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ABSTRACT

Nowadays, the interest in the class of collaborative transportation problems
has been recently growing fast. However, the operational research literature
about it is still quite scarce. Hence, In this work, we investigate horizontal
collaboration, mainly on road transportation, among different companies,
carriers and shippers. Background motivations for this thesis are: a still
prevalent way of moving around goods in different parts of the world, an
increasing pressure on logistic providers and an higher customer expecta-
tions about requested service. Therefore, we examine the existing literature
on horizontal collaboration classifying different models and techniques used.
An extensive and exhaustive literature review about these problems is given.
We study profit, benefit and cost allocation procedures in order to better
investigate the impact and the effectiveness of collaboration for the collect-
ing of profits and the cutting of costs. Then, we develop a new profitable
arc routing model to address a centralized partial cooperation among mul-
tiple carriers. We study two different formulations of this problem taking
into account the impact of collaboration on the stand alone carrier profit.
In the first one the goal is the maximization of the total profit of the coali-
tion of carriers, independently of the individual profit of each carrier. The
second variant includes a lower bound on the individual profit of each car-
rier. We formulate mixed integer programming models for the two variants of
the problem and study their properties and their relations with well-known
arc routing problems. We solve them with a branch-and-cut algorithm and
quantify the impact of collaboration on a large set of instances. Finally, we
develope two metaheuristic solution methods based on a Large Neighbor-
hood Search and a Ruin and Repair heuristic framework. On one hand, we
have a Variable Neighborhood Search (VNS), on the other hand, we have an
Adaptive Large Neighborhood Search (ALNS). Both metaheuristics perform
very well on a large set of instances solving almost all of them within few
seconds. Moreover, both find feasible solutions on larger and more realistic
instances within few minutes.
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1. INTRODUCTION

Within this thesis, we investigate the horizontal collaboration, mainly in
road transportation, among different companies, carriers and shippers. In-
deed, nowadays transportation companies acknowledge growing pressure and
road transportation is still a prevalent way of moving around goods in various
parts of the world. Horizontal collaboration means cooperation among trans-
portation firms and companies that operate at the same level of the supply
chain performing comparable activities. The interest in horizontal collabora-
tion on road transportation among different players in routing problems has
been recently boosted by higher pressure on logistic providers and by higher
customers expectations about requested services. However, in this field lit-
erature is still quite scarce. We give an extensive literature review, covering
also impediments, driving forces and opportunities linked to it.

We develop a new arc routing model to address the problem of carrier col-
laboration in a centralized framework. We call it the Collaboration Uncapac-
itated Arc Routing Problem (CUARP), an uncapacitated arc routing prob-
lem with multiple depots, where carriers collaborate to improve the profit
gained. We also propose variants that take into account profit thresholds.
We propose a large set of benchmark instances and solve them with exact
and metaheuristic methods taking into account and underlying the impact
of collaboration for collecting profits and cutting costs. Finally, by means of
metaheuristic methods we are able to find feasible solutions for larger and
more realistic instances.
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1.1 Structure of the thesis

The thesis is organized as follows.

e Chapter Survey on Routing Collaboration.

In this chapter we survey main contributions appeared in the literature
on Routing Collaboration Problems. We focus on models and solving
methods. This chapter provides also a survey of the major game theory
profit allocation techniques used in Routing Collaboration Problems.

e Chapter On the Collaboration Uncapacitated Arc Routing
Problem.

In this chapter a new arc routing problem for the optimization of a col-
laboration scheme among carriers is presented. We focus on situations
where collaboration is managed in a centralized way. We consider a
set of carriers cooperating under the guidance of a central station that
acts in a non-partisan way. This yields to the study the Collaboration
Uncapacitated Arc Routing Problem (CUARP), an uncapacitated arc
routing problem with multiple depots, where carriers collaborate to im-
prove the profit gained. We study two variants of the CUARP, solve
the formulations for the two proposed variants with a branch-and-cut
algorithm, and quantify the impact of collaboration for a large set of
benchmark instances.

e Chapter [4 Heuristics for the Collaboration Uncapacitated
Arc Routing Problem.

In this chapter heuristic approaches based on Large Neighborhood
Search are developed in order to solve CUARP instances of realistic
size. We propose two different heuristic frameworks a Variable Neigh-
borhood Search (VNS) and an Adaptive Large Neighborhood Search
(ALNS). We solve a set of CUARP benchmark instances to prove the
effectiveness of the proposed algorithms. Finally, we use the VNS and
the ALNS to find feasible solutions for larger and more realistic in-
stances.

e Chapter [5 Conclusions.

This chapter contains the concluding remarks of the thesis and future
research prospectives and open areas to deal with.
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e Electronic Appendix.

This appendix has an attached .xlsx file containing the characteristics
of all instances and the results of all experimentations done within this
thesis.



2. SURVEY ON ROUTING COLLABORATION

2.1 Introduction

Road transportation is still a prevalent way of moving around goods in vari-
ous parts of the world. The interest in the class of collaborative transporta-
tion problems has been recently growing fast. Indeed, collaboration is widely
seen as one of the best ways to deal with increasingly complex business sectors
in order to create an advantage, as pointed out in Fugate et al. [43], Stefans-
son [80] and Cruijssen [26]. Generally, collaboration among companies may
indicate different levels and kinds of cooperation. Indeed, companies may
collaborate on sharing information about customers and core or non-core
business activities, such as commodity purchasing or distribution. In par-
ticular, we can have collaboration among companies in goods procurement
and distribution at different levels of the supply chain. Therefore, we can
distinguish between vertical and horizontal collaboration.

Vertical collaboration is characterized by interactions among different
levels of the supply chain, and shippers, carriers and customers cooperate
to improve services quality. Among the most known examples of vertical
collaboration there are the Vendor Managed Inventory (VMI), the Efficient
Customer Response (ECR) and the Collaborative, Planning, Forecasting and
Replenishment (CPFR). Moreover, transportation companies may vertically
collaborate setting up distribution systems with inter-modal exchange nodes
to allow collaboration among different levels of the supply chain. For further
studies and comprehensive surveys on vertical collaboration see Fawcett et
al. [39], Fugate et al. [43], Kilger et al. [52] , Thomas et al. [8I] and
Simatupang et al. [79]. Wallender et al. [84] and Dong et al. [33] give an
overview of VMI, while Holstrom et al [50], Seifert [74] and Sherman [7§]
give a comprehensive analysis of ECR and CPFR.
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On the other hand, we have horizontal collaboration when companies at
same level of the supply chain cooperate, even if they are competing compa-
nies. Generally, we can distinguish four kinds of horizontal collaboration, as
pointed out in [26]. Firstly, we have competition when companies move on an
action-reaction arrangement to reach comparable goals. Secondly, companies
coexist if they have relationships which do not include common objectives,
money flows and collaboration on business core activities. Then, coopera-
tion is characterized by developing tight bonds among companies, in order
to reach a common goal. Finally, if there is a collaboration agreement that
obliges companies to cooperate to reach a common objective, but outside this
agreement there is strong competition, we have co-opetion. This last model of
horizontal collaboration is the most widespread because it allows companies
to collaborate in some, but not necessarily all, activities, within a framework
of fixed rules. For our purposes in this chapter, we defined horizontal col-
laboration as cooperation between two or more firms that are active at the
same level of the supply chain and perform a comparable logistics function
on the landside, as proposed by Cruijssen et al. [26]. Horizontal collabora-
tion is very well known in ocean shipping and air transport literature. For
comprehensive surveys on maritime collaborative transportation we address
the reader to Clarke [22] and Sheppard et al. [77], while for airline industry
collaboration we suggest Fan et al. [38], Oum et al. [64] and Park [68]. On
the contrary, literature in this field is quite scarce. Few papers with relevant
models have been published and several problems on collaboration routing
remain to be studied. We concentrate our attention on classifying different
models; a recent survey giving a broad literature review can be found in
Verdonck et al. [83]. Nevertheless, we cover briefly the impediments, the op-
portunities and the driving forces and events that lead companies and more
generally road transportation logistic providers to collaborate.

Background and motivations for the survey

Nowadays, road transportation companies have tools that allow them to
decrease the costs of serving customer orders. These tools, however, are often
limited by the growing competitiveness among companies. This drawback
and severe limitation can be prevented by means of collaborative schemes.
Indeed, transportation providers that participate or form coalitions in order
to fulfill customer requests may reduce their costs, for instance balancing their
customer sets and/or reinforcing their market position. Hence, a coalition
yields global and individual benefits to its partners.
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In this chapter we present a survey of the literature on horizontal collab-
oration routing problems on road transportation. Section gives a broad
introduction to horizontal collaboration and its driving forces, impediments
and opportunities. A literature review is given in Section [2.3] In Section
we review the profit allocation schemes and their application on horizontal
collaboration routing problem. Conclusions are drawn in Section

2.2 Horizontal Collaboration

In road transportation horizontal collaboration is the collection of concerted
practices and strategies among transportation companies, which operate at
the same level of the supply chain, to increase their performances, as pointed
out in Cruijssen et al. [27]. In this section we revise the driving forces, the
impediments and the opportunities of horizontal collaboration and propose
a different classification to deal with such problems. Indeed, the literature
has grown fast during last years, but it lacks a formal classification.

The main driving force for horizontal collaboration is each companies
selfish expectation of a positive benefit. Hence, transportation companies
form alliances to collaborate and to jointly achieve a common goal. These
collaborations develop because of synergies among companies. Among the
most known synergies we can distinguish between economies of scale and
economies of scope. Economies of scale indicate the decrease in unitary
costs by producing more of the same commodity or providing a particular
service more frequently and/or to more customers. In Cruijssen et al. [25]
such economies are exploited in a joint route planning on horizontal roadside
collaborative transportation. Fconomies of scope refer to cost savings or
profits because of the addition of new products or new services. Usually, such
economies drive companies to collaborate among them. Specifically, in road
transportation economies of scope enable logistic providers to offer services
and goods not available outside the collaborative network and framework.
Moreover, collaboration may allow companies to enlarge their orders and
increase their sets of customers. Hence, another driver is the will and the
opportunity to strengthen each companies market position. Furthermore,
horizontal collaboration among roadside transportation companies lead them
to cut costs by making more profits and savings.

Horizontal collaboration has not only to be seen from a cost-reduction
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perspective, tough this is by far the most important driving force for com-
panies. For instance, a side effect that has to be taken into account is the
reduction in polluting emissions (e.g. Ballot et al. in [I4] and Pan et al
in [67]) because it links cost savings to an increasing demand of reducing
emissions.

Nevertheless, many coalitions, alliances, collaborative networks and agree-
ments fail, even if academic works and studies are more focused on successful
cases and theoretical analysis. Major difficulties can be found during the
implementation of a collaborative agreement that binds each transportation
company to behave itself according to rules and fixed frameworks. Indeed, to
set up a clear and truthful collaboration, trust among partners becomes very
important. For instance, some companies can act in an opportunistic way to
improve their position and gain more. Hence, truthfulness is highly requested
during information sharing for making a collaborative network work prop-
erly. Recent developments in information and communication technology
help and make collaboration among different partners more easy. However, a
key point that usually leads to collaboration failure deals with profit sharing.
Indeed, some companies may be reluctant to collaborate because they believe
their profit share to be unfair. Anyhow, the allocation of profits or costs may
also be used as a driver to success for collaborative networks, if it is done in
a right way so as not to annoy any partners. Hence, another key point in
horizontal collaboration is how to form coalition such as to ensure long-term
functioning networks. Notably, cooperative game theory (CGT) tools (see
Section are very useful to deal with this kind of issues, in order to take
into account the distribution of power, the level of geographical and business
synergy, the willingness to cooperate, and exchange assets or customers.

In particular, we can note two different versions of horizontal roadside
collaboration: centralized and decentralized. Ideally, the existence of a cen-
tral third party, able to gather all informations in a truthful way is probably
the best choice to boost up companies profits. Indeed, it may react quickly
and in a clever way to sudden changes and adapt its behavior to dynamic in-
stances. Moreover, an external player that knows all about customers, orders
and logistic assets of companies can solve large instances optimally assigning,
clustering and handling demands and companies efficiency and production
capacities. However, this can lead to a merge of the companies and/or an as-
similation of small companies into the biggest ones. We, intentionally, avoid
to deal with this issue because it is far beyond our purposes. Nevertheless,
it is clear that even in a decentralized approach trust among players that
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participate to the collaborative scheme and agreement is a major point. In-
deed, some companies may lie or behave in an opportunistic way in order to
achieve a dominant position and then gaining more from the collaboration.
This point can be addressed in various ways, enforcing controls, establishing
strict and binding rules or reducing the information exchange to a minimum.

To sum up, cost savings, profit increasing and logistic benefits are the
most important drivers for roadside collaboration. There are also some op-
portunities, other than cost savings, like polluting emissions reduction and
merging possibilities among companies. However, we have also impediments
such as opportunistic behaviors and unfair benefits allocation among the
most common ones.

2.3 Literature review

Analysing the existing operational research literature on horizontal roadside
collaboration, we notice that a major part of the articles are devoted to study
carrier alliances and cooperation in which customers and orders are shared or
exchanged. In these papers logistic assets such as depots and vehicles fleets
are left unchanged. On the other hand, some papers deal with carrier col-
laboration sharing vehicle capacity, depots and other logistic assets. In [30)]
Dai and Chen approach logistic collaboration in less-than-truckload carrier
networks mixing order and vehicle capacities and fleet sharing. They sug-
gested a mathematical formulation within a context of centralized horizontal
collaboration in which a third party logistic provider receives all the orders
and then distributes them among carriers sharing vehicle capacities.

Hence, we review the horizontal roadside collaboration dividing it into
two streams.

2.3.1 Customers sharing

Current research focuses on different techniques to optimally deal with the
re-allocation of orders, customers and services. A majority of the papers deal
with joint-route planning or auction based mechanisms. However, approaches
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like bilateral lane exchanges, load swapping and other dispatching policies
are investigated.

Joint-Route planning

A basic and widespread approach to customers sharing is joint route plan-
ning. We describe as a joint-route planning technique the procedure that
combines all carriers and all customers orders in a central logistic provider
station with the aim to produce efficient routes for all carriers and for the
whole network of carries. This approach leads to economies of scale, reducing
travel distances, costs and empty truckload movements and merging regions
of distribution (e.g. Crujissen et al. in [25]). Crujissen et al. in [25] develop
a framework based on Vehicle Routing Problem (VRP) with time windows
(VRPTW) in order to investigate the synergy of horizontal collaboration un-
der a joint-route approach. In this paper the objective is the minimization of
the routes lengths taking into account that each of them starts and ends at
an origin node and that customers demand does not have to exceed vehicles
capacity. A heuristic is developed based on the original savings heuristic by
Clarke and Wright [21] and on more recent developments like those described
in Liu and Shen [59]. Another variant of the VRP, such as the multi-depot
pick-up-and-delivery problem with time windows, is used to model a col-
laborative carrier customer sharing problem by Krajewska et al. [54]. The
problem consists in finding a feasible set of route to minimize costs under
time windows constraints (MDPDPTW). This model is tested on real life
instances and data provided by a German freight forwarder. A large neigh-
borhood search is developed to solve it based on Ropke and Pisinger [72] and
Shaw [76] heuristics. Computational results show that participants in coali-
tion and collaboration may achieve significant cost savings and benefits. In
Dahl and Derigs [28] MDPDPTW is used to address an order sharing problem
in a collaborative network of independent carriers in a dynamic perspective.
This problem is solved modifying the ROUTER indirect search heuristic pre-
viously developed by Derigs et al. in [32]. Simulations and computational
results on a large set of real data provided by 50 European express carriers
show that costs may be reduced up to 13%. Liu et al. in [58] formulate
the joint-route planning problem as a multi-depot capacitated arc routing
problem with full truckloads (MDCARPFTLs). To solve it they adjust and
extend a greedy algorithm described by Ergun et al. in [36]. Results show
robust and high quality solutions reached in reasonable computational times.
Instead of considering the whole carrier network for collaboration, in Bailey
et al. [I3] possible reductions in empty backhauls by adding customers and
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orders from collaborative partners are investigated. Two different mixed-
integer programming (MIP) models are developed and solved through basic
tabu search approaches. Computational experiments show that backhaul
cost savings may reach up to 28%.

Auction-based mechanisms

Order and customer sharing is also carried out through auction based
mechanisms. Firstly, each carrier defines customers to be shared in a cost
efficient manner using various optimization methods. Then, orders and cus-
tomers are shared employing profit auction mechanisms. It is worth not-
ing that auction-based mechanisms leads directly to a profit allocation since
carriers reward their partners during the auction; while in the joint-route
planning schemes a fair benefit allocation procedure has to be built up.

Figliozzi in [40] proposes an auction based mechanism making use of reser-
vation prices to reassign customers in a dynamic environment. In particular,
the paper focuses on an incentive compatible collaborative mechanism. In-
stead, Krajewska et al. in [53] describe a request allocation procedure which
relies on combinatorial auctions and cooperative game theory tools to op-
timize collaborative profit and shared profit, respectively. Combinatorial
auctions are also used in Berger et al. in [I7]. In this paper, however, the
authors focus on the amount of information shared among partners in a coali-
tion. Computational experiments and simulations show that a decentralized
approach can be useful if carriers are not willing to share a fair amount of
information. Clearly, if informations are correctly shared they demonstrate
that a centralized approach is superior. Hence, they underline that collabo-
rative carrier profit increases in line with the increasing of information shar-
ing. Dai and Chen in [29] split the auction-based mechanism in two decision
problems. Firstly, carriers select customers they do not want to serve them-
selves and then they identify desirable customers or a subset of customers
from those shared by other carriers. The authors apply this model to a less-
than-truckload (LTL) problem allowing multiple auction processes to happen
simultaneously. This approach led to a great level of interaction among car-
riers. Moreover, simulations on 20 randomly generated instances reveal that
profit gained through collaboration is significantly greater than the stand-
alone profit for each carrier. Contrary to these studies and all auction-based
sharing mechanisms, Wang and Kopfer in [85] propose a combinatorial auc-
tion method in which carriers exchange complete vehicle routes and not only
single customer services. The underline problem is a pick-up-and-delivery
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with time windows. This problem is solved within 3 stages. First, carriers
offer all their customers and each carrier determines appropriate prices for
route transfers. Then, the last two stages consist of a bidding generation pro-
cess and the winner determination of the auction, respectively. Wang and
Kopfer state that their collaborative scheme achieves cost reductions between
2% and 18%, by means of computational experiments on instances generated
for this purpose.

Other policies to implement customers sharing are the bilateral exchange
mechanism investigated by Ozener et al. in [66], the load swapping suggested
by Clifton et al. in[20] and time and quantity strategic dispatching policies
investigated by Zhou et al. in [30]

2.3.2 Capacity sharing

As pointed out previously, carriers may also collaborate by sharing vehicle
capacities. In this subsection we provide a general overview of the various
techniques, solution approaches and application areas of papers dealing with
collaboration through vehicle capacities sharing.

Argawal et al. in [I] study the problem of sharing the capacities in liner
shipping industries. Indeed, in liner shipping industries carriers often co-
operate pooling together their fleet and their capacities. They formulate a
MIP model and test three different heuristics to solve it comparing their re-
sults. These heuristics are a greedy algorithm, a column-generation based
algorithm and a Benders decomposition-based algorithm. Computational ex-
periments carried out show that significant improvements may be achieved
through collaboration. In road transportation capacity sharing is studied by
Herndéndez et al. in [48]. They investigate a less than truckload dynamic
carrier collaboration problem, modeling it as a MIP. Capacities are time de-
pendent and the collaboration is managed in a centralized way to minimize
costs. Instead on focusing on cutting costs, Houghtalen et al. in [5I] maxi-
mize collaborative profit formulating a MIP to model capacity sharing. Two
variants of the model are proposed. On one hand a so-called Limited Con-
trol model restricts carriers individual decisions, while, on the other hand, a
so-called Strict Control model allows carrier a greater freedom and greater
control over the whole collaboration process. A comparison of these variants
leads to demonstrate that allowing greater overall control to each carrier
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causes a decrease in profit collecting.

2.4 Profit sharing

In this section we review profit allocation schemes and their applications in
some existing papers. Let us consider a logistic framework in which multiple
landside transportation companies operate. As pointed out in previous sec-
tions companies have multiple reasons to collaborate to enhance their services
and increase their profits. Hence, collaboration schemes lead transportation
providers to form coalitions in order to ensure such improvements. Coalition
formation generates the problem of how to share the whole benefits gained
among companies. Therefore, in this section, we deal with profit sharing
problems arising in a collaborative transportation framework.

Proportional allocation

Simple rules usually arise in case of cooperation in order to determine and
divide benefits. Commonly, transportation companies reach an agreement to
share costs, savings, gains and profits proportionally to a single indicator.
Let w; be the weighted value for company ¢. Then, companies may split the
total profit gained proportionally to their weighted values. We can compute
w; in different ways:

e proportional to the number of customer orders collected before collab-
oration;

e proportional to the profits or costs before collaboration;

e proportional to the quantity of informations owned before collabora-
tion;

e proportional to the quantity of logistics owned before collaboration.
e proportional to the number of customers actually served;
e proportional to the quantity of total load actually delivered;

e proportional to the distance actually travelled;
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e proportional to the number of vehicles actually employed.

We note that these rules are of two kinds: with the first four rules, companies
share profit proportionally to a value decided before collaboration, while the
last four rules are proportional to a value decided after collaboration has
taken place.

Cooperative game theory

At a first approach, proportional allocation may be regarded as fair, how-
ever in the long run some companies may be unsatisfied because their true or
their actual contributions to the coalition is disregarded and undervalued by
its partners. Hence, to deal with these drawbacks, we introduce cooperative
game theory and some of its basic concepts, definitions and properties. For
a comprehensive survey on cooperative game theory we refer to Driessen [34]
and to Tijs et al. [82].

A cooperative game consists of a finite number n of players and a char-
acteristic function. Players can form different coalitions in order to achieve
a better result in the game, we define a coalition as a subset S of the set
of all players. The coalition N of all players is called grand coalition. The
characteristic function v : 2N — R is a function from the set of all possible
coalitions of players to a set of payments such that:

v(0) = 0;
v(SUT) >ov(S)+o(T), VS, TCN,SNT =40.

Each coalition is associated with a payment and each player has its own share
of payment. Hence, the characteristic function ensures us that an empty
coalition has a zero value and that two coalitions after merging have at least
the same value as playing separately. Then, we can interpret the numerical
value associated with each coalition, by means of the characteristic function,
as a measure of its stand alone profit or its contribution to the coalition
N. Moreover, v(N) is the value associated with the grand coalition and the
following inequality holds

o(N)>0(S) VSC N

We denote by p(S) total profit generated by S and p; as profit allocated to
J player. Below, we introduce some basic desirable properties.
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1. Efficiency/Budget balance
Zjeij =v(N),
an allocation is efficient if the total profit is split among all players.
Then property is also called budget balance property;

2. Individual rationality
p; > v({j}) .
an allocation is said to be individually rational if no player can gain
less than is stand alone profit;

3. Symmetry
if v({j}) = v({i}) then p;, = p;,
an allocation is symmetric if it allocates equal shares of profit to players
with equal stand alone profits;

4. Dummy player
if v(S) —v(S\{j}) =v({j}) for each S and j ¢ S then p; = v({j}),
a dummy player, which gives marginal contribution to any coalition,
must gain exactly its stand-alone profit;

5. Additivity
p(SUT)=p(S)+p(T)if S,T C N,
which means that the allocation to a player in a sum of two games is
the sum of the allocations to the player in each individual game.

6. Stability
Y jespi = v(S), with S C N,
a stable allocation provides that none of the players or coalition of
players could decide to opt out and form new coalitions to achieve
greater profits.

A key concept in cooperative game theory is the core of a game which
is defined as the set of all stable allocations. The core is formed by those
payments allocations py,...p, that satisfy the following conditions

> p; = V(S), with SC N
JeES

> pi=V(N).

JEN

The former condition, which is the stability Property [0 prevents players from
colluding to form a subcoalition in order to gain more. In the case S = {j} it
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ensures that each player receives at least what he could get on his own and it
is equal to individual rationality Property 2l The latter condition implies that
the allocations pq,...p, split the total value gained by the grand coalition.
This condition is the efficiency/budget balance Property Il Given the above
two conditions, no player has an advantage by leaving the grand coalition
and the profit allocation is called stable.

On the basis of these properties, there are many different payments al-
locations suitable as solutions for a cooperative game. Firstly, we introduce
for each coalition S and for each profit allocation P the imputation

I(P,8) =) pi—v(5),¥5 C N,
€S

which measures how far an allocation is from the core, by computing the
difference between the sum of profit allocated to single players and the profit
gained by the coalition of those players. Next, we present the most useful
and widespread methods to allocate profit among players in a coalition.

The Shapley Value

A well known allocation method is the Shapley value introduced by Shap-
ley in [75] and defined as:

p= 3 B ) s\ Glaes. e

SCN

The Shapley value is the average weighted marginal contribution to the coali-
tion of all transportation companies involved in the grand coalition. The
Shapley value is known to be efficient, symmetric, dummy and additive.
However, the Shapley value does not always belong to the core, this means
that the allocation provided by it is not always stable.

The nucleolus
Another well known allocation method is the nucleolus. The nucleolus

was introduced by Schmeidler in [73]. It is an allocation method that lexico-
graphically minimizes the maximal excess.
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min e
I(P,S)=) pi—v(S)<e SCNS#D
ieS
ZPiZV(N)
€N

pi > v({i}) ieN

The nucleolus always exists, and is efficient, individually rational, dummy
and symmetric. Moreover, it fulfills the stability property whenever the core
is non empty.

7-Value

An allocation method proposed by Tijs et al. [82] is the 7-Value. The
7-Value for each player ¢ is a linear combination between the lower and
the highest value it can achieve. The highest achievable value is given by
M; = v(N)—v(N\{i}) and is also called the utopia payoff of player i. While,
the lower value is given by the maximum over all possible coalitions of what
can remain to player i if all other players gain the utopia payoff. Among
all possible linear combinations those which fulfill the efficiency property are
chosen. The 7 value for player i is therefore defined as:

pi = T == m; + a(M; —m;)
M; = v(N) —v(N\ {i})

m; = max R(S, 1)
S:es

R(S.i)=v(S)— Y M,
1€S\{i}
Y n=V(N)

1EN

The 7-Value is not stable, since it does not belong to the core. How-
ever, efficiency, individual rationality, dummy player and symmetry proper-
ties hold. This method is used among other ones in Lozano et al. [60].
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Gap function method

The Gap function method described in [82] can be seen as a variant of
the 7-Value. Differently from the 7-Value it minimizes the difference between
the sum of the utopia payoffs of coalitions and what coalitions actually gain:

Di =\ 1= Ele%g(s)

9(5) = ZM — ()

M; = v(N) —v(N\ {i})

This method has all the properties of the 7-Value except for efficiency.
Indeed, it may not be efficient because it does not ensure that all profit gained
is redistributed among players. Frisk et al. in [42] have used this method to
allocate costs in a collaborative forest transportation environment.

Next we list some methods developed in Tijs et al. [82] to allocate cost and
profit among different players in a cooperative game theoretical perspective.

Equal Profit Method

Let us consider the relative savings of participant i as % The Fqual
profit method is a stable allocation that minimizes the maximum difference in

pairwise relative savings. Hence we need to solve the following LP problem:

bi Dy ¢ i
oGy wgp = WIEN
Sp2V(s), ScN
€S
ij =V(N)

JEN

Other allocation methods, described in the literature, are the following.
They are all based on proportional allocation of Marginal Cost MC' = v(N)—
Y [w(N)=V(N\{j})], which can be seen as the difference between the profit
JEN
of the grand coalition and the marginal profit gained by player 7.
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Equal Charge Method

The Equal charge method allocates proportionally M C' among all players.

MC

Sy
Alternative Cost Avoided Method

This method allocates profit weighted them using the cost avoided by
each player.

o MC
PGy VNG — o(V)

Cost Gap Method

The Cost Gap Method weights the M C with w; for each player i.

MC
p; = W
such that
wj = min 7(S)
Y(8) = v(S) = > [v(S) = V(S\ {5})]
jes

Hence, w; can be viewed as the minimum difference between profit v(S)
and marginal profit V(S \ {i}) among all coalitions S containing player 7.

Next, we briefly review the use of game theory in roadside collaborative
transportation. In Krajewska et al. [54] the potential of modern transporta-
tion systems is studied with a unique combination of routing, scheduling
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and game theory approaches. In particular, they analyzed request allocation
and profit sharing in an horizontal collaboration framework. Moreover, they
discussed various ways of fairly sharing profits giving numerical results for
real and artificial instances. In Lozano et al. [60] horizontal collaboration is
addressed as a way to reduce costs. They use an optimization model to solve
different collaboration scenarios thus testing which one is the most profitable.
Moreover, the allocation problem is tackled by means of cooperative game
theory comparing different game solution concepts, notably the Shapley value
and the Nucleolus. Dai et al. in [31I] introduced a new optimization model
for carrier collaboration in pickup and delivery service proposing three ways
of allocating profits based on Shapley value. Ozener et al. in [65] studied a
procurement collaborative transportation network developing cost-allocation
methods based on well known cooperative game theory properties. Then,
they performed computational studies on random and real life data to test
allocation schemes performances. Audy et al. in [9], [I1], [10], [I2] investi-
gated the impact of benefit sharing in various real life applications, from the
furniture industry to freight collaboration, using game theory tools and test-
ing different allocation scheme. Comparisons among various schemes and
procedures to divide costs and profits among partners are carried out by
Berger et al. in [I7] and by Liu et al in [57].

2.5 Conclusions

In this chapter we have provided a comprehensive overview of horizontal
roadside transport collaboration. We classified existing works into various
streams which sometimes overlap. Indeed, firstly we consider centralized and
decentralized approaches, then we analyze the literature on the basis of what
is shared: customer/orders or logistic assets. Finally, we evaluate the use
of cooperative game theory tools to solve the related problem of allocating
cost and /or profits, focusing on methods that go beyond a mere proportional
allocation. Nevertheless, even if this kind of problems attracts the interest of
the OR community, the number of papers dealing with this class of problems
is very limited.

Potential future research opportunities include the developments of new
models to address realistic problems and the drawing up of more general and
rich mathematical formulations to take into account various aspects of hor-
izontal roadside collaboration. Since the main goal of different participants
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in a collaborative scheme is making profit, it can be interesting to refine old
and develop new efficient profit or cost allocation procedures through the
use of cooperative game theory tools and then the matching of these tech-
niques with particular problems. Finally, it may be stimulating to pursue an
integration of more levels of supply chain in a collaborative perspective.



