𝐸𝐽
𝑠

. (5)

Equation (6) for the elastic deflection can be written also for
the cylinder, given its length 𝑏 and its inertia 𝐽

𝑐
.The cylinder’s

transversal deflection is indicated as 𝑦
𝑐
, and it is a function

of the same axial coordinate 𝑥. The general integral (7)-(8) is
reported as well:

𝑦


𝑐
+
𝑃

𝐸𝐽
𝑐

𝑦
𝑐
= 0, 𝑎 ≤ 𝑥 ≤ 𝑎 + 𝑏, (6)

𝑦
𝑐
(𝑥) = 𝐴

𝑐
sin (𝛼

𝑐
𝑥) + 𝐵

𝑐
cos (𝛼

𝑐
𝑥) , (7)

𝛼
𝑐
= √

𝑃

𝐸𝐽
𝑐

. (8)

The boundary conditions at the pinned ends of the actuator
are set as follows:

𝑦
𝑠
(0) = 0, (9a)

𝑦
𝑐
(𝑎 + 𝑏) = 0, (9b)

while the junction between the cylinder and the rod, repre-
sented in this model as if it were a weld, leads to the following
conditions on displacement and rotation:

𝑦
𝑐
(𝑎) = 𝑦

𝑠
(𝑎) , (9c)

𝑦


𝑐
(𝑎) = 𝑦



𝑠
(𝑎) . (9d)
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Figure 1: Classic Euler’s instability buckling models and geometries: (a) drawing of the actuator; (b) Euler’s single beam model; (c)
Timoshenko rod and cylinder model.

Condition (9a) leads to 𝐵
𝑠
= 0, while if adding conditions

(9c)-(9d), a three-equation system in the unknowns 𝐴
𝑠
, 𝐴
𝑐
,

and 𝐵
𝑐
can be written, as shown in

[
[
[

[

0 sin (𝛼
𝑐
(𝑎 + 𝑏)) cos (𝛼

𝑐
(𝑎 + 𝑏))

sin (𝛼
𝑠
𝑎) − sin (𝛼

𝑐
𝑎) − cos (𝛼

𝑐
𝑎)

𝛼
𝑠
cos (𝛼

𝑠
𝑎) −𝛼

𝑐
cos (𝛼

𝑐
𝑎) 𝛼

𝑐
cos (𝛼

𝑐
𝑎)

]
]
]

]

{{

{{

{

𝐴
𝑠

𝐴
𝑐

𝐵
𝑐

}}

}}

}

=

{{

{{

{

0

0

0

}}

}}

}

.

(10)

The solution with nonnull coefficients is different from zero
only if the determinant of the coefficients’ matrix is null,
hence leading to the transcendental equation

𝛼
𝑠
[tan (𝛼

𝑐
𝑎) − tan (𝛼

𝑐
(𝑎 + 𝑏))]

− 𝛼
𝑐
tan (𝛼

𝑠
𝑎) [1 + tan (𝛼

𝑐
𝑎) tan (𝛼

𝑐
(𝑎 + 𝑏))]

= 0.

(11)

The lower solution of the transcendental equation (11) leads
to the buckling load of the actuator, considering the inertial
properties of both the cylinder and the rod. Nonideal effects
such as rectilinear imperfections, friction moments at the
pin supports, and stiffness of the rod-cylinder connection are
however still neglected.

The model presented from Timoshenko and Gere [5],
leading to the critical load from the solution of (10), still
represents an ideal formulation of the actuator problem.
As mentioned in the introduction, the aim of the present
work is to assess the effects of rectilinear imperfections,
due to initial geometrical clearances resulting in an initial
transversal displacement, the influence of friction moments

x

y0

f0

ys, yc

Figure 2: Rectilinear deformation of initial configuration.

on the pin supports, and the contribution in terms of
bending stiffness due to the adoption of wear rings. In the
following subsections, modifications tomodel (3)–(11) will be
presented, taking into account these contributions.

2.1.2. Rectilinear Imperfection. Initial geometrical clearances,
caused by production tolerances on cylinder, rod, piston, and
gland, lead to an inevitable rectilinear imperfection, which
must be taken into account when calculating the cylinder
buckling load. The presence of wear rings, each one with its
tolerances, as well as their adaptation in the application site
introduces further contribution to rectilinear imperfection.
To take into account this phenomenon, the initial actuator
deflection𝑦

0
must be considered.The rod-cylinder deflection

is schematized as in Figure 2, by imposing a sinusoidal
deformation of the form (12), as reported in [10]:

𝑦
0
(𝑥) = 𝑚 sin (𝛽𝑥) , (12)

𝛽 =
𝜋

𝑎 + 𝑏
, (13)

𝑚 =
𝑓
0

sin (𝜋/ (1 + 𝑏/𝑎))
. (14)
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In (12),𝑦
0
is the initial transversal displacement along the axis

coordinate 𝑥, as depicted in Figure 2, so that the maximum
deflection 𝑓

0
is found at the cylinder-rod intersection.

The rod elastic displacement behavior can be hence
modeled as

𝑃𝑦
𝑠
= −𝐸𝐽

𝑠
(𝑦


𝑠
− 𝑦


0𝑠
) , 0 ≤ 𝑥 ≤ 𝑎 (15)

which can be rewritten as

𝛼
𝑠

2
𝑦
𝑠
= −𝑦


𝑠
+ 𝑦


0𝑠
(16)

thus leading to (17) for the rod, where the initial displacement
is seen as an external forcing:

𝑦


𝑠
+ 𝛼
𝑠

2
𝑦
𝑠
= −𝑚𝛽

2 sin (𝛽𝑥) . (17)

Equation (17) solution can be obtained as

𝑦
𝑠
= 𝐴
𝑠
sin (𝛼

𝑠
𝑥) + 𝐵

𝑠
cos (𝛼

𝑠
𝑥) +

𝑚𝛽
2

𝛽2 − 𝛼
𝑠
2
sin (𝛽𝑥) ,

0 ≤ 𝑥 ≤ 𝑎.

(18)

For the cylinder, a similar equation can be obtained from the
same procedure:

𝑦
𝑐
= 𝐴
𝑐
sin (𝛼

𝑐
𝑥) + 𝐵

𝑐
cos (𝛼

𝑐
𝑥) +

𝑚𝛽
2

𝛽2 − 𝛼
𝑐
2
sin (𝛽𝑥) ,

𝑎 ≤ 𝑥 ≤ 𝑎 + 𝑏.

(19)

Equations (18), (19) can be solved as a system, by imposing the
boundary conditions (9a)–(9d), being the same of problem
(18), (19).

2.1.3. Influence of Friction. In real applications, friction
moments at the pin connection can be adopted to simulate
actual working conditions. According to the formulation
reported in [9, 10], the friction moment is included in the
forcing of the elastic displacement equation for the rod:

𝑃𝑦
𝑠
= −𝐸𝐽

𝑠
𝑦


𝑠
+𝑀
𝑟
, 0 ≤ 𝑥 ≤ 𝑎. (20)

The differential equation (20) presents the following solution
for the transversal displacement of the rod:

𝑦
𝑠
= 𝐴
𝑠
sin (𝛼

𝑠
𝑥) + 𝐵

𝑠
cos (𝛼

𝑠
𝑥) +

𝑀
𝑠

𝛼
𝑠
2
, 0 ≤ 𝑥 ≤ 𝑎, (21)

and an analogous equation can be written for the cylinder
displacement:

𝑦
𝑐
= 𝐴
𝑐
sin (𝛼

𝑐
𝑥) + 𝐵

𝑐
cos (𝛼

𝑐
𝑥) +

𝑀
𝑐

𝛼
𝑐
2
,

𝑎 ≤ 𝑥 ≤ 𝑎 + 𝑏.

