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P R E FA C E

The pension system has become more and more complex and

structured all over Europe in the last decades. Because of the fi-

nancial and social crisis, several countries implemented strong

reforms in the state welfare in order to reduce the pension costs

on the state budget balance. Furthermore, they allowed and en-

couraged the establishment of private pension facilities. We

have to consider the three pillars. The first one concerns the

state pension system. The second concerns the relationship be-

tween the employer and the employee. The third pillar consists

in individual investment plans typically issued by insurance

companies.

In general, a private pension fund is an investment fund

which receives periodical contributions from a private investor

and then provides an annuity during the retirement. The main

function of a pension plan is to avoid the risk that the subscriber

might survive his/her savings. Then, a reasonable aim for this

kind of investment would be to guarantee an integration of the

public retirement pension so that the total income before and af-

ter retirement does not differ substantially. To satisfy this target

is crucial to understand the difference between Defined Benefit

Fund (DBF) and Defined Contribution Fund (DCF). The DBFs

are characterized by a mutual structure meaning that the ben-

efit during the retirement is fixed and independent from the

total amount of the contribution accumulated in the fund. This

implies that if the final wealth is not enough to support the

ix
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benefit, the fund draws money from the current contributions

of younger investors. The DCFs establishes the level of the con-

tribution. Then the benefit during retirement depends on the

total accumulated wealth and on some actuarial considerations.

The DCF thus becomes similar to private savings in the sense

that the subscriber bears the risk. A key issue is that there is a

contribution by the employer and an aspect of forced saving.

Italy decided to move the first pillar from the DBF to the

DCF system. The reason is based on the evidence that the DCF

structure is more sustainable considering the increasing life ex-

pectancy perspective even if it usually provides a lower finan-

cial benefit. The second and third pillars instead are historically

based predominantly on DCFs.

In this thesis, we analyze a pension fund from the point

of view of the three main actors involved in it: the pension

plan provider, who decides the tactical allocation of the pen-

sion funds, the fund manager who takes care of the strategical

investment problem, and the individual investor who faces the

problem to allocate his/her savings in a retirement perspective.

All these problems involve the analysis of a long-term choice

and require to take into consideration some elements of uncer-

tainty. Therefore, it is natural to face them using the instru-

ments provided by Stochastic Programming.

In Chapter 1 a theoretical overview of the pension problem is

proposed. In particular, Section 1.1 analyzes the main reasons

which strengthen and highlight the urgency and the complexity

of this issue, while in Sections 1.2 and 1.3 we report the state-

of-the-art literature quoting the milestone works which made

the history of the ALM and of the pension investment field.
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Chapter 2 is dedicated to the stochastic optimization meth-

ods. Section 2.1 focuses on the two-stage and successively on

the multistage stochastic problems giving a few hints about

their formulation and classification. In Section 2.2 the main

scenario generation techniques are listed. Section 2.3 gives an

introduction to the multiple criteria objective formulation, ex-

ploring the ways to make it tractable both in an algebraic and

in a computational point of view. In Section 2.4 the chance

constraint setting is analyzed with particular reference to the

definition of the Value at Risk and the Average Value at Risk

constraints as well as the stochastic dominance constraints.

Chapter 3 briefly focuses on the pension manager problem

which implies the adoption of an Asset and Liability Manage-

ment model for which we propose a general description. More-

over, we propose a portfolio replication pricing approach for

the liability side in case the annuities are inflation linked.

Chapter 4 proposes a stochastic formulation of the problem

of the pension plan provider who has to decide the allocation

guidelines for each pension funds proposed by the pension

plan. In Section 4.1 a statistical approach is introduced in or-

der to analyze the population for whom the pension funds

have been issued. In Section 4.2 we propose a linear stochas-

tic model in order to define the optimal pension funds which

should compose the pension plan.

Chapter 5 deals the individual investment problem in a re-

tirement perspective. In Section 5.1 we propose an extension of

the model introduced in Section 4.2. We add other constraints

to define specific regulatory features and to consider the indi-

vidual investor’s behavior as well as a stochastic dominance

framework which characterizes the model in three different for-
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mulations. Here a single case study is analyzed and the results

according to the three proposed formulations are shown in Sec-

tions 5.3.1, 5.3.2 and 5.3.4.

Chapter 6 summarizes the main conclusions.



1 T H E P E N S I O N P R O B L E M

Pension problems concern a wide part of society. Many of us

rely on the public retirement pension system, others have a spe-

cific pension protection due to their profession. Nevertheless,

because of many welfare state cutbacks, a growing number of

people are aware that pension savings must be increased penal-

izing current consumption and having a great concern about

owns future. Furthermore, the retirement savings have to be

administered adopting typical investment strategies and the

implemented one must consider several features which are usu-

ally ignored in an individual portfolio optimization.

1.1 introduction

World population is getting older. As we observe in Table

1, the average population age has constantly been increasing

through the decades. This evidence is more remarkable in the

developed countries where the average age has increased by

nine years from 1950 to 2010 and in some countries even by

eleven (Italy) or eighteen (Japan) years.

The retirement issue has not always been a problem. Indeed,

until fifty years ago, the working age almost coincided with the

lifetime expectancy: it is not like this any longer. The lifetime

expectancy has prolonged and the wealth conditions have bet-

1



1.1 introduction 2

Region/Country 1950 1970 1990 2000 2010

World 26,88 26,00 27,51 29,09 30,98

Developed countries 30,95 32,72 35,86 37,82 39,81

Less developed countries 24,95 23,47 25,21 26,98 29,04

Japan 26,18 30,97 37,07 40,86 44,34

Germany 34,58 35,70 38,83 40,41 43,04

Italy 31,30 34,21 38,30 41,05 42,93

France 34,81 34,43 36,49 38,26 39,84

UK 34,98 35,48 37,47 38,46 39,57

USA 31,60 31,92 34,76 35,79 37,34

China 26,79 24,16 27,81 30,95 34,69

Table 1: Average age

Source: United Nations - Department of Economic and Social Affairs

tered, but not with the same ratio. This means that the welfare

system can increase the retirement age, but not in the same

measure as the life expectancy grows. However, it is accept-

able to retire at 55 considering to live up to 65, is becomes

hard imagining to to retire at 85 expecting to live up to 95. As

shown in Table 2, the expected life is increasing too and this

means that in the future we must expect a longer period of our

retirement lives. The increasing life expectancy is not a prob-

lem in its own. Indeed, in a mutualistic system in which the

pension savings of the workers succeed in paying the annuity

of the pensioners, a suitable ratio workers-pensioners ensures

a stable sustainability. Derangements arise if the number of

pensioners is not properly balanced by the number of work-

ing people. Some types of work are physically heavier than

others and some people react differently to work efforts, there-

fore, let assume that the average threshold age to retire is 65
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Region 1950 1970 1990 2000 2009

