
Policy Specialization to Support Domain Isolation

Simone Mutti Enrico Bacis Stefano Paraboschi

{ simone.mutti, enrico.bacis, parabosc } @ unibg.it
DIGIP — Università degli Studi di Bergamo, Italy

ABSTRACT
The exponential growth of modern information systems has
introduced several new challenges in the management of se-
curity requirements. Nowadays, the technological scenario
has evolved and the introduction of MAC models provides
a better isolation among software components and reduces
the damages that the malicious or defective ones can cause
to the systems. On one hand it is important to confine ap-
plications and limit the privileges that they can request. On
the other hand we want to let applications benefit from the
flexibility given by MAC models, such as SELinux.

In this paper we show how the constructs already available
in SELinux and the specialization of security domains can
be leveraged to define boundaries where the applications are
confined but still able to introduce sophisticated security
patterns, such as application isolation and the least privilege
principle. After defining the proposed model, we describe
how it can be integrated into real systems through the use
of examples on Android and Apache Web Server.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access control

Keywords
Mandatory Access Control; SELinux; typebounds; Android;
App containerization; Policy Modularity.

1. INTRODUCTION
The widespread diffusion of information systems in the

last decade has led to a considerable growth in the width
of offered services. Applications become more sophisticated,
extensive and operate in an increasingly open and integrated
environment. This growth was followed by an increase both
in terms of complexity and management of the systems itself.
This increase in the systems’ complexity has had an effect
also on the management of the security requirements that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SafeConfig’15, October 12, 2015, Denver, Colorado, USA.
c© 2015 ACM. ISBN 978-1-4503-3821-9/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2809826.2809832.

the system has to fulfill. Firstly, the complexity of the sys-
tem and the number of interconnections between elements
of the system has increased the attack surface of the systems
themselves. Secondly, it has increased the complexity of the
security management process by system administrators.

The management of security requirements is, thus, a crit-
ical task that has the goal of avoiding possible information
disclosures. A particular area of security requirement man-
agement is access control management, which focuses on
defining a set of rules, called policies. To ease the defini-
tion and management of access control policies the concept
of containerization was introduced. Containerization occurs
when the operating system allows for multiple isolated user-
space instances, instead of just one. The security isolation
is provided by means of different mechanisms. The most
prominent is represented by the use of Mandatory Access
Control models. MAC models are commonly perceived as
offering a significant contribution to the security of systems.
MAC policies regulate accesses to data on the basis of pre-
defined classification of subjects and objects in the system.

In this paper we define a model to describe the relation-
ships between SELinux subjects, their permissions and their
boundaries. SELinux permits to limit the privileges that a
subject can obtain over the system objects using the type-
bounds bounding mechanism that will be discussed in Sec-
tion 4. This can be used by system administrators to define
safe policy areas where applications can be confined1.

Using our model, we show how this mechanism can also be
used to specialize the policy and generate different isolated
areas where the applications are confined but still able to
define their SELinux domains in order to adopt sophisticated
security patterns. Our approach shows how it is possible to
combine confinement [4] and specialization in SELinux.

Outline
Section 2 illustrates the related work of this paper. Section 3
summarizes how SELinux works and defines the model that
will be used in the subsequent sections. Section 4 shows how
the proposed model can describe the bounding mechanism
offered by the SELinux typebounds rule and its implications.
Section 5 shows how this idea can be used to improve real
world systems, with references to Android and to Apache
Web Server. Section 6 draws some concluding remarks.

1Since threads can only be assigned domains that are
bounded by the parent process domain, this mechanism is
also used to limit the privileges of threads. The case of
Apache Plus, which limits the privileges of its workers will
be discussed in Section 5.2

2. RELATED WORK
Different models have been proposed to formalize SELinux

policies [13, 6]. Hicks et al. [5] analyze the SELinux Multi-
Level/Multi-Category Security, the standard way used to
create multiple isolated instances of the same policy do-
mains, which, however, does not permit their specialization.

