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Balancing Bilinearly Interfering Elements

David Carfì∗, Gianfranco Gambarelli∗∗

Abstract. Many decisions in various fields of application have to take into account the joint
effects of two elements that can interfere with each other. This happens, for example, in
Medicine (synergic or antagonistic drugs), Agriculture (anti-cryptogamics), Public Economics
(interfering economic policies), Industrial Economics (where the demand of an asset can be
influenced by the supply of another asset), Zootechnics, and so on. When it is necessary to
decide about the dosage of such elements, there is sometimes a primary interest for one effect
rather than another; more precisely, it may be of interest that the effects of an element are in
a certain proportion with respect to the effects of the other. It may also be necessary to take
into account minimum quantities that must be assigned.

In Carfì, Gambarelli and Uristani (2013), a mathematical model was proposed to solve
the above problem in its exact form. In this paper, we present a solution in closed form
for the case in which the function of the effects is bilinear.
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1. INTRODUCTION

Many decisions in various fields of application have to take into account the joint
effects of two elements that can interfere with each other. This happens, for example, in
Medicine (synergic or antagonistic drugs), Agriculture (pesticides), Public Economics
(interfering economic policies), Industrial Economics (where the demand of an asset
can be influenced by the supply of another asset), Zootechnics, and so on. When it is
necessary to decide about the dosage of such elements, there is sometimes a primary
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interest for one effect rather than another; more precisely, it may be of interest that the
effects of an element are in a certain proportion with respect to the effects of the other.
It may also be necessary to take into account the minimum quantities that should be
assigned.

In Carfì, Gambarelli and Uristani (2013), a mathematical model was proposed
to solve the above problem in its exact form. In this paper, we present a solution in
closed form for the case in which the function of the effects is bilinear.

In the next two sections, the problem will be defined in general terms. In Sections 4
and 5, the case of bilinear interference (free and truncated) will be dealt with. In the
following section, an algorithm will be presented for the direct calculation of solutions.
At the end, we shall provide some examples of application, and we shall indicate some
open problems.

1.1. LITERATURE REVIEW

D. Carfì (2010, 2012a) has introduced a new analytical methodology to examine
differentiable normal-form games. He and various collaborators have developed the
applicative aspects of the new methodology in several directions, such as Management,
Finance, Microeconomics, Macroeconomic, Green Economy, Financial Markets, In-
dustrial Organization, Project Financing and so on – see, for instance, Carfì and Fici
(2012), Carfì and Lanzafame (2013), Carfì, Magaudda and Schilirò (2010), Carfì and
Musolino (2015a, 2015b, 2014a, 2014b, 2013a, 2013b, 2013c, 2012a, 2012b, 2012c, 2011a,
2011b), Carfì, Patanè and Pellegrino (2011), Carfì and Perrone (2013, 2012a, 2012b,
2011a, 2011b, 2011c), Carfì and Pintaudi (2012), Carfì and Schilirò (2014a, 2014b,
2013, 2012a,2012b, 2012c, 2012d, 2011a, 2011b, 2011c), Carfì, Musolino, Ricciardello
and Schilirò (2012), Carfì, Musolino, Schilirò and Strati (2013), Carfì and Trunfio
(2011), Okura and Carfì (2014).

The methodology can suggest useful solutions to a specific Game Theory problem.
This analytical framework enables us to incorporate solutions designed “to share the
pie fairly”. The basic original definition we propose and apply for this methodology
is introduced also in Carfì and Schilirò (2014a, 2014b, 2013, 2012a, 2012b, 2012c,
2012d, 2011a, 2011b, 2011c) and Carfì (2012a, 2012b, 2010, 2009a, 2009b, 2009c,
2009d, 2009e, 2008). The method we use to study the payoff space of a normal-form
game is devisable in Carfì and Musolino (2015a, 2015b, 2014a, 2014b, 2013a, 2013b,
2013c, 2012a, 2012b, 2012c, 2011a, 2011b), and Carfì and Schilirò (2014a, 2014b, 2013,
2012a, 2012b, 2012c, 2012d, 2011a, 2011b, 2011c). Other important applications, of the
complete examination methodology, are introduced in Agreste, Carfì, and Ricciardello
(2012), Arthanari, Carfì and Musolino (2015), Baglieri, Carfì, and Dagnino (2012),
Carfì and Fici (2012), Carfì, Gambarelli and Uristani (2013), Carfì and Lanzafame
(2013), Carfì, Patanè, and Pellegrino (2011), Carfì and Romeo (2015). A complete
treatment of a normal-form game is presented and applied by Carfì (2012a, 2012b,
2010, 2009a, 2009b, 2009c, 2009e, 2008), Carfì and Musolino (2015a, 2015b, 2014a,
2014b, 2013a, 2013b, 2013c, 2012a, 2012b, 2012c, 2011a, 2011b), Carfì and Perrone
(2013, 2012a, 2012b, 2011a, 2011b, 2011c), Carfì and Ricciardello (2013a, 2013b, 2012a,
2012b, 2010, 2009) and Carfì and Schilirò (2014a, 2014b, 2013, 2012a,2012b, 2012c,
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2012d, 2011a, 2011b, 2011c). Carfì (2008) proposes a general definition and explains
the basic properties of Pareto boundary, which constitutes a fundamental element of
the complete analysis of a normal-form game.