World 45,51 57,93 64,43 66,31 69,14

Developed countries 63,17 70,68 74,03 75,10 77,17

Less developed countries 40,21 54,62 62,27 64,47 67,40

Japan 60,18 72,23 79,02 81,17 82,93

Italy 65,27 71,48 76,86 79,45 81,75

France 66,05 71,81 76,65 78,90 81,17

Germany 66,90 70,88 75,44 77,90 80,05

UK 68,56 71,90 75,59 77,69 79,91

USA 68,00 70,68 75,24 76,77 78,35

China 43.31 63,00 69,45 72,12 74,72

Table 2: Life expectancy

Source: United Nations - Department of Economic and Social Affairs

years. Then, a worrying issue is the growing proportion of the

population older than 65, as shown in Table 3. And in particu-

lar, the reducing ration between the working population (20-65

years) and the non-working population (older than 65 years),

as shown in Table 4. These tables show that in some countries

(Japan, Italy and Germany) more than one person out of five is

already retired and that for each pensioner there are only three

workers. In a mutualistic framework, typical of a Defined Ben-

efit system, this value is unsustainable because each month the

pension savings of three workers are barely enough to sustain

financially the life costs of a pensioner. In a Defined Contribu-

tion structure the issue is not mutualistically relevant but it still

is individually. Indeed, if the pension saving is personal, what

everyone saves in forty working years must be sufficient to pay

others thirty years of life expenses.
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Region 1950 1970 1990 2000 2010

World 5.08 5.36 6.21 6.90 7.67

Developed countries 7.71 9.88 12.54 14.32 16.07

Less developed countries 3.84 3.66 4.48 5.10 5.83

Japan 4,95 7,03 11,95 17,18 22,96

Germany 9,57 13,56 14,99 16,33 20,81

Italy 8,09 11,07 14,93 18,26 20,29

France 11,39 12,87 14,13 16,02 16,80

UK 10,83 13,03 15,70 15,80 16,59

USA 8,26 9,76 12,47 12,36 13,06

China 4,48 3,95 5,78 6,87 8,35

Table 3: Population aged over 65, %

Source: United Nations - Department of Economic and Social Affairs

Region 1950 1970 1990 2000 2010

World 10.05 8.79 8.23 7.78 7.42

Developed countries 7.33 5.62 4.76 4.22 3.82

Less developed countries 12.65 12.01 10.91 10.19 9.59

Japan 9,98 8,53 5,15 3,62 2,57

Germany 6,26 4,15 4,22 3,81 2,91

Italy 6,99 5,16 4,07 3,40 3,00

France 5,13 4,21 4,13 3,64 3,50

UK 5,58 4,30 3,72 3,73 3,59

USA 6,97 5,40 4,71 4,78 4,59

China 11,55 11,32 9,43 8,61 7,85

Table 4: Ratio of population aged 20-65 to population aged over 65

Source: United Nations - Department of Economic and Social Affairs



1.2 pension manager alm problem 5

A major purpose for a pension system should be to offer to

each pensioner a decent and perpetual annuity. The relation be-

tween last salary and retirement annuity amount changes from

country to country and should consider the whole welfare sys-

tem, especially health care costs. In any case, the population

dynamics generate implicitly a risk in everyone’s retirement fu-

ture. Clearly, this risk can be measured, modeled and managed.

Similarly, also the financial risk can be measured, modeled and

managed. It would be shortsighted to think that this problem

concerns only a pension fund provider or a pension fund man-

ager. We believe that everyone must play his/her part, included

the worker who, too often, does not care properly about his/her

retirement issue.1

1.2 pension manager alm problem

Several models have been implemented in order to solve fi-

nancial real life problem. Probably, the first one is BONDS

model proposed by Bradley and Crane (1972)2. With this model

the authors help the bond portfolio manager to take decision in

an uncertain environment, but they do not explore the liabilities

side in depth. Thus, we consider it mainly as an asset model. At

the end of the eighties and the beginning of the nineties, the MI-

DAS model has been developed and several other ALM models

have been proposed, cf. Kusy and Ziemba (1986). In Dempster

and Ireland (1988) we find the description of the first real asset

and liability model focused on the immunization of the liabil-

1 Cf. Schwartz and Ziemba (2007)
2 See also Bradley and Crane (1980).



1.2 pension manager alm problem 6

ity side. The model is formulated in order to be applied to

a real electricity company and to handle its debt management

properly (see also Dempster and Ireland (1989) and Dempster

and Ireland (1991)). One of the most cited is the Russell-Yasuda

Kasai Model described firstly in Cariño et al. (1994) and then an-

alyzed in Cariño and Ziemba (1998a) and Cariño et al. (1998b).

The model is based on a multistage stochastic programming.

The solution of the model is an optimal strategy which defines

risks in a practical operative way. It also considers the complex

Japanese insurance laws in order to produce high returns ade-

quate to pay annual interest on savings-type insurance policies

without sacrificing the aim of maximizing the long-term wealth.

The main features of the model are the following:

• to represent the book and market value goals of the com-

pany’s business coherently,

• to incorporate the regulation,

• to reflect multiple and conflicting targets: maximizing the

profit but still offering a high quality service to the cus-

tomers,

• to reflect the multiperiod nature of the goals and con-

straints,

• to reflect the uncertainty of the financial markets,

• to solve the problem in less than three hours,

• to have a solution believable and understandable by man-

agers.

It is clear that these goals are shared by almost all the pension

fund models developed for insurance companies and banks.
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For this reason the Russell-Yasuda Kasai Model represents a

milestone in the pension ALM field.

In the same years interesting and complete analysis of the

multiperiod stochastic problem applied to ALM problems con-

sidering the fixed income investment has been done by Mulvey

and Zenios.3 Later on, Mulvey’s research on the Tower Perrin

scenario generation system evolved into the well known Towers

Perrin-Tillinghast ALM model (see Mulvey et al. (2000)).

A fundamental model proposed by Consigli and Dempster is

the CALM model.4 It is specifically designed to handle the pen-

sion fund management problem covering a long-term period

and considering as liabilities five different pension contracts. A

similar approach proposed again by Dempster can be found in

Dempster et al. (2003). Another author who proposed innova-

tive and path-breaking solutions is Ziemba who formulates an

optimal planning under uncertainty in Kallberg et al. (1982).

Then, his research5 produced, among others6, the milestone

InnoALM model for the multistage managing of the pension

fund of an electricity company (see Geyer and Ziemba (2008),

Ziemba (2007)). A specific focus for the defined benefit pen-

sion fund can be found in Dert (1998). Pflug and Świetanowski

(1999) pay a particular attention to both the asset and the li-

ability side modeling. Therefore, the suitability of multistage

approach to deal with ALM problems has been proved correct

on multiple occasions during the last twenty years. Neverthe-

3 See e.g. Mulvey (1994b), Mulvey (1989), Mulvey (1994a), Mulvey and Zenios

(1994), Nielsen and Zenios (1996), Zenios (1993), Zenios (1995) and Zenios

et al. (1998).
4 See e.g. Consigli and Dempster (1998b) and Consigli and Dempster (1998a).
5 For an overview refer to Ziemba (2003).
6 Ziemba is one of the author of the Russell-Yasuda Kasai Model, see Cariño

et al. (1994), Cariño and Ziemba (1998a) and Cariño et al. (1998b).
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less, we still need Mulvey et al. (2006) who suggest again a

multiperiod model to increase the understanding of risks and

rewards in a multistage framework for pension plans and other

long-term investors (see also Mulvey et al. (2007) and Mulvey

et al. (2008)). Recent and innovative formulations of the ALM

problem for pension fund are proposed by Consigli in Consigli

and di Tria (2012) and by Consigli and Moriggia in Consigli

et al. (2011) and Consigli and Moriggia (2014).