(22)

The terms 𝑀
𝑠
and 𝑀

𝑐
are defined after the applied friction

moment 𝑀
𝑟
and the inertial properties of the rod and the

cylinder:

𝑀
𝑠
=
𝑀
𝑟

𝐸
𝑠
𝐽
𝑠

,

𝑀
𝑐
=
𝑀
𝑟

𝐸
𝑐
𝐽
𝑐

.

(23)

For a determination of the friction model, considering actu-
ators mounted on steel pins, the expression from the work
by Gamez-Montero et al. [12] may be adopted, neglecting the
shear reactions and considering the axial load, as

𝑀
𝑟
=
1

4
𝑓𝑑pin

1 − cos𝛼
0

(2𝛼
0
− sin𝛼

0
)
𝛼
0
𝑃, (24)

where the pressure load distribution angle 𝛼
0
can be taken as

𝜋/2 as a first approximation.
If considering actuators mounted on ball-bearings, the

friction moment can be considered negligible. However,
bearer manufacturers often provide friction models, which
may be used to determine the friction moment starting from
an applied load. Considering SKF ball-bearings manufactur-
ing indications [15], the friction moment can be estimated as

𝑀
𝑟
=
1

2
𝑓bb𝑃𝑑bb, (25)

where 𝑓bb = 0.0015 is the ball-bearing friction coefficient,
according to [15], and 𝑑bb is the inner support diameter.

2.1.4. Bending Stiffness Contribution. As already discussed
in the introduction, the actual realization of the rod-gland
sealing and of the piston-cylinder sliding contact includes
elastic effects from the wear rings deformation, affecting
the global system stiffness. In order to include the elastic
deformation of the wear rings in the system, the piston-
rod interaction has been modeled by introducing a bending
spring in themathematicalmodel.The springmust reproduce
the effect on the system stiffness generated by the presence
of the wear rings. Two kinds of wear rings layout are cur-
rently reproduced in hydraulic actuators: wear ring sealing
between the rod and the gland, for single actuating cylinders,
as depicted in Figure 3, and a combination of wear rings
between rod-gland and piston-cylinder surface interactions,
as presented in Figure 4, typical for double acting cylinders.

The two proposed layouts can be reduced to a bending
spring 𝐾

𝑓
, which depends on the wear rings material,

dimensioning, and position. The placement of a couple
of wear rings at the gland-rod interaction, as in Figure 3,
results in an isostatic connection between the piston and the
cylinder, as reported in [9]. On the contrary, the presence of
additional wear rings between the cylinder and the piston, as
reported in Figure 4, leads to a hyperstatic problem for the
𝐾
𝑓
determination, following the approach reported in [10].
In a first stance, the determination of the 𝐾

𝑓
value is

proposed for a simple gland-rod junction with two wear
rings, as in Figure 3. The mean value of the wear rings
deflection, indicated as

Δ𝑠
𝑚
= 𝜃
𝛿

2
(26)

generates a mean pressure:

𝑝
𝑚
=
Δ𝑠
𝑚

𝑠
𝐸
𝑎
= 𝜃

𝛿

2𝑠
𝐸
𝑎
, (27)

where 𝜃 is the rod rotation at the interface and 𝐸
𝑎
is Young’s

modulus of the wear rings. If we distribute the pressure force



6 Mathematical Problems in Engineering

s

t

h

p

p

(1/3)t

dF

dF

ds

𝜃

𝛿

𝛼

Pressure
distribution

Pressure
distribution

pm cos𝛼

Figure 3: Wear rings between rod and gland, actual realization and
theoretical model.
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Figure 4: Wear rings between rod and gland and between piston
and cylinder, actual realization and theoretical PVWmodel.

along an elementary area along the circumferential direction
𝑑𝑐 = 𝑑

𝑠
/2 ⋅ 𝑑𝛼 we obtain the elementary pressure force:

𝑑𝐹 = 𝑝
𝑚
𝑡
𝑑
𝑠

2
𝑑𝛼. (28)

As can be seen in Figure 3, if a triangular linear distribution
of the pressure on the wear ring internal surface along the
𝑥-axis is considered, the elementary resultant of the pressure
force is applied at (1/3)𝑡 of thewear ringwidth.The triangular
distribution is coherent with the deformation introduced in
the wear ring by a rotation 𝜃, at least as a first approximation.
𝑝
𝑚
is hence the mean pressure associated with the triangular

distribution. The elementary moment is hence obtained in
(29) as follows:

𝑑𝑀 = 𝑝
𝑚
𝑡
𝑑
𝑠

2
𝑑𝛼 (𝛿 +

𝑡

3
) . (29)

Along the circumferential direction, the pressure distribution
is modeled along a cosine law of the form

𝑝
𝑚
(𝛼) = 𝜃

𝛿

2𝑠
𝐸
𝑎
cos𝛼 (30)

between 𝛼 = −𝜋/2 and 𝛼 = 𝜋/2, as reported in Figure 3,
reaching the maximum value of mean pressure 𝑝

𝑚
for 𝛼 = 0.

Similarly, if we consider the elementary moment along
the circumferential direction,

𝑑𝑀 (𝛼) = 2𝑑𝐹 (𝛼) cos𝛼(𝛿 + 𝑡/3)
2

= 𝑝
𝑚
𝑡
𝑑
𝑠

2
𝑑𝛼 (𝛿 +

𝑡

3
) cos𝛼

= 𝜃
𝛿

2𝑠
𝐸
𝑎
𝑡
𝑑
𝑠

2
(𝛿 +

𝑡

3
) cos2𝛼𝑑𝛼.

(31)

By integrating the elementary moment between 𝛼 = −𝜋/2
and 𝛼 = 𝜋/2,

𝑀 = ∫

𝜋/2

−𝜋/2

𝑑𝑀(𝛼) = 𝐾𝑓𝜃, (32)

the junction bending stiffness𝐾
𝑓
can hence be obtained as

𝐾
𝑓
=
𝛿𝐸
𝑎
𝜋𝑡𝑑
𝑠

8𝑠
(𝛿 +

𝑡

3
) . (33)

For double acting cylinders, the presented model, which
results in a bending stiffness of the junction𝐾

𝑓
as obtained in

(33), is valid no more. Indeed, the presence of a piston acting
in both ways requires wear rings to be mounted also between
the cylinder and the piston external surface, as in Figure 4.

The elastic system resulting from this layout differs signif-
icantly from the effects of a junction as presented in Figure 3.
The interface indeed presents two wear rings supporting the
rod, acting as parallel springs, as well as two wear rings
between the piston and the cylinder, with the same behavior.
To calculate the bending stiffness of the resulting hyperstatic
system, the principle of virtual work (PVW) approach can be
followed.