Flaskdroid by Bugiel et al. [3], permits to specify Android
app policies, relying on other software components besides
SELinux. Our solution is based solely on SELinux, so it
can be directly used in any system that adopts it, without
imposing any additional performance overhead.

To the best of our knowledge, this is the first attempt to
formally define the SELinux typebounds rule and illustrate
how it can be used not only to confine the policy domains
but also to specialize them.

3. THE SELINUX MODEL
SELinux [8, 12] is one of the most widely adopted imple-

mentations of Mandatory Access Control. SELinux policies
are expressed at the level of security context (also known
as security label or just label). SELinux requires a security
context to be associated with every process (or subject) and
resource (or object). The label is used to decide whether
access is allowed or not as defined by the policy. Every re-
quest that a process generates to access a resource will be
accepted only if it is authorized by both the classical DAC
access control service and by the SELinux policy. The ad-
vantages of SELinux compared to the DAC model are its
flexibility (the design of Linux assumes a root user that has
full access to DAC-protected resources) and the fact that
process and resource labels can be assigned and updated in
a way that is specified at system level by the SELinux policy.

In this paper we propose a model that can be used to rep-
resent an SELinux policy and allows to better characterize
our approach. Its basic elements are:

type : represents an identifier that can be used to describe
both the subject and the target of an authorization;
a type denotes a security domain or the profile of a
process or resource in the system; the type is used to
build labels for processes and resources.

class : represents the kind of resource (e.g., file, process)
that will be the target of an authorization; an imple-
mentation of SELinux in a system will have to provide
in its setup a set of classes consistent with the variety
of resources that the system is able to manage.

permission : represents the possible actions a source can
apply on a target of a specific class, specified in the
setup of SELinux; every class has its own set of per-
missions, represented by class.permissions
(e.g., file.permissions = read, write, execute, . . .).

A set of types T can be grouped into an attribute. For-
mally, an attribute statement declares an identifier that can
then be used to refer to a group of type identifiers.

Definition 1. Given the definition of types, classes, per-
missions and attributes, we introduce the concept of autho-
rization. Considering a set L = T ∪ A of labels (where T
represents the set of types and A represents the set of at-
tributes), a set C of classes, and a set P of permissions, an
authorization is a quadruple 〈σ, τ, γ, α〉, where:

T type

A attribute

inherits

typebounds

authorization

Figure 1: Graphical syntax used in the SELinux model.

A1 A2

T1 T2 T3 T4 T5

γ1 : α1 γ2 : α1

γ2 : α2

(a) Graphical representation of three authorizations.

A1 A2

T1 T2 T3 T4 T5

γ2 : α1

(b) Policy Region related to 〈A1, A2, γ2, α1〉.

Figure 2: Graphical representation of a policy.

σ ∈ L is the label used as source of the authorization (the
security principal of the authorization);

τ ∈ L is the label used as target (associated with the object
that is accessed by σ);

γ ∈ C is the class of resource accessed in the operation;

α ∈ {P ∩ γ.α} is the specific permission, which has to be
compatible with the class.

Authorizations can be grouped into four types of AV rules:
allow, dontaudit, auditallow, and neverallow.

Definition 2. A policy is a collection of tuples 〈ruletype,
authorization〉 where ruletype is one of the AV rule types.

Without loss of generality, we consider the case of an
SELinux policy containing only allow AV rules.2

Definition 3. An attribute A may contain one or more
types and this is represented by the containedTypes : A→
2T function, where A and T, respectively, represent the set
of attributes and the set of types.

Example 1. Figure 2a shows a graphical representation
(see Figure 1 for the graphical syntax) of the three authoriza-
tions 〈A1, T1, γ1, α1〉, 〈A1, A2, γ2, α1〉 and 〈T3, T4, γ2, α2〉.

Definition 4. A label is said primitive iff the output of
the containedTypes function is the label itself (i.e., it is a
type). Furthermore, an authorization auth = 〈σ, τ, γ, α〉 is
said primitive iff σ and τ are primitive elements.

Without loss of generality, we can express access control
decisions only in terms of primitive authorizations.