3. ON THE COLLABORATION UNCAPACITATED ARC
ROUTING PROBLEM

This chapter is entirely based on the paper "On the Collaboration Uncapaci-
tated Arc Routing Problem" coauthored with Elena Fernandez and M. Grazia
Speranza. This paper has been accepted for publication in "Computers and
Operations Research”.

3.1 Introduction

Collaboration among carriers becomes more and more valuable because of
surging pressures to improve profitability and to reduce costs. Nowadays,
collaborative transportation is regarded as one of the major trends in trans-
portation research. Indeed, increasing carrier insurance and fuel costs com-
bined with a more intense market competition lead carriers to look for new
and more efficient solutions. Primarily, carriers focus on reducing costs look-
ing for efficient route planning and scheduling. These costs are strongly
correlated with the location of customers. Whereas a carrier would benefit
from having its customers concentrated in the same area, for a number of
reasons they may end up being geographically dispersed. This forces the car-
rier to create long routes for its vehicles, with associated high cost in terms of
vehicles usage and drivers time. It is often the case that customers that are
inconveniently located for a carrier are conveniently located for a different
carrier. Thus, a collaborating set of carriers can redistribute the customers,
opening up, through collaboration, cost saving opportunities otherwise non
achievable.

In general, there are different types of carriers: general, regional or func-



3. On the Collaboration Uncapacitated Arc Routing Problem 22

tional. The general carrier is non specialized and has the assets and the
logistics to serve all its customers taking care of all kinds of item distribu-
tions. Instead, a regional carrier is more bound to a defined geographical
service area whereas a functional carrier serves a specific market or specific
goods that require a specialization in transportation. Hence, for instance,
a regional carrier can rely on a general one to serve customers outside its
service area, or a general carrier can choose to handle particular goods (such
as furniture, frozen foods) through a functional carrier.

Logistic collaboration can be pushed further considering that it allows
carriers to increase the average load of the vehicles. In fact, also in the case
the customers are located in the same area, the load to be delivered in a trip
by a carrier may be substantially lower than the vehicle capacity and make
the individual trip non profitable. A carrier that has to deliver a certain
amount of goods that fills only part of the capacity of its smallest vehicle
may borrow a vehicle of the right size from another carrier or transfer the
load on a vehicle of another carrier traveling to the same area at the same
time.

Increasing attention to the environmental impact of emissions in cities
represents an additional strong motivation to study collaboration among car-
riers, since local authorities increasingly push carriers to find new policies and
new technological and logistical solutions that improve city logistics. In [71]
challenges and pressures faced by carriers to cooperate to make urban freight
transport more efficient are pointed out, and best practices actually brought
into practice in The Netherlands are presented.

Recently, collaboration has been enhanced by advances in information
and communication technology that have enabled information sharing among
carriers. Information can be shared in two alternative ways. In a central-
ized collaboration scheme, a central decision maker redistributes customers
and /or logistic assets among carriers. This decision maker may be a third
party who acts in a non-partisan way or may be a large carrier that resorts
to other carriers to manage all its orders and customers. In a decentralized
collaboration scheme, carriers exchange their orders individually or in clus-
ters. In this case, carriers cooperate at the same level trusting each other for
the information shared. All the above considerations and approaches apply
to both truckload or less-than-truckload carriers.

In this chapter, we focus on situations where collaboration is managed in a
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centralized way. We consider a set of carriers cooperating under the guidance
of a central station that acts in a non-partisan way. Each carrier has a depot
and a set of customers. Each customer is represented with an arc and its
service generates a revenue. Each carrier identifies a subset of customers that
it wants or needs to serve. These customers may be the most easily served,
the most profitable or the most strategic ones. The remaining customers are
defined as shared customers, that is customers that may be served by other
carriers. A shared customer may end up being served by the carrier that
decided to share it, when combined with customers shared by other carriers.
Part of the revenue of a shared customer goes to the carrier that decided
to share the customer and part goes to the carrier that actually serves it.
We allow a shared customer not to be served by any carrier of the coalition.
In this case the revenue is not collected by any carrier. This corresponds
to the situation where the customer is not profitable for any carrier of the
collaborating group and in a further phase a different and interested carrier
will be searched. We assume that each carrier has one vehicle and that vehicle
capacity is not relevant, that is the vehicles are uncapacitated.

The motivation for studying this problem comes from potential applica-
tions. In general, applications arise in private companies offering services
which allow competition and collaboration, and where customers may be
modelled as arcs of a network. As an example we mention home pick-up
and delivery, including private mail and small packaging distribution, and
taxi services. For example, the problem that we address can model a group
of independent taxi drivers collaborating under the guidance of a central
station.

We call the proposed problem, that may be seen as belonging to the class
of arc routing problems with profits, Collaboration Uncapacitated Arc Rout-
ing Problem (CUARP). We study two different variants of the CUARP. In
the first one the goal is the maximization of the total profit of the coalition
of carriers, independently of the individual profit of each carrier. The second
variant includes a lower bound on the individual profit of each carrier. This
lower bound may represent the profit of the carrier in the case no collabora-
tion is implemented. We formulate mixed integer programming models for
the two variants of the problem and study their relations with well-known
arc routing problems. We also look at the CUARP from a game theory per-
spective. As it is usual in arc routing problems, the proposed formulations
have a number of connectivity constraints which is exponential in the num-
ber of customers. This leads us to study the separation problem for such



3. On the Collaboration Uncapacitated Arc Routing Problem 24

constraints. We solve the formulations for the two proposed variants with a
branch-and-cut algorithm and quantify the impact of collaboration. Starting
from 118 benchmark instances for the Privatized Rural Postman problem,
we generate a total of 971 instances, with 2 or 3 carriers and varying char-
acteristics, such as different locations of the depots and different thresholds
for the profit. We solve all instances within few seconds. On each instance
we compare the optimal solution obtained in the case where no collaboration
is allowed with the case where collaboration is allowed, and show that the
profit of the coalition increases up to twice or even three times the profit
achieved without collaboration.

The rest of the chapter is organized as follows. Section |3.2|introduces the
relevant literature. The two variants of the CUARP are formally described
and formulated in Section Section presents the theoretical results.
In Section we describe the separation procedure for the connectivity con-
straints that is used in the branch-and-cut algorithm. Data generation and
computational experiments are described in Section Finally, conclusions
and future work are discussed in Section .7

3.2 Literature review

The literature on collaboration in transportation can be divided in two
streams, one on vertical and the other on horizontal collaboration. Ver-
tical collaboration arises when shippers and customers collaborate to help
each other optimize their objective, while horizontal collaboration takes place
when shippers collaborate among them (and/or the same do customers) at
the same logistic level. Ergun et al. |37] develop a collaboration model among
shippers, involving only full truckload companies, to identify tours that min-
imize asset repositioning costs. The same authors discuss in [36] how to
reduce truckload transportation cost through the identification of repeat-
able, dedicated continuous move tours using collaboration among carriers
to reduce the need for repositioning and lowering costs. Mason et al. [61]
focus on customer driven supply chain and freight management with the
aim of studying if collaborative models for management transportation give
optimized solutions.

Some authors addressed carrier collaboration from a perspective of costs
and profits allocations, possibly within a game theory context. Figliozzi [40]
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proposes a setting in which a set of carriers, each with its own customers,
has some incentive to submit all customers requests to a centralized collabo-
rative decision making mechanism based on sequential second-price auction.
Ozener et al. [66] focus, instead, on reducing costs through collaboration.
Given a set of lanes carriers have to serve, their aim is to set up a process
to exchange lanes either sharing or not sharing information about customers
and /or side payments. Argawal and Ergun [I] study transportation networks
that operate as an alliance among different carriers. They focus on formation
of alliances and network design using both mathematical programming and
game theory to investigate the mechanism that leads to an optimal collab-
orative strategy. In contrast to those studies, in our setting we deal with
a network of carriers (regional or functional) that form a coalition to col-
laborate and we consider as a given fact that collaboration is better than
competition, as pointed out in Argawal [2], Meyer [62], and Fugate [43].

Audy et al. [I1] and Krajewska et al. [54] are case oriented papers. The
former deals with the supply chain of the Canadian furniture industry, while
the latter deals with more general coalitions among carriers. Both make use
of game theory to allocate cost among companies, customers, carriers and
coalitions. In particular, in [54] the authors also use the classic Shapley
value to allocate costs among carriers and coalitions of carriers. In [45]
various criteria are presented to allocate costs using classical game theory in
a vehicle routing problem. Our perspective in this chapter is quite different.
While we do not focus on cost allocation among carriers, we study how to
improve profits for the whole carriers network within the framework of a
fixed collaboration agreement by stating our model as a prize-collecting arc
routing problem with several carriers and depots.

Since the CUARP belongs to the class of arc routing problems with prof-
its, we next recall some relevant literature related to this class. Christofides
et al. [19] present a directed version of the Rural Postman Problem (RPP)
[56], which is later generalized as the Directed Profitable RPP (DPRPP) in
[7], where some arcs may not be served by paying a penalty for each of them.
Aréoz et al. [6] propose the Privatized Rural Postman Problem (PRPP)
whose objective is to find a tour maximizing the profit gained, starting and
ending at a fixed depot. Different variants of this problem were proposed
by several authors. We mention the Clustered Prize-Collecting Arc Routing
Problem introduced by Ardoz et al. [4] and its windy version studied by
Corberan et al. [23]. For a comprehensive survey on arc routing with profits
we refer to Archetti et al. [§]. Differently from the above studies, we focus
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on a multi-depot model to optimize collaboration among carriers.

3.3 Collaboration Uncapacitated Arc Routing Problem

The CUARP can be stated as follows. We consider a set of carriers, each
with one depot and one vehicle. We assume that the problem is uncapaci-
tated and do not consider capacity constraints on vehicles. Customers are
represented as arcs of a graph and are served when the vehicle traverses the
corresponding arcs. Carriers reach a collaboration agreement, described in
the following, under the guidance and surveillance of a third party central
decision maker. The goal is to find one route for each carrier, in the frame-
work of the collaboration agreement, such that the profit is maximized. The
collaboration scheme that we study is the following. Each customer is as-
sociated with a specific carrier. Each carrier partitions its customers in two
sets:

e customers the carrier must serve because of contractual obligations or
other types of considerations, such as relevance or convenience;

e customers the carrier is willing to share with other carriers, because
of a low level of geographical synergies with other customers or a low
profitability.

The customers of the first type are called required and form the required set,
whereas the customers of the second type are called shared and form the
shared set. Required and shared customers are called demand customers.
We will refer both to customers associated with (or assigned to) carriers
and to carriers associated with (or assigned to) customers. We note that
each customer is assigned to one carrier, whereas there are usually several
customers assigned to one carrier. While required customers must be served
by their associated carrier, shared customers can be served by any carrier.
We allow a shared customer not be served by any carrier of the coalition.
This corresponds to the situation where the customer is not profitable for
any carrier and, in the later stage, a carrier that does not belong to the
coalition will be searched.
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Each customer, if served, will pay an amount of money to its associated
carrier. For each shared customer the associated carrier will share part of
this revenue with the carrier that will end up actually serving the customer.
Carriers determine the side payment for each shared customer for the case it
will be served by a different carrier.

Each customer can be served at most once and by only one carrier. Thus,
the revenue is collected only the first time the corresponding arc is traversed,
even if the arc is traversed more than once. If a shared customer is not
served, a penalty is charged to the associated carrier. Every time an arc is
traversed a cost is charged, independently of whether or not it corresponds
to a demand arc.

We identify carriers with vehicles, depots, and routes, and assume that
routes start and end at the same depot.

In order to state the CUARP formally, we first introduce some notation.
Let G = (V, A) be a strongly connected directed graph with vertex set V' =
{1,...,n} and arc set A. When needed, arcs will be denoted by their end-
vertices a = (u,v). A non-negative traversal cost ¢, is associated with each
arc a € A. The subset of demand arcs (customers) is denoted by D C A, and
the subsets of required and shared customers by R and S, respectively. We
have D = RU S and RN S = (). A non-negative value r, is associated with
each demand arc a € D, which represents the money offered by customer a in
exchange of service. Furthermore, a non-negative value g, < r, is associated
with each shared arc a € S, which represents the side payment from the
associated carrier to the carrier that provides the service to a. A positive
value ¢, is also associated with each shared arc a € S, which is the penalty
that the associated carrier must pay for not serving customer a.

Let L ={1,...,k} be the index set for the carriers, each of them with a
depot located at a vertex of the graph, denoted by v' € V', 1 € L. We also use
VL ={vYl € L} C V to denote the set of all depots and I' = L\{I}, for[ € L.
For each [ € L we denote by D' the subset of demand customers associated
with [, and by R' = D'N R and S' = D' N S its associated required and
shared customers, respectively. Customers in D!, R!, and S' will be referred
to as [-demand, l-required and [-shared customers, respectively. For [ € L,
D' = R'JS" and R'(NS" = 0. We also have, D = {J,., D', R = U, R,
and S = U, S".
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We use the following standard notation. For a nonempty proper subset
FCV,

(F)={a=(u,v) € A|u,v € F}, setof arcs with both vertices in F
HE)={a=(u,v) € A|(u€ F,v¢ F)}, setofarcs that start in F and end out of it,
“(F)={a=(u,v) € A|(u¢ F,ve F)}, setofarcsthat start out of F' and end in it.

)

=)

a
a

(o)

Finally, for each H C A we define y(H) as ) ya.
acH

In the CUARP, we impose that for any carrier [ € L, each [-required arc
a € R is served by carrier [. Instead, an [-shared arc a € S' can be served
either by carrier [ or by a different carrier h € I', or not served at all. A
customer a € D offers a non-negative amount of money r, in exchange of
service. Carrier [ collects the revenue r, for each l-required arc a € R' as
well as for each served [-shared arc a € S!, even if it is served by a different
carrier h € I'. If carrier h serves an [-shared arc a € S', it collects the
non-negative side payment g, from carrier [. Therefore, the side payment g,
is added to the profit of carrier h and subtracted from the profit of carrier [.
If an [-shared arc a € S' is not served by any carrier, then the revenue r, is
not collected by carrier [, and carrier [ gives no side payment g, to any other
carrier. However, in this case carrier [ has to pay the penalty ¢,. All routes
start and end at the depot of their associated carrier. While carriers with a
non-empty required set must certainly perform a route, it is possible for a
carrier with empty required set to perform no route. If performed, the route
of such a carrier will only serve shared arcs. Carrier [ pays a cost ¢, each
time arc a € A is traversed in its route. The total profit of carrier [ € L is
the difference between its total income and its total costs and side payments,
including penalties. The aim of the CUARP is to maximize the total profit
of the coalition of carriers.

3.3.1 Formulations

To formulate the CUARP we define the following two sets of decision vari-
ables, which identify the arcs that are served and traversed by each carrier
leL.
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For each a € A, let

Yo =

. 1 if a is served by vehicle [,
0 otherwise.

z! = number of times vehicle [ traverses a.

Associated with a solution (2, %') we define the following functions for each
carrier [ € L:

Cl = Z cqxl,  total traveling cost for carrier [,

a’
acA

Ch = Z $a(1 —y.), total penalty payed by carrier [,
aeS!
C'=Cl+C, total cost for carrier [,

Pl=> ray+ Y

a€D! a€cS!

(ra — ga) Z yé] , profit collected by carrier [ from [-demand customers,
iell

PQZ = Z <Z gayfl> , total side payments collected by carrier [ from other carriers,
iell \a€esS?

P'= Pl + P — ', total profit of carrier I.

Furthermore, the set of constraints (C') models the collaboration agreement
among carriers:

(21 (6% (u)) = 215 (u)) lel,ueV (3.1)
(6T () > 1 le L with RI#£0 (3.2)
(6T (1) > ot lel with Rr=0,ae S (3.3)
(©) 2 (67 (F)) > g, le L, FCV\{v'}, a€q(F)(3.4)
Yl =1, a€R,leL (3.5)
> k<1 aeS (3.6)
leL
Ly, < o aeAlel. (3.7)
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Flow-in flow-out constraints guarantee the symmetry of the vertices,
because the number of incoming arcs must be equal to the number of outgoing
arcs. Constraints and guarantee that the carriers routes start from
their depots. While imposes a route to any carrier [ € L with non-
empty required set, constraints only impose a route to carriers with
empty required sets who serve some shared arc. Constraints guarantee
that the route of each carrier is connected. Given a subset F' C V' \ {v'},
if an arc a € y(F) is served, then some arc b € §*(F) must be traversed at
least once. Hence, each carrier travels a connected route because if it serves
some arc from a subset of arcs which does not contain the depot then it has
to leave the subset. Note, however, that Constraints do not prevent
subtours containing no served arc. Since such subtours produce no profit,
they will never appear in any optimal solution. Constraints (3.4)), together
with constraints —, also guarantee that each carrier route ends at its
depot. Constraints force carrier [ to serve all [-required arcs, whereas
inequalities ensure that [-shared arcs are served by at most one carrier.
Finally, inequalities impose that all arcs served by a given carrier are
traversed by that carrier.

We introduce now the mathematical programming formulation for the
CUARP, where we maximize the total profit of the coalition of carriers:

Ze = max Z P (3.8)

leL
(©) (3.9)
ezt acAlel; yt€{0,1}, aeD,lelL.

(3.10)
Remark 3.3.1: Inthe CUARP carriers exchange side payments correspond-
ing to shared arcs served by carriers different from the ones they are assigned
to. This means that if, for a given arc a € S', some carrier i € I' receives
Ja for serving l-shared arc a, then carrier | recewves ro — go,. Thus, the profit
collected by all carriers is:

S (P+P)-C'=)" (Z Taliy + )

leL leL \aeD! acS!

(ra - ga) Z y(il

iel!
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leL



3. On the Collaboration Uncapacitated Arc Routing Problem 31

where the last equality follows as the following two sums cancel out since:

SN 0> =D gl

leL qeS! iel! leL eIl aeS?

Hence, the objective function (3.8)) can be reformulated as:

maxz (Z rayfl—l—Zranyl—C'l) . (3.11)

leL \aeD! acSt el
Therefore, the optimal solution to a CUARP instance is independent of the
side payments g,, a € S, since does not depend on the side payments
Ja, a € S, and the domain — 1s independent of the side payments as
well. Thus, we have that an optimal solution to a CUARP instance with side
payments g,, a € S is also optimal to a CUARP instance with side payments

g., a € S, if all other data remain unchanged.

In the CUARP we can force carriers not to collaborate by adding a con-
straint that prevents carrier [ from serving arcs outside its demand set:
yi=0, acSicl.

We define the CUARP without collaboration, that we denote as n-CUARP, as
the problem obtained by simply adding the above constraints to the CUARP
formulation:

Zpne =  Inax ZPI (3.12)
leL
C) (3.13)
Yl =0 acSiel
(3.14)
st ezt acAlel; yl €{0,1}, aeD,leL.
(3.15)

Observe that the CUARP does not guarantee any profit balance among
carriers, possibly limiting the interest for carriers to collaborate. Let us
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consider, for example, the case of a carrier that has an associated customer
that generates little profit because it is not very conveniently located. If
the carrier decides to share this customer, the customer might be end up
being served by another carrier, for which it is more conveniently located.
However, the carrier that decided to share it may simply loose the little profit
of the shared customer without gaining anything. In the CUARP the largest
carriers will tend to benefit from collaboration more than the small ones.

Below we introduce a variant of the CUARP, that we call the --CUARP,
in which a minimum profit threshold # is guaranteed for any carrier [ € L.
Each carrier may set the threshold to avoid reducing its profit because of
collaboration. The threshold for carrier [ might be set to be its profit in the
n-CUARP. The resulting formulation for the --CUARP is:

2 = max Z P (3.16)

leL

(©) (3.17)
P>t leL (3.18)
b ezt acAlel; y!t €{0,1}, aeD,l € L.

(3.19)

In the t~-CUARP we maximize the total profit of the carriers coalition
as long as the profit of each carrier is not smaller than its threshold
(see (3.18). In contrast to the CUARP, introducing profit thresholds in the
t-CUARP gives to side payments g, a central role, since constraints
depend on their values. Indeed, it may now happen that a solution which is
feasible for the CUARP is no longer feasible for the --CUARP, because the
amount of side payments from a carrier to the others may cause its profit to
fall below the given threshold.

We illustrate the behaviour of the different models on an example.

In Figure a small instance is shown. We consider a graph with 4

vertices {1,2,3,4}, whose arcs are partitioned as follows:

R = {(1,2)} R = {(2,1)}
S ={(1L3)(3.2: (3,4} S ={(2.3):(3,1):(43)}.
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[ depots
_ R

[Jdepots
rrrrrr only traversed
—served

(a) Instance graph (b) n-CUARP solutions

[ depots [ depots
—served ) e only traversed
—served

(c) CUARP solutions (d) t~-CUARP solutions

Fig. 3.1: Example

We have only two depots in 1 and 2, respectively. Penalties are set to 1 for
each shared arc. Each arc in Figure has a label with two numbers,
the first one is the traversing cost and the second one is the profit for
serving it. We set the following side payments for serving shared arcs as

follows:

923) = 93,1) = 94,3) = 934 = 1, gau3) = 932 =4
In Figure we represent the solutions of the CUARP without col-

laboration. Carrier 1 serves its required customer (1,2) in the route 1-
2-1, with a profit of 4, and pays the penalty for its unserved shared arcs
(1,3),(3,2) and (3,4) with a total penalty of 3. Carrier 2 serves its re-
quired customer (2,1) in the route 2-1-2, with a profit of 4, and pays
the penalty for its unserved shared arcs (2,3),(3,1) and (4, 3) with a total
penalty of 3. The total profit for the coalition of carriers 1 and 2 is 2.
In Figure the solutions of the CUARP are shown. The route of
carrier 1 is 1-2-8-1. Its profit is P = 0. Similarly, the route of carrier
2 is 2-1-8-2, with a profit P? = 12. Thus, the collaboration between the
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carriers leads to a total profit of 12, with a profit increase of 83.33% with
respect to the solution of the CUARP without collaboration. Note that
the profit is totally gained by carrier 2, while carrier 1 has a null profit
(P =0, P? = 12). This allocation of the profit in the coalition of carri-
ers is due to the side payments exchanges between carriers. According to
this, carrier 1 has no incentive to collaborate with carrier 2, as this would
result in a profit decrease for carrier 1. Observe that the CUARP
solution shown in Figure is not feasible for the t-CUARP instance
with profit thresholds set to the individual profits of the n-CUARP (i.e.
t' =% =1). Figure shows the optimal routes for this t-CUARP
instance, which are 1-2—1 and 2—-1-3-2, for carriers 1 and 2, respectively.
As in the n-CUARP solution, carrier 1 only serves its required arc but
no shared arc. On the contrary, carrier 2 serves not only its required arc,
but also the 1-shared arcs (1,3) and (3,2), as in the CUARP solution.
Less shared arcs are served with respect to the CUARP. Now, the profit
of carriers 1 and 2 are P* = 3 and P? = 4, respectively. Hence, the total
profit of the two carriers is equal to 7 which means a profit improvement
of 71.43% with respect to the n-CUARP and a decrease of 41.66% with
respect to the CUARP solution. However, the profit coming from collab-
oration is shared between carriers in a fairer way because of the profit
thresholds.  In Table we summarize profit sharing for the different

models in the Fxample|3.3.1].

Tab. 3.1: Summary of Example [3.3.1
carrier | n-CUARP | CUARP | t-CUARP

1 1 0 3
2 1 12 4

It may be expected that, in the t-CUARP, a higher value of the side
payments results in an increase in the number of arcs served by the coalition.
In the following example, we illustrate a counter-intuitive behaviour of the
model.

In this example we illustrate the difference between the CUARP and the
t-CUARP and the effect of side payments in the t-CUARP. Consider a
CUARP instance defined on the same directed graph of Ezample [3.5.]]

with the same two carriers and the same sets of required and shared arcs
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for each carrier. Suppose ¢, = 0 for all a € D, with the following values
for the profits and costs: 1o =191 = 6; 713 = T35 = 4; o3 =131 = 34 =
ry3 = 1; 12 = ¢ = 1; ¢13 = ¢392 = o3 = ¢31 = 3; 34 = ¢g3 = 10.
In the optimal n-CUARP solution carrier 1 serves its required customer
(1,2) in the route 1-2-1, with a profit of 4. Similarly, carrier 2 serves its
required customer (2,1) in the route 2-1-2, with a profit of 4. When
collaboration is allowed, in the optimal CUARP solution the routes for
carriers 1 and 2 become 1-2-1 and 2-1-3-2, respectively. If we set g, = Br,
for all a € D with p = 1, we have the following distribution of profits:
Carrier 1 gains P' = 4 and Carrier 2 P?> = 7. If we set B = 0.5, profits
become P! = 8 and P? = 3. When we consider the t-CUARP
with profit thresholds set on the individual profits of the n-CUARP, with
tt = t2 = 4, we observe that the solution with 8 = 1 is still feasible,
while that with § = 0.5 is no longer feasible for the t-CUARP. For the
case 8 = 0.5, the optimal t-CUARP solution keeps unchanged the route of
carrier 2 and assigns to carrier 1 the route 1-2-3-1. Hence, the total profit
of carrier 1 is P! = 4 and that of carrier 2 is P? = 4. Comparing
the t-CUARP solutions with f = 1 and = 0.5 we note that in the
former case 2 shared arcs are served while in the latter 4 shared arcs are
served. Counter-intuitively, the percentage of shared arcs increases when
decreasing 5.  In Table we summarize profit sharing for the different

models in the Fxample|3.3.1].

Tab. 3.2: Summary of Example [3.3.1

£ independent g=1 B8=0.5
carrier n-CUARP | CUARP | t-CUARP | CUARP | t-CUARP
1 4 4 4 8 4
2 4 7 7 3 4

3.4 Theoretical results

In this section we present some theoretical results for the CUARP.
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3.4.1 Reduction to other problems and complexity
We analyze two particular cases of the CUARP with one single carrier:

o If the shared set S is empty, then D = R and, thus, the single carrier
CUARP reduces to the Directed RPP (DRPP). Since the DRPP is
known to be NP-Hard (see Lenstra and Rinnooy Kan [56]), also the
CUARP is.

o If the required set R is empty, then D = S and, thus, the single carrier
CUARP reduces to the DPRPP. Since the DPRPP is NP-hard (see
Archetti et al. [7]), this is an alternative proof that CUARP is NP-
Hard.

Thus, we can reduce the single carrier CUARP to other problems by changing
the size of the shared and required sets. At one extreme, with no shared arcs,
we have the DRPP, whereas on the other one, with no required arc, we have
the DPRPP.

3.4.2 Impact of collaboration on profit

Remark 3.4.1: Let 7 be a CUARP instance and z., z,. be the CUARP
optimal value and the n-CUARP optimal value over Z, respectively. Then,

Zne < Ze.

This result holds trivially, since any feasible solution to the n-CUARP is a
CUARP feasible solution.

Remark 3.4.2: Let 7', Z? be two CUARP instances and z., 2., their
CUARP optimal values. Suppose these instances differ only because the
shared set of the first one is contained in the shared set of the second one

and vice versa for the required sets. Then, 2z, < z,.
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This result holds trivially, since any feasible solution for Z' is a feasible
solution for Z?. We may say that the attractiveness of collaboration increases
by increasing the shared arcs or by decreasing the required arcs.

Remark 3.4.3: Let Z be a CUARP instance, and let z;, 2,. be, respectively,
the optimal t-CUARP and n-CUARP values over Z, when the --CUARP
thresholds ¢, | € L, are set to the carriers profits of the n-CUARP. Then,

Zne S Zt -

The above result follows, since for instance Z the optimal solution to the
n-CUARP is also feasible for the --CUARP with the given threshold values.

Proposition 3.4.1: Let z. and z,. denote the optimal values of the CUARP

and the n-CUARP over a given instance Z, respectively. There exists no

finite upper bound for the profit increase ratio

Zc
Zne

Proof: Consider a CUARP instance defined on the same directed graph of
Example with the same two carriers and the same sets of required and
shared arcs for each carrier. Let K > 0 and € > 0 be two given values
and suppose ¢, = K, for all a € A, and ¢, = ¢, g, = K, for all a € D.
Let us also suppose the profits are the following: rio = 19y = 2K + 4g;
T13 =131 = T3 =713 = 2K —¢g; 134 =143 = K.

For this instance, in the optimal n-CUARP solution carrier 1 serves its
required customer (1,2) in the route 1-2-1, with a profit of 4¢, and pays the
penalty for all its unserved shared arcs (1,3), (3,2) and (3,4) with a total
penalty of 3¢. Similarly, in the optimal n-CUARP solution, carrier 2 serves
its required customer (2,1) in the route 2-1-2, with a profit of 4e, and pays
the penalty for all its unserved shared arcs (2,3), (3,1) and (4,3) with a total
penalty of 3e. Hence, for this instance z,. = 2¢.

When collaboration is applied, in the optimal CUARP solution carrier 1
serves its required customer (1, 2) and the 2-shared customers (2, 3) and (3,
1) in route 1-2-3-1, whereas carrier 2 serves its required customer (2,1) and
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the 1-shared customers (1, 3) and (3, 2) in route 2-1-3-2. Demand customers
(3,4) and (4,3) remain unserved. The profit of both carrier 1 and carrier 2 is,
thus, (K+4e)+(K—K)+(K—K)+(2K—e—K)+(2K—e—K)—¢ = 3K +e=.
Hence, for this instance z. = 6K + 2¢.

Zc 6K 42¢

Therefore, the profit increase ratio is 2= = >3, which tends to oo ei-

ther when K — oo or when ¢ — 0. ]

Observe that the optimal solution of the CUARP instance built in the
above proof is also feasible for the t~-CUARP when the threshold of each
carrier is set to its profit without collaboration, i.e., t* = t?> = . Therefore

the following result also holds:

Corollary 3.4.2: Let z; and z,. denote the optimal values of the t-CUARP
and the n-CUARP over a given instance Z, respectively. There exists no

finite upper bound for the profit increase ratio 2-.

nc

3.4.3 Game theory results

We introduce here some basic concepts and definitions of cooperative game
theory (see Driessen [34] for a comprehensive survey), and relate them to
the CUARP. A cooperative game consists of a finite number n of players and
a characteristic function. Players can form different coalitions in order to
achieve a better result in the game. The coalition of all players is called
grand coalition. The characteristic function v : 2" — R is a function from
the set of all possible coalitions of players to a set of payments such that
v(@) = 0. FEach coalition is associated with a payment and each player
has its own share of payment. In general, there are many different payments
allocations suitable as solutions for a cooperative game. Hence, a key concept
in cooperative game theory is the core, which is formed by those payments
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allocations vy, . ..y, that satisfy the following conditions:

> "y > V(S), with S C N,
JjeS

>y =V(N).