Indeed, if a virtual moment 𝐶, which can be considered
as unitary, is applied at the end of the interface, as in Figure 4,
the correspondent rotation 𝜃 can be calculated by solving the
system (34), and the bending stiffness obtained from 𝐾

𝑓
=

𝐶/𝜃:

[

𝐶
11
𝐶
12

𝐶
21
𝐶
22

]{

𝑋

𝑌
} = {

𝑇
1

𝑇
2

}𝐶. (34)
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The coefficients of system (34) can be calculated as
𝐶
11

= −
1

𝐾
2

−

(𝛿
1
+ 𝑥
𝑝
)
2

𝛿
1

2
𝐾
1

−

𝑥
𝑝

2

𝛿
1

2
𝐾
1

−

𝑥
𝑝

2
𝛿
1
+ 𝑥
𝑝

3

3𝐸𝐽
𝑠

−
𝜒
𝑠

𝐺𝐴
𝑠

(

𝑥
𝑝

2

𝛿
1

+ 𝛿
1
) ,

𝐶
12

= −

(𝛿
1
+ 𝛿
2
+ 𝑥
𝑝
) (𝛿
1
+ 𝑥
𝑝
)

𝛿
1

2
𝐾
1

−

(𝛿
2
+ 𝑥
𝑝
) 𝑥
𝑝

𝛿
1

2
𝐾
1

−
1

𝐸𝐽
𝑠

[
1

3
𝑥
𝑝
𝛿
1
(𝑥
𝑝
+ 𝛿
2
) +
1

3
𝑥
𝑝

3
+
1

2
𝛿
2
𝑥
𝑝

2
]

−
𝜒
𝑠

𝐺𝐴
𝑠

[

𝑥
𝑝
(𝑥
𝑝
+ 𝛿
2
)

𝛿
1

+ 𝑥
𝑝
] ,

𝐶
12
= 𝐶
21
,

𝐶
22

= −

(𝛿
2
+ 𝑥
𝑝
)
2

𝛿
1

2
𝐾
1

−

(𝛿
1
+ 𝛿
2
+ 𝑥
𝑝
)
2

𝛿
1

2
𝐾
1

−
1

𝐾
2

−
1

𝐸𝐽
𝑠

[
1

3
𝛿
1
(𝑥
𝑝
+ 𝛿
2
)
2

+
1

3
𝑥
𝑝

3
+ 𝛿
2
𝑥
𝑝

2
+ 𝛿
2

2
𝑥
𝑝
]

−
1

𝐸𝐽
𝑝

(
1

3
𝛿
2

3
) −

𝜒
𝑠

𝐺𝐴
𝑠

[

[

(𝑥
𝑝
+ 𝛿
2
)
2

𝛿
1

+ 𝑥
𝑝
]

]

−

𝜒
𝑝

𝐺𝐴
𝑝

𝛿
2
,

𝑇
1
=

𝛿
1
+ 2𝑥
𝑝

𝛿
1

2
𝐾
1

−
1

𝐸𝐽
𝑠

1

6
𝛿
1
𝑥
𝑝
+
𝜒
𝑠

𝐺𝐴
𝑠

𝑥
𝑝

𝛿
1

,

𝑇
2

=

(𝛿
2
+ 𝑥
𝑝
)

𝛿
1

2
𝐾
1

+

(𝛿
1
+ 𝛿
2
+ 𝑥
𝑝
)

𝛿
1

2
𝐾
1

−

(𝛿
2
+ 𝑥
𝑝
) 𝛿
1

6𝐸𝐽
𝑠

+
𝜒
𝑠

𝐺𝐴
𝑠

(𝛿
2
+ 𝑥
𝑝
)

𝛿
1

.

(35)

Once the unknown reactions𝑋 and 𝑌 are obtained from the
system (34), the rotation 𝜃 can be obtained from

𝜃 = 𝑇
1
𝑋 + 𝑇

2
𝑌 + 𝑍𝐶,

𝑍 =
2

𝛿
1

2
𝐾
1

+
𝛿
1

3𝐸𝐽
𝑠

+
𝜒
𝑠

𝛿
1
𝐺𝐴
𝑠

.

(36)

The bending stiffness of the system can be hence obtained
from

𝐾
𝑓
=
𝐶

𝜃
(37)

remembering that 𝐶 is an arbitrary virtual moment value,
which can be set as unitary.

In order to obtain the linear stiffness of𝐾
1
and𝐾

2
related

to the wear rings, a finite element (FE) model has been built,
using the Abaqus software, specifically for the numerical
method presented in this work.The rod has been modeled as
a rigid body surface, while the wear ring has been discretized
with solid linear hexahedral elastic elements (C3D8R). The
mesh size was of 0.1mm in the region where the relative
displacement Δ𝑥 was calculated, and of 0.3mm in the other
regions, to improve the calculation time. The ring material
was modeled after actual wear ring properties [9, 10], with
a linear elastic, isotropic, and homogenous constitutive law.
The rod surface was constrained in all its degrees of freedom
(DOFs), except along the𝑋 direction, in which a force 𝐹 was
applied, as can be seen in Figure 5(a). The external surface of
the wear ring was constrained in the radial direction alone,
simulating contact between the ring and the outer supporting
surface, while the ring was kept free to expand along the axial
direction. To reduce the complexity of the model, only half of
the geometry was modeled, imposing symmetry on the X-Y
plane, as reported in Figure 5(a). A normal contact property
was imposed between the ring and the rod surfaces.

The relative displacement between the deformed and
undeformed configurations, as seen in Figure 5(c), is calcu-
lated as

Δ𝑥 = Δ
0
− Δ. (38)

The linear stiffness of each wear ring is hence calculated from

𝐾 =
𝐹

Δ𝑥
. (39)

Once the interface bending stiffness 𝐾
𝑓
has been obtained,

from (33) or (37) depending on the system layout, the
parameter can be introduced in the elastic displacement
theoretical model as presented in Figure 6.

The differential equation ruling the system of Figure 6 is
the same as the system without interface stiffness modeling,
that is, (3) and (6) for the rod and the cylinder, respectively.
The integral solution form is as well the same for both
components, as in (4), (7). The difference stands in the
boundary conditions of the problem. Indeed, the relative
rotation at the interface between rod and cylinder, dependent
on the bending stiffness 𝐾

𝑓
, modifies the boundary condi-

tions presented in (9d).The rotation between the rod and the
cylinder at the interface cannot be considered equal as in (9d),
but it must be adapted to guarantee the equality between the
moment of the applied axial load 𝑃 and the elastic moment
given by 𝐾

𝑓
.

According to the theoretical approach of [9, 10], (9d) is
hence substituted by the rotational equilibrium:

𝑃𝑦
𝑠
(𝑎) = 𝐾

𝑓
[𝑦


𝑠
(𝑎) − 𝑦



𝑐
(𝑎)] . (40)

By substituting (4) and (7), related to rod and cylinder
deflections 𝑦

𝑠
and 𝑦

𝑐
, respectively, the following equation is

obtained:
𝑃𝐴
𝑠
sin (𝛼

𝑠
𝑎) = 𝐾

𝑓
[𝐴
𝑠
cos (𝛼

𝑠
𝑎) 𝛼
𝑠
− 𝐴
𝑐
cos (𝛼

𝑐
𝑎) 𝛼
𝑐

+ 𝐵
𝑐
sin (𝛼

𝑐
𝑎) 𝛼
𝑐
] .

(41)
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F

(a)

z

x

y

(Avg.: 75%)

+2.182e + 01

+2.001e + 01

+1.820e + 01

+1.639e + 01

+1.457e + 01

+1.276e + 01

+1.095e + 01

+9.141e + 00

+7.330e + 00

+5.519e + 00

+3.708e + 00

+1.897e + 00

+8.546e − 02

S, Mises

(b)

z

x

y

U, magnitude
+9.690e − 02

+8.882e − 02

+8.075e − 02

+7.267e − 02

+6.460e − 02

+5.652e − 02

+4.845e − 02

+4.037e − 02

+3.230e − 02

+2.422e − 02

+1.615e − 02

+8.075e − 03

+2.146e − 07

Δ

Δ0

(c)

Figure 5: Finite element model adopted for the determination of the wear rings linear stiffness K: (a) loads and constraints; (b) stress
distribution after compression; (c) vertical displacement [mm] after compression, and coordinates for the relative displacement calculation.