2It is to note that (i) neverallow, (ii) dontaudit and (iii)
auditallow rules can be left out, because (i) may only cause
the rejection of the policy by the compiler, (ii) and (iii)
describe the configuration of the auditing services.

Definition 5. The function primitives(auth), given an au-
thorization auth, can be used in order to obtain the set of
equivalent primitive authorizations:

primitives(〈σ, τ, γ, α〉) = { 〈σ̃, τ̃ , γ, α〉 |
σ̃ ∈ containedTypes(σ), τ̃ ∈ containedTypes(τ) }

A primitive policy P̃ , containing only primitive authoriza-
tions, can be obtained from a policy P as:

P̃ =
⋃

auth ∈ P

primitives(auth)

Definition 6. Regions: given a primitive policy P̃ and a
source σi, we define the sourceRegion Rσ(σi) as the set of
all the primitive authorizations involving σi as source. Re-
spectively, targetRegion Rτ (τi), represents the set of all the
primitive authorizations involving τi as target. Furthermore,
we can compute the Region R(σi, τi) containing all the prim-
itive authorizations that have σi as source and τi as target.

Example 2. Given the authorization 〈A1, A2, γ2, α1〉 (see
Figure 2b) the output of primitives(〈A1, A2, γ2, α1〉) returns
the following primitive authorizations:

source target class permission

T2 T4 γ2 α1

T2 T5 γ2 α1

T3 T4 γ2 α1

T4 T5 γ2 α1

An alternative way to represent the primitive policy P̃ de-
rived from the policy in Figure 2, is the following matrix M :

HH
HHHσ
τ

T1 T2 T3 T4 T5

T1 ∅ ∅ ∅ ∅ ∅
T2 γ1 : α1 ∅ ∅ γ2 : α1 γ2 : α1

T3 γ1 : α1 ∅ ∅
γ2 : α1

γ2 : α2
γ2 : α1

T4 ∅ ∅ ∅ ∅ ∅
T5 ∅ ∅ ∅ ∅ ∅

It is to note that M[T3][...] represents the sourceRegion
Rσ(T3), M[...][T4] represents the targetRegion Rτ (T4) and
M[T3][T4] represents the Region R(T3, T4).

4. THE TYPEBOUNDS RULE
The typebounds rule is used to define that a bounded type

must have a subset of the privileges of its bounding type.
The official SELinux Documentation [10] defines the rule as:

The typebounds rule was added in version 24 of the pol-
icy. This defines a hierarchical relationship between domains
where the bounded domain cannot have more permissions
than its bounding domain (the parent).

This definition does not provide a full formalization. For
example it is not immediately clear what should be checked
when both the source type σ and the target type τ are type-
bounded. In this section we extend the model presented in
Section 3 to include the typebounds rule. After analyzing the
implications of this extension, we propose a schema to sep-
arate and isolate the domains of different applications while
keeping the confinement in place.

σ τ

The authorization 〈σ, τ, γ, α〉 implies at least one of
the following conditions:

⇓

σ τ

a) both σ and τ not
typebounded

σ τ

σ̂

b) σ typebounded, no
assumptions on τ

σ τ

τ̂

c) τ typebounded, no
assumptions on σ

σ τ

σ̂ τ̂

d) both σ and τ
typebounded

Table 1: The four conditions that can support the authoriza-
tion 〈σ, τ, γ, α〉. In order to simplify the schema presented
in Figure 2 we consider that the class γ and the action α
are fixed for all the authorizations in the schema. Making
no assumption on a type means that the condition is valid
both when the type is typebounded and when it is not.

It is useful to emphasize that:

• a type can have at least zero and at most one bounding
(parent) type;

• the typebounds rule does not automatically assign any
authorization to the bounded type; it just sets the up-
per bound of the bounded type privileges to those held
by the bounding type;

• an exception is raised at compile time if an allow rule
tries to assign a privilege to a bounded type not given
to its bounding type (if present). Additional checks
are performed when the policy changes at runtime.

Before introducing Theorem 1, we need some additional
definitions in order to deal with the hierarchy imposed by
the typebounds rule.