JEN

The former conditions prevent players from colluding to form a subcoalition
in order to gain more. In the case S = {j}, the condition ensures that each
player receives at least what he could get on his own, and is called individ-
ual rationality condition. The latter condition implies that the allocations
Y1, - - - Yn split the total value gained by the grand coalition. This condition
is called budget balance or efficiency condition. Given the above two con-
ditions, no player has an advantage by leaving the grand coalition and the
profit allocation is called stable.

We consider now a cooperative game based on the CUARP, using its
mixed integer programming formulation as characteristic function, as sug-
gested by Gothe et al. in [45]. Carriers play the role of game players. The
CUARP and the t-CUARP allocate profit to the players. Both profit al-
locations fulfill the budget balance/efficiency condition because the sum of
the profits of the carriers equals the maximum attainable profit of the whole
coalition. However, the CUARP breaks the individual rationality condition
because it may happen that a carrier gains more on its own without collab-
orating, as in Example 3.3.1] On the other hand, the t-CUARP with the
n-CUARP profits as thresholds fulfills the individual rationality condition.
Hence, the solution of the 2 carrier t-CUARP belongs to the core of the
game when we set the n-CUARP profits as thresholds. In this case, the core
is always non empty if the instance is feasible. In contrast, we cannot assure
that the solutions of the t-CUARP with more than 2 carriers or with general
thresholds belong to the core of the game. Even if the thresholds are set to
the value of individual profit without collaboration, 2 or more carriers may
collude to achieve a greater profit than that of the grand coalition. We might
ensure that the --CUARP profit allocation belongs to the core of the game, by
adding a new set of constraints to the --CUARP, imposing for each subset of
carriers a minimum profit of at least its CUARP profit. However, adding this
new set of constraints may cause the instance to become infeasible and the
core of the cooperative game be empty. In a set of experiments this is what
happened. Either the core was empty or the solution was identical to the
solution without collaboration. Hence, we solved the t-CUARP adding only
individual thresholds which are those that directly matter to the carriers.
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3.5 The branch-and-cut algorithm

Inequalities impose the connectivity of the route associated with each
carrier with its depot. As the number of such constraints is exponential in the
number of vertices in the input graph, |V|, we use a separation procedure that
allows us to incorporate them in the formulation only when needed. Next,
we describe the separation algorithm that we used for the exact solution of
the CUARP and of the t-CUARP. The separation procedure uses as input
vectors # = (#!)1e, € RAXIE and § = (9')1er, € R satisfying constraints
(B-1)-(3-3) and (3.5)-(3.7). The output of the algorithm will indicate whether
or not there exists some inequality violated by # and ¢. In this case the
algorithm will return one such inequality, i.e. the index of a carrier [ € L, a
set £ C V\ {v'} and an arc a € y(F) such that the corresponding constraint
(3.4) is violated by & and g.

For each carrier [ € L, let G{(&!) = (V#', A denote the support graph
of i, with A" = {a € A | i’éz > 0}, and V¥ = V(A*) the subset of vertices
incident with some arc of A% . To separate inequalities , associated with
a given carrier [ € L, we consider the support graph G'(z!). If G(2') is not
connected, then each connected component with vertex set ¢' C V& \ {v'}
such that g(y(C))>0 defines a violated constraint for carrier [, since
#1(6F(C)) = 0 and g} > 0, for some a € y(C). If G(z!) is connected, we
compute the tree of min-cuts T'(2) relative to the capacities vector &' (see, for
instance, [44][46]). Then, we use an adaptation of the algorithm of Belenguer
and Benavent [15]. For each min-cut 67(F), v' ¢ F, represented in T'(Z), we
identify the arc a € «(F) of maximum value, i.e. a € argmax{g | a € v(F)}.
Now, if /(67 (F)) < 4!, the connectivity constraint associated with [,
F and a is violated by #! and ¢'. The above separation is exact and similar
to the procedure used by other authors to separate connectivity constraints
similar to for other arc routing problems [16], [3| (4] 23].

The computational complexity of the above algorithm is dominated by
that of the algorithm to obtain the min-cut tree associated with each carrier,
which is O(|V|*) as pointed out in [44] and in [46].
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3.6 Data generation and computational results

We present in this section the numerical results obtained on a series of com-
putational experiments. Programs were coded in Java using CPLEX 12.5
library (64 bit) for the solution of the mixed integer problems. Default pa-
rameters were used. All tests were run on a HP Z400 Workstation, 64 bit, 3.33
GHz, 12.0 RAM. Since there are no available CUARP benchmark instances,
we generated instances from the 118 PRPP benchmark instances used in [5].
These PRPP instances were derived from well-known RPP instances, which
are divided in five groups. The first group contains two data sets, A and
B, obtained from the Albaida Spain Graph (see Corberan and Sanchis [24]).
The second group contains the 24 instances (labeled P) of Christofides et
al. [19). The last three groups contain instances from Hertz et al. [49):
36 instances with vertices of degree 4 and RPP disconnected required edge
sets (labeled D), 36 grid instances (labeled G), and 20 randomly generated
instances (labeled R). Below we explain how the remaining data of the
instances were defined. First, the original undirected graph is transformed
in a directed graph in the following way.

e All arcs are defined from edges of the original graph (see [5]).

— Each original edge is transformed in two arcs with probability 0.1,
and in one single arc with probability 0.9. In the latter case, the
direction of the arc is randomly chosen with equal probability.

— Arcs inherit their costs from the original edges. When two arcs
are generated from the same edge, both arcs have the same cost.

e If needed, when all original edges have been considered, additional arcs
are defined to guarantee that the resulting graph is strongly connected.

— For each pair of vertices, u,v € V, for which the directed graph
defined earlier contains no path from u to v, we define a non-
demand arc (u,v) and assign to it the cost of the shortest path in
the undirected graph connecting u and v.

e Demand arcs are selected starting from the required edges of [5], as
follows:

— If the original edge is a demand edge that has been transformed in
two arcs, both transformed arcs become demand arcs with prob-



3. On the Collaboration Uncapacitated Arc Routing Problem 42

ability 0.15. Otherwise, one transformed arc is randomly selected
as demand arc while the other one becomes non-demand.

— If the original edge is a demand edge that has been transformed
in one single arc, the transformed arc becomes a demand arc.

— If the original edge is non-demand the transformed arc(s) is(are)
non-demand.

e The profit of each demand arc a € D is defined as r, = 2b,., where b, is
the profit of the undirected edge in the corresponding PRPP instance
[5]. If e is a required edge of the RPP instance, b, is a number randomly
generated from an integer uniform distribution in the range [c., 3c.].
Otherwise, b, = 0.

e The side payment of each demand arc a € D, g,, is set to a fraction 3
of its profit, i.e., g, = Br,. For each instance, we use two values for (3,
namely 0.5 and 1.

To define the demand sets, we denote by P,, the shortest path from u to
v in the directed graph and by ¢(P,,) its cost. Then, we define the following
auxiliary set for each carrier [ € L:

D! = {a € Djw, <0.75 A ¢(Py,) < ¢(P,,), forallieI'},

where u denotes the end-vertex of arc a closest to v! and w, a random number
in [0, 1] associated with arc a. Since the sets D! are not necessarily disjoint
for different carriers the demand sets are finally defined as

-1
D'=D', D'=D!\ (UDk) Jdef2,... |L|},
k=1

Broadly speaking, we assign demand arcs to the carrier with smallest dis-
tance from/to its depot with a probability of 75%. Moreover, if through this
procedure a required arc belongs to more than one D! set, then it is assigned
to the required set of the smallest index carrier, among the ones whose D!
sets contain the arc.

To divide each carrier demand set into shared and required sets, firstly, we
list all demand arcs for each carrier according to their distance from the de-
pot. Then, the less distant arcs form the required set while the remaining
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ones the shared set. Shared and required sets are defined to ensure that at
least a percentage p of the demand arcs are shared. We fix p equal to 50%.
We denote with M the vertex most distant from vertex 1, and with m the
vertex whose distance from 1 is the median of all distances from 1 to v € V.

We set the same penalty value for all the shared arcs associated with the

same carrier. For each carrier [ € L, this penalty is set to the average profit
loss per unserved [-shared arc. That is, for l € L, a € S,

b = max {0, {Z T“S_ZT“J } if S! is not empty,
a — aes!

0 otherwise.

The minimum threshold values ¢, | € L, are given by the profits of
the n-CUARP. The instances are available at the following link: http:
//or-brescia.unibs.it/instances.

Table summarizes information on the instances, which have been
grouped according to their characteristics and to their sizes. These instances
were generated with 2 depots located at v! = 1 and v? = M. Columns under
#inst. and #vertices give, respectively, the number of instances in the group
and the number of vertices of the instances in the group. Columns under |R!|
and | R?| give the number of 1-required and 2-required arcs, respectively. Sim-
ilarly, columns under |S*| and |S?| give the number of 1-shared and 2-shared
arcs.

Tab. 3.3: Instance summary

#inst. #vertices |RY| |R?| |t 152]
AA 1 102 48 34 48 35
AB 1 90 50 23 50 23
P 24 7-50 0-48 2-46 1-48 3-47
D16 9 16 5-8 7-10 5-8 8-11
D36 9 36 15-21 16-21 15-21 17-21
D64 9 64 32-41 20-32 33-42 21-33
D100 9 100 48-67 32-50 49-67 33-50
G16 9 16 0-3 0-3 1-4 1-3
G36 9 36 1-9 3-11 1-9 3-12
G64 9 64 2-13 6-21 3-14 6-22
G100 9 100 8-29 11-32 8-29 12-33
R20 5 20 10-23 5-15 10-24 6-16
R30 5 30 19-37 14-25 19-37 14-26
R40 5 40 25-56 16-47 26-57 17-48
R50 5 50 33-57 26-56 33-58 26-56
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Table summarizes the information on the values of the parameters
that have been used and the number of tested instances in each case. The
complete set of instances consists of 971 instances.

Tab. 3.4: Number of instances for each combination of parameters

CUARP with t-CUARP
Location of depots CUARP n-CUARP different proportions B
of shared/required arcs 0.5 1
wl=1,02=M 118 118 27 (G16) 118 | 118
wl=1,v2=m 118 118
vl=1,02=m, 3 =M 118 118

A first set of experiments was run on the set of instances with two car-
riers, i.e. L = {1,2}, with depots v! and v? located at vertices 1 and M,
respectively. The results for the CUARP are summarized in Table [3.5
Columns under CUARP and n-CUARP give the average net profit of carriers
for the CUARP and the n-CUARP, respectively. Columns under #S51 and
#52 give the average number of shared arcs served by each carrier, while the
column under %serv. gives the average percentage of shared arcs served in
total (100%). Columns under #S512 and #521 give, respectively, the
average number of 1-shared arcs which are served by carrier 2, and vice versa.
The column under %exc. gives the average percentage of arcs exchanged be-
tween carriers (i.e. the average percentage of shared arcs that are served by
a carrier different from the one they are assigned to, 100%). Column
under increase gives the average percentage profit increase due to collabo-
ration (100 ). Finally, the last column under time gives the average

computing times in seconds.

Zc — Znc
Zc

The results of Table [3.5|illustrate the positive effect of the carriers collab-
oration. The average percentages %serv. and %exc. range in [67.0, 100.0] and
in [41.0, 76.7], respectively. This means that there is a reasonable percentage
of shared arcs served and exchanged between carriers. The average percent-
age profit increase of CUARP with respect to n-CUARP ranges in [0.7, 41.1].
In general, the average CPU time required to solve small instances, such as
those of P, D16, D36, G16, R20, R30, R40 groups, is less than 1 second.
Solving the remaining instances required a little bit more computational ef-
fort, which pushed the CPU time up to a max of 158.0 seconds. The average
CPU time is equal to 8.3 seconds.  In Tables [3.6] and [3.7] we summarize the
results for the --CUARP, with § = 0.5 and 8 = 1, respectively. We tested
separately the instances with these two different values of 3, which affect
the side payments and, thus, the profit threshold constraints. In these ta-
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bles we have the additional columns increasel and increase2 that show the
profit increase for carrier 1 and 2. Comparing the results in Tables |3.6| and
with those in Table |3.5] we note that the average profit increase due to
collaboration is smaller in t-~-CUARP than in CUARP. Instead, the average
percentage %serv. may even increase as, for example, for the instances in
the D100 group in both cases with 5 = 0.5 or § = 1. The CPU times for
the t-CUARP are comparable to those of the CUARP. We note that in some
groups of instances the --CUARP value is smaller when § = 1 than when
B = 0.5. For instance, in P %serv. increases from 90.5 (for 8 = 0.5) to 91.1
(for § = 1). Still the value of CUARP is greater for 5 = 0.5 (392.8) than for
f =1 (379.2). This t-CUARP behavior was explained in Remark and
illustrated in Example |3.3.1 Table shows the characteristics of the
instances that are obtained when displacing the depot of the second carrier
(v?) from vertex M to vertex m. Due to how sets S' and R’ are defined when
generating the instances, by displacing v? the average number of shared arcs
increases and the average number of required arcs decreases. Table sum-
marizes the results with this new set of instances. Obviously, results in
Table[3.9|cannot be compared with those in the previous tables, since we deal
with completely different instances. The CPU times required to solve these
new instances are comparable to those required for solving the instances in
Table Below we describe the results obtained in the experiments with
CUARP and 3 depots, located in vertices 1, m and M, respectively. We have
been able to solve all 118 instances. In Tables B.10] and B.11] we introduced
additional columns to deal with 3 depots. In particular, columns under |R3|,
|S3| of Table give the number of 3-required and 3-shared arcs, respec-
tively. In Table columns under #S and #Sexc give, respectively, the
average number of shared arcs served and the average number of shared arcs
exchanged. In Table we note that the range of the average percentage of
served shared arcs (%serv.) and the average percentage of exchanged shared
arcs and (%exc.) is [35.0, 58.5] and [|26.4, 46.5|, respectively. Moreover, the
average percentage profit increase ranges in [0.0, 16.8]. However, comparing
these results with those for the CUARP with 2 depots given in Table [3.5] we
note that increasing the number of carriers from 2 to 3 does not necessarily
increase the profit. As an example, for the G16 instances, when adding a
new depot, increase decreases from 21.5% to 16.8%. The computing times to
solve instances with 3 carriers are similar to those required for the instances
with 2 carriers.  Finally, in order to test the behaviour of the model with
different proportions of shared /required sets, some additional computational
experiments were run. For these experiments we used the instances in G16
with depot located in 1 and in M. Firstly, we restricted the shared sets
ensuring that at least 25% of the demand arcs belong to them. Then we
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enlarge them, ensuring that at least 75% of the demand arcs to be shared.
Finally, we set them all as shared arcs. We performed 27 additional compu-
tational experiments. In Table we show the profits for each case and
each instance. Under columns n-CUARP, CUARP-25, CUARP, CUARP-75,
CUARP-100 we give the optimal values for n-CUARP, CUARP with 25% of
arcs shared, CUARP, CUARP with 75% and 100% of arcs shared, respec-
tively. We note that profit does not decrease when we increase the number
of arcs in the shared sets. This is consistent with Remark 3.4.21 We can
conclude that the attractiveness of collaboration increases when we increase
the number of shared arcs.

Tab. 3.5: Results for CUARP

n-CUARP CUARP #S1 #S2 #S12 #S521 Y%serv. Y%exc. increase time

AA 14442.0 24509.0 41.0 41.0 28.0 34.0 98.8 75.6 41.1 46.2
AB 1411.0 17911.0 26.0 47.0 16.0 40.0 100.0 76.7 92.1 21.2
P 379.2 392.9 13.4 12.9 8.3 7.6 90.5 54.7 4.0 0.4
D16 1211.8 1220.9 5.9 7.0 3.8 3.4 79.5 56.1 0.8 0.1
D36 2443.9 2460.6 17.1 15.9 9.1 8.3 90.8 52.7 0.7 0.4
D64 3582.6 3616.6 33.3 27.4 15.6 17.2 94.3 53.8 1.1 2.8
D100 4810.6 4873.2 42.7 54.0 22.4 35.8 97.5 60.2 1.5 14.6
G16 10.3 13.0 1.2 2.7 0.6 1.1 94.4 42.5 21.5 0.1
G36 42.8 51.0 4.8 8.0 2.3 3.0 100.0 41.0 16.0 1.4
G64 87.6 103.7 13.0 11.3 8.2 5.3 100.0 54.1 15.9 9.7
G100 139.9 170.8 21.9 18.0 12.4 9.9 100.0 54.9 18.7 70.3
R20 52221.8 53101.8 12.2 7.4 4.2 4.8 72.5 46.0 2.3 0.1
R30 67804.2 69230.2 15.6 15.2 6.0 9.8 62.8 52.2 2.0 0.3
R40 86734.0 90811.8 21.8 31.8 9.2 20.2 73.1 56.6 19.8 0.6
R50 91811.4 96350.4 28.6 33.8 15.4 21.4 67.0 58.1 9.8 1.1
max 100.0 100.0 92.1 158.0

average 89.5 53.1 9.2 8.3
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Tab. 3.6: Results for t-CUARP, 8 = 0.5
n-CUARP CUARP #5S1 #S52 #S12 #5S21 Y%oserv. Y%oexc. increasel increase2 increase time
AA 14442.0 18722.0 42.0 39.0 23.0 28.0 97.6 63.0 22.9 30.3 10.5 58.9
AB 1411.0 11946.0 45.0 26.0 19.0 24.0 97.3 60.6 88.2 107.0 39.4 47.9
P 379.2 392.8 12.3 14.0 7.6 8.0 90.5 53.2 4.0 4.1 3.9 0.5
D16 1211.8 1220.4 5.0 7.9 3.2 3.8 79.5 53.1 0.9 0.7 0.7 0.2
D36 2443.9 2460.6 15.2 17.7 9.4 10.4 90.5 59.6 0.9 0.7 0.7 0.6
D64 3582.6 3616.6 31.0 29.9 16.6 20.6 94.5 61.0 1.0 1.2 1.1 9.3
D100 4810.6 4873.2 48.3 48.7 29.1 37.0 97.9 68.2 2.8 0.8 1.5 21.3
G16 10.3 12.2 1.4 2.4 0.6 0.9 94.4 32.0 18.9 5.7 14.3 0.1
G36 42.8 48.9 3.2 9.4 1.0 3.1 98.4 28.6 9.9 17.4 10.8 1.6
G64 87.6 99.7 12.2 12.1 6.4 4.3 100.0 46.6 12.8 20.6 12.8 11.2
G100 139.9 169.0 21.7 18.2 12.6 10.2 100.0 56.2 16.8 16.7 17.2 76.5
R20 52221.8 53061.8 11.6 8.0 4.6 5.8 72.5 50.7 2.1 3.4 2.1 0.2
R30 67804.2 69230.2 18.0 12.8 6.8 8.2 62.8 46.1 1.2 2.4 2.0 0.4
R40 86734.0 90539.0 24.0 29.6 14.6 23.4 73.1 71.8 4.3 7.7 19.5 0.9
R50 91811.4 96350.4 31.0 31.4 18.2 21.8 67.0 62.8 7.0 10.9 9.8 1.9
max 100.0 100.0 88.2 107.0 85.7 158.0
average 89.3 52.6 7.3 7.9 7.1 10.4
Tab. 3.7: Results for t-CUARP, 5 =1

n-CUARP CUARP #S1 #S52 #S12 #S521 Y%serv. Yoexc. increasel increase2 increase time
AA 14442.0 24509.0 41.0 41.0 28.0 34.0 98.8 75.6 41.1 37.8 41.1 18.0
AB 1411.0 17911.0 26.0 47.0 16.0 40.0 100.0 76.7 92.1 106.7 77.3 13.3
P 379.2 392.5 12.2 14.1 6.9 7.5 91.1 44.0 5.3 2.3 3.5 0.7
D16 1211.8 1219.6 5.7 7.2 3.1 3.0 79.5 46.1 0.6 1.0 0.6 0.3
D36 2443.9 2460.3 14.0 19.0 8.3 10.6 90.8 56.7 0.6 0.9 0.7 0.9
D64 3582.6 3616.6 30.7 30.1 15.9 20.1 94.3 59.3 1.1 0.9 1.1 11.0
D100 4810.6 4873.2 52.4 44.4 29.0 32.8 97.7 63.8 1.6 1.8 1.5 23.3
G16 10.3 11.8 1.8 2.1 0.7 0.7 94.4 30.2 24.2 7.9 12.0 0.2
G36 42.8 44.9 5.4 7.2 1.7 1.6 98.4 21.4 11.1 1.2 4.3 2.3
G64 87.6 96.3 10.6 13.8 4.7 4.2 100.0 36.5 9.1 9.6 9.1 15.4
G100 139.9 155.0 19.7 20.2 9.9 9.6 100.0 48.0 10.9 9.4 11.0 100.2
R20 52221.8 53061.8 12.2 7.4 5.0 5.6 72.5 52.9 1.8 4.4 2.2 0.2
R30 67804.2 69190.2 15.4 15.4 6.8 10.8 62.8 56.1 2.5 1.8 1.9 0.8
R40 86734.0 90539.0 29.0 24.6 15.2 19.0 73.1 62.8 21.0 2.7 19.5 1.1
R50 91811.4 96350.4 32.2 30.2 19.0 21.4 67.0 64.3 11.2 8.9 9.8 2.1
max 100.0 80.0 100.0 106.7 85.7  201.9
average 89.5 47.9 8.3 4.9 6.2 12.3
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Tab. 3.9: Results for CUARP after moving depots

Tab. 3.8: Instance summary after moving depots

#inst. #vertices |RY| |R?| 1St 152
AA 1 102 31 49 31 49
AB 1 90 28 45 28 45
P 24 7-50 1-57 2-49 2-57 2-49
D16 9 16 5-9 6-11 6-9 7-11
D36 9 36 16-22 12-22 16-22 12-22
D64 9 64 26-42 22-39 26-42 22-40
D100 9 100 42-50 50-55 42-40 51-56
G16 9 16 0-2 0-4 1-3 0-4
G36 9 36 2-7 3-12 2-8 3-12
G64 9 64 4-20 6-17 5-21 6-17
G100 9 100 8-27 9-31 9-27 10-31
R20 5 20 8-20 8-20 8-20 9-20
R30 5 30 18-30 14-30 19-30 15-31
R40 5 40 18-67 22-48 19-68 23-48
R50 5 50 31-48 35-66 31-49 35-66

n-CUARP CUARP #S1 #S2 #S512 #S21 Y%serv. Yoexc. increase time

AA 23570.0 23596.0 36.0 43.0 24.0 18.0 98.8 53.2 0.1 13.9
AB 17657.0 17693.0 39.0 34.0 26.0 15.0 100.0 56.2 0.2 10.0
P 380.3 390.9 11.2 14.5 6.6 7.3 91.8 54.7 4.3 0.3
D16 1221.2 1225.6 5.9 6.0 4.3 2.6 73.7 57.2 0.0 0.1
D36 1929.8 2072.8 19.7 12.2 10.6 7.0 87.9 54.5 0.1 0.6
D64 3622.3 3654.8 28.7 31.7 15.2 18.4 94.0 55.9 0.0 2.8
D100 5058.0 5106.2 39.6 55.4 24.8 30.2 94.9 58.0 0.0 14.5
G16 9.8 13.1 1.0 2.9 0.4 1.3 92.2 39.0 0.2 0.1
G36 38.7 45.9 4.7 7.8 3.0 3.9 100.0 54.9 0.2 1.8
G64 86.6 102.2 13.4 10.8 6.7 5.4 100.0 50.5 0.2 9.6
G100 147.0 167.6 20.1 20.2 10.8 10.4 100.0 52.3 0.2 103.8
R20 52781.8 53861.2 10.6 7.4 5.2 4.4 66.6 53.7 0.0 0.1
R30 63098.6 64668.2 13.8 20.2 8.4 11.4 68.5 56.2 0.0 0.2
R40 81383.0 83126.0 21.0 29.8 11.0 17.2 67.4 54.6 0.0 0.8
R50 82934.0 88777.4 30.8 36.8 16.6 15.6 71.4 48.2 0.2 1.5
mazx 100.0 88.9 0.9 185.1

average 88.6 53.3 0.1 10.5
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Tab. 3.10: Instance summary with 3 depots

#inst.  fvertices  |R!| |R?| |R3| 1St 152 153
AA 1 102 40 22 17 41 23 17
AB 1 90 46 11 17 46 12 17
P 24 7-50 1-43 1-42 0-22 2-44 1-42 1-23
D16 9 16 2-5 6-10 1-5 2-6 6-11 2-6
D36 9 36 10-18 10-16 7-11 11-18 10-16 7-12
D64 9 64 27-40 8-22 12-18 27-41 9-23 13-18
D100 9 100 36-61 13-40 19-29 36-62 13-40 20-29
G16 9 16 0-3 0-2 0-2 1-3 1-2 0-2
G36 9 36 1-8 2-10 1-6 1-8 2-10 1-6
G64 9 64 2-13 4-14 2-11 2-13 5-15 2-11
G100 9 100 6-23 7-24 5-14 6-24 8-24 5-14
R20 5 20 6-23 3-24 3-14 6-24 4-24 4-14
R30 5 30 6-40 2-24 3-15 6-40 3-24 415
R40 5 40 6-48 2-31 3-27 6-48 3-31 4-415
R50 5 50 6-53 2-44 3-28 6-54 3-45 4-415
Tab. 3.11: Results for CUARP with 3 depots
n-CUARP CUARP #S #Sexc Y%oserv. Yexc. increase time
AA 25481.0 25513.0 42.0 16.0 51.9 38.1 0.1 41.8
AB 20898.0 20930.0 44.0 19.0 58.7 43.2 0.2 36.7
P 433.8 445.6 14.3 5.4 46.3 39.2 3.9 1.0
D16 1379.2 1388.1 7.7 3.1 46.5 41.2 0.7 0.1
D36 2661.4 2681.4 17.3 7.2 47.4 41.8 1.0 1.0
D64 4068.2 4015.3 36.8 13.6 57.2 36.9 0.6 9.3
D100 5387.2 5438.0 54.6 18.3 54.7 33.7 1.1 55.5
G16 15.6 18.0 2.9 1.3 66.7 42.8 16.8 0.1
G36 52.4 61.3 6.6 1.9 54.5 26.4 15.5 3.7
G64 111.8 121.7 12.2 4.4 49.4 35.2 6.9 24.6
G100 171.6 191.7 21.4 6.7 50.1 28.7 11.3 248.1
R20 60528.6 60537.8 15.4 5.6 58.5 33.0 0.0 0.2
R30 88964.0 88986.0 16.4 5.2 35.0 30.8 0.0 0.5
R40 115561.6 115582.8 34.6 13.8 45.9 35.9 0.0 1.4
R50 128557.6 128587.0 40.4 18.4 43.0 46.5 0.0 3.2
mazx 100.0 100.0 80.0 546.3
average 50.6 36.7 4.9 27.2

Tab. 3.12: CUARP G16 results with increasing size of shared sets

n-CUARP CUARP-25 CUARP CUARP-T75 CUARP-100

GO 1 1 1 1 2
G1 3 6 6 6 15
G2 4 6 6 6 8
G3 14 17 17 17 27
G4 10 13 13 13 25
G5 11 14 14 14 30
G6 23 28 28 34 47
G7 13 15 17 17 28
G8 14 14 15 19 31
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3.7 Conclusions

In this chapter, we have introduced two variants of the Collaboration Un-
capacitated Arc Routing Problem. This is a profitable arc routing problem
with multiple depots, where carriers may collaborate to improve the profit
gained. An integer linear programming formulation with binary and inte-
ger variables has been presented, as well as a branch-and-cut algorithm. In
the CUARP the goal is the maximization of the total profit of the coalition.
The profit gained by the coalition of carriers never decreases with respect to
the case without collaboration. Individual carriers, however, may lose profit
in the collaboration scheme modeled by the CUARP. For this reason, we
considered a variant where carriers may set thresholds on the profit gained
in the collaborative scheme. This variant allocates the profit gained by the
coalition in a more balanced way. Interestingly, we analyzed the cooperative
game associated with the CUARP and noted that in the case of two carriers
the t-CUARP profit allocation is stable because it belongs to the core of the
game. Moreover, collaboration may produce an arbitrary large increase of
the profit. A set of benchmark instances were generated and the results of
extensive computational experiments presented and analyzed.

For future research, attention should be focused on the extension of the
models proposed to include real-life features of the problem such as time
and capacity constraints. Another direction concerns the design of heuristic
algorithms for the solution of large instances.



4. METAHEURISTICS FOR THE COLLABORATION
UNCAPACITATED ARC ROUTING PROBLEM

4.1 Introduction

In this chapter, we present an heuristic framework to solve large instances
of the CUARP. This problem was defined in the previous chapter, it is part
of Arc Routing Problems (ARPs) family with profit. Next, we briefly sum-
marize the CUARP. The CUARP is arc routing problem which deals with
situations where collaboration is managed in a centralized way. We consider
a set of carriers cooperating under the guidance of a central station that
acts in a non-partisan way. Each carrier has a depot and a set of customers,
whose service generates a revenue. Each carrier identifies a subset of cus-
tomers that it wants or needs to serve. The remaining customers are defined
as shared customers. A shared customer may be served by the carrier that
decided to share it, by a different carrier or not to be served. Part of the
revenue of a shared customer that is served goes to the carrier that decided
to share the customer and part goes to the carrier that actually serves it. If
a shared customer is not served by any carrier the revenue is not collected
and a penalty is paid. We assume that each carrier has one vehicle and that
vehicle capacity is not relevant, that is the vehicles are uncapacitated. This
yields to the study of an uncapacitated arc routing problem with multiple
depots, where carriers collaborate to improve the profit gained. We called
it Collaboration Uncapacitated Arc Routing Problem (CUARP) as stated in
the previous chapter.

The chapter is structured as follows. In Section we accurately de-
scribe the heuristic framework proposed to solve large CUARP instances.
initial feasible solution for the CUARP. Section presents the heuristic
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algorithm used to provide an initial feasible solution. Sections and
describe neighborhood generation and the destroy and repair core of the
heuristic framework. In particular, in Section we outline two different
implementation of such framework: an Variable Neighborhood Search and
an Adaptive Large Neighborhood Search In Section [4.6| we describe the com-
putational experiments, present the obtained results and compare the two
heuristic algorithms. Finally, conclusions and remarks are given in Section

%]

4.2 The destroy and repair heuristic framework

In this section we present the destroy and repair heuristic framework we use
to deal with CUARP instances. It is based on a cycle in which we repeat
destroying and repairing the current solution with the aims of improving
it. Indeed, a part from the initial solution, which is the starting point of
the framework, the core of the destroy and repair approach is made up by
neighborhoods generation and search and acceptance and stopping criteria
used during the implementation. Next, we outline the structure of each
possible implementation of this framework for solving the CUARP.