Equation (41) substitutes the third line of system (10),
resulting in

[
[
[

[

0 sin (𝛼
𝑐 (𝑎 + 𝑏)) cos (𝛼

𝑐 (𝑎 + 𝑏))

sin (𝛼
𝑠
𝑎) − sin (𝛼

𝑐
𝑎) − cos (𝛼

𝑐
𝑎)

𝑃 sin (𝛼
𝑠
𝑎) − 𝐾

𝑓
[cos (𝛼

𝑠
𝑎)] 𝛼
𝑠
𝐾
𝑓
cos (𝛼

𝑐
𝑎) 𝛼
𝑐
−𝐾
𝑓
sin (𝛼

𝑐
𝑎) 𝛼
𝑐

]
]
]

]

{{

{{

{

𝐴
𝑠

𝐴
𝑐

𝐵
𝑐

}}

}}

}

=

{{

{{

{

0

0

0

}}

}}

}

. (42)

System (42) presents a nonnull solution related to the variable
P, included in 𝛼

𝑠
and 𝛼

𝑐
, only if the determinant of its matrix

equals zero, leading to the transcendental equation:

⌊𝑃 tan (𝛼
𝑠
𝑎) − 𝐾

𝑓
𝛼
𝑠
⌋ [tan (𝛼

𝑐
𝑎) − tan (𝛼

𝑐
(𝑎 + 𝑏))]

+ 𝛼
𝑐
𝐾
𝑓
tan (𝛼

𝑠
𝑎) [1 + tan (𝛼

𝑐
𝑎) tan (𝛼

𝑐
(𝑎 + 𝑏))]

= 0.

(43)

The solution of (43) with respect to 𝑃 results in the critical
load for an actuator having an interface between rod and
cylinder with finite stiffness𝐾

𝑓
.

2.1.5. Combined Model: Bending Stiffness, Friction Moment,
and Rectilinear Imperfection. In the study of a current
realization of a hydraulic actuator, the effects presented in
Sections 2.1.2–2.1.4 are usually found together. To assess
their combined impact on the actuator buckling load, the
solution of a proper model must be developed. The complete
theoretical model, obtained from [9, 10] and presented in
Figure 7, and the effects of rectilinear imperfections caused
by geometrical clearances, of friction moments on the sup-
ports, and of a junction of finite bending stiffness are ana-
lyzed.
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x

Kf

ys, yc
Js, Es

Jc, Ec

Figure 6: Theoretical model for elastic displacement of rod and
cylinder, considering the interface bending stiffness𝐾

𝑓
.

x

Kf

MrMr

f0

ys, yc
Js, Es

Jc, Ec

Figure 7: Theoretical model of pin friction along with bending
stiffness fromwear rings between rod and gland and between piston
and cylinder, and initial rectilinear imperfection.

Including friction moments and the initial rectilinear
imperfection displacement 𝑦

0
(𝑥) = 𝑚 sin(𝛽𝑥), the equations

for the deflection of rod shaft and cylinder are hence

𝑦


𝑠
+ 𝛼
𝑠

2
𝑦
𝑠
= −𝑚𝛽

2 sin (𝛽𝑥) +𝑀
𝑠
, 0 ≤ 𝑥 ≤ 𝑎,

𝑦


𝑐
+ 𝛼
𝑐

2
𝑦
𝑐
= −𝑚𝛽

2 sin (𝛽𝑥) +𝑀
𝑐
, 𝑎 ≤ 𝑥 ≤ 𝑎 + 𝑏.

(44)

General integrals of (44) are

𝑦
𝑠
= 𝐴
𝑠
sin (𝛼

𝑠
𝑥) + 𝐵

𝑠
cos (𝛼

𝑠
𝑥) +

𝑚𝛽
2

𝛽2 − 𝛼
𝑠
2
sin (𝛽𝑥)

+
𝑀
𝑠

𝛼
𝑠
2
, 0 ≤ 𝑥 ≤ 𝑎,

(45)

𝑦
𝑐
= 𝐴
𝑐
sin (𝛼

𝑐
𝑥) + 𝐵

𝑐
cos (𝛼

𝑐
𝑥) +

𝑚𝛽
2

𝛽2 − 𝛼
𝑐
2
sin (𝛽𝑥)

+
𝑀
𝑐

𝛼
𝑐
2
, 𝑎 ≤ 𝑥 ≤ 𝑎 + 𝑏.

(46)

Boundary conditions to be applied to system (45), (46) are
hence including the interface bending stiffness𝐾

𝑓
from (40):

𝑦
𝑠
(0) = 0, (47a)

𝑦
𝑐
(𝑎 + 𝑏) = 0, (47b)

𝑦
𝑐
(𝑎) = 𝑦

𝑠
(𝑎) , (47c)

𝑃𝑦
𝑠
(𝑎) = 𝐾

𝑓
[𝑦


𝑠
(𝑎) − 𝑦



𝑐
(𝑎)] . (47d)

Condition (47a) leads to define the 𝐵
𝑠
constant:

𝐵
𝑠
= −
𝑀
𝑠

𝛼
𝑠
2

(48)

thus leading to the following reformulation of (45):

𝑦
𝑠
= 𝐴
𝑠
sin (𝛼

𝑠
𝑥) −

𝑀
𝑠

𝛼
𝑠
2
cos (𝛼

𝑠
𝑥)

+
𝑚𝛽
2

𝛽2 − 𝛼
𝑠
2
sin (𝛽𝑥) +

𝑀
𝑠

𝛼
𝑠
2
.

(49)

Condition (47b) leads to the following relation:

𝐴
𝑐
sin [𝛼

𝑐 (𝑎 + 𝑏)] + 𝐵𝑐 cos [𝛼𝑐 (𝑎 + 𝑏)] +
𝑀
𝑐

𝛼
𝑐
2
= 0. (50)

By imposing equal vertical displacements between the rod
and the cylinder, as in condition (47c), another relation can
be written for the constants 𝐴

𝑠
,𝐴
𝑐
, and 𝐵

𝑐
:

𝐴
𝑠
sin (𝛼

𝑠
𝑎) −

𝑀
𝑠

𝛼
𝑠
2
cos (𝛼

𝑠
𝑎) +

𝑚𝛽
2

𝛽2 − 𝛼
𝑠
2
sin (𝛽𝑎)

+
𝑀
𝑠

𝛼
𝑠
2

= 𝐴
𝑐
sin (𝛼

𝑐
𝑎) + 𝐵

𝑐
cos (𝛼

𝑐
𝑎) +

𝑚𝛽
2

𝛽2 − 𝛼
𝑐
2
sin (𝛽𝑎)

+
𝑀
𝑐

𝛼
𝑐
2
,

(51)

while the elastic equilibrium at the bending spring, which can
be expressed as

𝑃𝑦
𝑠
(𝑎) = 𝐾

𝑓
[𝑦


𝑠
(𝑎) − 𝑦



𝑐
(𝑎)] + 𝑀

𝑟
(52)

leads to the last relation for the integration constants:

𝑃[𝐴
𝑠
sin (𝛼

𝑠
𝑎) −

𝑀
𝑠

𝛼
𝑠
2
cos (𝛼

𝑠
𝑎) +

𝑚𝛽
2

𝛽2 − 𝛼
𝑠
2
sin (𝛽𝑎)

+
𝑀
𝑠

𝛼
𝑠
2
] = 𝐾[𝛼

𝑠
𝐴
𝑠
cos (𝛼

𝑠
𝑎) + 𝛼

𝑠

𝑀
𝑠

𝛼
𝑠
2
sin (𝛼

𝑠
𝑎)

+
𝑚𝛽
3

𝛽2 − 𝛼
𝑠
2
cos (𝛽𝑎)] − 𝐾[𝛼

𝑐
𝐴
𝑐
cos (𝛼

𝑐
𝑎)

− 𝛼
𝑐
𝐵
𝑐
sin (𝛼

𝑐
𝑎) +

𝑚𝛽
3

𝛽2 − 𝛼
𝑐
2
cos (𝛽𝑎)] +𝑀

𝑟
.