Definition 7. Let σ ∈ T, then π (σ) is the parent of σ, if
it exists (i.e., if the policy defines typebounds σ̂ σ)3.

Definition 8. Let σ and τ be types and γ a class. Then
ϕ (σ, τ, γ) is the set {αi, αj , . . .} of actions included inR(σ, τ),
associated with class γ.

It is to note that the use of the primitive policy permits
to compute regions that are immediately usable in the eval-
uation of the respect of the typebounds rules.

3The same considerations can be applied to τ .

σ τ

σ̂ τ̂

(a) σ → τ can be satisfied
by σ → τ̂ (Equation 1c).
In turn σ → τ̂ requires
σ̂ → τ̂ (Equation 1b).

σ τ

σ̂ τ̂

(b) σ → τ can be satisfied
by σ̂ → τ (Equation 1b).
In turn σ̂ → τ̂ requires
σ̂ → τ̂ (Equation 1c).

Figure 3: σ̂ → τ̂ is a necessary condition for σ → τ when σ
and τ are both typebounded while σ̂ and τ̂ are not.

σ τ

σ̂ τ̂

Figure 4: σ̂ → τ̂ is a sufficient condition for σ → τ when
σ and τ are both typebounded. The domains σ and τ do
not need to share any authorization with σ̂ and τ̂ , so these
domains are isolated from each other and no information
leakage can happen.

We now have all the elements to express the theorem that
indicates whether a policy satisfies the hierarchical checks.

Theorem 1. An SELinux policy P satisfies the typebounds
rules iff ∀σ, τ ∈ T, ∀(γ, α) ∈ R(σ, τ):

(π(σ) is undefined ∧ π(τ) is undefined)∨ (1a)

(σ̂ = π(σ) ∧ α ∈ ϕ(σ̂, τ, γ))∨ (1b)

(τ̂ = π(τ) ∧ α ∈ ϕ(σ, τ̂ , γ))∨ (1c)

(σ̂ = π(σ) ∧ τ̂ = π(τ) ∧ α ∈ ϕ(σ̂, τ̂ , γ)) (1d)

Table 1 shows the four conditions that can support the
authorization 〈σ, τ, γ, α〉 whether σ and τ are typebounded
or not. We analyze these conditions in order to show that
they satisfy Theorem 1:

• In Table 1.a, neither σ nor τ are typebounded, thus
any authorization, including 〈σ, τ, γ, α〉, would satisfy
the check imposed by Theorem 1 (Equation 1a).

• In Table 1.b, π(σ) = σ̂, thus 〈σ̂, τ, γ, α〉 satisfies Theo-
rem 1 for 〈σ, τ, γ, α〉 (Equation 1b).

• In Table 1.c, π(τ) = τ̂ , thus 〈σ, τ̂ , γ, α〉 satisfies Theo-
rem 1 for 〈σ, τ, γ, α〉 (Equation 1c).

• In Table 1.d, π(τ) = τ̂ and π(σ) = σ̂, thus 〈σ̂, τ̂ , γ, α〉
satisfies Theorem 1 for 〈σ, τ, γ, α〉 (Equation 1d). It
is to note that Theorem 1 can also be satisfied by
〈σ̂, τ, γ, α〉 (Equation 1b) or 〈σ, τ̂ , γ, α〉 (Equation 1c).

An application can create new typebounded types in order
to specialize the ones provided by the policy and introduce

σ τ

σ̂ τ̂

σ τ

σ̂ τ̂

Figure 5: The typebounds rule does not imply inheritance
from the parent types to the children types.

σ3

τ1

τ2

τ3

σ2

σ3

τ1

τ2

τ3

σ1

σ2

σ3

τ1

τ2

τ3

Figure 6: The typebounds rule is not transitive, so these
schemas do not satisfy Theorem 1.

sophisticated security patterns among them. Some of the
most common patterns are shown in Section 5.

The most comprehensive schema is the one where σ̂ and
τ̂ are domains provided by the base policy, while σ and τ
are the specialized ones created by the application.

