
DockerPolicyModules:
Mandatory Access Control for Docker Containers

Enrico Bacis, Simone Mutti, Steven Capelli, Stefano Paraboschi
DIGIP — Università degli Studi di Bergamo, Italy

{enrico.bacis, simone.mutti, steven.capelli, parabosc} @ unibg.it

Abstract—The wide adoption of Docker and the ability to
retrieve images from different sources impose strict security
constraints. Docker leverages Linux kernel security facilities,
such as namespaces, cgroups and Mandatory Access Control, to
guarantee an effective isolation of containers. In order to increase
Docker security and flexibility, we propose an extension to the
Dockerfile format to let image maintainers ship a specific SELinux
policy for the processes that run in a Docker image, enhancing
the security of containers.

I. INTRODUCTION

The idea of Linux containerization (i.e., operating-system-
level virtualization) has been around for some time (e.g., LXC,
OpenVZ), but it saw a sudden surge in popularity with the ad-
vent of Docker in 2013 [1]. Docker adopts a simple Dockerfile
format that defines the actions needed to generate a Docker
image, which is then used to instantiate containers. The image
can be built upon other images, available in online repositories.
This facilitates the deployment of lightweight containers to run
software in isolation. More and more Platform-as-a-Service
providers are considering the use of Docker in order to reduce
the resource overhead imposed by traditional virtualization.

Containerization introduces new security challenges. In
fact, as opposed to classical virtualization, Docker does not
need separated operating systems, but it uses the services made
available by the Linux kernel in order to isolate the containers.
The major threat is represented by compromised or malicious
guests attacking other containers that are running on the same
system using local exploits. The security and isolation of the
containers is correctly perceived as the most critical point for
container security.

II. DOCKER SECURITY

Docker leverages Linux kernel security features such as
kernel namespaces to isolate users, processes, networks and
devices, and cgroups to limit resource consumption. When
dealing with containers, the kernel Discretionary Access Con-
trol (DAC) is usually considered insufficient, due to the flexi-
bility it gives to the subjects and the limited control it provides
on the security policy. With Mandatory Access Control (MAC),
subjects cannot bypass the system security policy. SELinux
is one of the most widespread implementations of MAC.
In systems that use SELinux (e.g., RHEL, Centos, Fedora),
Docker takes advantage of the policy defined in the scope of
the sVirt project [2], which aimed at defining SELinux policies
for different virtualization systems. In SELinux it is possible
to separate processes in two ways:

Type Enforcement (TE): a label containing a type is
associated with every subject (process) and system object (e.g.
file, directory). The policy defines the permitted actions among
types, and the kernel enforces these rules. A label with a
reduced set of privileges is assigned by Docker to all the
processes that are run in containers. TE is used to protect the
Docker engine and the host from the containers, which can
come from untrusted sources;

Multi-Category Security1 (MCS): the label assigned to a
subject or an object, can be further specialized with one or
more categories, in order to create different instances of the
same type. An access request is accepted if it is allowed by
TE and the subject and the object are in the same category.
Different containers are assigned different categories, thus they
are separated from each other even if they have the same type.

Currently all the containers run with the same SELinux
type, svirt lxc net t, as defined in the policy configuration file
lxc contexts. Running all the containers with the same type is
a serious limitation. In fact, we have to grant svirt lxc net t
the upper bound of the privileges that a container could ever
need. For example, since different applications operate on
different network ports, svirt lxc net t is allowed to listen to
and communicate over all the network ports [3]. Specializing
the type per container (or even per process) would permit to
tighten the security of Docker containers.

Docker already offers the user the ability to start the
processes in a container with a different SELinux type, through
the –security-opt parameter. However, in this case the user is in
charge of defining a suitable extension to the policy. Recently,
an SELinux policy for the Apache httpd container has been
proposed by Daniel Walsh [3]. When the policy is installed,
the container can be run with the specific type using:

d oc ke r run −d −−s e c u r i t y −o p t type :
d o c k e r a p a c h e t h t t p d

Although it is possible to start containerized processes with
specific SELinux types, there are still limits to the applicability
of this concept. It is reasonable to expect that many users will
either be unfamiliar with the SELinux syntax and semantics,
or do not know how to compile and install a policy module.

III. PROPOSAL

We propose a solution able to introduce specific SELinux
types for different containerized processes in a transparent

1Docker also integrates the SELinux Multi-Level Security (MLS), but it will
not be discussed here since it is not relevant in our proposal.