(53)

From relation (50), constant 𝐵
𝑐
can be obtained as a function

of 𝐴
𝑐
:

𝐵
𝑐
= −𝐴

𝑐
tan [𝛼

𝑐 (𝑎 + 𝑏)] −
𝑀
𝑐

𝛼
𝑐
2 cos [𝛼

𝑐
(𝑎 + 𝑏)]

. (54)
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By substituting (54) in (51) and (53), the following system for
the integration constants 𝐴

𝑠
and 𝐴

𝑐
is hence obtained:

𝐴
𝑠
sin (𝛼

𝑠
𝑎) −

𝑀
𝑠

𝛼
𝑠
2
cos (𝛼

𝑠
𝑎) +

𝑚𝛽
2

𝛽2 − 𝛼
𝑠
2
sin (𝛽𝑎)

+
𝑀
𝑠

𝛼
𝑠
2
= 𝐴
𝑐
sin (𝛼

𝑐
𝑎) − 𝐴

𝑐
tan [𝛼

𝑐 (𝑎 + 𝑏)] cos (𝛼𝑐𝑎)

−
𝑀
𝑐

𝛼
𝑐
2 cos [𝛼

𝑐
(𝑎 + 𝑏)]

cos (𝛼
𝑐
𝑎) +

𝑚𝛽
2

𝛽2 − 𝛼
𝑐
2
sin (𝛽𝑎)

+
𝑀
𝑐

𝛼
𝑐
2
,

𝑃 [𝐴
𝑠
sin (𝛼

𝑠
𝑎) −

𝑀
𝑠

𝛼
𝑠
2
cos (𝛼

𝑠
𝑎) +

𝑚𝛽
2

𝛽2 − 𝛼
𝑠
2
sin (𝛽𝑎)

+
𝑀
𝑠

𝛼
𝑠
2
] = 𝐾[𝛼

𝑠
𝐴
𝑠
cos (𝛼

𝑠
𝑎) + 𝛼

𝑠

𝑀
𝑠

𝛼
𝑠
2
sin (𝛼

𝑠
𝑎)

+
𝑚𝛽
3

𝛽2 − 𝛼
𝑠
2
cos (𝛽𝑎)] − 𝐾[𝛼

𝑐
𝐴
𝑐
cos (𝛼

𝑐
𝑎)

+ 𝛼
𝑐
𝐴
𝑐
tan [𝛼

𝑐
(𝑎 + 𝑏)] sin (𝛼

𝑐
𝑎)

+
𝑀
𝑐

𝛼
𝑐
2 cos [𝛼

𝑐
(𝑎 + 𝑏)]

𝛼
𝑐
sin (𝛼

𝑐
𝑎)

+
𝑚𝛽
3

𝛽2 − 𝛼
𝑐
2
cos (𝛽𝑎)] +𝑀

𝑟
.

(55)

To obtain the solution for 𝐴
𝑠
and 𝐴

𝑐
, the system can be

rewritten in matrix form:

[

𝐶
11
𝐶
12

𝐶
21
𝐶
22

]{

𝐴
𝑠

𝐴
𝑐

} = {

𝑇
1

𝑇
2

} (56)

with

𝐶
11
= sin (𝛼

𝑠
𝑎) , (57)

𝐶
12
= tan [𝛼

𝑐
(𝑎 + 𝑏)] cos (𝛼

𝑐
𝑎) − sin (𝛼

𝑐
𝑎) , (58)

𝐶
21
= 𝑃 sin (𝛼

𝑠
𝑎) − 𝐾𝛼

𝑠
cos (𝛼

𝑠
𝑎) , (59)

𝐶
22

= 𝐾 {𝛼
𝑐
cos (𝛼

𝑐
𝑎) + 𝛼

𝑐
tan [𝛼

𝑐
(𝑎 + 𝑏)] sin (𝛼

𝑐
𝑎)} ,

(60)

𝑇
1

= 𝑚𝛽
2 sin (𝛽𝑎) ( 1

𝛽2 − 𝛼
𝑐
2
−

1

𝛽2 − 𝛼
𝑠
2
)

−
𝑀
𝑠

𝛼
𝑠
2
[1 − cos (𝛼

𝑠
𝑎)]

+
𝑀
𝑐

𝛼
𝑐
2
{1 −

cos (𝛼
𝑐
𝑎)

cos [𝛼
𝑐
(𝑎 + 𝑏)]

} ,

(61)

𝑇
2

= 𝐾𝑚𝛽
3 cos (𝛽𝑎) ( 1

𝛽2 − 𝛼
𝑠
2
−

1

𝛽2 − 𝛼
𝑐
2
)

+ 𝑃
𝑀
𝑠

𝛼
𝑠
2
cos (𝛼

𝑠
𝑎) − 𝑃

𝑚𝛽
2

𝛽2 − 𝛼
𝑠
2
sin (𝛽𝑎) − 𝑃

𝑀
𝑠

𝛼
𝑠
2

+ 𝐾𝛼
𝑠

𝑀
𝑠

𝛼
𝑠
2
sin (𝛼

𝑠
𝑎)

−
𝐾𝑀
𝑐

𝛼
𝑐
2 cos [𝛼

𝑐
(𝑎 + 𝑏)]

𝛼
𝑐
sin (𝛼

𝑐
𝑎) +𝑀

𝑟
.

(62)

The linear system can hence be solved according to Cramer’s
theorem for 𝐴

𝑠
and 𝐴

𝑐
:

𝐴
𝑠
=



𝑇
1
𝐶
12

𝑇
2
𝐶
22




𝐶
11
𝐶
12

𝐶
21
𝐶
22



=
𝑇
1
𝐶
22
− 𝑇
2
𝐶
12

𝐶
11
𝐶
22
− 𝐶
12
𝐶
21

,

𝐴
𝑐
=



𝐶
11
𝑇
1

𝐶
21
𝑇
2




𝐶
11
𝐶
12

𝐶
21
𝐶
22



=
𝑇
2
𝐶
11
− 𝑇
1
𝐶
21

𝐶
11
𝐶
22
− 𝐶
12
𝐶
21

,

(63)

while 𝐵
𝑠
and 𝐵

𝑐
can be deduced from (48) and (54), respec-

tively. By imposing the determinant of system (56) to be zero,
to find the limit load equation, the transcendental equation
(43) is found again.

2.2. Experimental Setup. The model presented in
Section 2.1.5 has been validated exploiting data from an
experimental test campaign conducted in [10]. An actual
realization of a hydraulic actuator was manufactured,
according to the drawings reported in Figure 8(b), the
overall layout being depicted as in Figure 8(a), showing the
test layout presented in [10]. The actuator main dimensions
are reported in Table 1. The actuator was then linked, by
exploiting threaded connections at the rod and cylinder ends,
to removable pin junctions, which couldmount ball-bearings
supports.