As explained in Figure 3, when σ and τ are both type-
bounded (respectively by σ̂ and τ̂), and σ̂ and τ̂ are not
typebounded, then 〈σ̂, τ̂ , γ, α〉 is a necessary condition for
the authorization 〈σ, τ, γ, α〉. The authorization 〈σ̂, τ̂ , γ, α〉
is also a sufficient condition for 〈σ, τ, γ, α〉 as shown in Ta-
ble 1.d and Figure 4.

Theorem 2. When π(σ) = σ̂, π(τ) = τ̂ , π(σ̂) is unde-
fined and π(τ̂) is undefined, the authorization 〈σ̂, τ̂ , γ, α〉 is
a necessary and sufficient condition for satisfying the hier-
archy checks of the authorization 〈σ, τ, γ, α〉.

Theorem 2 and Figure 4 indicate how it is possible to spe-
cialize the domains offered by the system policy without the
need of granting the system domains privileges to the newly
defined ones. The result is that the new domains can be
isolated and protected from the system and from other ap-
plications. This example shows how it is possible to combine
confinement and specialization using the typebounds rule.

4.1 Typebounds 6→ inheritance
As already stated in Section 4, the typebounds rule does

not assign any authorization, it just sets a confinement for
the children types (as shown in Figure 5), so the typebounds
rule is also not transitive. This is important to note because
it may appear counterintuitive. In fact, similar layered mod-
els imply inheritance and thus transitiveness.

Example 3. Let σ3, τ1, τ2 and τ3 be four types such that
π(τ3) = τ2 and π(τ2) = τ1. The authorization 〈σ3, τ1, γ, α〉
is not sufficient to satisfy any condition of Theorem 1 for
authorization 〈σ1, τ1, γ, α〉. In order to comply with the hi-
erarchy check, 〈σ1, τ2, γ, α〉 must also be assigned.

Figure 6 shows the schema in Example 3 and some other
schemas that do not satisfy Theorem 1.

browser1 password file

browser2 normal

browser2 incognito

history file

untrusted app app data file

Figure 7: Isolation of two applications using typebounds.

5. USE CASES
In this Section we present scenarios that can benefit from

the isolated domains described in the previous section. Fur-
thermore, an example on how the approach proposed in this
paper can be used in emerging scenario such as Docker is
presented in [1].

5.1 Android M
The current design of SELinux in Android (i.e., SEAn-

droid [11]) aims at protecting system components and trusted
apps from abuses by third-party apps. All the third-party
apps fall within a single untrusted app MAC domain and an
app interested in getting protection from other apps or from
internal vulnerabilities can only rely on Android Permissions
Framework (APF) and the Linux DAC support.

A step ahead in the direction of per app policy customiza-
tion is represented by Android M. In the M release each user
is assigned a specific SELinux category, building a Multi
Category Security (MCS) model. MCS works like the DAC
extended attributes: users are assigned to categories and
they can apply these categories at their discretion to the
content that they own. This means that Android can cre-
ate different worlds (i.e., use different categories) in order
to separate apps belonging to different users. The intro-
duction of categories brings several advantages in terms of
flexibility. The categories, in fact, permit to have multiple
instances of the same type. A process is allowed to per-
form an action only when the type enforcement allow rules
are satisfied and the target has a category that is compat-
ible with the categories assigned to the source. Although
the categories permit to define a more fine-grained policy,
they do not provide a mechanism to drop privileges when
not needed. This is a significant limitation, since apps can
get a concrete benefit from the specification of their own
policy. The appPolicyModules [2] proposal implements in
Android the model detailed in this paper. It improves the
definition and enforcement of the security requirements as-
sociated with each app through the use of specialized types.

5.1.1 AppPolicyModules in Android
In general, with the availability of appPolicyModules, the

system could evolve from a scenario where each app is given
at installation time access to the whole untrusted app do-
main at the SELinux layer, to a scenario where each app
is associated with the portion of untrusted app domain that
is really needed for its execution, with a better support of

the classical ”least-privilege” security principle. It is to note
that Android M provides the feature to drop Android per-
missions at runtime. This confirms that appPolicyModules
and more generally domain specialization identify a concrete
need and that Android is evolving in this direction.