(First Step) Find an initial feasible solution by means of an adaption of famous
Frederickson heuristic (e.g. Frederickson in [41]);

(Second Step) create a large set of neighborhoods;
(Third Step) use a ruin and repair approach:

— pick up one neighborhood by means of a local search engine;

— destroy the current solution (i.e. destroy the chosen neighbor-
hood);

— repair the destroyed solution by means of the exact algorithm
developed in Chapter

(Fourth Step) back to the Second step until stopping criteria are met.

In Figure[4.2] we give a flowchart of the destroy and repair heuristic frame-
work. In the next sections we analyze more deeply the main steps of these
heuristic framework.
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4.3 The initial solution

In this section, we present a general framework to generate an initial fea-
sible solution z; for the CUARP. An overview of the algorithm is given in
Algorithm and is mainly based on a directed version of the well known
Frederickson heuristic (see Frederickson [41]) used for solving the Directed
Rural Postman Problem (DRPP). In general, this initial solution can be used
in the initialization phase of different heuristic, metaheuristic and matheuris-
tic procedures developed to find a best CUARP solution.

Below, we provide a sketch of the initialization algorithm.

Algorithm 4.1: Initial Solution Procedure
Input: a Z CUARP instance.
Output: an initial feasible solution z;.

1 Apply the Preprocess procedure to Z.

2 Solve a DRPP for each depot using a directed variant of the
Frederickson heuristic:

e Construct a minimum cost spanning arborescence on connected
components.

e Solve a transportation problem.
e Determine an Eulerian Tour.

e Refine the Tour.

Put together each DRPP tour to form the initial feasible solution.

Hence, the search for an initial feasible solution rely on solving a DRPP
for each carrier. Therefore, we have to define for each carrier the arcs that
it has to traverse. We describe it in the preprocess procedure.

4.3.1 Preprocess procedure

In this subsection we describe a preprocess procedure which has to be done
in order to simplify each of the next steps required to compute a feasible
solution. Given a CUARP instance with original graph G = (V, A), a defined
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number k of carriers and for each carrier [ a shared S' and a required R' sets
of customers. Let V) and VI sets such that they contain the vertices of all
required and shared arcs by carrier [, respectively. We define for each carrier
a set of arcs B! that must be traversed in the initial solution and we identify
B with UB'. Hence, in order to produce a feasible solution we have to assign
to each carrier at least all its own required arcs (i.e. we assign to carrier
| at least the required set R'). However, if we assign to a carrier only its
required arcs the solution is very far from the optimal one. Hence, we decide
to assign all the required arcs and a given percentage (0.5) of shared arcs to
their respective carriers, to produce a better initial feasible solution. Next,
after this assignment phase, we do some manipulation on the instance graph
in order to simplify the computational strength of the following steps. Let
V) be the set of vertices of arcs which belong to B' for carrier [. Now, we
can define a G-subgraph G% such as Gy = (V}, B!) Indeed, we can solve a
DRPP for each carrier on a simplified graph G = (VL F!), with V. = V},.
Firstly, we include in F' each arc belonging to B’ and each arc whose vertices
are contained in V}. Then we add to F' all arcs (u,v) such that u,v € V.
The cost of such an added arc is equal to the shortest path linking v and v
in G. Finally, we reduce the set F! by eliminating:

(a) all arcs (u,v) € F such that ¢y, = ¢y + ¢, for some k € Vg, and

(b) one of two parallel arcs if they have the same cost and the same orien-
tation.

If the depot v' does not belong to V}; than we include in F! the arcs that
cost less which contain the depot and go from and to a vertex in V.

At this point, for each depot | we perform a directed variant of Freder-
ickson heuristic (see Frederickson [41]) in order to solve a DRPP.

4.3.2 Minimum arborescence step

In this subsection, we describe the Minimum arborescence step. Set GY% =
(VE, FY). Let C, ..., C. be the connected components of G. If there is only
one connected components we go to the Transportation phase. Otherwise,
we build up a complete directed new graph G’ with ¢ vertices such as arc
a = (p,q) € G cost is given by min{c,,|u € Cy,,v € C,}. Determine a
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minimum spanning arborescence T in G’ rooted at any arbitrary vertex by
means of Edmonds-Chu Liu algorithm as described in Edmonds [35]. For
each arc in T consider its actual vertices in G and add to G% all the arcs that
belongs to the shortest path linking them in G.

This phase has a major drawback because a minimum cost spanning ar-
borescence can heavily depend on its root. One solution is to repeat the above
algorithm by considering in sequence all possible root, and then selecting the
best solution. However, this procedure has very high computational costs
and time. Thus, it has not been chosen, because our purpose is to find the
best possible feasible solution in an acceptable period of time.

4.3.3 'Transportation phase

In this subsection, we present the transportation phase of the Frederickson
heuristic. The so-called Transportation phase can divided in three steps.

Step 1 Compute s, = d;f —d,, for each vertex u in G%, where d; and d;, are the
indegree and the outdegree of vertex u in the graph Gk, respectively.
In a directed graph, the indegree of a vertex is the number of arcs
entering the vertex, while outdegree is the number of arcs exiting it.
Let I = {u € V|s, > 0} and J = {u € V]s, < 0} be the sets of
unbalanced vertices with more arcs entering and exiting, respectively.

Step 2 Solve the following transportation problem.

min E E Cij T4

iel jeJ

Zl’ij = bj

jeJ
S b
icl
Tij >0
where ¢, is the cost of the shortest path linking u and v in Gfg.
Step 3 Let f,, be the flow on arc (u, v) in the solution of the previous problem.

Add to GY f,, copies of arcs that belong to the shortest path linking
vertices u and v in G.
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The resulting graph is a strongly connected directed multigraph with all
vertices balanced which means that indegree and outdegree are equal for each
vertex.

4.3.4 FEulerian tour step

In this step we determine an Eulerian tour E in GY%, which is a tour that
covers all the arcs of graph GY%. Such a tour exists since the previous phases
give us as a result a strongly connected multigraph such that at least one
eulerian tour exists. This tour E is also a feasible tour for the directed rural
postman problem with depot v and required arcs B'.

4.3.5 Refinement step

This whole procedure can be improve by means of some refinement steps.
Firstly, an Eulerian tour E can be improve by replacing two consecutive
non-required arcs (u,v) and (p,q) on the tour, by an arc (u,q) provided
that (u,q) € G and that the profit collected increases. Another refinement
consists in locating paths u — v — p — ¢ — t formed by four arcs such that
the arc (v,p) is required and while the other are not. These paths can be
substituted if profitable by paths like w — ¢ — v — p — t provided that all arcs
in the path belong to Gs. These two move can be repeated over and over,
alternating them, until there is no improvement.

Finally, all the tours, which has been found in this way, are putting
together to form the initial CUARP feasible solution.

Throughout the rest of this chapter, the initial solution is called z; and is
used as a starting point to implement the ruin and repair approach. In par-
ticular we propose two different implementation of our heuristic framework a
Variable Neighborhood Search (VNS) and an Adaptive Large Neighborhood
Search (ALNS).
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4.4 Neighborhoods

Next, we describe how we create a large set of neighborhoods in order to run
a proper search as previously stated. Firstly, a neighborhood is made up of
paths of arcs which belong to the current solution. It may contain one or
more paths. Indeed, we can discriminate among neighborhoods on the basis
of size. For instance, if a neighborhood contains ¢ paths than it is called a
g-size neighborhood.

To better understand how works the neighborhood destruction and repair,
we have to explain how neighborhoods are formed. First of all, we have to
find suitable paths to destroy in the current solution. In accordance with the
problem we are dealing with, the CUARP, we choose paths formed by shared
and non-demand arcs. Once all paths are detected, we list them in five ways,
according to their overall profitability (in descending or ascending order), to
their length (in descending or ascending order) and randomly. In case there
are only two or less paths we randomly break them such that finally we have
at least five paths. Hence, secondly we list paths in accordance with various
criteria. At this point we have five lists of paths from which we can select
to form different neighborhoods. Finally to create a neighborhood we have
to pick paths from lists according to fixed rules. The simplest way is to pick
them as they are listed, which means if a ¢-neighborhood is needed we select
the first ¢ paths in the list. Another way is to pick them starting from the
g-th path and then jumping to ¢ + 2-th, ¢ +4-th, ... until the neighborhood
is completely formed. Obviously, if the paths listed are finished then the
available paths are added until the neighborhood is complete (i.e. it reach
its size ¢). These last neighborhoods can be generalized using a k-jump. For
our purposes, we use a 2 and a 3 length jumps. Hence, at each iteration we
have 15 different types of neighborhoods of different size from which we can
choose to destroy the current solution.

4.5 The destroy and repair cycle

The destroy and repair cycle represents the core of the whole heuristic frame-
work. Indeed, by destroying feasible solution we are able to search the neigh-
borhoods that we create so that we can repair the destroyed solution and be
able to find a better feasible solution. In particular, the repair phase of the
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cycle is carried out by means of the exact algorithm developed in Chapter
Moreover, in order to build an efficient destroy and repair cycle we have to
define stopping and acceptance criteria.

4.5.1 Stopping Criteria

Algorithm 4.2: Stopping Criterion
Input : Route S

1 Stopping Criteria:

2 if time over TimeMAX then

3 Stop

a if number of iterations over tMAX then
5 Stop

6 if no improvement in L iterations then

7 Stop

8 if no more paths to removed then

9 Stop

10 end

Effective stopping criteria have to be defined in order to avoid to interrupt
the heuristic framework too early or too late. Hence we propose a bunch
of criteria. We stop the general heuristic if the time spent is gone over a
threshold TimeMax (equal to two hours in our implementations) or if the
number of iterations has exceeded a maximum number ItMAX which is set
in a dynamic way as the maximum number of paths that can be removed
from the solution which is currently handle by the algorithm. Moreover, we
decide to stop the heuristic framework if after L (10) iterations there is no
improvement at all.

At this point, we develope two variants changing the way destroy the so-
lution and search the neighborhoods. Indeed we develop two metaheuristics:
a Variable Neighborhood Search (VNS) and an Adaptive Large Neighbor-
hood Search (ALNS). However, both metaheuristics share the same stopping



4. Metaheuristics for the Collaboration Uncapacitated Arc Routing Problem 60

criteria. In the following subsections we describe the VNS and the ALNS
implementations of the destroy and repair heuristic framework. This two
implementations differ because of different acceptance criteria and different
way for searching the neighborhoods.

4.5.2 'The Variable Neighborhood Search

In this section we describe the VNS procedure we use to solve the CUARP.
VNS has been firstly proposed by Mladenovic et al. in [63] to solve Traveling
Salesman Problem with or without backhauls. Principles and applications of
the VNS are describe in Hansen et al. [47]. It has also been applied to more
general Vehicle Routing Problem such as in Braysy et al. [18] and in Polacek
et al. [70]. In general, VNS is a general local search framework that perform
the search of neighborhoods until it finds the local minimum and then escapes
from it by means of a perturbation or a destruction of the solution found.
We perform a search of neighborhoods that can be destroy and then repair
it using the exact formulation. Algorithm provide a sketch of the VNS
procedure we implement to solve the CUARP instances.

The VNS starts from an initial solution and improves it using the destroy
and repair heuristic approach. Indeed, at first the initial solution is destroyed
by removing one randomly chosen 1-size neighborhood as described in the
algorithm After removing this neighborhood the rest of the solution
is fixed and it is given to the exact algorithm develop in Chapter The
exact algorithm repair the solution. Then, if the new solution is better
then the current we repeat the removal and fixing procedure as described
for the initial solution; otherwise we go deeper in our neighborhood removal
enlarging the size of the neighborhood until the solution improves. When
we find an improving solution we restart the whole procedure by removing a
randomly chosen 1-size neighborhood until stopping criteria are met.

4.5.3 The Adaptive Large Neighborhood Search

In this section we describe the Adaptive Large Neighborhood Search (ALNS)
procedure we apply to solve the CUARP. Such metaheuristic has been re-
cently proposed by Ropke et al. in [72] and by Pisinger et al. in [69] to solve
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Algorithm 4.3: Variable Neighborhood Search

10

11

12

13

14

15

16

17

Input : CUARP instance
Output: CUARP feasible solution

Construct an initial feasible solution z; by means of heuristic
Algorithm
Set current and best solution zg = 21, Zpest = 21}
Set n = 1; Create neighborhoods;
Choose randomly a type of neighborhood,
while Stopping Criterion is not met do
Remowve an n-size neighborhood of the chosen type;
Generate a new solution Z from z repairing it with an exact
algorithm;
if Z us the best solution then

Set zpest = Z and set zg = Z;

Set n=1;

Create new neighborhoods and choose one type randomly;
end
else

Set n=n+1

end

end

Return zpest.
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various vehicle routing problem, developed starting from the Large Neigh-
borhood Search (LNS) provided by Shaw in [76]. Since than it has been
applied to different contexts (see Laporte et al. in [55]). Hence, this algo-
rithm has been shown to be flexible and highly suitable to solve complex
problems and large instances. Indeed, it can handle various families of hard
constrains easily because of an highly diversified search over multiple large
neighborhoods and through the use of a random and adaptive local search
engine. Algorithm provide a sketch of the ALNS procedure we implement
to solve the CUARP instances.

The ALNS differs from the VNS because it uses a roulette wheel selection
algorithm to choose which neighborhood has to be destroyed. Moreover, a
solution can be accepted even if it does not improve the current solution. A
solution is accepted using a deterministic annealing algorithm which means
that it is always accepted if it improves the current solution, otherwise it
is accepted with a fixed probability. We set this probability of accepting
a non-improving solution to 25.0%. Next, we describe the neighborhood
selection procedure and the adaptive local search engine that help us in the
random choice of the neighborhood taking into account past achievement of
neighborhoods of the same kind.

Neighborhoods selection

When it comes to the choice of a neighborhood to be destroy at a given
iteration the ALNS relies on a roulette-wheel procedure in which each type
of neighborhood is assigned a weight depending on its past performance.
Let 7; measures how well i-type neighborhoods have performed in the past.
Hence, given h different type of neighborhoods with weights 7;, an j-type
neighborhood will be selected with probability p; = Zz{ jl p Initially, all h
probabilities p; are equal to % Each @ iteration, weights m; are updated as
follows:

™= 71-previousStep(]- - T) + T‘(%), (41)

where r is a reaction factor set to value comprised between 0 and 1, 6; the
number of times i-type of neighborhood is used and g; are the scores initially
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Algorithm 4.4: Adaptive Large Neighborhood Search

10

11

12

13

14

15

16

17

18

19

20

21

Input : CUARP instance
Output: CUARP feasible solution

Construct an initial feasible solution zr by means of heuristic
Algorithm

Set current and best solution zy = 21, Zpest = 21}

Set n = 1; Create neighborhoods;

Set a probability for neighborhoods to be selected equal for the first step;

while Stopping Criterion is not met do

Remove an n-size neighborhood, choosing a neighborhood by means
of a roulette wheel selection;
Generate a new solution Z from z repairing it with an exact
algorithm;
if Z is the best solution then
Set zy = Z and set zpest = Z;
Set n = 1;
end
if Z met Acceptance Criterion (Deterministic Annealing) then
Set zyg = 2
Set n = 1;
end
else
Set n =n+1;
end
Update probability in accordance with the roulette wheel algorithm;
end

Return Zpest;
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set to zero. Scores g; are updated at each iteration by adding o, if an ¢ type
of neighborhood gives the last best solution, o, and o3 if the new solution
reached using an ¢ type of neighborhood is accepted and it improves or it
does not improve the current solution, respectively. Obviously, o3 < 09 < 07.
After updating weights ;, scores are reset to zero.

This neighborhood selection procedure is the core of the ALNS. It relies
on a random roulette-wheel procedure adjust through the use of an adaptive
engine that needs to be tuned. Indeed, we tested different parameters com-
binations in a trial and error scheme. Finally we set the reaction factor r to
0.25, the parameter () to 2, while we set o parameters to o, = 30, g3 = 20
and o3 = 10.
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4.6 Experimental Analysis

In order to evaluate the performance of the proposed heuristic algorithm, we
have run a series of computational experiments. We present in this section
the obtained numerical results. Programs were coded in Java using CPLEX
12.5 library (64 bit) for the solution of the mixed integer problems. Default
parameters were used. All tests were run on a HP Z400 Workstation, 64 bit,
3.33 GHz, 12.0 RAM.

4.6.1 Testing environment

We use the 118 CUARP benchmark instances developed in Chapter [3] Those
instances are derived from the 118 PRPP benchmark instances used in [5].
We can divide them into 4 groups. The first two data sets are obtained
from the Albaida Spain Graph (see Corberan and Sanchis [24]). The second
group contains the 24 instances (labeled P) of Christofides et al. [19]. The
last three groups contain instances from Hertz et al. [49]: 36 instances with
vertices of degree 4 and RPP disconnected required edge sets (labeled D),
36 grid instances (labeled G), and 20 randomly generated instances (labeled
R). A summary can be found in Chapter [3in Table [3.3] which summarizes

instances main characteristics.

In order to test our metaheuristics we also generate a set of large instances.
We derive it from the UR Undirected Rural Postman Problem instances
which can be found online at http://www.uv.es/corberan/instancias.
htm. First we generate profits as follows:

e b, € Ulc,, 3¢, if e is a required edge of the RPP instance;

where Ula,b| denotes the integer uniform distribution in the interval [a,b];
while b, and ¢, are the profit genrated and the original cost on edge e, respec-
tively. Then, we transform each rural postman problem instances with profit
as we have already done in the previous chapter to generate the CUARP
benchmark instances. In particular, we set the number of depots to three.
Table summarizes information on these large instances. Columns un-
der #vertices and #arcs give, respectively, the number of vertices and the
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number of arcs of the instance. Columns under |R!|, |R?| and |R3| give the
number of 1-required, 2-required arcs and 3-required arcs, respectively. Simi-
larly, columns under |S?|, |S?| and |S?| give the number of 1-shared, 2-shared
arcs and 3-shared arcs. We note the number of vertices goes up to 1000 and
that of the arcs to 995008. Hence, comparing them with the benchmark
instances UR instances are large.

Tab. 4.1: Large instances characteristics

vertices arcs |RY| |R%| |R®| |SY| |S?| |S8
UR132 605 363008 99 63 51 99 64 51
UR135 892 791212 226 120 113 227 120 114
UR137 980 955508 245 257 166 245 258 167
UR145 929 858404 321 89 143 322 89 144
UR147 996 987044 479 163 221 479 163 222
UR152 766 582934 136 115 87 136 116 87
URI155 975 945758 372 144 180 372 145 180
URI157 1000 995008 502 272 267 502 272 268
UR162 802 639202 211 80 83 211 80 84
UR165 980 955508 473 128 194 474 128 195
UR167 1000 995008 402 455 322 403 456 322
UR532 298 87322 51 26 28 51 27 28
UR535 458 207482 150 20 68 151 20 68
UR537 493 240592 208 59 78 209 60 79
UR542 343 115942 78 23 35 79 23 35
UR545 476 224204 168 50 80 169 50 80
UR547 498 245522 205 123 103 206 124 103
UR552 388 148612 93 37 36 94 38 36
UR555 490 237658 140 122 80 140 122 80
UR557 498 245522 215 161 141 215 161 141
UR562 416 170984 88 61 57 88 61 58
UR565 496 243544 178 120 111 178 120 112
UR567 499 246514 290 149 153 290 149 154
URT732 452 202052 68 46 49 69 46 49
URT735 662 434942 163 94 81 163 94 81
URT737 744 549824 195 189 118 195 190 118
URT42 538 286762 106 58 58 107 59 59
URT745 713 504812 183 124 105 183 124 106
URT747 745 551308 263 219 163 264 219 164
URT52 580 333508 107 85 67 108 85 68
URT55 724 520564 228 166 121 229 166 121
URT757 748 555772 394 177 178 394 178 178
URT762 593 348692 145 52 74 146 52 75
URT765 741 545384 293 168 142 293 168 143
URT767 749 557264 467 196 233 468 196 233
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4.6.2 Computational results on CUARP benchmark instances

The computational results are summarized in Tables and For each
group of instances the first two columns report the average percentage opti-
mality gap and the average CPU time, respectively. The optimality gap is
computed as (z —zg)/z+100, where z is the optimal solution provided by the
branch and cut algorithm and zpy is the best feasible solution found by the
heuristic algorithm. Column three gives the number of paths destroyed and
repaired in the instances. The next three columns give statistics. Columns #
Gap=0%, # 0% <Gap<1%, # 1%<Gap<3% report the number of instances
on which the algorithm find the optimal solution and the number of times the
optimality gap lies in between 0 and 1 and 1 and 3, respectively. Columns
Worst Gap % and Max time show the worst optimality gap and the max
CPU time spent for each set of instances.

Table gives us the results about CUARP resolution with VNS. We
notice the 101 instances out of 118 are solved to optimality. While, 11 present
a gap less than 1% only 6 instances a gap that lies between 1% and 3%. In
particular, the worst gap is 2.14% with an overall average of 0.14%. Moreover,
the average CPU time spent is 3.80 seconds that is pushed up to 32.56 seconds
in an instance of G100 group.

Tab. 4.2: VNS results for CUARP instances

Average Gap Average time # Gap=0% # 0% <Gap<1% # 1% <Gap<3% Worst Gap Max time

AA 0.50 21.30 0 1 0 0.50 21.30
AB 0.00 6.32 1 0 0 0.00 6.32
p 0.05 0.44 22 2 0 0.73 1.76
D16 0.18 0.06 8 0 1 1.59 0.09
D36 0.10 0.39 8 1 0 0.91 0.60
D64 0.05 1.72 8 1 0 0.43 2.73
D100 0.24 8.24 7 1 1 1.97 11.76
G16 0.00 0.10 9 0 0 0.00 0.23
G36 0.11 1.04 8 1 0 0.98 2.34
G64 0.19 4.66 8 0 1 1.70 10.31
G100 0.08 28.19 8 1 0 0.76 32.56
R20 0.10 0.09 4 1 0 0.48 0.12
R30 0.43 0.28 4 0 1 2.14 0.35
R40 0.25 0.57 3 2 0 0.79 0.82
R50 0.42 1.14 3 0 2 2.10 1.28
all 0.14 3.80 101 11 6 2.14 32.56

In Table |4.3| we provide a summary of the results of ALNS over CUARP
instances. We notice that the average gap is equal to 0. However, 2 instances
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show a very smaller gap. Indeed, the worst overall gap is only 0.17%. Hence,
we can say that almost all instances are solved to optimality and that only
2 out 118 show a gap that is negligible related to the size of those instances.
The average CPU time spent is 7.86 seconds with a max of 157.98 seconds
for an instance in G100 group.

Tab. 4.3: ALNS results for CUARP instances

Average Gap Average time # Gap=0% # 0% <Gap<1% # 1%<Gap<3% Worst Gap Max time

AA 0.01 46.14 0 1 0 0.01 46.14
AB 0.00 20.15 1 0 0 0.00 20.15
P 0.00 0.42 24 0 0 0.00 1.75
D16 0.00 0.04 9 0 0 0.00 0.07
D36 0.00 0.38 9 0 0 0.00 0.59
D64 0.00 2.83 9 0 0 0.00 5.28
D100 0.02 14.25 8 1 0 0.17 18.68
G16 0.00 0.09 9 0 0 0.00 0.21
G36 0.00 1.35 9 0 0 0.00 3.31
G64 0.00 8.45 9 0 0 0.00 13.03
G100 0.0 66.12 9 0 0 0.0 157.98
R20 0.00 0.08 5 0 0 0.00 0.11
R30 0.00 0.27 5 0 0 0.00 0.34
RA40 0.00 0.55 5 0 0 0.00 0.81
R50 0.00 1.12 5 0 0 0.00 1.26
all 0.00 7.86 116 2 0 0.17 157.98

Comparing VNS and ALNS results, we note that ALNS perform better
than VNS. Indeed, ALNS finds more optimal solutions compared to VNS.
However, in general VNS is faster than ALNS. For instance, G100 group
instances are solved by VNS with an average time of 28.19, while ALNS
solve them in an average of 66.12 seconds. Hence, we can say that ALNS
consume more time but is more accurate with respect to the VNS. Indeed, the
ALNS can be seen as an improvement of the VNS by means of a deterministic
annealing local search at the master level and an adaptive engine to allow
the procedure learn and find their way taking into account past goals and
feasible solution which has been reached. However, both VNS and ALNS
results are satisfactory from our point of view.

4.6.3 Computational experiments on large instances

In order to evaluate the performance of the metaheuristics on large instances,
we first solve the CUARP relaxation (i.e. removing binary and integrality
constraints on variables in the CUARP formulation) for the 118 benchmark
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instances. Then, we compute the percentage gap between the relaxed so-
lution and the exact solution (computed in the previous chapter) for each
instance. Table summarize the results of these experiments. Columns
under relax and CUARP give the average relaxed and optimal results for
each group of the CUARP benchmark instances. The last column give the

average percentage gap (100|W )

Tab. 4.4: relaxed CUARP results

relax

CUARP

gap

AA

28253.0

24509.0

15.3

AB

19226.0

17911.0

7.3

P

430.0

392.9

15.0

D16

1586.8

1220.9

36.5

D36

2697.1

2460.6

9.6

D64

3799.1

3616.6

6.4

D100

5042.7

4873.2

4.4

G16

16.6

13.0

54.0

G36

55.9

51.0

9.7

G64

109.3

103.7

8.1

G100

186.9

170.8

13.3

R20

57158.0

53101.8

6.6

R30

76009.8

69230.2

10.5

R40

103006.6

90811.8

14.9

R50

107352.8

96350.4

10.6

average

max

15.9
300.0

min 0.0

We notice that the average gap is 15.9 % which goes up to 300.0 % in
one case. In particular, in small instances like those in group G16 we have
a bigger gap comparing to the other ones. Indeed, in general gap ranges
between 0.00% and about 16.00% without considering (G16 group instances.

Table [4.5] summarizes the results of VNS and ALNS on the large in-
stances. We compare them with the solutions of the relaxed version of the
CUARP in order to evaluate the performances of the two metaheuristics.
Hence, columns under relax, VNS and ALNS give the relaxed , VNS and
ALNS results, respectively. Columns under gapV' NS and gapALNS give
the gap between the relaxed results and VNS and ALNS for each instances,
respectively. The last two columns give the CPU time spent by the VNS and
the ALNS, respectively.

We note that the gap for the VNS ranges between 0.55 and 74.48 with
an average of 21.38. While, the average ALNS gap is 18.61 ranging between
0.55 and 74.37. Comparisons among these results and results given in Table
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Tab. 4.5: Metaheuristics results on large instances

relax VNS ALNS gapV NS gapALNS timeV NS timeALNS
UR132 36837.80 31210.45 34317.58 15.28 6.84 41.03 710.87
URI135 77668.09 71965.81 72076.63 7.34 7.20 123.24 1667.08
UR137 116250.77 106722.02 106873.00 8.20 8.07 187.20 1860.16
UR145 103217.62 77022.24 83402.15 25.38 19.20 107.33 1766.87
UR147 165851.00 127517.51 138987.67 23.11 16.20 124.18 1617.68
UR152 70174.98 61120.14 61123.00 12.90 12.90 76.91 780.88
URI155 147675.64 93702.82 120653.80 36.55 18.30 167.08 1607.71
UR157 219689.88 145350.37 189378.30 33.84 13.80 244.45 6777.68
UR162 82089.54 78122.38 78122.38 4.83 4.83 122.30 1660.78
URI165 179281.43 133180.49 135827.67 25.71 24.24 119.96 1186.78
URI167 262557.10 241090.17 241090.17 8.18 8.18 123.40 6668.68
UR532 25372.28 20673.71 20897.47 18.52 17.64 8.89 88.61
UR535 57781.51 42965.74 45007.31 25.64 22.11 27.14 717.72
UR537 79640.11 61057.42 62258.93 23.33 21.82 32.29 668.66
UR542 37908.05 33917.73 33917.73 10.53 10.53 12.95 687.81
UR545 82106.90 71960.97 71960.97 12.36 12.36 28.86 886.02
UR547 116002.60 95531.55 95531.55 17.65 17.65 26.83 686.62
UR552 48516.30 38467.62 40677.28 20.71 16.16 15.91 178.61
UR555 100007.17 74291.04 76378.30 25.71 23.63 31.36 617.66
URS557 153951.95 111012.97 113846.27 27.89 26.05 25.74 677.02
UR562 70210.85 64373.09 64373.09 8.31 8.31 20.44 607.62
UR565 130740.24 126705.05 126705.05 3.09 3.09 27.61 761.62
UR567 190843.10 189185.66 189185.66 0.87 0.87 32.76 667.06
URT732 32375.81 30817.50 30817.50 4.81 4.81 23.40 667.02
URT735 65795.21 61848.67 61848.67 6.00 6.00 55.69 768.67
URT737 98644.82 98101.02 98101.02 0.55 0.55 70.20 760.08
URT742 50898.49 12989.22 13047.13 74.48 74.37 30.58 677.62
URT745 86062.00 25201.42 29013.36 70.72 66.29 103.58 1678.77
URT747 143336.66 71184.90 73129.60 50.34 48.98 92.98 867.68
URT752 61115.70 27676.17 30759.25 54.72 49.67 54.91 781.67
URT755 121954.64 115211.49 115211.49 5.53 5.53 103.27 1067.67
URT757 180110.92 137334.58 137334.58 23.75 23.75 77.06 706.78
URT762 69598.20 51935.02 52902.14 25.38 23.99 48.05 807.86
URT765 149540.04 114976.54 127846.30 23.11 14.51 72.54 677.08
URT767 231368.58 201514.57 201514.57 12.90 12.90 82.84 686.68

average 21.38 18.61 72.66 1248.51
max 74.48 74.37 244.45 6777.68

min 0.55 0.55 8.89 88.61
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4.4|show that the average gap between relaxed and optimal solutions and the
average gap between relaxed and metaheuristics solutions are quite compa-
rable. Hence, VNS and ALNS results are satisfactory. Moreover, comparing
CPU time spent by VNS and ALNS we note that the former is faster than
the latter but the ALNS performs slightly better on some instances.
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4.7 Conclusion

In this chapter we have presented two heuristic algorithms for solving the
Collaboration Uncapacitated Arc Routing Problem that was introduced in
the previous chapter. We have proposed two metaheuristic scheme: an ALNS
and a VNS to deal with the CUARP. These methods make use of an elab-
orated version of the destroy and repair paradigm. In order to evaluate the
performance of the algorithm we have compared the exact results obtained
in Chapter |3| with that obtained by means of the heuristics described in this
chapter. The VNS and the ALNS heuristic consume less time compared to
the exact method we previously developed. These heuristic procedures do
not always find the optimal solution. Nevertheless, as pointed out in the
previous section the gap is very small in particular in relation to the ALNS
heuristic algorithm. In conclusion, the results obtained are very satisfactory.