As a first test, a varying pressure 𝑝 was applied to the
cylinder, its value being measured along with the actual
applied load𝑃.The load was obtained bymounting an in-line
load cell, with symmetric measurement behavior for tension
and compression. The difference between the ideal load 𝑃

0
,

obtained from the applied pressure 𝑝 on the piston, and
the measured load 𝑃 is reported in Figure 9. The actuator
shows an efficiency 𝜂

𝑝max = 90.1% for an applied pressure
of 156MPa. The bending stresses are hence obtained by
acquiring the signals of two couples of electrical linear strain
gauges, positioned on the opposite sides of the rod as in
Figure 8(a), and aligned with the axial direction of the rod.
The SGs are placed at a distance 𝑥sg = 958mm from the
rod upper bearing. The bending stresses were reconstructed
along two orthogonal planes as in Figure 8(a).Themaximum
bending stress 𝜎

𝑐
was measured by the two SGs placed on the

orthogonal plane with respect to the ball-bearing supports,
while the other two SGs confirmed a negligible bending on
the parallel plane.
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Table 1: Dimensions and properties for the experimental actuator, from [10]—see Figures 4 and 8.

Parameter Value Parameter Value Parameter Value
𝑑
𝑠
[mm] 20 𝑓

0
[mm] 1.5 𝐽

𝑠
≈ 𝐽
𝑝
[mm4] 7854

𝐷ci [mm] 25 𝛿
1
[mm] 27.1 𝐽

𝑐
[mm4] 16286

𝐷ce [mm] 30 𝛿
2
[mm] 18.4 𝐸

𝑠
, 𝐸
𝑐
[MPa] 206000

𝑎 [mm] 1163 𝑥
𝑝
[mm] 63.6 𝐸

𝑎
[MPa] 600

𝑏 [mm] 1276 𝑓 0.07 𝐾
𝑓
[Nmm/rad] 26111000

Rod

Gland

Cylinder

Strain
gauges

Rod
section

xsg

(a)

Gland/rod
wear rings

Piston/cylinder
wear rings

ds

Dci
Dce

(b)

Rod

Piston

Wear ring 
sites

Gland

(c)

Figure 8: Realization of the actuator for the experimental tests performed in [10]: (a) picture of the actuator; (b) drawing of the rod/cylinder
junction, with indication of wear rings positioning; (c) pictures of the gland, which could be opened for wear rings placement and substitution.
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Figure 9: Ideal and true compression load measured during
experimental test.

2.3. Sensitivity Analysis. Based on the numerical model
presented in Section 2.1, a sensitivity analysis has been
performed on several geometrical and physical parameters.

The base model selected for the analysis is the combined
model, presenting double wear rings on the piston-cylinder
and on the gland-rod interfaces, friction moment, and initial
rectilinear imperfections, as described in Section 2.1.5. The
analyzed geometrical features are the influence of the distance
between the piston and the gland wear rings 𝑥

𝑝
, as indicated

in Figure 4, and the effect of dimensional changes on the wear
rings thickness 𝑠 and width 𝑡. Such effects may be related
to production tolerances and to loss of material due to wear
on actuators subjected to long repetitions of work cycles.
The material Young’s modulus 𝐸

𝑎
for the wear rings was

also set as a parameter, since different possible commercial
solutions were available for the material, according to [9, 10].
For each combined geometrical andmaterial variation on the
wear rings, a linear FE model as presented in Section 2.1.4
was solved, obtaining the value of the linear stiffness 𝐾 as a
function of these parameters.

Another parametric study regarded the friction coef-
ficient 𝑓 on supports. In the present experimental tests,
rolling bearings with limited friction moment contribution
were adopted. In practical applications, however, steel pins
without bearings may be used, or actual bearings may be
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Table 2: Parametrization for the sensitivity analysis, including
default values and variation range.

Parameter Base value Range
Wear ring width 𝑡 [mm] 6 5.5 ÷ 6
Wear ring thickness 𝑠 [mm] 3 2.5 ÷ 3
Wear ring Young’s modulus [MPa] 600 260 ÷ 3000
Friction coefficient 𝑓 [—] 0.07 0 ÷ 0.3
Distance 𝑥

𝑝
between the wear rings [mm] 63.6 20 ÷ 150

Rectilinear imperfection 𝑓
0
[mm] 1.5 0 ÷ 3

worn or insufficiently lubricated. The Gamez-Montero et al.
formulation [12]was adopted, in the formof (24), for different
values of the friction coefficient. Table 2 reports the main
parameters adopted for the sensitivity analysis, as well as the
base parameters adopted for the combined model. The base
parameters were chosen in agreement with the experimental
test setup data [10]. Considering the range of the sensitivity
analysis, wear ring Young’s modulus was chosen according to
the different materials present in commercial wear rings [9,
10], while the dimensions vary from the standard base value
considering tolerance imprecisions and material reduction
due to wear. Friction coefficient has been varied between very
lubricated and very dry steel-on-steel conditions, whereas the
distance 𝑥

𝑝
is a choice of the designer. The rectilinear imper-

fection has been varied from zero to twice the imperfection
found on the experimental realization.

3. Results and Discussion

3.1. Numerical Model Validation. A validation of the numer-
ical model was performed, based on the experimental data
obtained according to the test described in Section 2.2. The
parameters settings, matching the actual conditions of the
test configuration, have been reported in Table 1. The test
settings are indeed corresponding to the base values adopted
for the numericalmodel in the sensitivity analysis.The results
are reported in Figure 10, where the solid line represents the
model with bending stiffness calculated considering the wear
rings mounted both on the piston and on the gland, as in
Figure 4 and (37). This configuration is matching with the
actual experimental condition, in which two wear rings were
mounted on the piston, and other two between the gland
and the rod. To ensure consistency with the test conditions,
the SKF model has been adopted for the friction moment,
according to (25), with a ball-bearing diameter 𝑑bb of 30mm.

The outputs from Timoshenko’s model, without bending
stiffness, and from themodel considering wear rings between
gland and rod alone—(33)—are reported with dashed and
dotted lines, respectively. From Figure 10, it can be seen
that, whilst the full model with hyperstatic determination
of bending stiffness adequately reproduces the testing con-
ditions, Timoshenko’s model overestimates the limit load,
underestimating the applied stresses due to bending under
compression loads. The𝐾

𝑓
calculated with the wear rings on

the gland/rod interaction gives reduced limit load and higher
applied stresses at lower load values, indicating a reduced
stiffness with respect to the full model calculated according

Table 3: Limit load and bending stiffness results according to
different models.

Model Limit load [N] 𝐾
𝑓
[Nmm/rad]

Timoshenko’s, no 𝐾
𝑓

3855 —
2 wear rings, rod only 3111 8071 ⋅ 10

3

4 wear rings, rod and piston 3629 29777 ⋅ 10
3
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Exp. data from [10]—pin junction, wear rings on gland and piston
Pure Timoshenko model, no Kf

Kf hyperstatic model—wear rings on gland and piston
Kf base model—wear rings on piston only
Limit load—pure Timoshenko model, no Kf—equation (11)
Limit load—Kf hyperstatic model—wear rings on gland and

Limit load—Kf base model—wear rings on piston only—
piston—equation (43)

equation (43)

𝜎
c

(M
Pa

)

Figure 10: Validation of the actuator numerical model against
experimental data. Continue line: wear rings on the piston and on
the gland; dotted line: wear rings on the gland only; dashed line:
Timoshenko model with no𝐾

𝑓
.

to (37). The limit loads, obtained from (43) for the models
with bending stiffness, and from (11) for Timoshenko’smodel,
are reported in Table 3, along with the bending stiffness
values from the double wear rings or quadruple wear rings
configurations. The bending stiffness has been obtained
by considering a linear stiffness 𝐾 value of 11802 [N/mm],
according to the FE solution for wear ring properties 𝐸 =
600MPa and 𝜐 = 0.3. The wear rings properties were chosen
according to the wear ring type actually mounted during the
experimental test [9, 10].