Example 4. Most mobile browsers (e.g., Chrome, Fire-
fox) store confidential information such as usernames and
passwords in a SQLite database. Following Google’s best
practices for developing secure apps, the password database
is saved in the app data folder, which should be accessible
only to the app itself. However, this is not enough to protect
the password database by other apps with root privileges.

The use of MAC support offers protection even against
threats coming from the system itself, like a malicious app
that abuses root privileges. The app can protect its resources
from other apps, specifying its own types and defining in a
flexible way which system components may or may not access
the domains introduced by the APM.

Figure 7 shows an example where the untrusted app do-
main does not hold any permission on the file labeled as pass-
word file, which is accessible only by the browser1 domain.

It is to note that both browser1 and password file are type-
bounded, thus browser1 is not violating any restriction de-
fined on the parent domain (i.e., untrusted app) according
to Section 4. Greater flexibility derives from the possibility
to freely manage privileges for internal types over internal
resources, building a MAC model that remains completely
under the control of the app.

Example 5. Most mobile browsers provide the incognito
mode (i.e., anonymous surfing), which allows the user to
surf the web without storing permanently the history and
the cookies, and in general aiming at leaving no traces of
the browsing session in persistent memory.

In order to enhance its security and protect the user even
from possible app flaws, the appPolicyModule could spec-
ify a switch of context (i.e., it may change the SELinux
domain associated with its process) when the user enters
the incognito mode. In Figure 7, lower part, the domain
browser2 normal can read and write all the files labeled as
history file, while the domain browser2 incognito, used dur-
ing anonymous surfing, drops the privilege of writing the
files, preventing the leakage of resources that may leave a
trace of the navigation session.

As for the example before, the policy is correct due to the
typebound statement between browser2 normal, browser2-
incognito and untrusted app.

5.2 Apache web server and SELinux
Another scenario where the model presented in this paper

could be adopted is the Apache Web Server. Current web
servers with three-layer architectures (i.e., with a browser
working as a front-end to a Web Server accessing data stored
on a DBMS) assume that user privileges on accessing the
data are described in the Web application, which has contin-
uous privileged access to the DBMS, with full control on all
the data accessible by the user. In emerging scenarios such
as cloud services the developer controls only a part of the
entire infrastructure thus a mechanism providing isolation
among web applications and also among different services
offered by the same web application is desirable.

To meet these new security requirements, modern Web
Servers can rely on the use of Mandatory Access Control
provided directly by the OS. This design provides a char-
acteristic feature called system wide consistency in access
control, because all the decisions are made by the SELinux
security server based on a single declarative policy.

Apache is a multi-processed program structured as a pool
of worker threads monitored and controlled by a master pro-
cess. The workers are responsible for handling the commu-
nications with the clients. A worker handles at most one
connection at a time until the connection is terminated. Be-
cause the worker performs on behalf of the user, it is nec-
essary to grant the correct set of privileges, i.e., assign the
right security context. The Apache Web Server is supported
by SELinux using the additional module mod selinux. It en-
ables to assign a restrictive security context based on HTTP
authentication prior to the invocation of content handlers
that include the entry points of web applications.

When the web server process receives an HTTP request,
its request headers are parsed and analyzed, then HTTP
authentication is applied if necessary. It is to note that the
authentication is done under the web server’s context. Next,
the mod selinux module spawns a one-time worker thread,
while the parent waits for its completion. The worker modi-
fies its own security context prior to the invocation of content
handlers, including entry points of web applications.

The typebounds rule confines the scope of privileges to be
allowed on the bounded domain (i.e., the worker). When a
domain is bounded by another one, any privilege can never
be assigned to the bounded domain as far as the bounding
one is allowed. We can consider the bounded domain as
a special state of the original domain that lacks a part of
privileges. In fact, SELinux allows to change the security
context of a thread as far as the new security context is
bounded by the older one.