2. DEFINITIONS

Let N = {1, 2} be a set of labels of the considered interfering elements (i.e., drugs,
commodities, and so on) and any related effects resulting from their use (e.g., curing
diseases, commodity demand, and so on). From here on, if not otherwise specified, the
use of the index “i ” will imply “for all i ∈ N ”, with an analogous use of the index “j”.

2.1. THE QUANTITIES

We denote the non-negative quantities of the i -th element as follows:

– Qi is the quantity effectively used;
– Qimax is the optimal quantity if the i -th element is used alone;
– Qimin is the minimum necessary quantity if the i -th element is used alone;
– qiand qimin are the corresponding ratios with respect to Qimax:

• qi = Qi/Qimax,
• qimin = Qimin/Qimax.

We call Q, Qmax, Qmin, q, and qmin the corresponding n-vectors.
It is assumed that Qimin < Qimax and Qimin ≤ Qi ≤ Qimax. Given such conditions,

qiandqimin belong to the interval [0,1].

2.2. THE EFFECTS

Let ei(q) be a non-negative function expressing the level of the i -th effect when percent
quantities q are used. The space of the effects is the set of points x = (x 1,..., xn) = e(q)
according to variations of q. This function should satisfy the conditions that follow.

If no elements are used, then all of the effects are null. If a single element is
employed in the optimal dose for use alone, then the level of the relative effect is 1,
while the level of the effect for the other is null. Finally, if both elements are employed
in the optimal doses for use alone, the resulting effects are given by vector δ = (δ1, δ2)
with real positive components. In formulae:

– if q1= q2= 0, then e1= e2= 0;
– if q1= 0 and q2= 1, then e1= 0 and e2= 1;
– if q1= 1 and q2= 0, then e1= 1 and e2= 0;
– if q1= q2= 1, then e1= δ1 and e2= δ2.

See Figure 1 as an example of an effect’s function.
Without loss of generality, we may place the elements in order so that:

δ1 ≤ δ2. (1)
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Fig. 1. Strategy space and payoff space of the game, for n = 2

The effectfunction can be defined directly, according to the faced problem, or can
be constructed on the basis of the study cases, using statistical methods and applying
suitable adjustments of scale, in order to respect all of the above conditions. In this
paper, we study the case in which this function is bilinear: free (Section 4) or truncated
(Section 5).

2.3. QUANTITIES AND MINIMUM EFFECTS

We use emin
i to indicate the minimum necessary level of the i -th effect. This level is

derived from the function ei(q) given qi = qmin
i and qj = 0 for the other component

j 6= i. We use emin to indicate the related 2-dimensional vector.
We assume the minimum necessary level of the i -th effect should not exceed 1 (if

δi ≤ 1) or δi(elsewhere). Thus:

emin
i ≤ max{1, δi} (2)

2.4. THE REQUIRED OPTIMAL RATIOS

We use r to indicate the required optimal ratio between the effects e1 and e2. We
call R the half-line centered on the origin, the inclination of which is r. For each point x
of the feasible set, we use E to indicate the half-line centered on the origin, passing
through x.