Starting from the numerical models presented in the
previous section, the 4 wear rings model has been chosen as
the reference model for the sensitivity analysis. The hyper-
static formulation of the bending stiffness 𝐾

𝑓
, considering

four wear rings, two mounted between the rod and the
gland and other twomounted at the piston/cylinder interface,
has indeed showed the best consistence with experimental
results.

3.2. Sensitivity Analysis Results
3.2.1. Friction on the Supports. The friction moment on the
pin support has been modeled according to the formulation
provided by Gamez-Montero et al. in [12], as expressed
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Figure 11: Effect of the friction coefficient 𝑓 on the pin supports
versus the bending stress distribution.
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in (24). The results are displayed in Figure 11. It can be
noted that the limit value seems to be not affected by
the amount of friction, according to (43). Indeed, friction
appears only between the known terms in the solving system
(56). However, lower amounts of friction produce a steeper
approach, in terms of bending stress, to the limit load. The
applied stresses are hence lower for real pin supports where
high coefficients of friction are supposed to exist. This result
indicates that the maximum bending load is dependent on
the actual constraint conditions, which have to be assessed
for operating actuators.

3.2.2. Spacing between Wear Rings. A construction detail,
which may affect the bending behavior of the actuator,
is defined by the actual distance between the wear rings
mounted on the piston and on the rod; see 𝑥

𝑝
in Figure 4.

The base value of such distance was, in the actual realization
of the device tested in Section 2.2, of 63.6mm, considering a
full extension of the rod. By modifying 𝑥

𝑝
, a sensible effect

on the bending stiffness is obtained, as reported in Figure 12.
Particularly,𝐾

𝑓
shows a maximum value for 𝑥

𝑝
= 70mm.

The stress pattern displayed in Figure 13, which is
obtained accordingly with the 𝑥

𝑝
variation, shows an

increased limit load for 𝑥
𝑝
= 70mm.This effect is beneficial,
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Figure 13: Bending stress behavior according to the modification of
the wear rings distance 𝑥
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since it decreases the maximum stress along the actuator for
the same applied load.

In order to assess the causes underlying this behavior,
the values of the reactions of the virtual system used for the
determination of 𝐾

𝑓
are displayed in Figure 14, versus the

value of 𝑥
𝑝
. Hyperstatic unknown reactions 𝑋 and 𝑌 are

obtained by solving the PVW system (34). The other two
reaction forces, indicated as 𝐻

1
and 𝐻

2
, as in Figure 4, are

obtained by rotational equilibrium:

𝐻
1
=
1

𝛿
1

[𝐶 + 𝑥
𝑝
𝑋 + (𝑥

𝑝
+ 𝛿
2
) 𝑌] ,

𝐻
2
= −

1

𝛿
1

[𝐶 + (𝑥
𝑝
+ 𝛿
1
)𝑋 + (𝑥

𝑝
+ 𝛿
1
+ 𝛿
2
) 𝑌] .

(64)

From Figure 14, it can be noticed that, for 𝑥
𝑝
< 70mm, the

most external reactions, namely,𝐻
1
andY, grow significantly.

This fact indicates that, if the distance 𝑥
𝑝
is shortened below

70mm, the springs positioned at the extremes experience
an increased elongation, in order to counteract the applied
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Figure 15: Wear rings linear stiffness 𝐾 dependence over width 𝑡 and thickness s: (a) wear rings modulus 𝐸
𝑎
= 260MPa; (b) wear rings

modulus 𝐸
𝑎
= 3000MPa.

moment 𝐶. The rotation required to counteract the moment
is higher in this case, thus leading to a decrease of the bending
stiffness 𝐾

𝑓
, as reported in Figure 12. For values of 𝑥

𝑝
higher

than 70mm, on the other hand, the reaction forces tend
to stable values. The decrease in 𝐾

𝑓
is in this latter case

owed to the flexibility of the rod between the gland and the
piston. Indeed, the free length of the rod between the gland
and the piston increases with 𝑥

𝑝
, producing nonnegligible

contributions for high values.The balance between these two
trends identifies an optimum value for 𝑥

𝑝
, which for the

present geometry and adopted materials is equal to 70mm.
This result indicates that 𝑥

𝑝
can be optimized, in the design

of actuators, to obtain higher limit loads and reduced bending
stresses at higher applied pressures.

3.2.3. Wear Rings Material and Geometry. As already
reported in Section 2.3, different wear rings with different
materials can be used to equip a hydraulic actuator [9, 10].
Besides, geometrical tolerances and wear can modify the
actual ring dimensions. In order to take into account these
effects on the linear stiffness 𝐾 of the wear rings, several FE
models have beenmade, according to the procedure reported
in Section 2.1.4. As reported in Table 2, the parameters for
this analysis were the wear ring thickness 𝑡 and width 𝑠,
as well as the actuator material, identified with its Young’s
modulus 𝐸

𝑎
[9, 10]. From Figure 15, the contribution of

the geometrical dimensions of the wear rings on the linear
stiffness 𝐾 can be pointed out. The wear rings present an
increased stiffness for high 𝑠/𝑡 ratios, meaning that thin
wear rings with a large base increase the linear rigidity of the
system.

The influence of the material modulus 𝐸
𝑎
is reported

in Figure 16, for different geometrical configurations.
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Figure 16:Wear rings linear stiffness𝐾 dependence with wear rings
Young’s modulus 𝐸

𝑎
.

The relation between 𝐸
𝑎
and 𝐾 is linear, as expected from

a linear representation of the material in the FE model, its
slope related to the geometrical dimensions of the ring.

Although the relationship between 𝐸
𝑎
and𝐾 is linear, the

contribution of the wear ringmaterial on the system behavior
is more complex. By examining Figure 17, it is found that the
relationship between the chosen wear rings material, that is,
𝐸
𝑎
, and the bending stiffness of the rod/cylinder interface is

not linear. The nonlinearity of the behavior is indeed caused
by the hyperstatic system formed by the wear rings.
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Figure 18: Bending stress behavior according to the modification of
the wear rings elastic modulus 𝐸
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The consequence of this nonlinear behavior is reflected in
the choice of the wear ring material. Indeed, at lower values
of 𝐸
𝑎
, that is, 260 ÷ 600MPa, a variation on the material

Young modulus affects significantly the bending behavior on
the actuator. Wear rings with superior stiffness behavior, that
is,𝐸
𝑎
=2500÷ 3000MPa, are less affected by tolerances on the

material quality. Indeed, in Figure 18, it can be seen that the
bending stress curves and limiting loads for 𝐸

𝑎
= 2500MPa

and 𝐸
𝑎
= 3000MPa are almost coincident.

3.2.4. Initial Deflection due to Rectilinear Imperfections. To
conclude the sensitivity analysis, a determination of the
contribution of the initial deflection caused by geometrical
clearances has been performed. The model adopted for the
analysis presented an initial transversal maximum displace-
ment 𝑓

0
= 1.6mm, as measured from the experimental

setup. The results, considering different values for the initial
displacement, are reported in Figure 19.