Future work may be devoted to the extension of the problem and its
solution methods to the case of capacitated carriers, carriers with multiple
vehicles and with time and drivers constraints.



5. CONCLUSIONS

In this thesis, we have introduced, modeled and solved a new arc routing
problem, and called it CUARP, to deal with collaboration issues which arise
in road transportation among carriers, shippers and other logistic providers.
In particular, we took into account profit allocation problems and their im-
pact on collaboration and profit making. Indeed, we formulated two different
variants of the CUARP to allocate in different ways the profit made by the
collaborating partners. We have developed exact and heuristic algorithms
for their solution. In the next paragraphs we outline our main findings as
well as suggestions for future research.

We have proposed a comprehensive overview of the existing works about
horizontal collaboration in a road transportation environment in Chapter
We classify into various streams. In particular, we analyzed the literature
dividing it into what are actually shared: customers and/or logistic assets
such as vehicles and capacities. However, even if problems related to collab-
oration are quite interesting and have attracted a lot of attention from the
Operations Research community, the literature is quite scarce. Finally, we
evaluated the use of cooperative game theory tools and well-known allocation
schemes during the phase of profit allocation.

We have introduced a new arc routing problem the Collaboration Un-
capacitated Arc Routing Problem (CUARP) in Chapter This problem
deals with the optimization of a collaboration scheme among carriers. We
focused on situations where collaboration is managed in a centralized way.
We considered a set of carriers cooperating under the guidance of a central
station that acts in a non-partisan way. Each carrier has a depot and a set of
customers, whose service generates a revenue. Each carrier identifies a sub-
set of customers that it wants or needs to serve. The remaining customers
are defined as shared customers. A shared customer may be served by the
carrier that decided to share it, by a different carrier or not to be served.
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Part of the revenue of a shared customer that is served goes to the carrier
that decided to share the customer and part goes to the carrier that actually
serves it. If a shared customer is not served by any carrier the revenue is
not collected and a penalty is paid. We assumed that each carrier has one
vehicle and that vehicle capacity is not relevant, that is the vehicles are un-
capacitated. This yielded to the study the CUARP, an uncapacitated arc
routing problem with multiple depots, where carriers collaborate to improve
the profit gained. We studied two variants of the CUARP. In the first one
the goal is the maximization of the total profit of the coalition of carriers,
independently of the individual profit of each carrier. The second variant
includes a lower bound on the individual profit of each carrier. This lower
bound may represent the profit of the carrier in the case no collaboration is
implemented. We formulated mixed integer programming models for the two
variants of the problem and study their properties and their relations with
well-known arc routing problems. We solved the formulations for the two
proposed variants with a branch-and-cut algorithm and quantify the impact
of collaboration for a large set of benchmark instances.

Finally, in Chapter [4] we presented a destroy and repair heuristic frame-
work for solving the CUARP. In particular, we developed two different meta-
heuristics: a Variable Neighborhood Search (VNS) and an Adaptive Large
Neighborhood Search (ALNS). Both were tested on the same benchmark in-
stances solved with the exact algorithm proposed in the previous chapter.
Comparisons among metaheuristics and exact methods results showed the
great effectiveness and efficiency of both the VNS and the ALNS. Moreover,
we generated a set of large instances and found for each of them a feasible
solution by means of the developed metaheuristics. The results showed to be
satisfactory. Indeed, comparing the gap between the best feasible solutions
found and the optimal relaxed solutions for large and benchmark instances,
we found that the average gap was similar.

In this thesis we acknowledged the growing importance of horizontal col-
laboration in road transportation. Indeed, we examined different models and
techniques that had already been used to investigate specific or general prob-
lem related to horizontal collaboration in road transportation. We studied
profit, benefit and cost allocation systems beyond the mere proportional al-
location. We investigated the impact and the effectiveness of collaboration
on profit collecting, formulating a new arc routing problem, the CUARP,
to address a particular case of carriers collaboration that has not yet been
studied We solved the CUARP with an exact method and designed heuristic
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solution methods to solve very large CUARP instances.

Future works can be devoted the developments of new models to address
realistic problems and the drawing up of more general and rich mathemati-
cal formulations to take into account various aspects of horizontal roadside
collaboration. For instance, we should focused on the inclusion of real life
features in the models such as time and capacity constraints. Since the main
goal of different participants in a collaborative scheme is making profit, it
can be interesting to refine old and develop new efficient profit or cost allo-
cation procedures through the use of cooperative game theory tools and then
the matching of these techniques with particular problems. It may also be
stimulating to pursue an integration of more levels of supply chain in a col-
laborative perspective and strengthen vertical collaboration and integration
among different levels and different problems in the supply chain. Finally, a
promising research path to be follow is the use and study of specific profit
and cost allocation techniques that put together operational research and
game theoretical approaches to given collaboration problems.
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A. ELECTRONIC APPENDIX
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		D1		994		1004		6		6		5		6		70.5882352941		91.6666666667		0.0099601594		0.046875

		D2		1180		1186		7		5		5		1		66.6666666667		50		0.0050590219		0.078125

		D3		1010		1018		6		6		3		2		75		41.6666666667		0.0078585462		0.046875

		D4		1256		1266		5		9		2		5		87.5		50		0.0078988942		0.046875

		D5		1430		1440		7		8		3		3		93.75		40		0.0069444444		0.0625

		D6		1243		1249		5		7		4		4		75		66.6666666667		0.0048038431		0.0625

		D7		1319		1333		8		8		7		5		100		75		0.0105026257		0.0625

		D8		1949		1963		5		10		2		4		93.75		40		0.0071319409		0.046875

		D9		1373		1387		18		12		9		6		85.7142857143		50		0.0100937275		0.609375

		D10		845		849		14		9		7		5		63.8888888889		52.1739130435		0.0047114252		0.25

		D11		2165		2187		16		18		8		6		94.4444444444		41.1764705882		0.0100594422		0.421875

		D12		1809		1827		19		15		10		9		94.4444444444		55.8823529412		0.0098522167		0.375

		D13		2906		2920		19		14		9		7		89.1891891892		48.4848484848		0.0047945205		0.296875

		D14		2810		2834		13		22		7		13		97.2222222222		57.1428571429		0.0084685956		0.390625

		D15		2922		2950		15		21		7		10		100		47.2222222222		0.0094915254		0.40625

		D16		3245		3255		18		19		9		11		97.3684210526		54.0540540541		0.0030721966		0.390625

		D17		3920		3936		22		13		16		8		94.5945945946		68.5714285714		0.0040650407		0.421875

		D18		2046		2081		30		23		14		12		80.303030303		49.0566037736		0.0168188371		2.6875

		D19		1983		2013		28		31		11		21		93.6507936508		54.2372881356		0.0149031297		1.59375

		D20		2009		2037		35		24		14		20		93.6507936508		57.6271186441		0.0137457045		3.09375

		D21		3612		3635		36		24		15		11		93.75		43.3333333333		0.0063273728		4.078125

		D22		3730		3778		36		28		16		16		96.9696969697		50		0.012705135		5.296875

		D23		3309		3353		29		34		13		21		96.9230769231		53.9682539683		0.0131225768		1.609375

		D24		4946		4978		32		31		18		19		96.9230769231		58.7301587302		0.0064282845		1.609375

		D25		4941		4971		36		29		23		19		98.4848484848		64.6153846154		0.006035003		2.734375

		D26		5667		5703		38		23		16		16		98.3870967742		52.4590163934		0.0063124671		2.90625

		D27		2660		2722		45		49		24		35		96.9072164948		62.7659574468		0.0227773696		14.015625

		D28		3239		3311		40		52		23		31		94.8453608247		58.6956521739		0.0217456962		18.703125

		D29		2593		2655		47		43		22		31		91.8367346939		58.8888888889		0.0233521657		14.1875

		D30		4839		4913		49		50		20		32		98.0198019802		52.5252525253		0.0150620802		12.328125

		D31		5312		5371		34		65		20		40		98.0198019802		60.6060606061		0.010984919		18.234375

		D32		4380		4446		47		51		24		40		98		65.306122449		0.0148448043		12.1875

		D33		7158		7198		40		59		24		33		100		57.5757575758		0.0055570992		13.234375

		D34		6424		6469		43		56		28		35		100		63.6363636364		0.0069562529		10.640625

		D35		6690		6774		39		61		17		45		100		62		0.0124003543		17.765625

		G0		1		1		0		1		0		0		50		0		0		0.078125

		G1		3		6		2		1		2		1		100		100		0.5		0.109375

		G2		4		6		0		3		0		1		100		33.3333333333		0.3333333333		0.125

		G3		14		17		0		4		0		2		100		50		0.1764705882		0.0625

		G4		10		13		1		3		1		2		100		75		0.2307692308		0.09375

		G5		11		14		3		1		1		0		100		25		0.2142857143		0.15625

		G6		23		28		3		4		0		1		100		14.2857142857		0.1785714286		0.078125

		G7		13		17		1		3		0		1		100		25		0.2352941176		0.046875

		G8		14		15		1		4		1		2		100		60		0.0666666667		0.234375

		G9		15		16		2		4		1		2		100		50		0.0625		0.765625

		G10		17		20		4		3		3		0		100		42.8571428571		0.15		0.6875

		G11		23		29		5		4		1		0		100		11.1111111111		0.2068965517		0.640625

		G12		47		57		8		6		3		3		100		42.8571428571		0.1754385965		1.546875

		G13		30		45		0		12		0		5		100		41.6666666667		0.3333333333		1.921875

		G14		62		62		10		4		6		1		100		50		0		2.25

		G15		74		85		10		8		5		4		100		50		0.1294117647		0.578125

		G16		59		74		1		17		1		6		100		38.8888888889		0.2027027027		3.328125

		G17		58		71		3		14		1		6		100		41.1764705882		0.1830985915		0.625

		G18		41		45		8		5		4		1		100		38.4615384615		0.0888888889		10.25

		G19		49		56		0		15		0		3		100		20		0.125		3.46875

		G20		38		52		6		8		5		7		100		85.7142857143		0.2692307692		6.1875

		G21		60		110		10		15		7		8		100		60		0.4545454545		10.859375

		G22		97		98		16		8		9		4		100		54.1666666667		0.0102040816		16.140625

		G23		101		112		17		9		8		4		100		46.1538461538		0.0982142857		9.8125

		G24		153		167		16		20		13		11		100		66.6666666667		0.0838323353		9.578125

		G25		116		138		20		12		14		7		100		65.625		0.1594202899		13.046875

		G26		133		155		24		10		14		3		100		50		0.1419354839		7.90625

		G27		54		66		11		10		7		4		100		52.380952381		0.1818181818		71.859375

		G28		80		95		6		20		4		10		100		53.8461538462		0.1578947368		37.1875

		G29		76		89		16		7		7		2		100		39.1304347826		0.1460674157		53

		G30		114		145		11		27		5		14		100		50		0.2137931034		50.546875

		G31		130		164		24		15		14		12		100		66.6666666667		0.2073170732		54.96875

		G32		106		180		34		8		21		6		100		64.2857142857		0.4111111111		158

		G33		235		274		36		23		22		12		100		57.6271186441		0.1423357664		58.65625

		G34		236		255		22		33		9		16		100		45.4545454545		0.0745098039		83.03125

		G35		228		269		37		19		23		13		100		64.2857142857		0.1524163569		65.171875

		R0		21922		23322		6		8		2		6		77.7777777778		57.1428571429		0.060029157		0.109375

		R1		48502		48902		18		1		6		1		79.1666666667		36.8421052632		0.0081796246		0.09375

		R2		34099		34899		9		5		5		2		58.3333333333		50		0.0229232929		0.125

		R3		88878		89678		13		16		6		11		76.3157894737		58.6206896552		0.0089208055		0.09375

		R4		67708		68708		15		7		2		4		70.9677419355		27.2727272727		0.0145543459		0.0625

		R5		39876		40508		12		7		7		4		52.7777777778		57.8947368421		0.0156018564		0.296875

		R6		79762		80830		19		11		6		10		53.5714285714		53.3333333333		0.013212916		0.296875

		R7		54916		55716		7		16		1		12		63.8888888889		56.5217391304		0.0143585326		0.359375

		R8		88039		89924		17		18		7		7		61.4035087719		40		0.0209621458		0.28125

		R9		76428		79173		23		24		9		16		82.4561403509		53.1914893617		0.0346709105		0.203125

		R10		69996		72703		20		21		7		17		63.0769230769		58.5365853659		0.0372336767		0.546875

		R11		1478		11690		13		24		7		18		67.2727272727		67.5675675676		0.8735671514		0.828125

		R12		44395		46603		17		22		8		14		90.6976744186		56.4102564103		0.0473789241		0.328125

		R13		163358		165620		30		46		16		25		72.380952381		53.9473684211		0.0136577708		0.5625

		R14		154443		157443		29		46		8		27		72.1153846154		46.6666666667		0.019054515		0.59375

		R15		125635		129045		38		42		23		26		76.9230769231		61.25		0.0264248905		1.265625

		R16		18316		29727		26		21		8		14		56.6265060241		46.8085106383		0.3838597908		1.28125

		R17		57739		59833		23		23		15		12		68.6567164179		58.6956521739		0.0349974095		0.671875

		R18		124193		127523		32		38		17		24		67.3076923077		58.5714285714		0.0261129365		1.234375

		R19		133174		135624		24		45		14		31		65.7142857143		65.2173913043		0.0180646493		1.25

														max		100.0		100.0		0.9		158.0

														average		89.5		53.1		0.1		8.3





Profit_Thresholds

				t1		t2

		AA		8129		6313

		AB		-606		2017

		P01		29		31

		P02		67		190

		P03		108		87

		P04		79		72

		P05		72		116

		P06		91		87

		P07		96		167

		P08		142		137

		P09		20		125

		P10		57		73

		P11		7		30

		P12		16		17

		P13		18		18

		P14		213		210

		P15		397		199

		P16		245		34

		P17		90		116

		P18		73		71

		P19		221		206

		P20		314		479

		P21		405		375

		P22		826		714

		P23		528		568

		P24		290		578

		D0		471		54

		D1		423		571

		D2		642		538

		D3		329		681

		D4		623		633

		D5		535		895

		D6		537		706

		D7		477		842

		D8		1241		708

		D9		830		543

		D10		448		397

		D11		826		1339

		D12		1139		670

		D13		1856		1050

		D14		1496		1314

		D15		1837		1085

		D16		1553		1692

		D17		1521		2399

		D18		880		1166

		D19		1351		632

		D20		1221		788

		D21		2197		1415

		D22		2112		1618

		D23		2178		1131

		D24		2193		2753

		D25		2702		2239

		D26		3213		2454

		D27		1867		793

		D28		1152		2087

		D29		1607		986

		D30		3203		1636

		D31		3132		2180

		D32		2923		1457

		D33		3533		3625

		D34		2814		3610

		D35		4380		2310

		G0		0		1

		G1		1		2

		G2		1		3

		G3		11		3

		G4		5		5

		G5		3		8

		G6		10		13

		G7		6		7

		G8		-1		15

		G9		6		9

		G10		-2		19

		G11		10		13

		G12		28		19

		G13		0		30

		G14		20		42

		G15		41		33

		G16		16		43

		G17		26		32

		G18		6		35

		G19		2		47

		G20		25		13

		G21		25		35

		G22		44		53

		G23		43		58

		G24		59		94

		G25		47		69

		G26		48		85

		G27		13		41

		G28		39		41

		G29		48		28

		G30		53		61

		G31		68		62

		G32		37		69

		G33		100		135

		G34		119		117

		G35		113		115

		R0		5848		16074

		R1		25046		23456

		R2		8471		25628

		R3		65405		23473

		R4		54082		13626

		R5		15200		24676

		R6		52499		27263

		R7		29877		25039

		R8		41907		46132

		R9		49976		26452

		R10		48642		21963

		R11		18425		-16947

		R12		27885		16510

		R13		86905		76453

		R14		90113		64330

		R15		66046		59589

		R16		11557		6759

		R17		23842		33897

		R18		55838		68355

		R19		76438		56736





t-CUARP-0.5

				n-CUARP		t-CUARP		#S1		#S2		#S12		#S21		%serv.		%exc.		increase1		increase2		increase		time						n-CUARP		t-CUARP		#S1		#S2		#S12		#S21		%serv.		%exc.		increase1		increase2		increase		time

		AA		14442		18722		42		39		23		28		97.6		63.0		0.2		0.3		0.1		58.9				AA		14442.0		18722.0		42.0		39.0		23.0		28.0		97.6		63.0		22.9		30.3		10.5		58.9

		AB		1411		11946		45		26		19		24		97.3		60.6		0.9		1.1		0.4		47.9				AB		1411.0		11946.0		45.0		26.0		19.0		24.0		97.3		60.6		88.2		107.0		39.4		47.9

		P01		60		61		1		4		0		1		83.3333333333		20		0.0333333333		0		0.0163934426		0.03125				P		379.2		392.8		12.3		14.0		7.6		8.0		90.5		53.2		4.0		4.1		3.9		0.5

		P02		257		264		9		5		6		2		87.5		57.1428571429		0.0563380282		0.0155440415		0.0265151515		0.140625				D16		1211.8		1220.4		5.0		7.9		3.2		3.8		79.5		53.1		0.9		0.7		0.7		0.2

		P03		195		212		22		3		12		3		100		60		0.136		0		0.0801886792		0.59375				D36		2443.9		2460.6		15.2		17.7		9.4		10.4		90.5		59.6		0.9		0.7		0.7		0.6

		P04		151		155		8		7		5		5		100		66.6666666667		0.0125		0.04		0.0258064516		0.09375				D64		3582.6		3616.6		31.0		29.9		16.6		20.6		94.5		61.0		1.0		1.2		1.1		9.3

		P05		188		197		7		9		5		4		94.1176470588		56.25		0		0.072		0.0456852792		0.140625				D100		4810.6		4873.2		48.3		48.7		29.1		37.0		97.9		68.2		2.8		0.8		1.5		21.3

		P06		178		198		13		6		7		4		100		57.8947368421		0.0108695652		0.179245283		0.101010101		0.15625				G16		10.3		12.2		1.4		2.4		0.6		0.9		94.4		32.0		18.9		5.7		14.3		0.1

		P07		263		269		15		7		8		4		95.652173913		54.5454545455		0		0.0346820809		0.0223048327		0.1875				G36		42.8		48.9		3.2		9.4		1.0		3.1		98.4		28.6		9.9		17.4		10.8		1.6

		P08		279		293		10		7		4		4		89.4736842105		47.0588235294		0.0273972603		0.0680272109		0.04778157		0.09375				G64		87.6		99.7		12.2		12.1		6.4		4.3		100.0		46.6		12.8		20.6		12.8		11.2

		P09		145		159		0		12		0		3		100		25		0.1304347826		0.0808823529		0.0880503145		0.140625				G100		139.9		169.0		21.7		18.2		12.6		10.2		100.0		56.2		16.8		16.7		17.2		76.5

		P10		130		135		4		4		2		2		80		50		0.0338983051		0.0394736842		0.037037037		0.03125				R20		52221.8		53061.8		11.6		8.0		4.6		5.8		72.5		50.7		2.1		3.4		2.1		0.2

		P11		37		39		0		4		0		1		66.6666666667		25		0		0.0625		0.0512820513		0.046875				R30		67804.2		69230.2		18.0		12.8		6.8		8.2		62.8		46.1		1.2		2.4		2.0		0.4

		P12		30		30		1		2		0		0		50		0		0		0		0		0.03125				R40		86734.0		90539.0		24.0		29.6		14.6		23.4		73.1		71.8		4.3		7.7		19.5		0.9

		P13		36		37		2		2		2		2		80		100		-0		0.0526315789		0.027027027		0.046875				R50		91811.4		96350.4		31.0		31.4		18.2		21.8		67.0		62.8		7.0		10.9		9.8		1.9

		P14		423		437		20		16		13		11		97.2972972973		66.6666666667		0.036199095		0.0277777778		0.0320366133		0.265625																max		100.0		100.0		88.2		107.0		85.7		158.0

		P15		596		610		8		12		5		8		100		65		0.0050125313		0.0568720379		0.0229508197		0.5																average		89.3		52.6		7.3		7.9		7.1		10.4

		P16		279		309		13		27		9		19		88.8888888889		70		0.0858208955		0.1707317073		0.0970873786		0.359375

		P17		206		210		11		10		6		4		100		47.619047619		0.0217391304		0.0169491525		0.019047619		0.1875

		P18		144		147		4		12		1		6		88.8888888889		43.75		0.0394736842		0		0.0204081633		0.328125

		P19		427		445		7		18		3		12		100		60		0.0515021459		0.0283018868		0.0404494382		0.421875

		P20		793		810		20		28		7		11		97.9591836735		37.5		0.01875		0.0224489796		0.0209876543		1.65625

		P21		780		806		26		26		19		18		98.1132075472		71.1538461538		0.0581395349		0.0026595745		0.0322580645		2.359375

		P22		1540		1579		38		45		26		31		90.2173913043		68.6746987952		0.0406504065		0.0055710306		0.0246991767		1.84375

		P23		1096		1117		32		40		25		22		94.7368421053		65.2777777778		0.0382513661		0		0.0188003581		2.46875

		P24		868		907		25		29		18		15		88.5245901639		61.1111111111		0.1131498471		0.0034482759		0.0429988975		0.8125

		D0		525		527		2		6		1		1		53.3333333333		25		0.0181818182		0.0021186441		0.0037950664		0.140625

		D1		994		1004		8		4		5		4		70.5882352941		75		0.0034904014		0.0185614849		0.0099601594		0.109375

		D2		1180		1186		3		9		3		3		66.6666666667		50		0.0073800738		0.0031055901		0.0050590219		0.234375

		D3		1010		1018		2		10		1		4		75		41.6666666667		0.0101744186		0.003030303		0.0078585462		0.3125

		D4		1256		1266		6		8		3		5		87.5		57.1428571429		0.0109375		0.0047923323		0.0078988942		0.125

		D5		1430		1438		6		9		5		6		93.75		73.3333333333		0.0022296544		0.011090573		0.0055632823		0.109375

		D6		1243		1249		6		6		4		3		75		58.3333333333		0.0070323488		0.0018587361		0.0048038431		0.3125

		D7		1319		1333		7		9		4		3		100		43.75		0.0128956624		0.00625		0.0105026257		0.109375

		D8		1949		1963		5		10		3		5		93.75		53.3333333333		0.0056179775		0.0079936051		0.0071319409		0.140625

		D9		1373		1387		17		13		11		9		85.7142857143		66.6666666667		0.0198555957		0.0036014406		0.0100937275		0.609375

		D10		845		849		9		14		2		5		63.8888888889		30.4347826087		0		0.0088495575		0.0047114252		0.65625

		D11		2165		2187		15		19		12		11		94.4444444444		67.6470588235		0.0029784066		0.0213270142		0.0100594422		0.671875

		D12		1809		1827		18		16		11		11		94.4444444444		64.7058823529		0.0044576523		0.0129982669		0.0098522167		0.625

		D13		2906		2920		17		15		12		11		86.4864864865		71.875		0.0066225166		0.0037573806		0.0047945205		0.453125

		D14		2810		2834		13		22		7		13		97.2222222222		57.1428571429		0.0127723516		0.004657352		0.0084685956		0.453125

		D15		2922		2950		14		22		10		14		100		66.6666666667		0.0234023402		0.0010875476		0.0094915254		0.421875

		D16		3245		3255		19		18		10		11		97.3684210526		56.7567567568		0.0017699115		0.0044871795		0.0030721966		0.59375

		D17		3920		3936		15		20		10		9		94.5945945946		54.2857142857		0.0062137531		0.0006570302		0.0040650407		0.59375

		D18		2046		2081		27		26		17		18		80.303030303		66.0377358491		0.002566296		0.0350877193		0.0168188371		2.34375

		D19		1983		2013		30		28		16		23		92.0634920635		67.2413793103		0.0380517504		0.0036873156		0.0149031297		4.34375

		D20		2009		2037		33		27		14		22		95.2380952381		60		0.0037926675		0.0200642055		0.0137457045		2.8125

		D21		3612		3635		40		20		16		8		93.75		40		0.0035211268		0.0081264108		0.0063273728		17.421875

		D22		3730		3778		34		30		18		20		96.9696969697		59.375		0.0199878861		0.0070521862		0.012705135		15.875

		D23		3309		3353		27		36		14		24		96.9230769231		60.3174603175		0.0104986877		0.014479638		0.0131225768		11.890625

		D24		4946		4978		17		47		9		26		98.4615384615		54.6875		0.0032585083		0.0103790614		0.0064282845		8.21875

		D25		4941		4971		38		27		26		20		98.4848484848		70.7692307692		0.0044464206		0.0073475386		0.006035003		6.015625

		D26		5667		5703		33		28		19		24		98.3870967742		70.4918032787		0.0072815534		0.0055710306		0.0063124671		15.15625

		D27		2660		2722		45		50		25		36		97.9381443299		64.2105263158		0.0637544274		0.0042666667		0.0227773696		23.890625

		D28		3239		3311		47		46		32		34		95.8762886598		70.9677419355		0.0192669173		0.0262045647		0.0217456962		28.0625

		D29		2593		2655		46		45		25		36		92.8571428571		67.032967033		0.0537428023		0.0037197768		0.0233521657		21.71875

		D30		4839		4913		44		55		27		44		98.0198019802		71.7171717172		0.038212816		0.0028019925		0.0150620802		17.78125

		D31		5312		5371		50		49		31		35		98.0198019802		66.6666666667		0.0175754845		0.0063451777		0.010984919		21.453125

		D32		4380		4446		44		54		25		44		98		70.4081632653		0.0286666667		0.0078071962		0.0148448043		19.5

		D33		7158		7198		51		48		35		33		100		68.6868686869		0.0065771444		0.0045083122		0.0055570992		18.75

		D34		6424		6469		55		44		39		34		100		73.7373737374		0.0019353055		0.0133239832		0.0069562529		19.078125

		D35		6690		6774		53		47		23		37		100		60		0.0240811153		0.0061266167		0.0124003543		21.15625

		G0		1		1		0		1		0		0		50		0		0		0		0		0.09375

		G1		3		6		3		0		2		0		100		66.6666666667		0.6		0		0.5		0.125

		G2		4		4		1		2		0		0		100		0		0		0		0		0.0625

		G3		14		17		0		4		0		2		100		50		0.4		0.0833333333		0.1764705882		0.0625

		G4		10		13		1		3		1		2		100		75		0.1666666667		0.2857142857		0.2307692308		0.09375

		G5		11		11		2		2		0		0		100		0		0		0		0		0.046875

		G6		23		27		3		4		2		3		100		71.4285714286		0.2352941176		0		0.1481481481		0.09375

		G7		13		17		1		3		0		1		100		25		0.3		0.1428571429		0.2352941176		0.046875

		G8		14		14		2		3		0		0		100		0		0		0		0		0.0625

		G9		15		16		5		1		2		0		100		33.3333333333		0.1		0		0.0625		0.71875

		G10		17		17		0		6		0		0		85.7142857143		0		0		0		0		0.484375

		G11		23		23		4		5		0		0		100		0		0		0		0		0.875

		G12		47		57		0		14		0		8		100		57.1428571429		0.3448275862		0		0.1754385965		1.078125

		G13		30		45		0		12		0		5		100		41.6666666667		0.1176470588		1		0.3333333333		1.921875

		G14		62		62		5		9		0		0		100		0		0		0		0		0.953125

		G15		74		78		14		4		6		1		100		38.8888888889		0.1081081081		0		0.0512820513		2.640625

		G16		59		74		1		17		1		6		100		38.8888888889		0.0652173913		0.4285714286		0.2027027027		3.328125

		G17		58		68		0		17		0		8		100		47.0588235294		0.1578947368		0.1333333333		0.1470588235		2.5625

		G18		41		43		7		6		6		4		100		76.9230769231		0		0.25		0.0465116279		12.203125

		G19		49		56		8		7		6		1		100		46.6666666667		0.0208333333		0.75		0.125		7.9375

		G20		38		49		8		6		4		4		100		57.1428571429		0.4090909091		0.0740740741		0.2244897959		14.546875

		G21		60		102		10		15		7		8		100		60		0.435483871		0.375		0.4117647059		22.5625

		G22		97		97		11		13		0		0		100		0		0		0		0		6.203125

		G23		101		112		17		9		8		4		100		46.1538461538		0.0793650794		0.1224489796		0.0982142857		9.8125

		G24		153		167		16		20		13		11		100		66.6666666667		0.0961538462		0.0634920635		0.0838323353		9.578125

		G25		116		138		20		12		14		7		100		65.625		0.1153846154		0.2166666667		0.1594202899		13.046875

		G26		133		133		13		21		0		0		100		0		0		0		0		5.1875

		G27		54		61		11		10		7		4		100		52.380952381		0.1458333333		0		0.1147540984		94.21875

		G28		80		92		11		15		7		8		100		57.6923076923		0.1632653061		0.0930232558		0.1304347826		71.046875

		G29		76		89		16		7		7		2		100		39.1304347826		0.2631578947		0.0588235294		0.1460674157		53

		G30		114		137		4		34		3		19		100		57.8947368421		0.1643835616		0.171875		0.1678832117		50.53125

		G31		130		164		24		15		14		12		100		66.6666666667		0.1948051948		0.2183908046		0.2073170732		54.96875

		G32		106		180		34		8		21		6		100		64.2857142857		0.2068965517		0.6021505376		0.4111111111		158

		G33		235		274		36		23		22		12		100		57.6271186441		0.1346153846		0.1525423729		0.1423357664		58.65625

		G34		236		255		22		33		9		16		100		45.4545454545		0.064		0.0846153846		0.0745098039		83.03125

		G35		228		269		37		19		23		13		100		64.2857142857		0.1785714286		0.1240310078		0.1524163569		65.171875

		R0		21922		23122		11		3		3		2		77.7777777778		35.7142857143		0.040186302		0.0826666667		0.0518986247		0.171875

		R1		48502		48902		5		14		1		9		79.1666666667		52.6315789474		0.0118380587		0.00472879		0.0081796246		0.4375

		R2		34099		34899		12		2		6		0		58.3333333333		42.8571428571		0.0080123863		0.065423654		0.0229232929		0.21875

		R3		88878		89678		21		8		10		7		76.3157894737		58.6206896552		0.0012339375		0.0116507495		0.0089208055		0.15625

		R4		67708		68708		9		13		3		11		70.9677419355		63.6363636364		0.0427818757		0.0071778679		0.0145543459		0.140625

		R5		39876		40508		8		11		4		5		52.7777777778		47.3684210526		0.0121301894		0.0211861678		0.0156018564		0.4375

		R6		79762		80830		21		9		7		9		53.5714285714		53.3333333333		0.0065952485		0.0166148428		0.013212916		0.421875

		R7		54916		55716		13		10		0		5		63.8888888889		21.7391304348		0.0251508663		0.0051280344		0.0143585326		0.46875

		R8		88039		89924		22		13		11		6		61.4035087719		48.5714285714		0.0147787459		0.0276798144		0.0209621458		0.375

		R9		76428		79173		26		21		12		16		82.4561403509		59.5744680851		0.0005667435		0.0517967594		0.0346709105		0.4375

		R10		69996		72703		11		30		7		26		63.0769230769		80.487804878		0.0142280072		0.0468333595		0.0372336767		0.84375

		R11		1478		10326		14		23		8		18		67.2727272727		70.2702702703		0.0552303861		0.3017130296		0.8568661631		1.34375

		R12		44395		46603		23		16		14		14		90.6976744186		71.7948717949		0.090408242		0.0199283003		0.0473789241		0.578125

		R13		163358		165620		30		46		27		36		72.380952381		82.8947368421		0.0177681279		0.0100132143		0.0136577708		0.953125

		R14		154443		157443		42		33		17		23		72.1153846154		53.3333333333		0.0370048801		0.0058251785		0.019054515		0.9375

		R15		125635		129045		36		44		28		33		76.9230769231		76.25		0.0336971152		0.0197690641		0.0264248905		1.8125

		R16		18316		29727		22		25		8		18		56.6265060241		55.3191489362		0.2453104064		0.443599249		0.3838597908		2.0625

		R17		57739		59833		31		15		19		8		68.6567164179		58.6956521739		0.0407504882		0.0266982364		0.0349974095		1.75

		R18		124193		127523		33		37		17		23		67.3076923077		57.1428571429		0.0263097917		0.0258718445		0.0261129365		1.828125

		R19		133174		135624		33		36		19		27		65.7142857143		66.6666666667		0.0025667171		0.0292601153		0.0180646493		2.15625

														max		100.0		100.0		0.9		1.1		0.9		158.0

														average		89.3		52.6		0.1		0.1		0.1		10.4





t-CUARP-1

				n-CUARP		t-CUARP		#S1		#S2		#S12		#S21		%serv.		%exc.		increase1		increase2		increase		time						n-CUARP		t-CUARP		#S1		#S2		#S12		#S21		%serv.		%exc.		increase1		increase2		increase		time