2.5. THE FEASIBLE PARETO OPTIMAL BOUNDARY

We shall call each point x of the codomain of e which is not jointly improvable a Pareto
optimal effect, in the sense that if we move from that point in this set to improve the
i-th effect, then the other effect necessarily decreases. It is easy to prove that, even
here, every Pareto optimal point is a boundary point of the set of effects; we shall,
therefore, call the set of Pareto optimal effects the Pareto optimal boundary.

The term feasible Pareto optimal boundary P is given to the set of the points of
the Pareto optimal boundary respecting the conditions xi≥ emin

i for all i∈N.
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3. THE OPTIMIZATION PROBLEM

3.1. THE DATA

The input data of the model is δ, emin , r and the option on the type of bilinear
function (free or truncated).

In some applications, we do not directly know the minimal effect eimin for some
element i, while we know the necessary minimal and optimal quantities Qimin and
Qimax. It is thus possible to deduce qimin, which, introduced into the equation ei(q),
gives eimin (as indicated in Section 2.3).

3.2. THE OBJECTIVE

The problem is to find the set of quantity-vectors q* such that the corresponding effect
vectors e(q*) belong to the feasible Pareto optimal boundary and are such that the
half-lines that join them to the origin form a minimum angle with R.

3.3. EXISTENCE AND UNIQUENESS

If the necessary minimum effects are excessive as a whole, the feasible set is empty;
therefore, the problem is without solution. However, for those cases where determining
the minimum quantities is open to variations, we have introduced certain indications
as to modifications to be used each time. Solution uniqueness is not guaranteed in
general, but the various different solutions produce the same effects (payoffs).

3.4. SOLUTION METHODS

Determining the optimal combination of q depends clearly on the form of the effects
function e(q). Below, we shall present the solutions for free bilinear functions (Section 4)
and for truncated bilinear functions (Section 5) providing closed form formulae and
geometrical descriptions. For what concerns cases in which the effect functions are of
different types, we refer to Carfì et al. (2013).

4. FREE BILINEAR CASE

In such cases, the function e(q) of each effect is defined as follows:

e1 = q1(1− q2) + q1q2qδ1

e2 = (1− q1)q2 + q1q2δ2

The problem of minimizing the angle between R and E is defined as:

min
q1,q2

∣∣∣∣e2e1 − r
∣∣∣∣

We shall examine the various types of interference separately, varying the values of δ
under the constraint (1).
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We shall represent such types as graphs with corresponding numbers. In each
of these graphs, the grey portion indicates the area in which δ can vary, while the
bold line indicates the feasible Pareto optimal boundary.

We shall then give the solutions along with the relative steps for achieving them
in the corresponding tables.

4.1. TYPE 1 (INDEPENDENT OR SYNERGIC ELEMENTS)

This type can be either δ1 = δ2 = 1 (independent elements) or δ1 > 1, δ2 ≥ 1 (synergic
elements) and is illustrated in Figure 2.

22 
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Fig. 2. n = 2, case 1 (independent or synergic elements)

The set of effects is represented by the quadrangle having vertices (0, 0), (0, 1),
(1, 0), and (δ1, δ2). The feasible Pareto optimal boundary is made up of the single
point δ. The input condition (2) guarantees the existence of the solution, given in
Table 1.

Table 1. The optimal solution in type 1

values

optimal effects x∗= (δ1, δ2)

optimal quantities q1 = 1,q2 = 1

4.2. TYPE 2 (PARTIALLY SYNERGIC
AND PARTIALLY ANTAGONISTIC ELEMENTS)

This is the case δ1+ δ2 > 1, δ1 ≥ 1, δ2 < 1. It is illustrated in Figure 3.
The set of effects is described by the quadrangle having vertices (0, 0), (0, 1),

(1, 0), and (δ1, δ2).
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Fig. 3. n = 2, case 2 (partially synergic and partially antagonistic elements)

In order to simplify the notations, we define:

a1 = max(0, emin
1 )

b1 = min

(
δ1,

δ1

δ2 − 1
(emin

2 − 1)

)
The existence of a solution requires, besides (2), the additional condition:

emin
1 ≤ b1

This condition results in a1≤ b1 and not-emptiness of the feasible Pareto optimal
boundary. This boundary is the set of points (x1, x2) such that

x1 ∈ [a1, b1]

x2 =
δ2 − 1

δ1
x1 + 1

In the event of no solution, the existence of one may be brought about by modifying
emin
1 and/or emin

2 as follows:

– by fixing emin
2 , we can use emin

1 = δ1

δ2−1 (emin
2 − 1);

– by fixing emin
1 , we can use emin

2 = δ2−1
δ1

emin
1 + 1.