Each country required an adjustment of a general model in

order to consider the specificity of the country’s regulations.

Some models have been built starting from the country pen-

sion system. Høyland and Wallace (2001a) analyze the Nor-

wegian regulations; Dupačová and Polívka (2009) focus on the

Czech Republic scheme; Hilli et al. (2007) study the case of a

Finnish pension company; Kouwenberg (2001), Bovenberg and

Knaap (2005), Streutker et al. (2007), Haneveld et al. (2009) and

Haneveld et al. (2010) explore the Dutch system; Dondi et al.

(2007) analyze the Swiss setting; in Fabozzi et al. (2005) there

is a comparison among 28 defined benefit pension funds of the

Netherlands, Switzerland, the United Kingdom, and the United

States.

ALM for pension fund must consider the evolution of the as-

set universe according to regulatory updates (e.g. McKendall

et al. (1994), Davis (2000), Gollier (2008) and the books of Guiso

et al. (2002), Hardy (2003) and Broeders et al. (2009)). How-

ever, the fixed income securities are still the widest used asset

class. A particular focus on bond sensitivity can be found in

Bertocchi et al. (2000a), Bertocchi et al. (2000b) and Abaffy et al.
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(2007), while an example of bond portfolio strategy is in Orto-

belli Lozza et al. (2013).7

We cannot forget, among others, the comprehensive collec-

tions of Ziemba and Mulvey (1998) and Zenios and Ziemba

(2006, 2007).

1.3 individual pension problem

The individual asset allocation problem has first been inves-

tigated by Merton (1969, 1971) who introduced the concept of

consumption and optimal investment through a dynamic pro-

gramming approach in order to maximize the utility for a pri-

vate investor in a fixed time horizon. Richard (1975) introduces

the concept of lifetime uncertainty, labor and insured wealth

as further elements to take into account8. Berger and Mulvey

(1998) propose a tool named Home Account Advisor, a mul-

tistage model which optimizes the investor financial objective

considering simultaneously investments, savings and borrow-

ing. The main innovative features of the model which have

become a standard for future works are:

• the stochastic system generates stochastic scenarios for a

long-term run,

7 For a unifying work on bond market refer to Bertocchi et al. (2013)
8 See also Geyer et al. (2009) who replicate Richard’s model by using a mul-

tistage stochastic programming approach and argue that dynamic program-

ming and stochastic linear programming can be combined and integrated

into one SLP formulation.
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• multiobjective preference function for inter temporal trade-

off among savings, consumption and wealth accumula-

tion,

• well defined set of rules for investing, borrowing and in-

come management,

• optimization of the decision rules to recommend an indi-

vidual investment strategy.

Several contributions deal with the individual asset alloca-

tion problem not necessarily in a pension perspective. The

main feature of this class of models is to consider jointly all the

variables which characterize the investor’s investment, i.e. the

salary process, the consumption, the borrowings, etc. See for

example Consiglio et al. (2004, 2007) Consigli (2007), Moriggia

et al. (2013) and Medova et al. (2008). Moreover, institutional in-

vestors usually have only one objective (low risk, high returns,

passive or active strategy, etc.) while individual investors have

more goals, for example to obtain a suitable retirement annu-

ity minimizing the risk. For this reason, often these models

face multiple targets problems. A common approach is to di-

vide the portfolio in sub-portfolios in order to dedicate each

sub-portfolio to each target (e.g. Brunel (2003) and Chhabra

(2005)). More recent works propose a unique model without

sub-portfolios. For example Cai and Ge (2012) consider a loss-

aversion objective which minimizes a loss risk measure and

maximizes the final wealth, having as constraint a minimum

level of wealth in order to maintain the life style. In this way

they also consider dynamically the investment behavior.

Indeed, for individual investor’s strategies, it is imperative

to know the way in which the investor takes a decision (see
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Kahneman and Tversky (1979)). Many works deal with be-

havioral finance and propose models which translate behaviors

into constraints. For example Blake et al. (2013) assume that

under loss-aversion the investor’s strategy is target-driven, i.e.

the risky allocation increases if the accumulating fund is be-

low the target and decreases if it is above. Moreover, if the

fund is sufficiently above the target, the optimal investment

strategy switches to portfolio insurance. The description of the

investors’ investment attitude is not trivial. The authors show

that investors tend to become risk averse when winning and so

they sell winning investments too quickly; on the other hand

they take extra risks when they are making losses. For this

reason the investment strategy is target-driven while the risk

attitude is path-driven.

Lim and Shin (2011) investigate the borrowing constraints

supposing that the private investor has limited opportunities

to borrow in the market and so he/she cannot totally insure

the risk of income fluctuation. Moreover, they suppose that the

labor income is continuous, the disutility comes from labor and

that the immortal agent can decide when to retire.

Munk and Sørensen (2004) propose a model for optimal con-

sumption in an uncertain interest rates environment. The au-

thors characterize the solution to the consumption and invest-

ment problem of a power utility investor in a continuous-time

dynamically complete market with stochastic changes in the

opportunity set. Under stochastic interest rates the investor op-

timally hedges against changes in the term structure of interest

rates by investing in a coupon bond, or portfolio of bonds, with

a payment schedule that equals the forward-expected (i.e. cer-

tainty equivalent) consumption pattern. They found that the
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hedged portfolio is more sensitive to the form of the term struc-

ture than to the dynamics of interest rates. Cairns et al. (2006)

investigate the impact of uncertain interest rates in a private

investor asset allocation problem.

A specific focus on household investment strategies is pro-

posed in Bruhn and Steffensen (2011) where the authors opti-

mize the consumption of the household underlining several dif-

ferences among its members, and lead to closed form solutions

for the optimal control of their investments, for the consump-

tion and for the purchase of a life insurance for each mem-

ber. An overview about householders can be found in Guiso

et al. (2002). Another analysis about the optimal investment-

consumption strategy with mortality risk and environment un-

certainty in a multiperiod framework is discussed in Li et al.

(2008).

In the last decade, many articles have dealt with the private

investor problem keeping in mind a pension perspective.

For individual pension strategies not only do several papers

focus on the accumulation phase but also on the decumulation

phase (e.g. Milevsky and Young (2007), Horneff et al. (2008),

Gerrard et al. (2004, 2006, 2012) and Consigli et al. (2012). In

particular, in Gerrard et al. (2012) the authors formulate and

solve a problem of finding the optimal time of annuitization for

a retiree who has the possibility to choose his/her own invest-

ment and consumption strategy. They formulate the model as a

combined stochastic control and optimal stopping problem. As

a criterion for the optimization they select a loss function that

penalizes both the deviance of the running consumption rate

from a desired consumption rate and the deviance of the final

wealth at the time of the annuitization from a desired target.