		AA		14442		24509		41		41		28		34		98.8		75.6		0.4		0.4		0.4		18.0				AA		14442.0		24509.0		41.0		41.0		28.0		34.0		98.8		75.6		41.1		37.8		44.8		18.0

		AB		1411		17911		26		47		16		40		100.0		76.7		0.9		1.1		0.8		13.3				AB		1411.0		17911.0		26.0		47.0		16.0		40.0		100.0		76.7		92.1		106.7		77.3		13.3

		P01		60		60		2		3		0		0		83.3333333333		0		0		0		0		0.046875				P		379.2		392.5		12.2		14.1		6.9		7.5		91.1		44.0		5.3		2.3		3.5		0.7

		P02		257		264		3		11		3		5		87.5		57.1428571429		0.0945945946		0		0.0265151515		0.09375				D16		1211.8		1219.6		5.7		7.2		3.1		3.0		79.5		46.1		0.6		1.0		0.6		0.3

		P03		195		212		10		15		7		10		100		68		0.0924369748		0.064516129		0.0801886792		0.515625				D36		2443.9		2460.3		14.0		19.0		8.3		10.6		90.8		56.7		0.6		0.9		0.7		0.9

		P04		151		155		10		5		4		2		100		40		0.024691358		0.027027027		0.0258064516		0.125				D64		3582.6		3616.6		30.7		30.1		15.9		20.1		94.3		59.3		1.1		0.9		1.1		11.0

		P05		188		197		7		9		5		4		94.1176470588		56.25		0.0526315789		0.041322314		0.0456852792		0.1875				D100		4810.6		4873.2		52.4		44.4		29.0		32.8		97.7		63.8		1.6		1.8		1.5		23.3

		P06		178		198		15		4		8		3		100		57.8947368421		0.1801801802		0		0.101010101		0.234375				G16		10.3		11.8		1.8		2.1		0.7		0.7		94.4		30.2		24.2		7.9		12.0		0.2

		P07		263		269		14		8		7		4		95.652173913		50		0.0204081633		0.0233918129		0.0223048327		0.21875				G36		42.8		44.9		5.4		7.2		1.7		1.6		98.4		21.4		11.1		1.2		4.3		2.3

		P08		279		293		10		7		4		4		89.4736842105		47.0588235294		0.0779220779		0.0143884892		0.04778157		0.0625				G64		87.6		96.3		10.6		13.8		4.7		4.2		100.0		36.5		9.1		9.6		9.1		15.4

		P09		145		157		3		9		2		2		100		33.3333333333		0.3103448276		0.0234375		0.076433121		0.34375				G100		139.9		155.0		19.7		20.2		9.9		9.6		100.0		48.0		10.9		9.4		11.0		100.2

		P10		130		135		5		3		2		1		80		37.5		0.0806451613		0		0.037037037		0.0625				R20		52221.8		53061.8		12.2		7.4		5.0		5.6		72.5		52.9		1.8		4.4		2.2		0.2

		P11		37		37		1		4		0		0		83.3333333333		0		0		0		0		0.046875				R30		67804.2		69190.2		15.4		15.4		6.8		10.8		62.8		56.1		2.5		1.8		1.9		0.8

		P12		30		30		1		2		0		0		50		0		0		0		0		0.03125				R40		86734.0		90539.0		29.0		24.6		15.2		19.0		73.1		62.8		21.0		2.7		19.5		1.1

		P13		36		36		2		2		0		0		80		0		0		0		0		0.03125				R50		91811.4		96350.4		32.2		30.2		19.0		21.4		67.0		64.3		11.2		8.9		9.8		2.1

		P14		423		437		19		17		12		11		97.2972972973		63.8888888889		0.0491071429		0.014084507		0.0320366133		0.328125																max		100.0		80.0		100.0		106.7		85.7		291.9

		P15		596		610		11		9		6		6		100		60		0.0025125628		0.0613207547		0.0229508197		1.34375																average		89.5		47.9		8.3		4.9		6.2		12.3

		P16		279		309		19		22		12		17		91.1111111111		70.7317073171		0.1058394161		0.0285714286		0.0970873786		0.390625

		P17		206		210		12		9		6		3		100		42.8571428571		0.010989011		0.025210084		0.019047619		0.125

		P18		144		147		9		7		3		3		88.8888888889		37.5		0.0266666667		0.0138888889		0.0204081633		0.796875

		P19		427		445		10		15		4		10		100		56		0.0555555556		0.0236966825		0.0404494382		0.640625

		P20		793		810		26		22		10		8		97.9591836735		37.5		0		0.0342741935		0.0209876543		3.796875

		P21		780		806		23		29		16		18		98.1132075472		65.3846153846		0.0311004785		0.0335051546		0.0322580645		1.59375

		P22		1540		1579		38		44		25		30		89.1304347826		67.0731707317		0.0119617225		0.0390309556		0.0246991767		2

		P23		1096		1117		30		42		20		19		94.7368421053		54.1666666667		0.0130841121		0.0240549828		0.0188003581		2.625

		P24		868		907		13		40		10		19		86.8852459016		54.7169811321		0.0202702703		0.05400982		0.0429988975		1.453125

		D0		525		527		2		6		1		1		53.3333333333		25		0		0.0357142857		0.0037950664		0.109375

		D1		994		1002		7		5		3		3		70.5882352941		50		0		0.0138169257		0.0079840319		0.140625

		D2		1180		1186		5		7		3		1		66.6666666667		33.3333333333		0.0031055901		0.0073800738		0.0050590219		0.34375

		D3		1010		1018		6		6		4		3		75		58.3333333333		0.0149700599		0.0043859649		0.0078585462		0.1875

		D4		1256		1262		10		4		3		1		87.5		28.5714285714		0.0032		0.0062794349		0.0047543582		0.46875

		D5		1430		1438		3		12		2		6		93.75		53.3333333333		0.0018656716		0.0077605322		0.0055632823		0.28125

		D6		1243		1249		5		7		3		3		75		50		0.0092250923		0.0014144272		0.0048038431		0.265625

		D7		1319		1331		9		7		6		3		100		56.25		0.0185185185		0.0035502959		0.0090157776		0.21875

		D8		1949		1963		4		11		3		6		93.75		60		0.0048115477		0.0111731844		0.0071319409		0.390625

		D9		1373		1387		9		21		3		9		85.7142857143		40		0.0024038462		0.0216216216		0.0100937275		1.5

		D10		845		849		9		15		4		7		66.6666666667		45.8333333333		0.0044444444		0.0050125313		0.0047114252		1.921875

		D11		2165		2185		13		21		9		10		94.4444444444		55.8823529412		0.0072115385		0.0103473762		0.0091533181		1.078125

		D12		1809		1827		17		17		9		10		94.4444444444		55.8823529412		0.0061082024		0.0161527166		0.0098522167		0.703125

		D13		2906		2920		16		16		12		12		86.4864864865		75		0.007486631		0		0.0047945205		0.5

		D14		2810		2834		15		20		9		13		97.2222222222		62.8571428571		0		0.0179372197		0.0084685956		0.8125

		D15		2922		2950		17		19		10		11		100		58.3333333333		0.0107700592		0.0073193047		0.0094915254		0.4375

		D16		3245		3255		15		22		8		13		97.3684210526		56.7567567568		0.0038486209		0.0023584906		0.0030721966		0.625

		D17		3920		3936		15		20		11		10		94.5945945946		60		0.0104098894		0		0.0040650407		0.78125

		D18		2046		2081		23		30		16		21		80.303030303		69.8113207547		0.006772009		0.0242677824		0.0168188371		2.5625

		D19		1983		2013		32		26		14		19		92.0634920635		56.8965517241		0.0210144928		0.0015797788		0.0149031297		11.609375

		D20		2009		2037		39		21		13		15		95.2380952381		46.6666666667		0.0192771084		0.0050505051		0.0137457045		2.75

		D21		3612		3635		26		34		13		19		93.75		53.3333333333		0.0009095043		0.0146239554		0.0063273728		14.109375

		D22		3730		3778		37		27		21		20		96.9696969697		64.0625		0.0089160019		0.0176077717		0.012705135		4.140625

		D23		3309		3353		26		37		13		24		96.9230769231		58.7301587302		0.0140334993		0.0113636364		0.0131225768		16.78125

		D24		4946		4978		19		44		10		24		96.9230769231		53.9682539683		0.0076923077		0.0054190751		0.0064282845		10.6875

		D25		4941		4971		36		29		24		20		98.4848484848		67.6923076923		0.0088041086		0.0026726058		0.006035003		21.984375

		D26		5667		5703		38		23		19		19		98.3870967742		62.2950819672		0.0098613251		0.0016273393		0.0063124671		14.71875

		D27		2660		2722		57		37		24		23		96.9072164948		50		0.003203417		0.0659599529		0.0227773696		20.078125

		D28		3239		3311		41		52		30		38		95.8762886598		73.1182795699		0.0557377049		0.0019129603		0.0217456962		28.984375

		D29		2593		2655		51		40		27		33		92.8571428571		65.9340659341		0.023100304		0.0237623762		0.0233521657		24.265625

		D30		4839		4913		55		44		28		34		98.0198019802		62.6262626263		0.0092793071		0.0261904762		0.0150620802		24.1875

		D31		5312		5371		58		41		35		31		98.0198019802		66.6666666667		0.0050825921		0.0193432299		0.010984919		20.375

		D32		4380		4446		58		40		26		31		98		58.1632653061		0.0187982544		0.0068166326		0.0148448043		19.21875

		D33		7158		7198		49		50		35		35		100		70.7070707071		0.0100868591		0.001102232		0.0055570992		24.953125

		D34		6424		6469		48		51		33		35		100		68.6868686869		0.007057163		0.0068775791		0.0069562529		26.25

		D35		6690		6774		55		45		23		35		100		58		0.01306895		0.011130137		0.0124003543		21.15625

		G0		1		1		0		1		0		0		50		0		0		0		0		0.078125

		G1		3		6		2		1		1		0		100		33.3333333333		0.6666666667		0.3333333333		0.5		0.3125

		G2		4		4		1		2		0		0		100		0		0		0		0		0.0625

		G3		14		15		2		2		1		1		100		50		0.0833333333		0		0.0666666667		0.109375

		G4		10		13		2		2		1		1		100		50		0		0.375		0.2307692308		0.125

		G5		11		11		2		2		0		0		100		0		0		0		0		0.046875

		G6		23		27		4		3		1		1		100		28.5714285714		0.2857142857		0		0.1481481481		0.15625

		G7		13		14		2		2		1		1		100		50		0.1428571429		0		0.0714285714		0.421875

		G8		14		15		1		4		1		2		100		60		1		0		0.0666666667		0.234375

		G9		15		15		3		3		0		0		100		0		0		0		0		0.34375

		G10		17		17		0		6		0		0		85.7142857143		0		0		0		0		0.484375

		G11		23		23		4		5		0		0		100		0		0		0		0		0.875

		G12		47		47		12		2		5		1		100		42.8571428571		0		0		0		2.78125

		G13		30		45		5		7		4		4		100		66.6666666667		1		0		0.3333333333		1.8125

		G14		62		62		5		9		0		0		100		0		0		0		0		0.953125

		G15		74		78		10		8		5		4		100		50		0		0.1081081081		0.0512820513		3.046875

		G16		59		59		2		16		1		5		100		33.3333333333		0		0		0		10.09375

		G17		58		58		8		9		0		0		100		0		0		0		0		0.625

		G18		41		42		5		8		3		3		100		46.1538461538		0.1428571429		0		0.0238095238		18.859375

		G19		49		49		3		12		0		0		100		0		0		0		0		6.390625

		G20		38		45		11		3		6		3		100		64.2857142857		0.1379310345		0.1875		0.1555555556		21.546875

		G21		60		102		10		15		7		8		100		60		0.2647058824		0.4852941176		0.4117647059		25.515625

		G22		97		97		11		13		0		0		100		0		0		0		0		6.203125

		G23		101		110		12		14		6		7		100		50		0.14		0.0333333333		0.0818181818		8.546875

		G24		153		153		16		20		12		10		100		61.1111111111		0		0		0		33.9375

		G25		116		136		14		18		8		7		100		46.875		0.1296296296		0.1585365854		0.1470588235		12.40625

		G26		133		133		13		21		0		0		100		0		0		0		0		5.1875

		G27		54		66		11		10		7		4		100		52.380952381		0.1875		0.18		0.1818181818		71.859375

		G28		80		92		15		11		10		7		100		65.3846153846		0.22		0.0238095238		0.1304347826		70.078125

		G29		76		89		16		7		7		2		100		39.1304347826		0.2		0.0344827586		0.1460674157		49.171875

		G30		114		130		13		25		7		14		100		55.2631578947		0.0185185185		0.1973684211		0.1230769231		124.03125

		G31		130		130		22		17		0		0		100		0		0		0		0		38.984375

		G32		106		130		15		27		9		13		100		52.380952381		0.0975609756		0.2247191011		0.1846153846		110.390625

		G33		235		243		23		36		14		17		100		52.5423728814		0.0384615385		0.0287769784		0.0329218107		291.90625

		G34		236		246		25		30		12		16		100		50.9090909091		0		0.0787401575		0.0406504065		106.390625

		G35		228		269		37		19		23		13		100		64.2857142857		0.2152777778		0.08		0.1524163569		39.265625

		R0		21922		23322		10		4		3		3		77.7777777778		42.8571428571		0.0177218284		0.1595286002		0.060029157		0.375

		R1		48502		48902		13		6		4		4		79.1666666667		42.1052631579		0.0130853705		0.0035408793		0.0081796246		0.1875

		R2		34099		34899		10		4		6		2		58.3333333333		57.1428571429		0.0160863055		0.0430411207		0.0229232929		0.203125

		R3		88878		89678		15		14		7		10		76.3157894737		58.6206896552		0.0178661088		0.005670589		0.0089208055		0.171875

		R4		67708		68508		13		9		5		9		70.9677419355		63.6363636364		0.0275478162		0.0075968878		0.0116774683		0.140625

		R5		39876		40508		5		14		2		6		52.7777777778		42.1052631579		0.0128020483		0.0201134605		0.0156018564		1.421875

		R6		79762		80830		13		17		7		17		53.5714285714		80		0.0142102979		0.0126941738		0.013212916		0.96875

		R7		54916		55516		12		11		4		10		63.8888888889		60.8695652174		0.0117224503		0.0100397614		0.0108076951		0.8125

		R8		88039		89924		20		15		7		4		61.4035087719		31.4285714286		0.0043381607		0.0386318277		0.0209621458		0.546875

		R9		76428		79173		27		20		14		17		82.4561403509		65.9574468085		0.082388039		0.0073491439		0.0346709105		0.328125

		R10		69996		72703		24		17		9		15		63.0769230769		58.5365853659		0.0668337865		0.0227820636		0.0372336767		1.59375

		R11		1478		10326		14		23		8		18		67.2727272727		70.2702702703		0.8804926764		0.0472127418		0.8568661631		1.3125

		R12		44395		46603		27		12		12		8		90.6976744186		51.2820512821		0.0699115543		0.0335158741		0.0473789241		0.640625

		R13		163358		165620		35		41		26		30		72.380952381		73.6842105263		0.0213765472		0.0067659463		0.0136577708		0.984375

		R14		154443		157443		45		30		21		24		72.1153846154		60		0.013010525		0.0233241207		0.019054515		1.171875

		R15		125635		129045		37		43		28		32		76.9230769231		75		0.0101659441		0.0406426123		0.0264248905		1.921875

		R16		18316		29727		21		26		10		21		56.6265060241		65.9574468085		0.4753551191		0.3138803135		0.3838597908		3.78125

		R17		57739		59833		28		18		18		10		68.6567164179		60.8695652174		0.0421058581		0.0247075186		0.0349974095		1.484375

		R18		124193		127523		35		35		18		22		67.3076923077		57.1428571429		0.0010230179		0.0551626113		0.0261129365		1.9375

		R19		133174		135624		40		29		21		22		65.7142857143		62.3188405797		0.0305515686		0.0085862516		0.0180646493		1.5

														max		100.0		80.0		1.0		1.1		0.9		291.9

														average		89.5		47.9		0.1		0.0		0.1		12.3





CUARP_av

				n-CUARP		CUARP		#S1		#S2		#S12		#S21		%serv.		%exc.		increase		time						n-CUARP		CUARP		#S1		#S2		#S12		#S21		%serv.		%exc.		increase		time

		AA		23570		23596		36		43		24		18		98.75		53.164556962		0.0011018817		13.9375				AA		23570.0		23596.0		36.0		43.0		24.0		18.0		98.8		53.2		0.1		13.9

		AB		17657		17693		39		34		26		15		100		56.1643835616		0.002034703		10.03125				AB		17657.0		17693.0		39.0		34.0		26.0		15.0		100.0		56.2		0.2		10.0

		P01		36		42		3		3		3		2		100		83.3333333333		0.1428571429		0.03125				P		380.3		390.9		11.2		14.5		6.6		7.3		91.8		54.7		4.3		0.3

		P02		232		237		6		7		3		4		86.6666666667		53.8461538462		0.0210970464		0.046875				D16		1221.2		1225.6		5.9		6.0		4.3		2.6		73.7		57.2		0.0		0.1

		P03		169		183		9		16		5		8		100		52		0.0765027322		0.234375				D36		1929.8		2072.8		19.7		12.2		10.6		7.0		87.9		54.5		0.1		0.6

		P04		158		167		4		12		3		5		100		50		0.0538922156		0.046875				D64		3622.3		3654.8		28.7		31.7		15.2		18.4		94.0		55.9		0.0		2.8

		P05		213		220		7		7		2		4		82.3529411765		42.8571428571		0.0318181818		0.0625				D100		5058.0		5106.2		39.6		55.4		24.8		30.2		94.9		58.0		0.0		14.5

		P06		184		191		12		7		8		2		100		52.6315789474		0.0366492147		0.140625				G16		9.8		13.1		1.0		2.9		0.4		1.3		92.2		39.0		0.2		0.1

		P07		264		273		10		12		5		8		100		59.0909090909		0.032967033		0.140625				G36		38.7		45.9		4.7		7.8		3.0		3.9		100.0		54.9		0.2		1.8

		P08		279		281		11		7		7		3		94.7368421053		55.5555555556		0.0071174377		0.0625				G64		86.6		102.2		13.4		10.8		6.7		5.4		100.0		50.5		0.2		9.6

		P09		164		166		8		4		5		0		100		41.6666666667		0.0120481928		0.0625				G100		147.0		167.6		20.1		20.2		10.8		10.4		100.0		52.3		0.2		103.8

		P10		140		142		6		2		3		1		80		50		0.014084507		0.046875				R20		52781.8		53861.2		10.6		7.4		5.2		4.4		66.6		53.7		0.0		0.1

		P11		33		39		0		4		0		3		80		75		0.1538461538		0.0625				R30		63098.6		64668.2		13.8		20.2		8.4		11.4		68.5		56.2		0.0		0.2

		P12		22		24		1		4		1		2		100		60		0.0833333333		0.03125				R40		81383.0		83126.0		21.0		29.8		11.0		17.2		67.4		54.6		0.0		0.8

		P13		30		31		0		3		0		1		75		33.3333333333		0.0322580645		0.03125				R50		82934.0		88777.4		30.8		36.8		16.6		15.6		71.4		48.2		0.2		1.5

		P14		410		429		16		20		11		9		97.2972972973		55.5555555556		0.0442890443		0.21875																max		100.0		88.9		0.9		185.1

		P15		501		513		8		11		4		6		100		52.6315789474		0.0233918129		0.140625																average		88.6		53.3		0.1		10.5

		P16		363		372		8		24		6		14		68.085106383		62.5		0.0241935484		0.28125

		P17		193		198		9		10		6		4		95		52.6315789474		0.0252525253		0.0625

		P18		142		152		11		3		6		1		82.3529411765		50		0.0657894737		0.171875

		P19		440		451		16		8		13		4		96		70.8333333333		0.0243902439		0.234375

		P20		841		862		23		24		8		15		95.9183673469		48.9361702128		0.024361949		1.265625

		P21		785		812		22		29		13		12		96.2264150943		49.0196078431		0.0332512315		1

		P22		1610		1640		34		47		15		33		88.0434782609		59.2592592593		0.0182926829		1.1875

		P23		1086		1108		23		49		16		18		96		47.2222222222		0.0198555957		0.625

		P24		831		848		21		35		15		16		90.3225806452		55.3571428571		0.0200471698		0.578125

		D0		653		657		4		3		2		1		43.75		42.8571428571		0.0060882801		0.046875

		D1		840		844		7		8		6		3		88.2352941176		60		0.0047393365		0.078125

		D2		1243		1245		8		1		5		0		56.25		55.5555555556		0.0016064257		0.046875

		D3		956		960		6		6		4		3		75		58.3333333333		0.0041666667		0.046875

		D4		1258		1264		5		7		4		2		75		50		0.0047468354		0.0625

		D5		1556		1561		5		6		4		3		68.75		63.6363636364		0.003203075		0.0625

		D6		1111		1121		8		5		7		3		81.25		76.9230769231		0.0089206066		0.046875

		D7		1318		1322		7		8		5		3		93.75		53.3333333333		0.0030257186		0.0625

		D8		2056		2056		3		10		2		5		81.25		53.8461538462		0		0.0625

		D9		1212		1234		22		11		13		7		91.6666666667		60.6060606061		0.017828201		0.625

		D10		-575		-416		7		17		2		6		68.5714285714		33.3333333333		0.3822115385		0.71875

		D11		2065		2079		16		13		6		7		85.2941176471		44.8275862069		0.0067340067		0.265625

		D12		1864		1878		31		2		16		0		91.6666666667		48.4848484848		0.0074547391		0.625

		D13		1109		1517		24		4		16		4		77.7777777778		71.4285714286		0.2689518787		1.078125

		D14		2814		2836		30		5		15		4		94.5945945946		54.2857142857		0.0077574048		0.796875

		D15		2992		3018		16		20		10		12		94.7368421053		61.1111111111		0.0086149768		0.375

		D16		1900		2512		16		20		10		10		94.7368421053		55.5555555556		0.2436305732		0.546875

		D17		3987		3997		15		18		7		13		91.6666666667		60.6060606061		0.0025018764		0.359375

		D18		2039		2069		29		26		21		15		83.3333333333		65.4545454545		0.0144997583		1.640625

		D19		1909		1929		28		31		16		20		95.1612903226		61.0169491525		0.0103680664		2.828125

		D20		2313		2383		24		31		12		22		85.9375		61.8181818182		0.0293747377		2.8125

		D21		3565		3588		19		44		12		24		98.4375		57.1428571429		0.0064102564		3.625

		D22		3609		3625		27		36		10		24		98.4375		53.9682539683		0.0044137931		3.265625

		D23		3458		3492		32		28		13		8		93.75		35		0.0097365407		2.59375

		D24		5062		5099		27		37		22		21		96.9696969697		67.1875		0.0072563248		2.515625

		D25		4687		4711		36		26		14		15		96.875		46.7741935484		0.0050944598		3.078125

		D26		5959		5997		36		26		17		17		96.875		54.8387096774		0.0063365016		2.6875

		D27		3058		3097		38		47		27		32		86.7346938776		69.4117647059		0.0125928318		13.1875

		D28		4244		4290		49		46		29		26		94.0594059406		57.8947368421		0.0107226107		13.828125

		D29		2830		2861		46		39		30		22		87.6288659794		61.1764705882		0.0108353722		14.171875

		D30		4818		4878		33		67		21		38		98.0392156863		59		0.012300123		13.96875

		D31		5336		5398		43		55		31		33		98		65.306122449		0.0114857355		13.453125

		D32		4294		4340		37		55		16		21		92.9292929293		40.2173913043		0.0105990783		14.78125

		D33		7414		7459		41		60		28		32		99.0196078431		59.4059405941		0.0060329803		13.90625

		D34		6706		6746		34		65		23		38		98.0198019802		61.6161616162		0.0059294397		19.828125

		D35		6822		6887		35		65		18		30		100		48		0.0094380717		13.078125

		G0		4		4		0		1		0		0		50		0		0		0.09375

		G1		5		6		1		2		0		1		100		33.3333333333		0.1666666667		0.15625

		G2		5		5		2		0		0		0		100		0		0		0.109375

		G3		7		14		0		5		0		2		100		40		0.5		0.046875

		G4		11		15		4		0		2		0		100		50		0.2666666667		0.109375

		G5		12		15		0		4		0		2		100		50		0.2		0.09375

		G6		19		29		0		7		0		3		100		42.8571428571		0.3448275862		0.09375

		G7		11		14		2		2		2		1		80		75		0.2142857143		0.109375

		G8		14		16		0		5		0		3		100		60		0.125		0.046875

		G9		15		20		5		1		3		0		100		50		0.25		0.796875

		G10		18		19		1		6		1		3		100		57.1428571429		0.0526315789		0.859375

		G11		18		19		0		8		0		5		100		62.5		0.0526315789		2.421875

		G12		54		60		13		1		6		1		100		50		0.1		0.84375

		G13		26		40		1		11		1		4		100		41.6666666667		0.35		3.375

		G14		37		60		1		12		1		7		100		61.5384615385		0.3833333333		0.671875

		G15		64		67		14		4		12		4		100		88.8888888889		0.0447761194		2.4375

		G16		54		66		5		10		2		4		100		40		0.1818181818		1.375

		G17		62		62		2		17		1		7		100		42.1052631579		0		3.640625

		G18		37		49		9		4		7		3		100		76.9230769231		0.2448979592		3.875

		G19		47		49		9		5		4		1		100		35.7142857143		0.0408163265		8.28125

		G20		44		54		14		0		6		0		100		42.8571428571		0.1851851852		10.65625

		G21		78		101		6		17		1		9		100		43.4782608696		0.2277227723		5.21875

		G22		86		103		20		4		13		3		100		66.6666666667		0.1650485437		7.84375

		G23		94		115		6		21		3		9		100		44.4444444444		0.1826086957		19.078125

		G24		142		165		9		28		4		16		100		54.0540540541		0.1393939394		7.234375

		G25		115		126		23		9		11		3		100		43.75		0.0873015873		16.140625

		G26		136		158		25		9		11		5		100		47.0588235294		0.1392405063		8.15625

		G27		43		57		3		19		3		9		100		54.5454545455		0.2456140351		100.109375

		G28		82		89		11		15		4		6		100		38.4615384615		0.0786516854		185.078125

		G29		29		95		20		5		8		3		100		44		0.6947368421		83.265625

		G30		150		150		11		27		9		19		100		73.6842105263		0		96.078125

		G31		146		174		23		18		14		10		100		58.5365853659		0.1609195402		49.890625

		G32		157		182		24		18		12		11		100		54.7619047619		0.1373626374		90.484375

		G33		256		273		49		9		28		6		100		58.6206896552		0.0622710623		98.78125

		G34		233		233		7		48		4		23		100		49.0909090909		0		181.828125

		G35		227		255		33		23		15		7		100		39.2857142857		0.1098039216		48.34375

		R0		24120		25079		7		3		5		1		52.6315789474		60		0.0382391642		0.109375

		R1		41634		43034		12		9		5		6		84		52.380952381		0.0325324162		0.125

		R2		39642		40309		13		3		7		0		66.6666666667		43.75		0.0165471731		0.140625

		R3		85448		87219		12		11		6		6		60.5263157895		52.1739130435		0.0203052087		0.125

		R4		73065		73665		9		11		3		9		68.9655172414		60		0.0081449807		0.109375

		R5		42673		43273		11		10		5		3		58.3333333333		38.0952380952		0.0138654588		0.203125

		R6		62246		63646		14		33		8		18		81.0344827586		55.3191489362		0.0219966691		0.28125

		R7		50223		50423		9		12		4		8		60		57.1428571429		0.0039664439		0.21875

		R8		86003		88497		15		20		10		12		62.5		62.8571428571		0.0281817463		0.3125

		R9		74348		77502		20		26		15		16		80.701754386		67.3913043478		0.040695724		0.171875

		R10		58753		61300		25		25		17		12		75.7575757576		58		0.0415497553		0.578125

		R11		51765		53965		19		16		13		6		66.0377358491		54.2857142857		0.0407671639		0.59375

		R12		-4233		-3814		8		13		6		4		50		47.619047619		0.1098584164		1.671875

		R13		147550		149921		34		44		14		24		75.7281553398		48.7179487179		0.0158149959		0.65625

		R14		153080		154258		19		51		5		40		69.3069306931		64.2857142857		0.0076365569		0.359375

		R15		127096		129975		36		51		21		16		82.8571428571		42.5287356322		0.0221504135		1.1875

		R16		65993		70227		39		22		22		14		73.4939759036		59.0163934426		0.0602902018		2.140625

		R17		933		16397		7		23		4		10		45.4545454545		46.6666666667		0.9430993474		2.015625

		R18		110578		115021		48		37		22		15		81.7307692308		43.5294117647		0.0386277288		1.265625

		R19		110070		112267		24		51		14		23		73.5294117647		49.3333333333		0.0195694193		0.734375

														max		100		88.8888888889		0.9430993474		185.078125

														average		88.6115519484		53.2763011965		0.0834608779		10.5297934322





CUARP_3d

				n-CUARP		CUARP		#Sserv.		#Sexc.		%serv.		%exc.		increase		time						n-CUARP		CUARP		#Sserv.		#Sexc.		%serv.		%exc.		increase		time