Other ways are also open, if both emin
1 and emin

2 are modified. The solution is given
in the final row of Table 2.
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Table 2. The optimal solution in type 2

existence
condition emin

1 ≤ min

(
δ1,

δ1

δ2 − 1
(emin

2 − 1)

)
extremes of
the feasible
P.O.
boundary

L = (L1, L2) =

(
emin
1 ,

δ2 − 1

δ1
emin
1 + 1

)
R = (R1, R2) =

(
δ1

δ2 − 1
(max

(
δ2, e

min
2

)
− 1), max

(
δ2, e

min
2

))
optimal
effects

L2/L1 ≤ r ≤ R2/R1 x∗ = (w1, w2)
w1 = δ1/(rδ1 − δ2 + 1)
w2 = rw1

r > L2/L1 x∗ = L

r < R2/R1 x∗ = R

optimal
solution

L2/L1 ≤ r ≤ R2/R1 q∗1 = 1/(rδ1 − δ2 + 1)
q∗2 = 1

r > L2/L1 q∗1 = emin
1 /δ1

q∗2 = 1

r < R2/R1 q∗1 =
max

(
δ2, e

min
2

)
− 1

δ2 − 1
q∗2 = 1

4.3. TYPE 3 (WEAKLY ANTAGONISTIC ELEMENTS)

With this type, we have δ1+ δ2≥ 1, δ1 < 1, δ2 < 1. This is illustrated in Figure 4.
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Fig. 4. n = 2, case 3 (weakly antagonist elements)
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The set of effects is represented by the quadrangle having vertices (0, 0), (0, 1),
(1, 0) and (δ1, δ2).

In order to simplify the notations, we define:

a1 = max(0, emin
1 ),

b1 = min(δ1,
δ1

δ2−1 (emin
2 − 1))

a2 = max(δ1, e
min
1 ),

b2 = min(1, (δ1−1)
δ2

emin
2 + 1)

The existence of a solution requires, besides (2), the additional condition:

emin
1 ≤ max (b1, b2)

This condition results in a1≤ b1 e a2≤ b2 and the feasible Pareto optimal boundary
is not empty. This boundary is the set of points (x1, x2) given byR1

⋃
R2, where:

R1 =



x = (x1, x2)

∣∣∣∣∣∣x2 =
(δ2 − 1)

δ1
x1 + 1

x1 ∈ [a1, b1]


∅

if emin
1 ≤ δ1

otherwise

and

R2 =



x = (x1, x2)

∣∣∣∣∣∣x2 =
δ2

(δ1 − 1)
(x1 − 1)

x1 ∈ [a2, b2]


∅

if emin
2 ≤ δ2

otherwise

In the event of no solution, the existence of one may be brought about by modifying
emin
1 and/or emin

2 as follows:

– by fixing emin
2 , we can use

emin
1 = max

(
δ1

δ2 − 1
(emin

2 − 1),
δ1 − 1

δ2
emin
2 + 1

)
;

– by fixing emin
1 , we can use

emin
2 = min

(
δ2 − 1

δ1
emin
1 + 1,

δ2

δ1 − 1
(emin

1 − 1)

)
;

Other ways are also open, if both emin
1 and emin

2 are modified. The solution is given in
the final row of Table 3.
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Table 3. The optimal solution in type 3

existence
condition emin

1 ≤ max

(
min

(
δ1,

δ1

(δ2 − 1)
(emin

2 − 1)

)
,min

(
1,

(δ1 − 1)

δ2
emin
2 + 1

))
extremes of
the feasible
P.O.
boundary

L = (L1, L2) =

 emin
1 ,

(
δ2 − 1

δ1
emin
1 + 1

)
χ
(
emin
1 ≤ δ1

)
+

+

(
δ2

δ1 − 1
(emin

1 − 1)

)
χ
(
emin
1 > δ1

)


R = (R1, R2) =


(
δ1 − 1

δ2
emin
2 + 1

)
χ
(
emin
2 ≤ δ2

)
+

+

(
δ1

δ2 − 1
(emin

2 − 1)