1.3 individual pension problem 13

The financial risk is then split into two parts: the investment

risk, during the accumulation phase, and the annuity risk, dur-

ing the retirement, where as annuity risk they consider the risk

that high annuity prices (driven by low bond yields) at retire-

ment can lead to a pension income lower than expected. As

in the ALM for pension fund, in the individual pension plan-

ning is fundamental to take care of the evolution of the avail-

able products which can be used to implement an optimal strat-

egy. For example, Consigli et al. (2012) show an extension of

a typical ALM individual investor model to include a pension

strategy. They investigate a selection of different retirement

products with different risk exposures and financial payoffs. In

particular they peruse three asset classes: pension funds, unit-

linked products and variable life annuities (life insurance life-

case). One of the purpose of the analysis is to explain that a

pension fund is not enough to provide a suitable pension strat-

egy but it is necessary to include also other asset classes. They

focus on the sensitivity of the optimal choice according to male

and female pension coefficients, to an increasing planning hori-

zon, to an objective function based on pension wealth target

and to an increasing inflation in individual consumption.

Several further features of the individual pension problem

have been discussed in the last decade. An individual optimal

asset allocation under a regime switching model is explored in

Cheung and Yang (2007) and Siu (2011). Chen et al. (2006) and

Pliska and Ye (2007) study the adoption of the life insurance

to hedge human capital against death. Yaari (1965) has been

the first author to include an insurance decision in a personal

finance optimization problem. A survey of the individual pen-

sion problem can be found in Bertocchi et al. (2010).



2 S TO C H A S T I C

O P T I M I Z AT I O N

Real life problems are complex. The number of variables, the

structure of the decisional process and the hugeness of the un-

certainty regarding the future state of a system require a suit-

able approach. Quantitative economical and financial issues,

energy production, logistic scheduling are just some examples

of problems which ask mathematical programming for answers.

When the problem consists in the research of an optimal choice

in an uncertain environment the most used approach is the

Stochastic Programming. The different classes of stochastic

problems and their properties are formalized and classified in

Birge and Louveaux (1997, 2011). In this chapter we are going

to describe two general settings of stochastic problems accord-

ing to the formulation proposed in Shapiro et al. (2009): the

two-stage and the multistage formulation and some of their

properties. Moreover, some techniques about the stochasticity

representation are investigated. After that, we are going to de-

fine the multiobjective problems as suggested in Dupačová et al.

(2002) and to introduce the stochastic dominance framework as

investigated in Dupačová and Kopa (2014). In the chance con-

straint section, we are going to face the risk issue. Indeed, in

financial mathematics, one of the main challenges is modeling

and measuring risk. The definition of risk itself has been re-

vised several times.1 Intuitively, uncertainty and risk are asso-

ciatively linked. A financial meaning of risk could correspond

1 Cf. Hanoch and Levy (1969).

14
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to the idea of loss and in general to the idea of shortfall as well.

Our belief is that there is something certain about uncertainty

and, as Pflug and Römisch say, that is: real applications need

to manage risk, risk can only be measured if it is modeled and

can only be managed if it is measured.2

2.1 stochastic problem formulation

Stochastic optimization problems occur in almost all science

areas: finance, engineering, medicine, physics, aeronautics, lo-

gistics3. Whenever someone needs to solve an optimal problem

according to some stochastic conditions, the most used tool is

stochastic optimization. It represents a unifying framework in

which mathematics, statistics and optimization theory work to-

gether. The first models considering a decision and a future

reaction to a stochastic observation appear in Beale (1955) and

in Dantzig (1955). Subsequent analysis, according to the math-

ematical properties of this class of models, was made by Wets

(1974). On the other hand, the class of models which intro-

duces probability in the constrains and not in the future setting

was also developed quite early, mainly by Charnes and Cooper

(1959). Convexity conditions for chance constrained problems

were derived by Prékopa (1971). Since these path-breaking

works, researches started to analyze mathematical properties

and advanced solution techniques more deeply.4 A well known

book which developed and spread out this topic is Birge and

2 Cf. Pflug and Römisch (2007)
3 One of the earliest application includes an airline fleet-assignment model by

Ferguson and Dantzig (1956).
4 For an overview of the literature until the end of nineties see Birge (1997).



2.1 stochastic problem formulation 16

Louveaux (1997)5. Referring to the financial world, one of the

first work which applies the stochastic programming is Shapiro

(1988) who suggests an evolution of the classical immuniza-

tion techniques in a dynamic perspective, see also Hiller and

Shapiro (1989) and Hiller and Eckstein (1993). A recent uni-

fying work is Powell (2014). For an overview of the stochas-

tic modeling for financial application refer to Dupačová et al.

(2002) and to Ziemba and Vickson (1975, 2006).

2.1.1 Two-stage Stochastic Problem

The simplest case of stochastic program refers to a problem in

which we take a decision today and adjust the choice in the fu-

ture after the observation of an uncertain variable. This kind of

formulation is called two-stage stochastic problem. The first stage

decision x must be made before the realization ξ̃ of a stochas-

tic element ξ is known. Typically, ξ affects some constraints of

the model, then we can distinguish between deterministic and

stochastic constraints. When the objective function and all the

constraints are linear, the model assumes the following form

min
x

c>x

s.t. Ax = b,

T(ξ)x = h(ξ),

x > 0

where x ∈ <n, T(ξ) ∈ <r×n, h(ξ) ∈ <r and ξ ∈ Ξ ⊆ <n with Ξ

the support of ξ and P its probability distribution. To deal with

this kind of problem we need a method to measure the error on

5 For a more recent overview of the topic see Kall and Mayer (2005), Shapiro

and Philpott (2007) and Birge and Louveaux (2011).



2.1 stochastic problem formulation 17

the second stage once we know the realization ξ̃. We define the

recourse variable y(ξ̃) ∈ <m and the recurse matrix W ∈ <r×m

to quantify the compensation:

Wy(ξ̃) = h(ξ̃) − T(ξ̃)x

Generally, also W could depend on ξ but we assume that it is

deterministic (fixed recourse problem). Then, we introduce the

vector q(ξ̃) to compute the cost of the compensation and we

formulate the second stage optimization problem in order to

minimize this cost:

min
y

q(ξ̃)>y(ξ̃)

s.t. Wy(ξ̃) = h(ξ̃) − T(ξ̃)x,

y(ξ̃) > 0

The function Q(x, ξ̃) represents the optimal value of the second

stage problem:

Q(x, ξ̃) = min
y

{
q(ξ̃)>y : Wy = h(ξ̃) − T(ξ̃)x, y > 0

}
Finally, we can include this cost function in the first stage ob-

jective function as a penalty element. Of course, me must take

the expectation of Q(x, ξ̃) with respect to ξ:

min
x

c>x + Eξ [Q(x, ξ)]

s.t. Ax = b

Q(x, ξ̃) = min
y

{
q(ξ̃)>y : Wy = h(ξ̃) − T(ξ̃)x, y > 0

}
,

x > 0

This formulation is called Implicit Representation of the stochas-

tic linear program6. Here on, we deal with fixed recourse prob-

lems and the stochasticity arises only from parameters q, T and

6 Cf. Birge and Louveaux (1997, 2011).
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h, even if not explicitly written. The expectation is taken with

respect to the probability distribution of the random variable ξ.