		AA		25481		25513		42		16		51.8518518519		38.0952380952		0.0012542625		41.796875				AA		25481.0		25513.0		42.0		16.0		51.9		38.1		0.1		41.8

		AB		20898		20930		44		19		58.6666666667		43.1818181818		0.0015289059		36.71875				AB		20898.0		20930.0		44.0		19.0		58.7		43.2		0.2		36.7

		P01		65		69		1		0		16.6666666667		0		0.0579710145		0.046875				P		433.8		445.6		14.3		5.4		46.3		39.2		3.9		1.0

		P02		269		278		7		2		46.6666666667		28.5714285714		0.0323741007		0.078125				D16		1379.2		1388.1		7.7		3.1		46.5		41.2		0.7		0.1

		P03		208		216		13		5		50		38.4615384615		0.037037037		0.4375				D36		2661.4		2681.4		17.3		7.2		47.4		41.8		1.0		1.0

		P04		213		222		7		2		46.6666666667		28.5714285714		0.0405405405		0.125				D64		4068.2		4015.3		36.8		13.6		57.2		36.9		0.6		9.3

		P05		244		252		6		4		37.5		66.6666666667		0.0317460317		0.1875				D100		5387.2		5438.0		54.6		18.3		54.7		33.7		1.1		55.5

		P06		227		229		12		4		60		33.3333333333		0.0087336245		0.375				G16		15.6		18.0		2.9		1.3		66.7		42.8		16.8		0.1

		P07		323		333		16		9		66.6666666667		56.25		0.03003003		0.3125				G36		52.4		61.3		6.6		1.9		54.5		26.4		15.5		3.7

		P08		312		331		10		6		52.6315789474		60		0.0574018127		0.171875				G64		111.8		121.7		12.2		4.4		49.4		35.2		6.9		24.6

		P09		174		183		8		5		66.6666666667		62.5		0.0491803279		0.078125				G100		171.6		191.7		21.4		6.7		50.1		28.7		11.3		248.1

		P10		141		145		4		0		40		0		0.0275862069		0.046875				R20		60528.6		60537.8		15.4		5.6		58.5		33.0		0.0		0.2

		P11		39		42		0		0		0		0		0.0714285714		0.03125				R30		88964.0		88986.0		16.4		5.2		35.0		30.8		0.0		0.5

		P12		34		36		3		2		50		66.6666666667		0.0555555556		0.03125				R40		115561.6		115582.8		34.6		13.8		45.9		35.9		0.0		1.4

		P13		37		39		2		2		40		100		0.0512820513		0.015625				R50		128557.6		128587.0		40.4		18.4		43.0		46.5		0.0		3.2

		P14		451		469		15		6		41.6666666667		40		0.0383795309		0.484375												max		100.0		100.0		80.0		546.3

		P15		603		605		10		5		52.6315789474		50		0.0033057851		0.421875												average		50.6		36.7		4.9		27.2

		P16		344		361		16		9		35.5555555556		56.25		0.0470914127		1.15625

		P17		197		205		12		4		54.5454545455		33.3333333333		0.0390243902		0.171875

		P18		142		161		5		2		29.4117647059		40		0.1180124224		0.25

		P19		492		510		11		2		45.8333333333		18.1818181818		0.0352941176		0.65625

		P20		1050		1069		24		8		48		33.3333333333		0.0177736202		4.03125

		P21		940		965		34		4		64.1509433962		11.7647058824		0.0259067358		2.28125

		P22		1672		1679		48		20		52.1739130435		41.6666666667		0.0041691483		5.90625

		P23		1317		1358		42		16		53.8461538462		38.0952380952		0.030191458		3.6875

		P24		917		937		36		13		60		36.1111111111		0.0213447172		3.03125

		D0		597		603		7		3		41.1764705882		42.8571428571		0.0099502488		0.109375

		D1		1200		1204		8		2		47.0588235294		25		0.0033222591		0.109375

		D2		1484		1492		9		3		56.25		33.3333333333		0.0053619303		0.0625

		D3		1320		1326		5		5		31.25		100		0.0045248869		0.09375

		D4		1238		1248		6		2		37.5		33.3333333333		0.0080128205		0.125

		D5		1840		1850		11		4		64.7058823529		36.3636363636		0.0054054054		0.09375

		D6		1298		1308		5		0		31.25		0		0.0076452599		0.09375

		D7		1442		1462		9		6		56.25		66.6666666667		0.0136798906		0.09375

		D8		1994		2000		9		3		52.9411764706		33.3333333333		0.003		0.109375

		D9		1267		1285		11		3		30.5555555556		27.2727272727		0.0140077821		0.796875

		D10		780		802		21		7		58.3333333333		33.3333333333		0.0274314214		0.765625

		D11		2505		2533		15		5		42.8571428571		33.3333333333		0.0110540861		1.34375

		D12		2020		2036		19		8		52.7777777778		42.1052631579		0.0078585462		0.890625

		D13		3199		3221		18		10		48.6486486486		55.5555555556		0.006830177		1.09375

		D14		3120		3140		21		4		55.2631578947		19.0476190476		0.0063694268		0.78125

		D15		3358		3376		18		9		48.6486486486		50		0.0053317536		1.078125

		D16		3445		3469		16		11		43.2432432432		68.75		0.0069184203		1.671875

		D17		4259		4271		17		8		45.9459459459		47.0588235294		0.0028096465		0.8125

		D18		2136		2164		32		10		49.2307692308		31.25		0.0129390018		10.609375

		D19		2515		2541		39		11		61.9047619048		28.2051282051		0.0102321921		7.328125

		D20		2390		2390		37		9		58.7301587302		24.3243243243		0		18.390625

		D21		4020		4057		37		13		56.0606060606		35.1351351351		0.0091200394		10

		D22		3921		3947		38		16		58.4615384615		42.1052631579		0.0065872815		7.296875

		D23		3930		3948		36		23		55.3846153846		63.8888888889		0.0045592705		7.671875

		D24		5765		5804		37		12		56.9230769231		32.4324324324		0.0067195038		6.703125

		D25		5683		5705		36		14		57.1428571429		38.8888888889		0.0038562664		8.140625

		D26		6254		6275		39		14		60.9375		35.8974358974		0.0033466135		7.640625

		D27		2976		3013		52		22		52.5252525253		42.3076923077		0.0122801195		59.5

		D28		3627		3687		60		23		59.4059405941		38.3333333333		0.016273393		48.21875

		D29		3071		3128		49		19		50		38.7755102041		0.0182225064		53.203125

		D30		4975		5031		49		18		49.4949494949		36.7346938776		0.0111309879		35.171875

		D31		5775		5827		66		24		66.6666666667		36.3636363636		0.0089239746		41.03125

		D32		5070		5124		46		13		46.9387755102		28.2608695652		0.0105386417		64.9375

		D33		8108		8150		56		17		54.9019607843		30.3571428571		0.0051533742		67.484375

		D34		7619		7667		51		16		51		31.3725490196		0.0062605974		27.25

		D35		7264		7315		62		13		61.3861386139		20.9677419355		0.0069719754		103.109375

		G0		1		5		2		1		100		50		0.8		0.109375

		G1		11		11		1		0		33.3333333333		0		0		0.171875

		G2		9		9		2		0		66.6666666667		0		0		0.109375

		G3		18		21		4		0		80		0		0.1428571429		0.109375

		G4		12		13		2		2		50		100		0.0769230769		0.203125

		G5		21		24		4		2		80		50		0.125		0.125

		G6		27		34		4		3		57.1428571429		75		0.2058823529		0.109375

		G7		20		20		5		3		100		60		0		0.1875

		G8		21		25		2		1		33.3333333333		50		0.16		0.125

		G9		20		21		5		3		83.3333333333		60		0.0476190476		1.40625

		G10		29		35		5		0		62.5		0		0.1714285714		1.046875

		G11		22		33		5		1		55.5555555556		20		0.3333333333		2.078125

		G12		64		76		7		3		50		42.8571428571		0.1578947368		1.703125

		G13		53		67		4		0		30.7692307692		0		0.2089552239		1.125

		G14		52		62		10		5		76.9230769231		50		0.1612903226		3.53125

		G15		97		103		9		3		50		33.3333333333		0.0582524272		1.828125

		G16		60		69		5		1		31.25		20		0.1304347826		16.46875

		G17		75		86		9		1		50		11.1111111111		0.1279069767		4.234375

		G18		62		63		8		2		61.5384615385		25		0.0158730159		22.703125

		G19		63		63		4		0		28.5714285714		0		0		19.125

		G20		54		54		6		3		40		50		0		40.03125

		G21		105		115		14		7		58.3333333333		50		0.0869565217		16.90625

		G22		107		134		16		4		64		25		0.2014925373		18.09375

		G23		125		141		12		8		42.8571428571		66.6666666667		0.1134751773		27.453125

		G24		163		182		16		6		44.4444444444		37.5		0.1043956044		12.375

		G25		144		154		20		4		64.5161290323		20		0.0649350649		24.09375

		G26		183		189		14		6		40		42.8571428571		0.0317460317		40.28125

		G27		93		120		11		5		47.8260869565		45.4545454545		0.225		100.78125

		G28		107		114		9		2		34.6153846154		22.2222222222		0.0614035088		167.15625

		G29		96		104		8		1		34.7826086957		12.5		0.0769230769		372

		G30		159		184		21		0		55.2631578947		0		0.1358695652		148.015625

		G31		170		203		19		3		46.3414634146		15.7894736842		0.1625615764		169.203125

		G32		141		169		23		14		53.488372093		60.8695652174		0.1656804734		546.265625

		G33		259		282		32		11		56.1403508772		34.375		0.0815602837		374.09375

		G34		275		275		33		8		58.9285714286		24.2424242424		0		171.03125

		G35		244		274		37		16		63.7931034483		43.2432432432		0.1094890511		183.90625

		R0		26508		26522		15		4		75		26.6666666667		0.0005278637		0.171875

		R1		54667		54675		18		7		75		38.8888888889		0.0001463192		0.25

		R2		38458		38462		9		0		39.1304347826		0		0.0001039988		0.28125

		R3		87218		87230		16		10		42.1052631579		62.5		0.0001375674		0.125

		R4		95792		95800		19		7		61.2903225806		36.8421052632		0.0000835073		0.15625

		R5		43452		43464		15		6		40.5405405405		40		0.0002760906		0.515625

		R7		69562		69568		17		10		47.2222222222		58.8235294118		0.0000862466		0.640625

		R6		127330		127374		14		0		24.1379310345		0		0.0012542625		0.546875

		R8		101652		101672		19		6		33.3333333333		31.5789473684		0.000196711		0.515625

		R9		102824		102852		17		4		29.8245614035		23.5294117647		0.0002722358		0.5

		R10		95716		95744		22		5		33.3333333333		22.7272727273		0.0002924465		1.359375

		R11		59823		59841		25		10		47.1698113208		40		0.0003007971		1.109375

		R12		48484		48492		19		5		45.2380952381		26.3157894737		0.0001649757		1.21875

		R13		192267		192293		64		31		61.5384615385		48.4375		0.0001352103		1.71875

		R14		181518		181544		43		18		42.1568627451		41.8604651163		0.000143216		1.5

		R15		171868		171904		46		21		43.8095238095		45.652173913		0.0002094192		3.1875

		R16		97730		97770		37		12		43.5294117647		32.4324324324		0.0004091235		2.65625

		R17		74420		74450		26		16		38.8059701493		61.5384615385		0.000402955		2.5

		R18		146495		146515		48		19		46.6019417476		39.5833333333		0.0001365048		3.375

		R19		152275		152296		45		24		42.4528301887		53.3333333333		0.0001378894		4.328125

										max		100		100		0.8		546.265625

										average		50.6103258209		36.7178921592		0.0490451689		27.2134533898





CUARP_instances

				#dep.		R1		R2		S1		S2		pen1		pen2		#nodes		#arcs		dep2						#inst.		#dep.		R1		R2		S1		S2		pen1		pen2		#nodes		#arcs		dep2

		AA		2		48		34		48		35		157		172		102		10101		101				AA		1		2		48		34		48		35		157		172		102		10101		101

		AB		2		50		23		50		23		129		119		90		7833		88				AB		1		2		50		23		50		23		129		119		90		7833		88

		P01		2		2		3		3		3		1		6		11		91		6				P		24		2		0_48		2_46		1_48		3_47		0_26		0_18		7_50		31_2353		3_48

		P02		2		6		8		7		9		3		11		14		157		8				D16		9		2		5_8		7_10		5_8		8_11		0_82		1_81		16		211		12_15

		P03		2		13		11		13		12		6		5		28		703		16				D36		9		2		15_21		16_21		15_21		17_21		6_56		3_82		36		1191		33_35

		P04		2		8		7		8		7		7		3		17		241		14				D64		9		2		32_41		20_32		33_42		21_33		9_48		11_61		64		3907		52_58

		P05		2		6		9		7		10		4		7		20		343		12				D100		9		2		48_67		32_50		49_67		33_50		14_37		10_42		100		9703		82_94

		P06		2		10		9		10		9		9		6		24		507		6				G16		9		2		0_3		0_3		1_4		1_3		1_5		2_4		16		211		15

		P07		2		12		10		12		11		5		5		23		463		11				G36		9		2		1_9		3_11		1_9		3_12		1_4		3_4		36		1191		35

		P08		2		9		8		10		9		6		3		17		241		12				G64		9		2		2_13		6_21		3_14		6_22		2_3		3_4		64		3907		63

		P09		2		3		8		3		9		13		8		14		157		11				G100		9		2		8_29		11_32		8_29		12_33		2_4		3_4		100		9703		99

		P10		2		4		4		5		5		5		5		12		111		7				R20		5		2		10_23		5_15		10_24		6_16		76_1131		267_2916		20		343		3_18

		P11		2		0		4		1		5		11		1		9		57		5				R30		5		2		19_37		14_25		19_37		14_26		0_1006		0_694		30		813		4_26

		P12		2		3		2		3		3		0		3		7		31		5				R40		5		2		25_56		16_47		26_57		17_48		483_1224		0_1168		40		1483_1560		1_39

		P13		2		2		2		2		3		5		0		7		31		3				R50		5		2		33_57		26_56		33_58		26_56		236_679		80_767		50		2353_2450		1_47

		P14		2		18		19		18		19		7		9		28		703		15

		P15		2		10		9		11		9		26		18		26		601		22

		P16		2		26		18		26		19		4		5		31		871		24

		P17		2		9		12		9		12		7		7		19		307		10

		P18		2		9		7		10		8		5		7		23		463		13

		P19		2		15		9		16		9		11		16		33		993		14

		P20		2		25		23		25		24		11		12		50		2353		29

		P21		2		25		26		26		27		9		10		49		2257		41

		P22		2		48		43		48		44		11		11		50		2353		48

		P23		2		28		46		29		47		9		8		50		2353		27

		P24		2		21		39		22		39		10		7		41		1561		34

		D0		2		7		8		7		8		0		18		16		211		15

		D1		2		7		9		8		9		26		20		16		211		12

		D2		2		6		10		7		11		0		23		16		211		12

		D3		2		5		10		6		10		31		15		16		211		15

		D4		2		8		7		8		8		52		22		16		211		12

		D5		2		8		8		8		8		39		81		16		211		12

		D6		2		5		10		5		11		55		1		16		211		15

		D7		2		6		9		6		10		82		63		16		211		12

		D8		2		7		8		7		9		68		38		16		211		12

		D9		2		15		20		15		20		52		22		36		1191		35

		D10		2		16		18		17		19		6		3		36		1191		33

		D11		2		15		20		15		21		37		30		36		1191		35

		D12		2		17		17		18		18		36		25		36		1191		35

		D13		2		19		16		20		17		21		29		36		1191		33

		D14		2		19		16		19		17		56		43		36		1191		35

		D15		2		18		18		18		18		52		51		36		1191		35

		D16		2		21		16		21		17		31		50		36		1191		33

		D17		2		16		21		16		21		39		82		36		1191		35

		D18		2		35		30		36		30		9		16		64		3907		52

		D19		2		40		22		41		22		18		18		64		3907		58

		D20		2		41		20		42		21		25		11		64		3907		57

		D21		2		33		31		33		31		31		23		64		3907		52

		D22		2		36		29		36		30		31		21		64		3907		58

		D23		2		36		27		37		28		36		27		64		3907		57

		D24		2		35		29		35		30		24		61		64		3907		52

		D25		2		32		32		33		33		39		29		64		3907		58

		D26		2		38		23		38		24		48		42		64		3907		57

		D27		2		57		40		57		40		21		10		100		9703		91

		D28		2		49		47		50		47		18		20		100		9703		94

		D29		2		60		37		60		38		14		11		100		9703		82

		D30		2		60		39		61		40		27		16		100		9703		91

		D31		2		54		47		54		47		36		26		100		9703		94

		D32		2		63		35		64		36		26		19		100		9703		82

		D33		2		48		50		49		50		37		42		100		9703		91

		D34		2		49		49		50		49		33		39		100		9703		94

		D35		2		67		32		67		33		33		33		100		9703		82

		G0		2		1		0		1		1		1		3		16		211		15

		G1		2		1		1		1		2		5		4		16		211		15

		G2		2		0		1		1		2		5		2		16		211		15

		G3		2		2		2		2		2		3		2		16		211		15

		G4		2		2		1		2		2		3		4		16		211		15

		G5		2		2		1		2		2		4		4		16		211		15

		G6		2		3		3		4		3		4		2		16		211		15

		G7		2		2		2		2		2		2		4		16		211		15

		G8		2		1		3		2		3		3		4		16		211		15

		G9		2		2		3		3		3		2		4		36		1191		35

		G10		2		1		5		1		6		1		4		36		1191		35

		G11		2		3		5		4		5		4		3		36		1191		35

		G12		2		8		5		8		6		4		3		36		1191		35

		G13		2		5		7		5		7		3		4		36		1191		35

		G14		2		4		9		5		9		4		3		36		1191		35

		G15		2		9		9		9		9		3		3		36		1191		35

		G16		2		5		11		6		12		4		3		36		1191		35

		G17		2		8		9		8		9		3		3		36		1191		35

		G18		2		4		8		5		8		3		4		64		3907		63

		G19		2		2		11		3		12		2		4		64		3907		63

		G20		2		7		6		8		6		3		3		64		3907		63

		G21		2		10		14		11		14		3		3		64		3907		63

		G22		2		11		13		11		13		3		3		64		3907		63

		G23		2		12		12		13		13		3		4		64		3907		63

		G24		2		13		21		14		22		3		3		64		3907		63

		G25		2		12		18		13		19		3		3		64		3907		63

		G26		2		13		20		13		21		3		3		64		3907		63

		G27		2		8		12		8		13		3		3		100		9703		99

		G28		2		11		13		12		14		3		3		100		9703		99

		G29		2		11		11		11		12		4		3		100		9703		99

		G30		2		19		17		20		18		3		4		100		9703		99

		G31		2		21		17		22		17		3		4		100		9703		99

		G32		2		18		23		19		23		4		3		100		9703		99

		G33		2		25		32		26		33		2		3		100		9703		99

		G34		2		29		26		29		26		3		3		100		9703		99

		G35		2		26		29		27		29		3		3		100		9703		99

		R0		2		10		8		10		8		664		326		20		343		12

		R1		2		18		5		18		6		681		2916		20		343		18

		R2		2		13		10		14		10		76		943		20		343		17

		R3		2		21		15		22		16		1131		297		20		343		3

		R4		2		23		7		24		7		468		267		20		343		4

		R5		2		21		14		22		14		0		694		30		813		12

		R6		2		37		19		37		19		147		0		30		813		26

		R7		2		19		16		19		17		947		0		30		813		23

		R8		2		30		25		31		26		170		302		30		813		11

		R9		2		34		21		35		22		1006		476		30		813		4

		R10		2		38		27		38		27		609		0		40		1483		12

		R11		2		34		20		35		20		483		626		40		1560		1

		R12		2		25		16		26		17		1224		1168		40		1483		23

		R13		2		56		47		57		48		502		506		40		1483		39

		R14		2		56		47		56		48		965		113		40		1483		4

		R15		2		55		49		55		49		626		767		50		2353		12

		R16		2		57		26		57		26		236		80		50		2450		1

		R17		2		33		33		33		34		275		424		50		2353		37

		R18		2		47		56		48		56		679		172		50		2353		47

		R19		2		57		46		58		47		532		316		50		2353		4





CUARP_av_instances

				#dep.		R1		R2		S1		S2		pen1		pen2		#nodes		#arcs		dep2						#inst.		#dep.		R1		R2		S1		S2		pen1		pen2		#nodes		#arcs		dep2

		AA		2		31		49		31		49		176		120		102		10101		84				AA		1		2		31		49		31		49		176		120		102		10101		84

		AB		2		28		45		28		45		156		146		90		7833		75				AB		1		2		28		45		28		45		156		146		90		7833		75

		P01		2		1		4		2		4		7		6		11		91		2				P		24		2		1_57		2_49		2_57		2_49		2_19		1_19		7_50		31_2353		2_48

		P02		2		6		8		7		8		17		2		14		157		6				D16		9		2		5_9		6_11		6_9		7_11		0_82		0_112		16		211		6_13

		P03		2		11		12		12		13		3		5		28		703		7				D36		9		2		16_22		12_22		16_22		12_22		9_45		14_52		36		1191_1260		1_23

		P04		2		5		9		6		10		8		7		17		241		6				D64		9		2		26_42		22_39		26_42		22_40		9_36		15_61		64		3907		17_42

		P05		2		9		7		9		8		6		1		20		343		17				D100		9		2		42_50		50_55		42_40		51_56		17_42		6_38		100		9703		32_79

		P06		2		6		13		6		13		4		9		24		507		23				G16		9		2		0_2		0_4		1_3		0_4		0_5		0_5		16		211		12

		P07		2		13		9		13		9		7		6		23		463		18				G36		9		2		2_7		3_12		2_8		3_12		2_4		2_4		36		1191		30

		P08		2		6		11		7		12		10		7		17		241		7				G64		9		2		4_20		6_17		5_21		6_17		3_4		3_4		64		3907		56

		P09		2		3		9		3		9		19		6		14		157		10				G100		9		2		8_27		9_31		9_27		10_31		3_4		3_4		100		9703		90

		P10		2		4		5		4		6		18		3		12		111		9				R20		5		2		8_20		8_20		8_20		9_20		0_1178		60_2034		20		343		2_15

		P11		2		3		2		3		2		2		4		9		57		3				R30		5		2		18_30		14_30		19_30		15_31		142_1240		84_1437		30		813		6_28

		P12		2		2		2		2		3		4		3		7		31		2				R40		5		2		18_67		22_48		19_68		23_48		0_933		0_1001		40		1483_1560		1_39

		P13		2		1		2		2		2		3		8		7		31		6				R50		5		2		31_48		35_66		31_49		35_66		178_878		289_571		50		2353_2450		1_28

		P14		2		14		22		14		23		7		10		28		703		5

		P15		2		10		9		10		9		14		19		26		601		11

		P16		2		21		24		22		25		3		3		31		871		9

		P17		2		8		12		8		12		3		8		19		307		15

		P18		2		5		10		6		11		5		2		23		463		17

		P19		2		8		17		8		17		4		11		33		993		29

		P20		2		32		17		32		17		11		16		50		2353		48

		P21		2		20		31		21		32		10		9		49		2257		30

		P22		2		57		34		57		35		10		8		50		2353		39

		P23		2		26		49		26		49		10		8		50		2353		40

		P24		2		23		38		23		39		9		7		41		1561		36

		D0		2		5		9		6		10		0		0		16		211		6

		D1		2		5		11		6		11		0		47		16		211		13

		D2		2		8		7		8		8		0		22		16		211		11

		D3		2		5		9		6		10		37		21		16		211		6

		D4		2		5		10		6		10		0		66		16		211		13

		D5		2		8		7		9		7		0		61		16		211		11

		D6		2		6		10		6		10		19		53		16		211		6

		D7		2		5		10		6		10		82		53		16		211		13

		D8		2		9		6		9		7		8		112		16		211		11

		D9		2		18		16		19		17		19		34		36		1191		23

		D10		2		16		18		16		19		10		14		36		1260		1

		D11		2		22		12		22		12		17		23		36		1191		4

		D12		2		17		19		17		19		29		24		36		1191		23

		D13		2		18		16		19		17		9		34		36		1260		1

		D14		2		20		15		21		16		26		52		36		1191		4

		D15		2		18		19		19		19		31		32		36		1191		23

		D16		2		16		22		16		22		36		27		36		1260		1

		D17		2		22		13		22		14		45		28		36		1191		4

		D18		2		30		34		31		35		9		23		64		3907		22

		D19		2		33		28		34		28		24		18		64		3907		17

		D20		2		37		26		38		26		24		15		64		3907		42

		D21		2		30		32		31		33		29		37		64		3907		22

		D22		2		42		22		42		22		35		45		64		3907		17

		D23		2		31		33		31		33		33		33		64		3907		42

		D24		2		26		39		26		40		35		37		64		3907		22

		D25		2		38		25		38		26		36		31		64		3907		17

		D26		2		37		25		38		26		36		61		64		3907		42

		D27		2		43		54		44		54		22		6		100		9703		32

		D28		2		45		55		46		55		34		12		100		9703		79

		D29		2		42		54		42		55		17		12		100		9703		55

		D30		2		50		51		50		52		26		19		100		9703		32

		D31		2		45		54		45		55		33		22		100		9703		79

		D32		2		47		50		48		51		22		22		100		9703		55

		D33		2		45		55		46		56		42		29		100		9703		32

		D34		2		49		50		50		51		32		34		100		9703		79

		D35		2		47		53		47		53		42		38		100		9703		55

		G0		2		0		1		1		1		1		5		16		211		12

		G1		2		1		1		2		1		4		5		16		211		12

		G2		2		2		0		2		0		0		0		16		211		12

		G3		2		1		2		2		3		3		2		16		211		12

		G4		2		1		2		2		2		3		4		16		211		12

		G5		2		1		2		2		2		4		3		16		211		12

		G6		2		2		4		3		4		5		3		16		211		12

		G7		2		1		2		2		3		1		4		16		211		12

		G8		2		2		2		3		2		3		4		16		211		12

		G9		2		2		3		2		4		3		4		36		1191		30

		G10		2		2		4		3		4		2		4		36		1191		30

		G11		2		4		3		5		3		4		2		36		1191		30

		G12		2		7		5		8		6		4		4		36		1191		30

		G13		2		3		8		4		8		3		3		36		1191		30

		G14		2		7		6		7		6		3		3		36		1191		30

		G15		2		5		12		6		12		2		4		36		1191		30

		G16		2		7		8		7		8		4		2		36		1191		30

		G17		2		7		11		8		11		2		4		36		1191		30

		G18		2		4		8		5		8		4		3		64		3907		56

		G19		2		6		7		6		8		4		3		64		3907		56

		G20		2		8		6		8		6		3		3		64		3907		56

		G21		2		14		9		14		9		3		3		64		3907		56

		G22		2		9		14		10		14		3		3		64		3907		56

		G23		2		11		14		12		15		4		3		64		3907		56

		G24		2		20		15		21		16		3		3		64		3907		56

		G25		2		14		17		15		17		3		3		64		3907		56

		G26		2		19		14		19		15		3		4		64		3907		56

		G27		2		8		12		9		13		4		3		100		9703		90

		G28		2		12		13		13		13		3		3		100		9703		90

		G29		2		14		9		15		10		3		4		100		9703		90

		G30		2		21		17		21		17		3		4		100		9703		90

		G31		2		18		21		19		22		3		3		100		9703		90

		G32		2		22		19		23		19		3		3		100		9703		90

		G33		2		27		31		27		31		3		3		100		9703		90

		G34		2		26		28		26		29		3		3		100		9703		90

		G35		2		25		31		25		31		3		3		100		9703		90

		R0		2		9		8		10		9		0		934		20		343		2

		R1		2		14		10		15		10		1178		2034		20		343		15

		R2		2		8		15		8		16		355		461		20		343		10

		R3		2		18		20		18		20		608		385		20		343		6

		R4		2		20		9		20		9		666		60		20		343		7

		R5		2		18		17		19		17		142		489		30		813		28

		R6		2		26		30		27		31		1240		336		30		813		15

		R7		2		19		14		20		15		456		84		30		813		11

		R8		2		30		26		30		26		165		634		30		813		14

		R9		2		27		29		28		29		490		1437		30		813		6

		R10		2		29		35		30		36		392		489		40		1483		39

		R11		2		28		24		29		24		0		1001		40		1483		37

		R12		2		18		22		19		23		76		936		40		1560		1

		R13		2		55		48		55		48		793		726		40		1483		5

		R14		2		67		32		68		33		933		0		40		1483		7

		R15		2		38		66		39		66		878		571		50		2353		3

		R16		2		41		41		42		41		598		453		50		2353		25

		R17		2		31		35		31		35		178		289		50		2450		1

		R18		2		48		54		49		55		605		528		50		2353		8

		R19		2		41		60		42		60		504		551		50		2353		28





CUARP_3d_instances

				#dep.		R1		R2		R3		S1		S2		S3		pen1		pen2		pen3		#nodes		#arcs		dep2		dep3						#inst.		#dep.		R1		R2		R3		S1		S2		S3		pen1		pen2		pen3		#nodes		#arcs		dep2		dep3

		AA		3		40		22		17		41		23		17		155		97		118		102		9902		101		84				AA		1		3		40		22		17		41		23		17		155		97		118		102		9902		101		84

		AB		3		46		11		17		46		12		17		121		154		153		90		7658		88		75				AB		1		3		46		11		17		46		12		17		121		154		153		90		7658		88		75

		P01		3		2		3		1		2		3		1		0		6		0		11		91		6		2				P		24		3		1_43		1_42		0_22		2_44		1_42		1_23		0_15		1_15		0_22		7_50		22_2258		3_48		2_48