)
χ
(
emin
2 > δ2

)
, emin

2


optimal
effects

r > L2/L1 x∗ = L

r < R2/R1 x∗ = R

δ2/δ1 ≤ r ≤ L2/L1 x∗ = (w1, w2)
w1 = δ1/(rδ1 − δ2 + 1)
w2 = rw1

R2/R1 ≤ r ≤ δ2/δ1 x∗ = (w1, w2)
w1 = −δ2/(rδ1 − r − δ2)
w2 = rw1

optimal
quantities

r > L2/L1 q∗1 =
emin
1
δ1
χ
(
emin
1 ≤ δ1

)
+ χ

(
emin
1 > δ1

)
q∗2 =

= χ
(
emin
1 ≤ δ1

)
+

emin
1 −1

δ1−1
χ
(
emin
1 > δ1

)
r < R2/R1 q∗1 = 1

q∗2 =
emin
2
δ2
χ
(
emin
2 ≤ δ2

)
+

emin
2

1−δ1
χ
(
emin
2 > δ2

)
δ2/δ1 ≤ r ≤ L2/L1 q∗1 =

1

rδ1 + 1− δ2
q∗2 = 1

R2/R1 ≤ r ≤ δ2/δ1 q∗1 = 1

q∗2 = − r

rδ1 − δ2 − r

4.4. TYPE 4 (STRONGLY ANTAGONISTIC ELEMENTS)

This is the case δ1 + δ2 < 1. This is illustrated in Figure 5.
It may be deduced from Carfì (2009e, pages 42–44) that the set of effects is the

pseudo-triangle with vertices (0, 0), (0, 1), and (1, 0), delimited at North-East by the
curve now to be defined. Having called δ

′

1 = 1− δ1 and δ
′

2 = 1− δ2, the resulting line
is the union of:

– the segment of extremes (0, 1) and H = (H 1, H 2) = (δ21/δ
′

2,δ
′

1),
– the segment of extremes (1, 0) and K = (K 1, placeK 2) = (δ

′

2,δ22/δ
′

1),
– the section of the curve between H and K, having equation x2 = (1−

√
δ
′
2x1)2/δ

′

1
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Fig. 5. n = 2, case 4 (strongly antagonist elements)

Remark. For other examples of similar calculations, we suggest to read the papers
by Carfì and Schilirò (2014a, 2014b, 2013, 2012a, 2012b, 2012c, 2012d, 2011a, 2011b,
2011c) and by Carfì (2012a, 2012b, 2010, 2009a, 2009b, 2009c, 2009d, 2009e, 2008);
the interested readers could also see Carfì and Musolino (2015a, 2015b, 2014a, 2014b,
2013a, 2013b, 2013c, 2012a, 2012b, 2012c, 2011a, 2011b). Other important applications,
of the complete examination methodology, are shown in Agreste, Carfì, and Ricciardello
(2012), Arthanari, Carfì and Musolino (2015), Baglieri, Carfì, and Dagnino (2012),
Carfì and Fici (2012), Carfì, Gambarelli and Uristani (2013), Carfì and Lanzafame
(2013), Carfì, Patanè, and Pellegrino (2011), Carfì and Romeo (2015).

Note that H belongs to the segment connecting (0, 1) and (δ1, δ2), and K belongs
to the segment connecting (1, 0) and (δ1, δ2); then H1 ≤ δ1 and H2 ≤ δ2.

In order to simplify the notations, we define:

a1 = max(0, emin
1 ),

b1 = min
(
H1,

δ1

(δ2−1) (e
min
2 − 1)

)
a2 = max(K1, e

min
1 ),

b2 = min
(

1, (δ1−1)
δ2

emin
2 + 1

)
a3 = max(H1, e

min
1 ),

b3 = min
(
K1,

(
1−
√

(1−δ1)emin
2

)2
1−δ2

)
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The existence of a solution requires, besides (2), the additional condition

emin
1 ≤ max (b1, b2, b3)

This condition results in a1≤ b1, a2≤ b2, and a3≤ b3. In this case, the feasible
Pareto optimal boundary is not empty. This boundary is the set of points (x1, x2)
given byR1

⋃
R2

⋃
R3, where:

R1 =



x = (x1, x2)

∣∣∣∣∣∣x2 =
(δ2 − 1)