Let us consider that this distribution has finite support. Thus,

ξ can assume a finite number K of realizations called scenarios,

each with a probability pk. Then the expectation assumes the

following form

Eξ [Q(x, ξ)] =
K∑
k=1

pkQ(x, ξk)

For a given x, the expectation Eξ [Q(x, ξ)] is the optimal value

of the second stage problem

min
y1,...,yk

K∑
k=1

pkq>k yk

s.t. Wkyk = hk − Tkx,

yk > 0

The whole two stage problem becomes equivalent to the follow-

ing linear programming problem

min
x,y1,...,yk

c>x +

K∑
k=1

pkq>k yk

s.t. Wkyk = hk − Tkx,

Ax = b

x > 0, yk > 0

According to the exposed formulation, the properties of the

expected recourse cost problem with a discrete distribution of

the stochastic variable derive directly from the properties of

parametric linear programming problems.

2.1.2 Nonanticipativity for two-stage problems

Dealing with two-stage stochastic problems we usually adopt

the scenario formulation considering a finite number K of real-



2.1 stochastic problem formulation 19

izations of the stochastic variable ξk, each with probability pk.

In order to implement the problem in a relatively easy formu-

lation, we habitually structure the code relaxing the here-and-

now decision by replacing the vector x with K vectors xk, one

for each scenario. Therefore, the problem assumes the form

min
x1,...,xKy1,...,yK

c>xk +

K∑
k=1

pkq>k yk

s.t. Wkyk = hk − Tkxk,

Axk = b

xk > 0, yk > 0

Moreover, we could split the problem and solve it for each xk

as follows

min
xky1,...,yk

c>xk +

K∑
k=1

pkq>k yk

s.t. Wkyk = hk − Tkxk,

Axk = b

xk > 0, yk > 0

This formulation is not suitable for solving the whole two-stage

problem because the decision variable xk depends on the real-

ization of the stochastic variable, i.e. on the values of qk, Wk,

hk, Tk. Therefore, we have to fix this distortion introducing ad-

ditional constraints: the nonanticipativity constraints. They can

assume several forms. The most used form is the following

(x1, ..., xK) ∈ L

where L = {x = (x1, ..., xK) : x1 = · · · = xK}.

A second way considers the probability distribution associ-

ated to each scenario by imposing each decision equal to the

expected decision:

xk =
K∑
i=1

pixi
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A further formulation of the nonanticipativity condition con-

sists in a very sparse system which is very convenient for nu-

merical methods and it is composed of the following set of

equations

x1 = x2,

x2 = x3,
...

xK−1 = xK.

2.1.3 Multistage Stochastic Problem

The extension of two-stage stochastic problems to multistage

stochastic problems arises quite naturally. Real life applications

often consider to take a decision, and to revise it, stage by stage,

according to the observation of a stochastic process developing

in the future. Hence, we obtain a decision process adapted to

the realization of the stochastic phenomenon. We denote ξt the

observation of the stochastic variable at time t and ξ[t] its his-

tory up to time t. Therefore, the nonanticipativity of the choice

process means that the decision xt may depend on ξ[t], but not

on future observations. In a generic form we can represent a

T -stage stochastic problem with its nested formulation7:

min
x1∈χ1

f1(x1) + Eξ2

[
inf

x2∈χ2(x1,ξ2)
f2(x2, ξ2)

+ Eξt

[
... + EξT

[
inf

xT∈χT (xT−1,ξT )
fT (xT , ξT )

]]]
where ξ2, ..., ξT is the random process, xt ∈ <nt , t = 1, ..., T are

the decision variables, ft : <nt ×<dt → < are continuous func-

tions and χt : <nt−1 ×<dt → <, t = 2, ..., T are measurable

7 Cf. Shapiro et al. (2009).
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closed values multifunctions. If a problem assumes the follow-

ing form, we define it a multistage linear stochastic problem

min
A1x1=b1

x1>0

c>1 x1 + E

 min
B2x1+A2x2=b2

x2>0

c>2 x2

+ E

... + E

 min
BT xT−1+AT xT=bT

xT>0

c>T xT





where ct, At, Bt and bt for t = 2, ..., T are stochastic depending

on the realization of the random process ξt. The usual way to

approach this problem is with a backward perspective. Let us

start defining the optimal problem on the last stage which is a

simple linear programming problem:

min
xT

c(ξT )>xT

s.t. B(ξT )xT−1 + A(ξT )xT = b(ξT ),

xT > 0

This problem is not deterministic because the earlier decision

vector xT−1 depends on the stochastic variable ξT . The optimal

value is denoted by QT (xT−1, ξT ). Recursively, we can compute

the optimal value of QT−1(xT−2, ξT−1) by solving

min
xT−1

c(ξT−1)>xT−1 + EξT

[
QT (xT−1, ξT )|ξ[T−1]

]
s.t. B(ξT−1)xT−2 + A(ξT−1)xT−1 = b(ξT−1),

xT−1 > 0

Finally, proceeding backward, we have the implicit representa-

tion of the multistage linear stochastic problem

min
x1

c>1 x1 + Eξ2 [Q2(x1, ξ2)]

s.t. A1x1 = b1,

x1 > 0
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So far, the expectation is taken with respect to the distribu-

tion of the stochastic variable without making any assumption

about the distribution but the existence of its expectation. If

we consider that the distribution of the stochastic variable has

finite support, then ξt can assume a finite number K of values

ξkt , each with probability pkt . Then the multistage linear stochas-

tic problem becomes

min
A1x1=b1

x1>0

c>1 x1 +

K∑
k=1

pk2

 min
Bk
2x1+Ak

2x2=bk
2

x2>0

ck>2 x2+

+

K∑
k=1

pk3

... +
K∑
k=1

pkT

 min
Bk
T xT−1+Ak

T xT=bk
T

xT>0

ck>T xT





2.1.4 Nonanticipativity for multistage problems

As done with two-stage stochastic problems, also for mul-

tistage stochastic problems we can relax the choice structure

assuming that for each scenario we can take a particular deci-

sion. Then, the decision process depends on the scenario, i.e.

xk = (xk1 , xk2 , ..., xkT ). Of course the solution of the relaxed prob-

lem is not correct because we allow the decision to depend on

the future values of the stochastic variable:

min
A1xk1=b1

xk1>0

c>1 xk1 +

K∑
k=1

pk2

 min
Bk
2x1+Ak

2xk2=bk
2

xk2>0

ck>2 xk2+

+

K∑
k=1

pk3

... +
K∑
k=1

pkT

 min
Bk
T xkT−1+Ak

T xkT=bk
T

xkT>0

ck>T xkT





To fix the effect of the relaxation we include another constraint

in order to obtain the same value for the decision variables re-
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ferred to the same stage if they originate from the same infor-

mation history. For the first stage decision we have

xk1 = x
l
1, ∀k, l ∈ 1, ...,K

while for 1 < t 6 T

xkt = x
l
t, ∀k, l s.t. ξk[t] = ξ

l
[t]

The sparse matrix representation depends on the branching

structure of the problem. Let us consider a simple four-stage

problem with binomial structure of the stochastic process. The

scenario tree assumes the following form

and it is clearly composed of eight scenarios (cf. next section).