From Figure 19, it can be seen that a low initial displace-
ment presents indeed reduced bending stresses up to very
high values of applied pressure. The limit load seems to be

not affected from the value of 𝑓
0
, since the terms affected by

the initial displacement are not present in (43). For zero dis-
placement, the value of bending stress seems to be low when
approaching the limit load value, as shown in Figure 19(a).
Moreover, the numerical solution presents an instability at
a value of applied pressure slightly lower with respect to the
limit predicted by (43). This aspect suggests that the forcing
terms contained in system (56) are slightly affecting the limit
load too. Indeed, dependence on the applied compression
load 𝑃 is found in the forcing terms 𝑇

1
and 𝑇

2
(61), (62) of

system (56). However, the definition of an equation for the
limit load 𝑃 which takes into account such contributions
would take a significant analytical effort.The limit load found
by (43) can be hence used, since it gives a good esteem also
without the contribution of the forcing terms. Besides this
fact, the behavior of the numerical model in the proximity of
the limit load is also conditioned by friction, which appears
as well in the forcing terms 𝑇

1
and 𝑇

2
of system (56). This

aspect is highlighted in the comparison between Figures
19(a) and 19(b) presenting bending stresses at different
initial displacement 𝑓

0
values for friction coefficients at

the pin of 𝑓 = 0.07 and 𝑓 = 0.30, respectively. For low
friction coefficients, that is, Figure 19(a), the bending stresses
rise well before the limit load instability, and the vertical
asymptote is moved on the left, if compared to the numerical
limit load calculated from (43). Opposite considerations are
made for high friction coefficients, as in Figure 19(b). From
these results, it can be deduced that higher friction at the
pin supports leads to reduce bending stresses, especially for
very low initial rectilinear imperfection. Low stresses can
be maintained up to the limit load, while on the other hand
they will rise very steeply approaching the instability value.

4. Conclusions

In the present work, a complete theoretical model has been
assembled, joining contributions from the most advanced
descriptions found in the literature. The theoretical model
accounted for the different inertial properties of the rod and
of the cylinder.The contribution of the actual joint realization
by means of wear rings has been modeled inserting the
bending stiffness 𝐾

𝑓
in the model. The effects of initial

rectilinear imperfections due to geometrical clearances and
of frictionmoments have been included. A numerical model,
based on such theoretical premises, has been developed and
validated against experimental testing. The numerical model
has been then used to perform a sensitivity analysis over
several parameters affecting the design and the operational
conditions of the actuator.The sensitivity analysis pointed out
the following key aspects related to the bending behavior of
hydraulic actuators under compression:

(i) The friction on the supports does not alter signifi-
cantly the limit load of the actuator. However, lower
values of 𝑓, resulting in lower friction moments,
increase the bending stress contribution, especially at
higher loads.

(ii) A similar behavior is found with respect to initial
displacements, that is, rectilinear imperfections. Low
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Figure 19: Bending stress behavior according to the initial maximum displacement𝑓
0
: (a) friction coefficient 𝑓 = 0.07; (b) friction coefficient

𝑓 = 0.30.

initial displacements reduce significantly the amount
of bending stresses for high values of applied pressure,
near the limit load.

(iii) The combined influence of friction and rectilinear
imperfection notably influences the values of bending
stress for hydraulic actuators at high applied loads.
Significant levels of stresses are reached on actuators
subjected to low friction and notable initial deflec-
tions, for values of applied load inferior with respect
to the instability load. This behavior may lead to
critical situations in actual operating conditions.

(iv) The distance 𝑥
𝑝
between the wear rings mounted on

the piston and on the gland influences the bending
stiffness, and hence the limit load of the actuator.
An optimum value can be found to maximize the
limit load, as a compromise between high deflections
caused by the high hyperstatic reactions at low 𝑥

𝑝

values, and the nonnegligible bending of the rod at
high 𝑥

𝑝
values.

(v) The wear rings material and size affect the bending
stiffness of the actuator, and hence the limit value.
Wear rings with high 𝐸

𝑎
values increase the 𝐾

𝑓

value, thus leading to increased limit loads. The
bending stress behavior near the threshold load value
is affected as well. The sensitivity of 𝐾

𝑓
to the wear

rings Young’s modulus is reduced for high 𝐸
𝑎
values.

According to the conclusions found, the present model is a
useful tool for the designer, accounting properly for the effects

of geometrical imperfections and friction moments on the
joints on the bending stresses on the actuator.Themodel gives
also information about the choice of the appropriate material
for thewear rings, in order to reduce the limit load.Moreover,
the numerical model helps in the correct dimensioning of the
distance between the wear rings on the gland and on the rod,
in order to maximize the limit load for a given extension of
the actuator. Further experimental work will help to confirm
the results obtained from the sensitivity model. However,
the results from the numerical analysis highlighted that the
effects of geometrical clearances, wear rings, and friction on
the supports are not negligible in the design of hydraulic
actuators subjected to high applied loads.

Nomenclature

𝛼 [rad]: Circumferential wear rings reference
direction

𝛿 [mm]: Distance between wear rings on the gland,
2 wear rings model

𝛿
1
[mm]: Distance between wear rings on the gland,

4 wear rings model
𝛿
2
[mm]: Distance between wear rings on the

piston, 4 wear rings model
Δ [mm]: Deformed wear ring thickness FEM
Δ
0
[mm]: Initial wear ring thickness FEM

Δ𝑥 [mm]: Relative displacement of the wear ring
thickness FEM

Δ𝑠
𝑚
[mm]: Mean wear ring displacement
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𝜃 [rad]: Rotation angle between rod and
cylinder

𝑎 [mm]: Extended rod length
𝑏 [mm]: Cylinder length
𝐶 [1 ⋅mm]: Virtual couple applied in PVW
𝑑
𝑠
[mm]: Rod shaft diameter

𝐷ci [mm]: Cylinder internal diameter
𝐷ce [mm]: Cylinder external diameter
𝑑pin [mm]: Diameter of the pin support
𝑑bb [mm]: Diameter of the ball-bearing support
𝑑𝐹 [N]: Elementary force along the wear ring

circumferential direction
𝑑𝑀 [Nmm]: Elementary moment generated by 𝑑𝐹
𝐸
𝑎
[MPa]: Wear rings Young’s modulus

𝐸
𝑠
[MPa]: Young’s modulus of the rod shaft

𝐸
𝑐
[MPa]: Cylinder Young’s modulus

𝑓 [—]: Pin friction coefficient
𝑓bb [—]: Ball-bearing friction coefficient
𝑓
0
[mm]: Maximum transversal displacement

𝐻
1
, 𝐻
2
, 𝑋, 𝑌 [—]: Virtual reactions from PVW

𝐽
𝑠
[mm4]: Section inertia of the shaft rod

𝐽
𝑝
[mm4]: Section inertia of the piston

𝐽
𝑐
[mm4]: Section inertia of the cylinder

𝐾,𝐾
1
, 𝐾
2
[N/mm]: Linear stiffness of the wear rings

𝐾
𝑓
[Nmm/rad]: Bending stiffness of the system

𝑙 [mm]: Unsupported length of column
𝑀
𝑟
[Nmm]: Friction moment at the pin ends

𝑃 [N]: Applied compression load
𝑃
0
[N]: Ideal compression load

𝑝 [bar]: Internal cylinder pressure
𝑝
𝑚
[MPa]: Maximum pressure exerted on the

wear ring
𝑠 [mm]: Wear rings thickness
𝑡 [mm]: Wear rings width
𝑥 [mm]: Axial coordinate along the actuator
𝑥
𝑝
[mm]: Distance between the nearest wear

rings on the gland and on the piston, 4
wear rings model

𝑥sg [mm]: Distance of the strain gauges
measurement point

𝑦
𝑠
[mm]: Transversal displacement of the rod

shaft
𝑦
𝑐
[mm]: Transversal displacement of the

cylinder
𝑦
0
[mm]: Initial displacement distribution.
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