δ1
x1 + 1

x1 ∈ [a1, b1]


∅

if emin
1 ≤ H1

otherwise

and

R2 =



x = (x1, x2)

∣∣∣∣∣∣x2 =
δ2

(δ1 − 1)
(x1 − 1)

x1 ∈ [a2, b2]


∅

if emin
2 ≤ K2

otherwise

and

R3 =



x = (x1, x2)

∣∣∣∣∣∣∣x2 =

(
1−
√

(1− δ2)x1

)2
1− δ1

x1 ∈ [a3, b3]


∅

if K2 ≤ emin
2 ≤ H2

and H1 ≤ emin
1 ≤ K1

otherwise

In the event of no solution, the existence of one may be brought about by modifying
emin
1 and/or emin

2 in a way analogous to the previous cases:

– by fixing emin
2 , we can use

emin
1 = max

(
δ1

δ2 − 1
(emin

2 − 1),
(δ1 − 1)

δ2
emin
2 + 1,

(1−
√

(1−δ1)emin
2 )2

1− δ2

)
;

– by fixing emin
1 , we can use

emin
2 = min

(
δ2 − 1

δ1
emin
1 + 1,

δ2

δ1 − 1
(emin

1 − 1),
(1−

√
(1−δ2)emin

1 )2

1− δ1

)
;

Intermediate solutions are also possible, in which both emin
i are modified. The solution

is given in the final row of Table 4.
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Table 4. The optimal solution in type 4

existence
condition

emin
1 ≤ max


min

(
H1,

δ1
(δ2−1)

(emin
2 − 1)

)
,

min
(
1,

(δ1−1)
δ2

emin
2 + 1

)
,min

K1,

(
1−
√

(1− δ1)emin
2

)2
1− δ2




extremes of
the feasible
P.O.
boundary

L = (L1, L2) =



emin
1 ,(
δ2 − 1

δ1
emin
1 + 1

)
χ
(
emin
1 ≤ H1

)
+

(
δ2

δ1 − 1
(emin

1 − 1)

)
χ
(
emin
1 ≥ K1

)
+

 (1−
√

(1−δ2)emin
1 )2

1− δ1

 χ (K1 < emin
1 < H1

)



R = (R1, R2) =



(
δ1 − 1

δ2
emin
2 + 1

)
χ
(
emin
2 ≤ K2

)
+

(
δ1

δ2 − 1
(emin

2 − 1)

)
χ
(
emin
2 ≥ H2

)
+

(
1−

√
(1−δ1)emin

2

)2
1− δ2

χ
(
K2 < emin

2 < H2

)
,

emin
2


optimal
effects

r ≥ L2/L1 x∗ = L

r ≤ R2/R1 x∗ = R

r ≥ H2/H1

r < L2/L1

r > R2/R1

x∗= (w1, w2)
w1 = δ1/(rδ1 − δ2 + 1)
w2 = rw1

H2/H1 ≤ r ≤
K2/K1

r < L2/L1

r > R2/R1

x∗ = (w1, w2)

w1 =

(
2((1− δ2) + r(1− δ1))− 2

√
ξ

2((1− δ2) + r(1− δ1))2

)
w2= rw1

where
ξ =

√
r(δ1 − 1)(δ2 − 1)

r ≤ K2/K1

r < L2/L1

r > R2/R1

x∗= (w1, w2)

w1=
(

δ2

δ2 + r(1− δ1)

)
w2 = rw1

optimal
quantities

r ≥ L2/L1 q∗1 =

(
emin
1

δ1

)
χ
(
emin
1 ≤ H1

)
+ χ

(
emin
1 ≥ K1

)
+

(
(emin

1 (δ2−1) + η

η(δ1 − 1)

)
χ
(
H1 < emin

1 < K1

)



40 D. Carfì, G. Gambarelli

Table 4. cont.

optimal
quantities

r ≥ L2/L1 q∗2 = χ
(
emin
1 ≤ H1

)
+

(
emin
1 − 1

δ1 − 1

)
χ
(
emin
1 ≥ K1

)
+

(
η

1− δ2

)
χ
(
H1 < emin

1 < K1

)
where

η =
√
emin
1 (1− δ2)

r ≤ R2/R1 q∗1 = χ
(
emin
2 ≤ K2

)
+

(
emin
2 − 1

δ2 − 1

)
χ
(
emin
2 ≥ H2

)
+

−
(
θ+ emin

2 (δ1 − 1)