Thus, its nonanticipativity matrix includes the following equa-

tions

first stage

x11 = x21, x21 = x31, x31 = x41, x41 = x51, x51 = x61, x61 = x71, x71 = x81,

second stage

x12 = x22, x22 = x32, x32 = x42, x52 = x62, x62 = x72, x72 = x82,

third stage

x13 = x22, x33 = x43, x53 = x63, x73 = x83,

while on the fourth stage we do not need to impose any con-

straints because any decision variable refers to a particular node
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and no choice variable shares the same information up to its

node with another one.

2.1.5 Tree Structure Notation

The classical structure used to represent the evolution of the

stochastic processes which characterize the problem is the tree

structure. In the following example we assume that the time

direction is from left to right.

Each point represents a particular time and place in the stochas-

tic space and it is called node. The time instant of the node is

called stage. In general, in each node we observe the realization

of the stochastic variable. Then, we must define if we just ac-

count the observation or if we take a decision according to it.

The way in which the tree spreads over the stages is basically

defined by the number of children generated by each node. The

structure can be irregular and difficult to describe, or it could

be regular if the nodes of each stage have the same number of

children. In this case the tree structure is called branching and it
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represents precisely the number of children that each node has

in each stage. In the following tree the branching is 3-2-3 and

the nodes at the third stage are highlighted in red.

3 2 3

The points on the last stage of the tree are called leaves (square

points), while the point on the first stage which contains the

deterministic information available up to now is called root of

the tree (star point). The line connecting a couple of consecutive

nodes is the period in which the realization of the uncertainty

takes place. We remark in red the branching of the second

period.
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The scenario is the path that connects the root with a partic-

ular leaf and every scenario contains only one node for each

stage.

2.2 scenario generation

Real world complexity manifests continuously, while the de-

cisions we have to make are frequently discrete or even boolean.

Discrete decisions, e.g. to switch on/off a plant, are often re-

laxed to be linear because of computational limits to solve large

scale integer problems. On the other hand, the continuity issue

is related to the impossibility to represent numerically the con-

tinuous behavior of a stochastic variable and then, always, a

discrete representation via scenarios is needed. Therefore, a

suitable scenario generation is a key element for a reasonable

definition of a stochastic problem. Hypothesis on the distri-

bution, correlation of the stochastic processes, cardinality of

stages, structure of the branching, etc., make the generation the-
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oretically and computationally very challenging, see Dupačová

et al. (2009). Hence, theorems and numerical algorithms are

required to handle this issue.

Scenario generation techniques can be used in all those fields

which need to manage uncertainty, such as: investment strat-

egy evaluation8, portfolio immunization9, energy production10,

logistics problems11, option and insurance products pricing, etc.

In general, a scenario generation model deals with three data

sources that are: historical data, simulation and experts opin-

ion. For financial applications is relatively easy to collect histor-

ical data, while for energy and logistic application a simulation

method based on a theoretical model proposed by the literature

or by experts is often the best choice. On the other hand, the

experts opinion can be directly translated in a set of scenario

describing the uncertain future.

Independently from the chosen scenario generation method,

we expect that the algorithm influences the solution as less as

possible. Indeed, the optimal choice must be related only to

the stochastic structure of the problem and it should be inde-

pendent from the way we use to represent the stochastic frame-

work, otherwise, we would obtain a algorithm-dependent de-

cision and not a stochastic-dependent decision. Moreover, the

solution must converge to the true optimum value as the num-

ber of scenario increases and, in the meanwhile, the stochastic

representation must be as good as possible for a given number

of scenarios.

8 Cf. Ziemba and Ziemba (2007).
9 Cf. Hiller and Schaack (1990) and Dembo (1991).

10 Cf. Greenhall (2013) and Dembo (1991).
11 Cf. Powell and Topaloglu (2003).
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Several methods have been proposed in the literature to han-

dle the scenario generation. We propose an overview of the

four most used methods.

Sample Average Approximation

The Sample Average Approximation (SAA) method was pro-

posed in Kleywegt et al. (2002) to solve stochastic problems of

the form

min
x∈χ

g(x) = EP[G(x, ξ)] (1)

where ξ is the random variable with probability distribution P,

χ is a finite set and G is a real valued function. The authors

suggest to implement their method when the expected valued

function is difficult to compute or to write in closed form, when

G(x, ξ) is easily computable and when the size of the feasible

set grows exponentially with the number of variables. The basic

idea is to generate a relatively small random sample ξ and solve

the problem. Then the procedure is repeated N times and we

take the expected value of the resulting values. We obtain the

sample average approximation by

ĝN(x) =
1

N

N∑
j=1

G(x, ξj)

and then solve the problem

min
x∈χ

ĝN(x) (2)

Observe that E[ĝN(x)] = g(x) and that the solutions of (1) and

(2) converge for N→∞.12

12 For more detail about properties and convergence refer to Kleywegt et al.

(2002) and Ahmed and Shapiro (2002); for applications with chance con-

straints refer to Pagnoncelli et al. (2009) and Luedtke and Ahmed (2008).
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Optimal discretization

The optimal discretization method was proposed in Pflug

(2001). It is mainly based on the concept of distance between

probability distributions defined as

dH(P, P̃) = sup
{∣∣∣∣∫ h(w)dP(w) − ∫ h(w)dP̃(w)∣∣∣∣ : h ∈ H}

where H is a class of functions. Pflug proposes several func-

tions to compute the distance measure, the two main functions

are the Kantorovich distance:

d1(P, P̃) = sup
{∫
hdP−

∫
hdP̃ : |h(u) − h(v)| 6 ||u− v||

}
and the Wasserstein distance:

d(P, P̃) = sup
{∫
f(w)dP(w) −

∫
f(w)dP̃(w) : L1(f) 6 1

}
where

L1(f) = inf{L : |f(u) − f(v)| 6 L|u− v|,∀u, v}

Then, for a given distribution P the optimal discretization method

consists in finding the mass point of the distribution P̃ such that

a specific distance is minimized. Using this method, the whole

trajectories are generated at once and the scenario set is opti-

mal in a specific sense. This algorithm can be extended for a

multistage tree generation using a nested distance. Several ex-

amples can be found for financial applications13 and for energy

problems14. This algorithm is nowadays improved thanks to

the research of Pflug and Pichler.15

13 Cf. Hochreiter and Pflug (2007).
14 Cf. Hochreiter et al. (2006).
15 Cf. Pflug and Pichler (2011) and the overview of Pflug and Pichler (2014).
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Moment matching

The moment matching method has its roots in several stud-

ies.16 The method has been finally formalized for a scenario

generation suitable for stochastic problems in Høyland and Wal-

lace (2001b) and Høyland et al. (2003). This approach is the

most reliable one in case we have a limited knowledge of the

real distribution of the stochastic variables and the available

information is restricted to the distribution moments. On the

other hand, in case we know the entire distribution, using this

method we would lose information. Then, the approach con-

sists in build a discrete distribution satisfying those properties.