Apache/SELinux Plus [7, 9] uses the bounded domain to
assign an individual security context on a certain thread,
without unnecessary privileges for the authenticated users.
The current schema can enforce the least privilege princi-
ple, while the model discussed in Section 4 allows the use of
more sophisticated security patterns. The workers could en-
ter different specialized domains based on some connection
details, while still being typebounded by the Apache master
process domain.

6. CONCLUSIONS
Information systems are becoming more difficult to man-

age, with the integration of resources of different owners,
and access offered to a larger variety of users. Service ori-
ented architectures facilitate this evolution. Access control
policies follow this trend. The use of solutions like SELinux
further increases the role that access control policies have
in the security of modern operating systems. The efficient
management of the policies, with the ability to containerize
different services promises to lead to significant benefits in
a large number of application scenarios. The paper high-
lights the benefit of the use of isolated domains by means
of the typebound statement. The extensive reuse of SELinux
constructs demonstrates the flexibility of SELinux and facil-
itates the deployment of the proposed solution.

7. ACKNOWLEDGEMENTS
This work was partially supported by a Google Research

Award (winter 2014), by the Italian Ministry of Research
within the PRIN project “GenData 2020” and by the EC
within the 7FP and H2020 program, respectively, under
projects PoSecCo (257129) and EscudoCloud (644579).

8. REFERENCES
[1] E. Bacis, S. Mutti, S. Capelli, and S. Paraboschi.

DockerPolicyModules: mandatory access control for
docker containers. In IEEE CNS 2015 Poster Session
(to appear), Florence, Italy, 2015.

[2] E. Bacis, S. Mutti, and S. Paraboschi.
AppPolicyModules: Mandatory Access Control for
Third-Party Apps. In Proceedings of the 10th ACM
Symposium on Information, Computer and
Communications Security, pages 309–320. ACM, 2015.

[3] S. Bugiel, S. Heuser, and A.-R. Sadeghi. Flexible and
Fine-grained Mandatory Access Control on Android
for Diverse Security and Privacy Policies. In
Proceedings of the 22Nd USENIX Conference on
Security, SEC’13, pages 131–146, Berkeley, CA, USA,
2013. USENIX Association.

[4] A. Crowell, B. H. Ng, E. Fernandes, and A. Prakash.
The Confinement Problem: 40 Years Later. JIPS,
9(2), 2013.

[5] B. Hicks, S. Rueda, L. St Clair, T. Jaeger, and
P. McDaniel. A logical specification and analysis for
SELinux MLS policy. ACM Transactions on
Information and System Security (TISSEC), 2010.

[6] T. Jaeger, R. Sailer, and X. Zhang. Analyzing
integrity protection in the SELinux example policy. In
Proceedings of the 12th conference on USENIX
Security Symposium-Volume 12, pages 5–5. USENIX
Association, 2003.

[7] K. Kohei. Introduction of the Apache/SELinux plus.
https://code.google.com/p/sepgsql/wiki/Apache_

SELinux_plus . Accessed: 2015-07-30.

[8] F. Mayer, K. MacMillan, and D. Caplan. SELinux by
Example: Using Security Enhanced Linux (Prentice
Hall Open Source Software Development Series).
Prentice Hall PTR, NJ, USA, 2006.

[9] SELinux Project. Apache SELinux Support.
http://www.selinuxproject.org/page/NB_Apache .
Accessed: 2015-07-30.

[10] SELinux Project. Bounds Rules. http:
//www.selinuxproject.org/page/Bounds_Rules .
Accessed: 2015-07-30.

[11] S. Smalley and R. Craig. Security Enhanced (SE)
Android: Bringing Flexible MAC to Android. In
Network and Distributed System Security Symposium
(NDSS 13), 2013.

[12] S. Smalley, C. Vance, and W. Salamon. Implementing
SELinux as a Linux security module. NAI Labs
Report, 1(43):139, 2001.

[13] G. Zanin and L. V. Mancini. Towards a formal model
for security policies specification and validation in the
selinux system. In Proceedings of the ninth ACM
symposium on Access control models and technologies,
pages 136–145. ACM, 2004.