θ(δ2 − 1)

)
χ
(
K2 < emin

2 < H2

)
q∗2 =

(
emin
2

δ2

)
χ
(
emin
2 ≤ K2

)
+ χ

(
emin
2 ≥ H2

)
+

+

(
θ

1− δ1

)
χ
(
K2 < emin

2 < H2

)
where

θ =
√
emin
2 (1− δ1)

r ≥ H2/H1

r < L2/L1

r > R2/R1

q∗1 = −
δ1 − 1

2(δ2 − 1)2
√

(δ1 − 1)/(δ2 − 1)

q∗2 = −
δ2 − 1

2(δ1 − 1)2
√

(δ2 − 1)/(δ1 − 1)

H2/H1 ≤ r ≤
K2/K1

r < L2/L1

r > R2/R1

If δ1 = δ2

q∗1 = −
(
1

2

1√
(δ2 − 1)/(δ1 − 1)

δ2 − 1

(δ1 − 1)2

)

q∗2 = −
(
1

2

1√
(δ1 − 1)/(δ2 − 1)

δ1 − 1

(δ2 − 1)2

)
otherwise

q∗1 = −
(

δ1 − 1 + ξ

(δ1 − 1)(δ1 − δ2)

)
q∗2 = −

(
δ2 − 1 + ξ

(δ2 − 1)(δ1 − δ2)

)
where
ξ =

√
(δ1 − 1)(δ2 − 1)

r ≤ K2/K1

r < L2/L1

r > R2/R1

q∗1 = 1

q∗2 = −
r

rδ1 − δ2 − r

5. TRUNCATED BILINEAR CASE

These cases involve situations in which the effects (beyond a certain maximum level)
fall to zero. The symbol χ will be used in the text to denote the indicator function; i.e.,

χ (condition) =

{
1

0

if the condition is satisfied

if the condition is not satisfied
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Using the above symbol, we can define the effect-function e(q) of truncated bilinear
cases as follows:

e1 = χ(q1(1− q2) + q1q2δ1 ≤ 1)[q1(1− q2) + q1q2δ1]

e2 = χ(q2(1− q1) + q1q2δ2 ≤ 1)[(1− q1)q2 + q1q2δ2]

5.1. TYPE 1 TRUNCATED (INDEPENDENT OR SYNERGIC ELEMENTS)

This type corresponds either to (δ1 = δ2 = 1) or (δ1 > 1, δ2 ≥ 1). This is illustrated
in Figure 6.

22 

 

(0,1) 

(1,0) (0,0) 

           (δ1, δ2) 
x2 

x1 

min

1e  

min

2e  

Fig. 6. n = 2, case 1 (independent or synergic elements)

The set of effects is the quadrangle having vertices (0, 0), (0, 1), (1, 0), and
(δ1, δ2). The feasible Pareto optimal boundary is made up of the single point (1, 1).
Therefore, x 1 = x 2 = 1.

The input condition (2) guarantees the existence of the solution, which is given
in Table 5.

Table 5. the optimal solution in type 1T

δ1 = δ2 = 1 δ1 > 1 δ2 = 1 otherwise

optimal effects x∗ = (1, 1) x∗ = (1, 1) x∗ = (1, 1)

optimal
quantities

q1 =
1

δ1
q2 = 1

q1 = 1
q2 = 1

q1 =
1

1 + q2(δ2 − 1)

q2 =

√
κ2 − κ+ 4(δ1 − 1)

2(δ1 − 1)
κ = (1− (δ1 − 1) + (δ2 − 1))
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5.2. TYPE 2 TRUNCATED (PARTIALLY SYNERGIC
AND PARTIALLY ANTAGONISTIC ELEMENTS)

This is the case δ1 + δ2 > 1, δ1 ≥ 1, δ2 < 1. This is illustrated in Figure 7.

23 

 

(0,1) 

(1,0)   (0,0) 

x2 

x1 

(δ1, δ2)  

min

1e  

min

2e  

Fig. 7. n = 2, case 2 (partially synergic and partially antagonistic elements)

The set of effects is the quadrangle having vertices (0, 0), (0, 1), (1, 0), and
(δ1, δ2). Although it is analogous to Type 2 in the case given in the previous paragraph,
the effects cannot exceed the value of 1 in this case.