Moreover, the moment matching method allows the construc-

tion of multistage trees with multivariate distributions.

Path-based methods

These methods assume that the stochastic processes are de-

scribed by a set of stochastic differential equations and thus it

is possible to generate paths starting from a given root. Clearly,

the result of this approach is not a tree but a set of paths, often

called fan. Therefore, it is necessary somehow to cluster or to

bucket the paths in order to generate values for each node of

the tree.17

The last proposed method needs a clustering in order to pro-

duce a tree. We want to remark that the clustering/bucketing

approach must not be confused with the reduction issue. The

reduction takes place if the produced tree is very bushy and

16 Cf. Vale and Maurelli (1983), Smith (1993), Lurie and Goldberg (1998) and

Lyhagen (2001).
17 Cf. Dupačová et al. (2000).
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computationally tough to handle. Then, we should reduce the

cardinality of the scenarios (or, better, the number of nodes in

each stage) but meanwhile preserve the information within the

tree. Scenario reduction methods are proposed in Dupačová

et al. (2003) and Heitsch and Römisch (2003). The approach

could be forward or backward looking and can be applied to

single scenarios or to scenarios subsets. The triple crucial aim of

these methods is to define which nodes are close to each other

in some sense, to reduce them in a single node, to redistribute

the probability in a reasonable way among the remaining nodes

of the stage.

Specific scenario generation models for ALM problems have

been proposed during the last twenty years. A dedicated ap-

proach for ALM for pension fund can be found in Boender

(1997) where a model for the Netherlands is developed.18 An

intensive study has been proposed by Mulvey in order to gener-

ate a suitable scenario setting for the Towers Perrin, see Mulvey

(1996) and Mulvey and Thorlacius (1998). More recent studies

for ALM scenario generation are to be found in Kouwenberg

(2001).

Finally we remark the importance of testing the whatever

chosen scenario generation method in order to analyze the suit-

ability of the scenarios to the problem we are dealing with. A

thorough analysis of such topic has been done by Dupačová

in several works. In particular, the relation between the data

and the structure of the scenarios is found in Dupačová (1996),

Bertocchi et al. (2000b) and Dupačová and Bertocchi (2001) and

the optimal solution sensitivity to the scenario structure is stud-

ied in Dupačová et al. (1998) and Dupačová (1999). A specific

18 Cf. the application in Boender et al. (1997).
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discussion would be required in order to introduce the contami-

nation technique which is widely used to stress the solution. The

method proposes to introduce some noise in the stochastic vari-

ables distribution via another distribution which contaminates

the original one. The issue is challenging and promising and it

is currently studied by Dupačová and Kopa.19

2.3 multiple criteria

An economic decision must be taken considering several cri-

teria, such as the maximization of the net gain, the minimiza-

tion of the costs, the achievement of some economic targets.

Often, the whole problem is constituted by conflicting goals.

Different targets may regard different time horizons. Typically,

financial choices involve return and risk and it is well known

that in an efficient market riskier positions correspond to lower

returns and vice versa. Problems which consider multiple aims

are called multi-objective programming. In this section we refer

to Dupačová et al. (2002) to introduce suitable methods to deal

with such class of problems.

In general, we consider as a multi-objective problem the mini-

mization of a multifunction f(x) consisting of two or more func-

tions fk(x) : <n → < on an acceptance set χ, i.e.

min f(x) on χ (3)

An ideal solution of such problem is defined by

x̃ ∈
K⋂
k=1

argmin
x∈χ

fk(x)

19 Cf. Dupačová and Kopa (2012, 2014).
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Clearly, it is very rare to find an ideal solution for the whole

problem, then we define a feasible solution x̂ as efficient solu-

tion if there is no other element x ∈ χ for which f(x) 6 f(x̂)

and f(x) 6= f(x̂). Multi-objective programming aims at locating

efficient solutions through various formulations.

Method 1

Let us consider a continuous function h : <K → < non de-

creasing in its arguments. Then at least one solution belonging

to

χh = argmin
x∈χ

h(f1(x), ..., fK(x)) (4)

is an efficient solution for the multi-objective problem. In par-

ticular if h is increasing then all optimal solutions of (4) are

efficient solutions for (3). A widely used choice of h is a lin-

ear and positive combination of the functions fk(x). Then, (4)

becomes

χh = argmin
x∈χ

K∑
k=1

tkfk(x) (5)

It is possible to prove that if tk > 0 and (5) consists in a unique

solution, then this solution is an efficient solution for (3). If

fk(x) are convex and χ is compact and convex, for any efficient

solution x̂ of (3), there exists a set of tk > 0 such that x̂ is

an optimal solution for (5). Moreover, if fk(x) are linear and

χ is a polyhedral set, then the previous statement becomes an

if and only if. The adoption of a linear combination implies

that the magnitude of the final value of each fk is somehow

predictable and then it is possible to use tk to weigh fk and in

the meanwhile rescale them making the quantities comparable.

In case of a very strong mismatch between the shape feature of

the functions, h should be a composition of rescaling functions
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(e.g. logarithm, exponential, power) and a linear combination

might not be suitable anymore.

Method 2 - The ε-Constrained Approach

Select one objective function, for example f1 and a threshold

vector ε ∈ <K−1 and solve the classical optimization problem

min
x∈χ

f1(x) subject to fk(x) 6 εk,k = 2, ...,K (6)

If there exists a unique solution x̄ of (6), then x̄ is also an ef-

ficient solution for (3). On the other hand, for every efficient

solution x̃ of (3), there exists a vector ε ∈ <K−1 such that x̃ is

an optimal solution for (3). This method is reasonable if it is

possible to associate to each fk a specific εk in an adequate way.

Moreover, it is possible to calibrate the values of εk and test

the problem sensitivity in order to build an handleable but still

reliable model.