…
docker-baseimage:latest

D
PM

mysql:latest

D
PM

python:latestapache:latest

D
PMhttpd

httpd_t

mysqld
mysqld_t

python
svirt_lxc_net_t

initd
initd_t

syslog
syslog_t

crond
crond_t

sshd
sshd_t

Fig. 1. Processes running in three Docker containers (apache, mysql and
python), using specific SELinux types defined in the DockerPolicyModules
embedded in the images.

way for the user. This is based on Docker allowing image
maintainers to ship an SELinux policy module together with
their images. The module will be installed in the host system
and defines the types that will be associated with the processes
in the image. These modules are named DockerPolicyModules
(DPM) and are SELinux modules that must also satisfy the
properties defined in the following, in order not to represent
a threat for the host system. The DPM for an image will
be specified in the Dockerfile and embedded in the image
metadata at build-time. In order to run containerized processes
with specific SELinux types, the image maintainer can label
the binaries in the image with specific types, and write a type
transition rule. In this way, when the binary is executed, the
process is assigned the SELinux type defined in the rule. Even
if we have multiple processes running in the same image (e.g.,
the widely adopted docker-baseimage runs init, syslog, cron
and ssh), it is possible to execute them with different SELinux
labels. When a Docker container consists of different images,
all the DPMs for the images that compose the container will
be installed. This makes available also the SELinux types for
processes in the parent images. Figure 1 represents different
Docker containers with custom types provided by their DPM.

Recently we proposed a similar approach for Android third-
party apps and we studied the security implications involved
[4], [5]. The Docker scenario appears to fit quite well with this
proposal, with the additional advantage that we expect image
developers (as opposed to image users and app developers) to
be more familiar with the role and impact of MAC policies.

In order to avoid the possible threats that can emerge from
letting Docker images install SELinux modules in the host
system, we need to analyze the cases that derive from the
combination of the system policy and a DPM. Due to the fact
that each SELinux rule has a source (σ) and a target (τ ) type,
and they can be defined either in the system policy or in the
DPM, we have four possible scenarios, described in Table I.

A: the DPM must not change the system policy and can
only have an impact on processes and resources associated
with the DPM itself. Since containers can not be trusted a
priori, it is imperative that the provided DPM does not have
an impact on privileges where both σ and τ are system types;

B and C: new types defined in a DPM must always
operate within the boundaries defined by the svirt lxc net t
type. The SELinux typebounds rule is used to confine the

TABLE I. VALIDATION OF THE AVC RULES IN A DPM.

τ ∈ BASE τ ∈ DPM

σ ∈ BASE (A) INVALID
(threat for the system) (B) OK / INVALID

based on typebounds

σ ∈ DPM (C) OK / INVALID
based on typebounds (D) OK

types, imposing an upper bound to the privileges that a type
defined in a DPM can request. If a DPM defines a type not
typebounded by svirt lxc net t, or a privilege not compliant
with the typebounds rule, it is considered invalid;

D: a DPM provides the flexibility of defining multiple types
with different privileges so that the container, according to
the functionality in use, may switch to the one that represents
the “least privilege” domain needed to accomplish the current
task. This permits to limit the abuse that may derive from the
exploitation of internal vulnerabilities and to tighten the overall
container security.

The Docker Hub Registry must ensure that the DPM of any
uploaded image satisfies the requirements expressed in Table I.
Any image with a DPM not compliant with the above rules will
be rejected. To protect the client from a compromised Docker
Hub, a pre-processing phase will be added to Docker download
and update routines in order to verify, before installing it, that
the DPM does not represent a threat to the system.

IV. CONCLUSIONS

SELinux is a sound security solution and its support
for policy modules has already proved to be a significant
enhancement in several services. The adaptation to Docker
of the support for policy modules will allow the specification
of SELinux domains for the different images, leading to an
increase of security in Docker. We do not assume that all the
image maintainers will include a DockerPolicyModule in their
images, but the ones who are aware of the benefit that SELinux
provides will certainly appreciate the proposed extension.

V. ACKNOWLEDGEMENTS

This work was partially supported by a Google Research
Award (winter 2014), by the Italian Ministry of Research
within the PRIN project “GenData 2020” and by the EC within
the 7FP and H2020 program, respectively, under projects
PoSecCo (257129) and EscudoCloud (644579).

REFERENCES

[1] D. Merkel, “Docker: lightweight linux containers for consistent develop-
ment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[2] J. Morris, “sVirt: Hardening linux virtualization with mandatory access
control,” in Linux. conf. au Conference, 2009.

[3] D. J. Walsh, “Tuning Docker with the newest security
enhancements,” 2015. [Online]. Available: http://opensource.com/
business/15/3/docker-security-tuning

[4] S. Mutti, E. Bacis, and S. Paraboschi, “Policy Specialization to Support
Domain Isolation,” in SafeConfig 2015: Automated Decision Making for
Active Cyber Defense (SafeConfig15-ACD), Oct. 2015.

[5] E. Bacis, S. Mutti, and S. Paraboschi, “AppPolicyModules: Mandatory
Access Control for Third-Party Apps,” in Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security.
ACM, 2015, pp. 309–320.