In order to simplify the notation, we define:

a1 = max (0, emin
1 )

b1 = min

(
1,

δ1

δ2 − 1
(emin

2 − 1)

)
Using the above notations, the conditions for the existence of a solution, calcula-

tions, and all related considerations are the same as those for Section 4.2. The solution
is given in the final row of Table 6.

Table 6. The optimal solution in type 2T

existence
condition

emin
1 ≤ min

(
1,

δ1

δ2 − 1
(emin

2 − 1)

)
extremes of
the feasible
P.O.
boundary

L = (L1, L2) =

(
emin
1 ,

δ2 − 1

δ1
emin
1 + 1

)

R =

(
δ1

δ2 − 1

(
max

(
δ2 − 1

δ1
+ 1, emin

2

)
− 1

)
, max

(
δ2 − 1

δ1
+ 1, emin

2

))
optimal
effects

L2/L1 ≤ r ≤
R2/R1

x∗ = (w1, w2)
w1 = δ1/(rδ1 − δ+ 1)
w2 = rw1
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Table 6. cont.

r > L2/L1 x∗ = L

r < R2/R1 x∗ = R

optimal
solution

L2/L1 ≤ r ≤
R2/R1

q∗1 = 1/(rδ1 − δ2 + 1)
q∗2 = 1

r > L2/L1 q∗1 = emin
1 /δ1

q∗2 = 1

r < R2/R1 δ1= 1 q∗1 = R1

q∗2 = 1

δ1 >
1 q∗1 =

δ1
δ2−1

max
(

δ2−1
δ1

+ 1, emin
2

)
− 1

1 + q2(δ1 − 1)

q∗2 =
(δ1 − ϑ− 1) +

√
(δ1 − ϑ− 1)2 + 4ϑ(δ1 − 1)

2(δ1 − 1)

ϑ = max

(
δ2 − 1

δ1
+ 1, emin

2

)

5.3. TYPES 3 AND 4 TRUNCATED

Types 3 and 4 truncated are the same as those of the bilinear free case. We therefore
refer the reader to the considerations given in Sections 4.3 and 4.4.

6. AN ALGORITHM

The input data is δ, emin, and the option free-truncated function.
We begin by acquiring the data and by doublechecking the conditions required in

Section 2.
With regard to r, it is quite possible that the user is unable to determine this

a priori, and it is therefore useful to supply the user with an interval of variability
r_int to allow this parameter to be established.

The algorithm proceeds using the tables given in Sections 4 and 5. If a feasible
solution is reached, the process stops. Otherwise, the user has to be informed that
e1min and/or e2min are too binding and should be modified, giving suitable indications
for doing this.

A definitive calculation can now be made and the results communicated.

7. SOME APPLICATIONS

In Industrial Economics, finding the optimal quantities of goods to be produced is
a well-known problem. Some goods may be complementary or substitutes; hence, their
demands may influence each other. If the same firm produces such kinds of goods,
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it is profitable to optimally decide the production quantities of each product. This
decision also depends on the willingness of the decision-maker to potentially sacrifice
part of the demand of one product. This willingness to cannibalize a product depends
on various factors, examples being the future market situation of the two products
and a company’s desire to place itself at a strategic advantage in an emerging market
(for a detailed analysis of the factors influencing the willingness to cannibalize, see
Chandy et al., 1998; Nijssen et al., 2004 and Battaggion et al., 2009).

The model can be used analogously in Public Economics to calibrate two differing
economic policies that are interfering with each other.

In Medicine and Veterinarian practice, the balance of interfering drugs is usually
performed by successive approximations, keeping the patient monitored.

Finally, further applications can be seen in Zootechnics (to optimize diets),
in Agriculture (to calculate dosages of parasiticides or additives so as to increase
production), and so on.

8. SOME OPEN PROBLEMS

Figure 8 shows a graph corresponding to Figure 1 for the case n = 3. Working with
graphic methods (as in this paper) is more difficult in the case of multilinear functions,
but not impossible.

21 
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Fig. 8. n = 3

Further studies could apply this technique to Cooperative Game Theory, where
bilinear functions are often applied (see Fragnelli and Gambarelli, 2013a, 2013b).
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