		P02		3		4		8		3		4		8		3		0		12		3		14		134		8		6				D16		9		3		2_5		6_10		1_5		2_6		6_11		2_6		0_145		6_52		0_126		16		184		12_15		6_13

		P03		3		10		7		6		11		8		7		6		4		0		28		652		16		7				D36		9		3		10_18		10_16		7_11		11_18		10_16		7_12		4_69		15_38		3_50		36		1124_1191		33_35		1_23

		P04		3		6		3		5		6		4		5		4		5		12		17		212		14		6				D64		9		3		27_40		8_22		12_18		27_41		9_23		13_18		11_41		17_50		11_56		64		3784		52_58		17_42

		P05		3		3		6		6		4		6		6		7		1		10		20		308		12		17				D100		9		3		36_61		13_40		19_29		36_62		13_40		20_29		13_36		15_39		4_37		100		9508		82_94		32_79

		P06		3		9		8		2		9		8		3		4		7		1		24		464		6		23				G16		9		3		0_3		0_2		0_2		1_3		1_2		0_2		1_5		3_5		0_3		16		184		15		12

		P07		3		15		5		2		16		5		3		5		11		9		23		422		11		18				G36		9		3		1_8		2_10		1_6		1_8		2_10		1_6		2_5		2_4		2_5		36		1124		35		30

		P08		3		5		7		6		6		7		6		3		15		5		17		212		12		7				G64		9		3		2_13		4_14		2_11		2_13		5_15		2_11		2_4		3_4		2_5		64		3784		63		56

		P09		3		2		7		2		2		7		3		8		9		4		14		134		11		10				G100		9		3		6_23		7_24		5_14		6_24		8_24		5_14		3_4		3_4		2_4		100		9508		99		90

		P10		3		4		3		1		4		4		2		2		4		3		12		92		7		9				R20		5		3		6_23		3_24		3_14		6_24		4_24		4_14		3_1538		3_2925		0_1504		20		308_343		3_18		2_15

		P11		3		2		1		2		2		1		2		6		5		0		9		44		5		3				R30		5		3		6_40		2_24		3_15		6_40		3_24		415		3_1538		0_2925		0_2694		30		758		4_26		6_28

		P12		3		2		2		0		2		3		1		0		3		0		7		31		5		2				R40		5		3		6_48		2_31		3_27		6_48		3_31		4_415		3_1538		0_2925		0_2694		40		1408_1483		1_39		1_39

		P13		3		1		1		1		2		2		1		1		4		0		7		22		3		6				R50		5		3		6_53		2_44		3_28		6_54		3_45		4_415		3_1538		0_2925		0_2694		50		2258_2353		1_47		1_28

		P14		3		13		16		7		13		16		7		5		10		3		28		652		15		5

		P15		3		8		5		4		9		5		5		13		4		22		26		554		22		11

		P16		3		21		9		14		21		10		14		2		5		0		31		814		24		9

		P17		3		8		8		4		9		8		5		2		10		0		19		274		10		15

		P18		3		7		5		3		8		6		3		11		3		4		23		422		13		17

		P19		3		9		9		6		9		9		6		8		9		12		33		932		14		29

		P20		3		21		14		14		21		15		14		7		13		17		50		2258		29		48

		P21		3		18		20		13		18		21		14		13		8		11		49		2164		41		30

		P22		3		43		28		19		44		28		20		8		10		8		50		2258		48		39

		P23		3		19		35		22		19		36		23		15		9		7		50		2258		27		40

		P24		3		10		42		8		10		42		8		7		9		9		41		1484		34		36

		D0		3		2		10		3		3		11		3		0		6		27		16		184		15		6

		D1		3		5		8		1		6		9		2		0		38		126		16		184		12		13

		D2		3		5		7		3		5		8		3		33		20		116		16		184		12		11

		D3		3		3		7		5		3		8		5		0		17		43		16		184		15		6

		D4		3		3		6		5		4		6		6		52		52		16		16		184		12		13

		D5		3		3		9		3		3		10		4		68		26		94		16		184		12		11

		D6		3		2		9		4		2		10		4		0		24		35		16		184		15		6

		D7		3		4		8		3		5		8		3		36		46		57		16		184		12		13

		D8		3		4		8		3		5		8		4		145		21		0		16		184		12		11

		D9		3		10		16		9		11		16		9		36		15		13		36		1124		35		23

		D10		3		16		11		8		16		12		8		4		18		12		36		1191		33		1

		D11		3		18		10		7		18		10		7		47		19		50		36		1124		35		4

		D12		3		12		16		7		12		16		8		51		24		24		36		1124		35		23

		D13		3		15		11		8		16		12		9		15		19		12		36		1191		33		1

		D14		3		17		11		9		17		12		9		38		17		36		36		1124		35		4

		D15		3		10		14		11		11		14		12		69		36		35		36		1124		35		23

		D16		3		15		10		10		16		11		10		13		35		3		36		1191		33		1

		D17		3		18		11		7		18		11		8		65		38		50		36		1124		35		4

		D18		3		27		22		15		27		22		16		11		17		11		64		3784		52		22

		D19		3		30		14		17		31		14		18		12		17		22		64		3784		58		17

		D20		3		35		10		17		36		10		17		18		27		20		64		3784		57		42

		D21		3		30		22		12		30		23		13		25		28		33		64		3784		52		22

		D22		3		30		16		16		31		17		17		28		26		19		64		3784		58		17

		D23		3		39		10		14		39		11		15		26		32		36		64		3784		57		42

		D24		3		28		17		18		29		18		18		32		50		54		64		3784		52		22

		D25		3		29		15		18		29		16		18		22		31		56		64		3784		58		17

		D26		3		40		8		14		41		9		14		41		28		40		64		3784		57		42

		D27		3		43		33		20		44		34		21		13		15		5		100		9508		91		32

		D28		3		41		33		25		42		34		25		15		35		4		100		9508		94		79

		D29		3		59		17		20		60		18		20		14		24		24		100		9508		82		55

		D30		3		43		29		27		43		29		27		29		22		12		100		9508		91		32

		D31		3		37		40		21		38		40		21		19		32		26		100		9508		94		79

		D32		3		56		13		29		56		13		29		21		25		24		100		9508		82		55

		D33		3		45		34		21		46		34		22		36		32		27		100		9508		91		32

		D34		3		36		34		29		36		35		29		34		39		37		100		9508		94		79

		D35		3		61		18		19		62		19		20		33		39		21		100		9508		82		55

		G0		3		0		1		0		1		1		0		5		3		0		16		184		15		12

		G1		3		0		1		1		1		1		1		1		3		3		16		184		15		12

		G2		3		0		0		1		1		1		1		1		5		3		16		184		15		12

		G3		3		1		2		0		2		2		1		3		3		3		16		184		15		12

		G4		3		2		1		0		2		2		0		3		4		0		16		184		15		12

		G5		3		1		2		0		2		2		1		2		5		3		16		184		15		12

		G6		3		3		1		2		3		2		2		3		4		3		16		184		15		12

		G7		3		2		2		0		3		2		0		4		4		0		16		184		15		12

		G8		3		1		1		2		2		2		2		2		5		3		16		184		15		12

		G9		3		2		2		1		3		2		1		2		4		5		36		1124		35		30

		G10		3		1		4		1		1		5		2		5		3		4		36		1124		35		30

		G11		3		2		3		1		3		4		2		2		4		4		36		1124		35		30

		G12		3		2		4		6		3		5		6		3		4		3		36		1124		35		30

		G13		3		1		6		4		2		7		4		5		3		2		36		1124		35		30

		G14		3		3		7		2		4		7		2		4		3		3		36		1124		35		30

		G15		3		8		6		4		8		6		4		3		2		5		36		1124		35		30

		G16		3		5		7		3		5		7		4		3		2		4		36		1124		35		30

		G17		3		4		10		3		4		10		4		2		3		3		36		1124		35		30

		G18		3		4		6		2		4		7		2		4		4		5		64		3784		63		56

		G19		3		2		8		3		2		8		4		3		3		3		64		3784		63		56

		G20		3		4		4		5		5		5		5		3		3		3		64		3784		63		56

		G21		3		8		9		5		9		10		5		3		3		2		64		3784		63		56

		G22		3		7		9		8		7		9		9		4		3		3		64		3784		63		56

		G23		3		9		10		6		10		11		7		3		4		3		64		3784		63		56

		G24		3		13		14		7		13		15		8		3		3		4		64		3784		63		56

		G25		3		12		12		6		12		12		7		3		3		3		64		3784		63		56

		G26		3		11		12		11		12		12		11		2		3		4		64		3784		63		56

		G27		3		6		10		5		6		11		6		3		3		4		100		9508		99		90

		G28		3		10		9		5		11		9		6		3		3		3		100		9508		99		90

		G29		3		10		7		5		10		8		5		3		3		4		100		9508		99		90

		G30		3		14		14		9		15		14		9		3		3		4		100		9508		99		90

		G31		3		13		17		10		13		17		11		4		3		3		100		9508		99		90

		G32		3		16		18		8		16		18		9		3		3		3		100		9508		99		90

		G33		3		23		23		10		24		23		10		3		4		4		100		9508		99		90

		G34		3		20		21		14		20		22		14		3		3		3		100		9508		99		90

		G35		3		22		24		10		23		24		11		3		3		2		100		9508		99		90

		R0		3		11		4		3		12		4		4		625		678		1121		20		343		12		2

		R1		3		14		3		6		14		4		6		1512		2925		1504		20		308		18		15

		R2		3		9		6		8		9		6		8		385		1695		0		20		308		17		10

		R3		3		16		11		9		17		11		10		1538		543		0		20		308		3		6

		R4		3		17		4		8		18		5		8		352		792		1440		20		308		4		7

		R5		3		23		8		5		23		8		6		620		0		77		30		758		12		28

		R6		3		40		2		15		40		3		15		184		748		2694		30		758		26		15

		R7		3		14		11		10		15		11		10		881		498		1593		30		758		23		11

		R8		3		23		19		13		24		20		13		374		8		322		30		758		11		14

		R9		3		27		13		14		28		14		15		399		641		1002		30		758		4		6

		R10		3		31		15		18		31		16		19		240		0		657		40		1408		12		39

		R11		3		32		8		12		33		8		12		586		0		18		40		1483		1		37

		R12		3		16		15		9		16		16		10		1172		301		0		40		1483		23		1

		R13		3		45		31		27		45		31		28		1167		1543		239		40		1408		39		5

		R14		3		48		28		25		48		28		26		956		107		886		40		1408		4		7

		R15		3		49		26		28		50		27		28		602		496		986		50		2258		12		3

		R16		3		53		9		22		54		9		22		351		1122		941		50		2353		1		25

		R17		3		27		23		16		28		23		16		106		1021		745		50		2353		37		1

		R18		3		35		44		23		35		45		23		185		544		300		50		2258		47		8

		R19		3		48		33		23		48		34		24		374		77		697		50		2258		4		28





Shared_Sets_Sizes

				n-CUARP		CUARP_25		CUARP		CUARP_75		CUARP_100

		G0		1		1		1		1		2

		G1		3		6		6		6		15

		G2		4		6		6		6		8

		G3		14		17		17		17		27

		G4		10		13		13		13		25

		G5		11		14		14		14		30

		G6		23		28		28		34		47

		G7		13		15		17		17		28

		G8		14		14		15		19		31





VNS

				gap		time										Average gap		Average time		gap=0		0<gap<1		1<=gap<3		Worst gap		Max time		relaxed

		AA		0.5		21.3								AA		0.50		21.30		0		1		0		0.50		21.30		1

		AB		0		6.32								AB		0.00		6.32		1		0		0		0.00		6.32		1

		P01		0		0.03								P		0.05		0.44		22		2		0		0.73		1.76		13

		P02		0.73		0.04								D16		0.18		0.06		8		0		1		1.59		0.09		3

		P03		0		0.59								D36		0.10		0.39		8		1		0		0.91		0.60		4

		P04		0		0.09								D64		0.05		1.72		8		1		0		0.43		2.73		4

		P05		0		0.12								D100		0.24		8.24		7		1		1		1.97		11.76		5

		P06		0		0.15								G16		0.00		0.10		9		0		0		0.00		0.23		2

		P07		0.46		0.17								G36		0.11		1.04		8		1		0		0.98		2.34		1

		P08		0		0.09								G64		0.19		4.66		8		0		1		1.70		10.31		5

		P09		0		0.07								G100		0.08		28.19		8		1		0		0.76		32.56		6

		P10		0		0.04								R20		0.10		0.09		4		1		0		0.48		0.12		1

		P11		0		0.01								R30		0.43		0.28		4		0		1		2.14		0.35		1

		P12		0		0.03								R40		0.25		0.57		3		2		0		0.79		0.82		2

		P13		0		0.04								R50		0.42		1.14		3		0		2		2.10		1.28		2

		P14		0		0.31								tot.		0.14		3.80		101		11		6		2.14		32.56		51

		P15		0		0.23

		P16		0		0.35

		P17		0		0.1

		P18		0		0.21

		P19		0		0.39

		P20		0		1.64

		P21		0		1.51

		P22		0		1.76

		P23		0		1.64

		P24		0		0.85

		D0		0		0.09

		D1		0		0.04

		D2		0		0.07

		D3		0		0.04

		D4		0		0.04

		D5		1.59		0.06

		D6		0		0.06

		D7		0		0.06

		D8		0		0.04

		D9		0		0.6

		D10		0		0.25

		D11		0		0.42

		D12		0		0.37

		D13		0		0.29

		D14		0		0.39

		D15		0		0.4

		D16		0.91		0.39

		D17		0		0.42

		D18		0		1.89

		D19		0		0.75

		D20		0.43		2.73

		D21		0		2.67

		D22		0		1.59

		D23		0		1.3

		D24		0		1.3

		D25		0		1.98

		D26		0		1.28

		D27		0		7.81

		D28		1.97		9.56

		D29		0		3.67

		D30		0		10.15

		D31		0		9.54

		D32		0		7.63

		D33		0		4.87

		D34		0		9.2

		D35		0.18		11.76

		G0		0		0.07

		G1		0		0.1

		G2		0		0.12

		G3		0		0.06

		G4		0		0.09

		G5		0		0.15

		G6		0		0.07

		G7		0		0.04

		G8		0		0.23

		G9		0		0.76

		G10		0		0.68

		G11		0		0.64

		G12		0		1.32

		G13		0		1.29

		G14		0		1.25

		G15		0		0.53

		G16		0.98		2.34

		G17		0		0.54

		G18		0		5.2

		G19		0		0.45

		G20		1.7		0.34

		G21		0		3.21

		G22		0		2.16

		G23		0		7.41

		G24		0		5.65

		G25		0		10.31

		G26		0		7.2

		G27		0		27.9

		G28		0		12.39

		G29		0		32.56

		G30		0		9.17

		G31		0.76		18.47

		G32		0		76.32

		G33		0		32.6

		G34		0		19.76

		G35		0		24.5

		R0		0		0.1

		R1		0		0.09

		R2		0		0.12

		R3		0.48		0.09

		R4		0		0.06

		R5		0		0.29

		R6		0		0.29

		R7		2.14		0.35

		R8		0		0.28

		R9		0		0.2

		R10		0		0.54

		R11		0.45		0.82

		R12		0		0.32

		R13		0		0.56

		R14		0.79		0.59

		R15		0		1.26

		R16		0		1.28

		R17		0		0.67

		R18		0		1.23

		R19		2.1		1.25





ALNS

				gap		time										Average gap		Average time		gap=0		0<gap<1		1<=gap<3		Worst gap		Max time

		AA		0.01		46.14								AA		0.01		46.14		0		1		0		0.01		46.14

		AB		0		20.15								AB		0.00		20.15		1		0		0		0.00		20.15

		P01		0		0.01								P		0.00		0.42		24		0		0		0.00		1.75

		P02		0		0.03								D16		0.00		0.04		9		0		0		0.00		0.07

		P03		0		0.57								D36		0.00		0.38		9		0		0		0.00		0.59

		P04		0		0.07								D64		0.00		2.83		9		0		0		0.00		5.28

		P05		0		0.11								D100		0.02		14.25		8		1		0		0.17		18.68

		P06		0		0.14								G16		0.00		0.09		9		0		0		0.00		0.21

		P07		0		0.15								G36		0.00		1.35		9		0		0		0.00		3.31

		P08		0		0.07								G64		0.00		8.45		9		0		0		0.00		13.03

		P09		0		0.06								G100		0.00		66.12		9		0		0		0.00		157.98

		P10		0		0.03								R20		0.00		0.08		5		0		0		0.00		0.11

		P11		0		-0.00								R30		0.00		0.27		5		0		0		0.00		0.34

		P12		0		0.01								R40		0.00		0.55		5		0		0		0.00		0.81

		P13		0		0.03								R50		0.00		1.12		5		0		0		0.00		1.26

		P14		0		0.29								tot.		0.00		7.86		115		3		0		0.17		157.98

		P15		0		0.21

		P16		0		0.34

		P17		0		0.09

		P18		0		0.20

		P19		0		0.37

		P20		0		1.62

		P21		0		1.50

		P22		0		1.75

		P23		0		1.62

		P24		0		0.84

		D0		0		0.07

		D1		0		0.03

		D2		0		0.06

		D3		0		0.03

		D4		0		0.03

		D5		0		0.04

		D6		0		0.04

		D7		0		0.04

		D8		0		0.03

		D9		0		0.59

		D10		0		0.23

		D11		0		0.40

		D12		0		0.36

		D13		0		0.28

		D14		0		0.37

		D15		0		0.39

		D16		0		0.37

		D17		0		0.40

		D18		0		2.67

		D19		0		1.57

		D20		0		3.07

		D21		0		4.06

		D22		0		5.28

		D23		0		1.59

		D24		0		1.59

		D25		0		2.71

		D26		0		2.89

		D27		0		14.00

		D28		0		18.68

		D29		0		11.31

		D30		0		12.31

		D31		0		18.21

		D32		0		12.17

		D33		0		13.21

		D34		0		10.62

		D35		0.17		17.75

		G0		0		0.06

		G1		0		0.09

		G2		0		0.11

		G3		0		0.04

		G4		0		0.07

		G5		0		0.14

		G6		0		0.06

		G7		0		0.03

		G8		0		0.21

		G9		0		0.75

		G10		0		0.67

		G11		0		0.62

		G12		0		1.53

		G13		0		1.90

		G14		0		2.23

		G15		0		0.56

		G16		0		3.31

		G17		0		0.61

		G18		0		10.23

		G19		0		2.23

		G20		0		1.68

		G21		0		10.84

		G22		0		10.78

		G23		0		9.79

		G24		0		9.56

		G25		0		13.03

		G26		0		7.89

		G27		0		71.84

		G28		0		37.17

		G29		0		52.98

		G30		0		30.55

		G31		0		54.95

		G32		0		157.98

		G33		0		58.64

		G34		0		65.85

		G35		0		65.15

		R0		0		0.09

		R1		0		0.07

		R2		0		0.11

		R3		0		0.07

		R4		0		0.04

		R5		0		0.28

		R6		0		0.28

		R7		0		0.34

		R8		0		0.26

		R9		0		0.18

		R10		0		0.53

		R11		0		0.81

		R12		0		0.31

		R13		0		0.54

		R14		0		0.57

		R15		0		1.25

		R16		0		1.26

		R17		0		0.65

		R18		0		1.21

		R19		0		1.23





relax_CUARP

				relax		CUARP		gap								relax		CUARP		gap

		AA		28253		24509		15.2760210535						AA		28253.0		24509.0		15.3

		AB		19226		17911		7.3418569594						AB		19226.0		17911.0		7.3

		P01		66		61		8.1967213115						P		430.0		392.9		15.0

		P02		331		264		25.3787878788						D16		1586.8		1220.9		36.5

		P03		261		212		23.1132075472						D36		2697.1		2460.6		9.6

		P04		175		155		12.9032258065						D64		3799.1		3616.6		6.4

		P05		269		197		36.5482233503						D100		5042.7		4873.2		4.4

		P06		265		198		33.8383838384						G16		16.6		13.0		54.0

		P07		282		269		4.8327137546						G36		55.9		51.0		9.7

		P08		293		293		0						G64		109.3		103.7		8.1

		P09		172		159		8.1761006289						G100		186.9		170.8		13.3

		P10		160		135		18.5185185185						R20		57158.0		53101.8		6.6

		P11		49		39		25.641025641						R30		76009.8		69230.2		10.5

		P12		37		30		23.333333						R40		103006.6		90811.8		14.9

		P13		42		38		10.5263157895						R50		107352.8		96350.4		10.6

		P14		491		437		12.356979405										average		15.9

		P15		720		612		17.6470588235										max		300.0

		P16		373		309		20.71197411										min		0.0

		P17		264		210		25.7142857143

		P18		188		147		27.8911564626

		P19		482		445		8.3146067416

		P20		835		810		3.0864197531

		P21		813		806		0.8684863524

		P22		1655		1579		4.8131728942

		P23		1184		1117		5.9982094897

		P24		912		907		0.5512679162

		D0		923		529		74.4801512287

		D1		1714		1004		70.7171314741

		D2		1783		1186		50.3372681282

		D3		1575		1018		54.7151277014

		D4		1336		1266		5.5292259084

		D5		1782		1440		23.75

		D6		1789		1249		43.2345876701

		D7		1387		1333		4.0510127532

		D8		1992		1963		1.4773306164

		D9		1765		1387		27.2530641673

		D10		912		849		7.4204946996

		D11		2259		2187		3.29218107

		D12		1871		1827		2.4083196497

		D13		2966		2920		1.5753424658

		D14		2929		2834		3.3521524347

		D15		3049		2950		3.3559322034

		D16		3970		3255		21.9662058372

		D17		4553		3936		15.6758130081

		D18		2902		2081		39.4521864488

		D19		2017		2013		0.1987083954

		D20		2084		2037		2.3073146784

		D21		3668		3635		0.9078404402

		D22		3795		3778		0.449973531

		D23		3392		3353		1.1631374888

		D24		5542		4978		11.3298513459

		D25		4971		4971		0

		D26		5821		5703		2.0690864457

		D27		2932		2722		7.7149155033

		D28		4032		3311		21.7758985201

		D29		2665		2655		0.3766478343

		D30		4961		4913		0.9769997965

		D31		5371		5371		0

		D32		4599		4446		3.4412955466

		D33		7370		7198		2.3895526535

		D34		6595		6469		1.9477508116

		D35		6859		6774		1.2547977561

		G0		4		1		300

		G1		8		6		33.3333333333

		G2		6		6		0

		G3		20		17		17.6470588235

		G4		15		13		15.3846153846

		G5		17		14		21.4285714286

		G6		36		28		28.5714285714

		G7		22		17		29.4117647059

		G8		21		15		40

		G9		18		16		12.5

		G10		20		20		0

		G11		32		29		10.3448275862

		G12		59		57		3.5087719298

		G13		57		45		26.6666666667

		G14		62		62		0

		G15		85		85		0

		G16		88		74		18.9189189189

		G17		82		71		15.4929577465

		G18		53		45		17.7777777778

		G19		64		56		14.2857142857

		G20		60		52		15.3846153846

		G21		118		110		7.2727272727

		G22		105		98		7.1428571429

		G23		124		112		10.7142857143

		G24		167		167		0

		G25		138		138		0

		G26		155		155		0

		G27		99		66		50

		G28		109		95		14.7368421053

		G29		96		89		7.8651685393

		G30		164		145		13.1034482759

		G31		180		164		9.756097561

		G32		195		180		8.3333333333

		G33		285		274		4.0145985401

		G34		276		255		8.2352941176

		G35		278		269		3.3457249071

		R0		23758		23322		1.8694794615

		R1		53786		48902		9.9873215819

		R2		35656		34899		2.1691165936

		R3		94119		89678		4.9521621802

		R4		78471		68708		14.2094079292

		R5		45216		40508		11.6223955762

		R6		85249.9999999999		80830		5.4682667326

		R7		66026		55716		18.5045588341

		R8		98529		89924		9.5691917619

		R9		85028		79173		7.3951978579

		R10		79611		72703		9.5016711828

		R11		13616		11690		16.4756201882

		R12		57473		46603		23.3246786688

		R13		204799		165620		23.6559594252

		R14		159534		157443		1.3280996932

		R15		134304		129045		4.0753225619

		R16		30817		29727		3.6667003061

		R17		69120.9999999999		59833		15.5232062574

		R18		147007		127523		15.2788124495

		R19		155515		135624		14.6662832537

						average		15.8673407076

						max		300

						min		0





Large Instances

				relax		VNS		ALNS		gap VNS		gap ALNS		time VNS		time ALNS												depots		R1		R2		R3		S1		S2		S3		pen1		pen2		pen3		nodes		arcs		depot2		depot3

		UR132		36837.80		31210.45		34317.58		15.28		6.84		41.03		710.87										UR132		3		99		63		51		99		64		51		67		81		84		605		363008		171		412

		UR135		77668.09		71965.81		72076.63		7.34		7.20		123.24		1667.08										UR135		3		226		120		113		227		120		114		80		76		76		892		791212		694		750

		UR137		116250.77		106722.02		106873.00		8.20		8.07		187.20		1860.16										UR137		3		245		257		166		245		258		167		72		76		84		980		955508		527		303

		UR145		103217.62		77022.24		83402.15		25.38		19.20		107.33		1766.87										UR145		3		321		89		143		322		89		144		90		77		79		929		858404		613		272

		UR147		165851.00		127517.51		138987.67		23.11		16.20		124.18		1617.68										UR147		3		479		163		221		479		163		222		86		85		85		996		987044		230		607

		UR152		70174.98		61120.14		61123.00		12.90		12.90		76.91		780.88										UR152		3		136		115		87		136		116		87		86		89		92		766		582934		230		144

		UR155		147675.64		93702.82		120653.80		36.55		18.30		167.08		1607.71										UR155		3		372		144		180		372		145		180		93		109		91		975		945758		873		953

		UR157		219689.88		145350.37		189378.30		33.84		13.80		244.45		6777.68										UR157		3		502		272		267		502		272		268		98		91		94		1000		995008		29		923

		UR162		82089.54		78122.38		78122.38		4.83		4.83		122.30		1660.78										UR162		3		211		80		83		211		80		84		99		107		94		802		639202		384		575

		UR165		179281.43		133180.49		135827.67		25.71		24.24		119.96		1186.78										UR165		3		473		128		194		474		128		195		99		95		101		980		955508		853		884

		UR167		262557.10		241090.17		241090.17		8.18		8.18		123.40		6668.68										UR167		3		402		455		322		403		456		322		97		98		97		1000		995008		314		631

		UR532		25372.28		20673.71		20897.47		18.52		17.64		8.89		88.61										UR532		3		51		26		28		51		27		28		108		81		125		298		87322		235		269

		UR535		57781.51		42965.74		45007.31		25.64		22.11		27.14		717.72										UR535		3		150		20		68		151		20		68		104		127		105		458		207482		94		184

		UR537		79640.11		61057.42		62258.93		23.33		21.82		32.29		668.66										UR537		3		208		59		78		209		60		79		111		100		101		493		240592		221		475

		UR542		37908.05		33917.73		33917.73		10.53		10.53		12.95		687.81										UR542		3		78		23		35		79		23		35		125		131		118		343		115942		272		28

		UR545		82106.90		71960.97		71960.97		12.36		12.36		28.86		886.02										UR545		3		168		50		80		169		50		80		127		115		117		476		224204		6		350

		UR547		116002.60		95531.55		95531.55		17.65		17.65		26.83		686.62										UR547		3		205		123		103		206		124		103		117		111		119		498		245522		369		170

		UR552		48516.30		38467.62		40677.28		20.71		16.16		15.91		178.61										UR552		3		93		37		36		94		38		36		135		126		122		388		148612		370		289

		UR555		100007.17		74291.04		76378.30		25.71		23.63		31.36		617.66										UR555		3		140		122		80		140		122		80		141		130		129		490		237658		191		4

		UR557		153951.95		111012.97		113846.27		27.89		26.05		25.74		677.02										UR557		3		215		161		141		215		161		141		142		123		143		498		245522		476		20

		UR562		70210.85		64373.09		64373.09		8.31		8.31		20.44		607.62										UR562		3		88		61		57		88		61		58		139		141		177		416		170984		228		118

		UR565		130740.24		126705.05		126705.05		3.09		3.09		27.61		761.62										UR565		3		178		120		111		178		120		112		138		155		139		496		243544		356		249

		UR567		190843.10		189185.66		189185.66		0.87		0.87		32.76		667.06										UR567		3		290		149		153		290		149		154		146		137		148		499		246514		287		395

		UR732		32375.81		30817.50		30817.50		4.81		4.81		23.40		667.02										UR732		3		68		46		49		69		46		49		88		85		87		452		202052		405		367

		UR735		65795.21		61848.67		61848.67		6.00		6.00		55.69		768.67										UR735		3		163		94		81		163		94		81		81		94		90		662		434942		269		212

		UR737		98644.82		98101.02		98101.02		0.55		0.55		70.20		760.08										UR737		3		195		189		118		195		190		118		87		93		96		744		549824		493		615

		UR742		50898.49		12989.22		13047.13		74.48		74.37		30.58		677.62										UR742		3		106		58		58		107		59		59		102		107		106		538		286762		343		40

		UR745		86062.00		25201.42		29013.36		70.72		66.29		103.58		1678.77										UR745		3		183		124		105		183		124		106		96		103		87		713		504812		15		321

		UR747		143336.66		71184.90		73129.60		50.34		48.98		92.98		867.68										UR747		3		263		219		163		264		219		164		95		101		101		745		551308		292		686

		UR752		61115.70		27676.17		30759.25		54.72		49.67		54.91		781.67										UR752		3		107		85		67		108		85		68		109		108		93		580		333508		571		212

		UR755		121954.64		115211.49		115211.49		5.53		5.53		103.27		1067.67										UR755		3		228		166		121		229		166		121		106		108		103		724		520564		610		688

		UR757		180110.92		137334.58		137334.58		23.75		23.75		77.06		706.78										UR757		3		394		177		178		394		178		178		106		113		104		748		555772		130		315

		UR762		69598.20		51935.02		52902.14		25.38		23.99		48.05		807.86										UR762		3		145		52		74		146		52		75		119		97		116		593		348692		506		542

		UR765		149540.04		114976.54		127846.30		23.11		14.51		72.54		677.08										UR765		3		293		168		142		293		168		143		119		104		113		741		545384		326		537

		UR767		231368.58		201514.57		201514.57		12.90		12.90		82.84		686.68										UR767		3		467		196		233		468		196		233		116		117		111		749		557264		75		608

								average		21.38		18.61		72.66		1248.51

								max		74.48		74.37		244.45		6777.68

								min		0.55		0.55		8.89		88.61
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