Method 3

It is possible to mix Methods 1 and 2 choosing a set of func-

tions to be included in the objective and the remaining set to be

considered as constrained functions. This choice depends on

the features of the problem. Often, for some functions a satis-

factory level or an acceptance threshold is known and then the

choice is easier. The problem assumes the following form

min
x∈χ

K0∑
k=1

tkfk(x) subject to fk(x) 6 εk, k = K0 + 1, ...,K (7)

Method 4 - The Goal Programming Approach

In this method, the main idea is to get previously a vector

of optimal values minimizing each single function, i.e. f∗k =
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minx∈χ fk(x),k = 1, ...,K and then find the solution which is as

close as possible to this vector solving the following problem

min
x∈χ

||T(f∗ − f(x))||p (8)

assuming a specific weight matrix T = diag{t1, ..., tK}, tk > 0. It

is possible to prove that if x̄ is an optimal solution of (8) then it

is an efficient solution for (3). Moreover, for p =∞, at least one

solution of the minimax problem

min
x∈χ

max
k
tk|(f

∗
k − fk(x))| (9)

is an efficient solution for (3).

A classical multiple criteria example is the Markowitz invest-

ment model. This model finds out a portfolio for a rational

investor who prefers lower risks to higher ones and larger re-

turns to smaller ones. Let us assume to have xi, i = 1, ...,n asset

fractions, each of them with return ri and characterized by a co-

variance matrix V = [cov(ri, rj), i, j = 1, ...,n], then the portfolio

return is given by

r>x

while the portfolio variance, assumed to be the risk measure, is

computed as

x>Vx

Then, each of the mean-variance efficient portfolio can be ob-

tained by solving one of the following problems (10), (11), (12)

and (13).

The objective function can express jointly the maximization

or the portfolio return and the minimization of the portfolio

risk thanks to a linear combination weighed by the value of a

coefficient λ which measures the investor’s risk aversion:

max
x∈χ

λr>x −
1

2
x>Vx (10)
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where χ is the set of all feasible portfolios for which short sell-

ing is not allowed, i.e. χ = {x|xi > 0,
∑n
i=1 xi = 1}.

Alternatively, we can move the return function as constraint

if we know a minimal acceptable return level r̄:

min
x∈χ

x>Vx subject to r>x > r̄ (11)

Similarly, the problem can be formulated by maximizing only

the portfolio return and by imposing a risk upper bound:

max
x∈χ

r>x subject to x>Vx 6 σ̄2 (12)

Lastly, we can introduce another well known aggregating

function in portfolio decision problems, i.e. h(r>x, x>Vx) =

r>x√
x>Vx

. Hence, we obtain the Sharpe ratio maximization prob-

lem

max
x∈χ

r>x√
x>Vx

(13)

Further evolutions of the portfolio management suggest the

introduction of more complex and suitable performance mea-

sures, but still the multiple criteria problem is an important

issue to deal with. Mainly, because of the aim to stay in a con-

vex environment from the point of view both of the adopted

objective function and of the feasible region described by the

constraints. Several paths have been explored in order to de-

fine such risk measures and the most modern applications ap-

ply the quantiles analysis of the return distribution. In some

cases this approach leads to the evaluation of the portfolio risk

considering the loss which can occur at a fixed confidence level.

Therefore, it is necessary to introduce the concept and the prop-

erties of a specific set of constraints which require to be satis-

fied only at a desired probability threshold, the so called chance

constraints.
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2.4 chance constraints

In a stochastic constraints setting, especially when the stochas-

tic support is very large, the request that all the constraints

must be satisfied for every possible realization of the stochastic

variable ξ might be too strict. A simple form for a stochastic

problem which requires that each constraint is fulfilled for each

realization of ξ is the following

min c(x)

s.t. gj(x, ξ) 6 0, j ∈ J,

x ∈ χ

where χ ⊂ <n is a nonempty set, c : <n → <,gj : <n×<s → <

and ξ ∈ Ξ ⊆ <s is an s-dimensional random vector which

induces a probability measure Pξ on the support set Ξ. In order

to avoid some very hard constraints it is possible to introduce

the expected value. The problem assumes the following form

min c(x)

s.t. E[gj(x, ξ)] 6 0, j ∈ J,

x ∈ χ

On the other hand, if the reliability of the solution is a funda-

mental issue, the expected value might not be enough to ex-

press the real attitude adverse to undesirable events not con-

sidering the shape of the whole distribution of ξ. Therefore, it

makes sense to accept that the constraints hold for a subset of
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the random support with a fixed confidence level, i.e. with at

least a desired probability p:

min c(x)

s.t. P{gj(x, ξ) 6 0, j ∈ J} > p,

x ∈ χ

Hence, the problem requires that the event A(x) = {gj(x, ξ) 6

0, j ∈ J} has a probability p, i.e. P{A(x)} = p, with respect to the

probability distribution Pξ. The constraint

P{gj(x, ξ) 6 0, j ∈ J} > p

is called a joint probabilistic constraint, while constraints such as

P{gj(x, ξ) 6 0} > pj, j ∈ J,pj ∈ [0, 1]

are called individual probabilistic constraints. This topic has been

widely investigated from a theoretical point of view and adopted

for applications, in particular in energy and finance fields.20 A

unifying overview can be found in Prékopa (2003). Some recent

results are Henrion and Strugarek (2008), van Ackooij and Hen-

rion (2014), Henrion et al. (2013), Henrion (2007), van Ackooij

et al. (2011, 2014) and Fabian and Veszprémi (2007).

Consider again the investment problem. In (12) we describe

a general portfolio optimization considering the return and the

risk jointly. We assume that the risk is appropriately repre-

sented by the variance of the distribution. This hypothesis can

be true if we consider the historical information as the best fu-

ture forecast. A stochastic framework introduces the idea that

20 One of the first application to pension plan management is Brockett et al.

(1993), a specific focus to pension fund is proposed in Dert (1995) and an

application to a Dutch pension fund is in Haneveld et al. (2010).
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the returns future distributions are random and the history can

help in the characterization of such distributions but not en-

tirely. Assuming to have uncertain yields, i.e. ri depends on

the realization of ξ, we could still adopt the variance as risk

measure, but it would be more consistent to consider as risk

the event of losing money and not just to stay far from the

mean. Therefore, we can reformulate the problem as a stochas-

tic optimization with a probabilistic constraint

max E

[
n∑
i=1

ri(ξ)xi

]

s.t. P

{
n∑
i=1

ri(ξ)xi > r̄

}
> p,

x ∈ χ

The level of r̄ is typically a negative value, i.e. the maximum po-

tential loss we do not want to overstep, and p is the confidence

probability usually greater than 95%. This means, for example

with r̄ = −0.1 and p = 0.97, that we allow the final wealth to

lose more than 10% only in 3% of the cases, or that we expect to

have a return grater than -10% with a probability of 97%. Such

kind of probabilistic constraint, the widest used risk measure

in the financial sphere, corresponds to the α-quantile and it is

called value at risk, V@Rα.

Let us now consider a random variable X, representing for

example the investment final return given by ri(ξ)xi, and a

random variable Y which is the random yield of a benchmark.

Considering their cumulative distribution functions FX(·) and

FY(·), we can show that infinitely many individual probabilis-

tic constraints appear naturally interpretable as stochastic order

dominance constraints.21 Stochastic dominance is a stochastic

21 Cf. the overview of Levy (2006).
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ordering which provides a partial order. Instead of focusing

only on a set of moments of the distributions, the stochastic

dominance criteria involves the whole distributions shape. Fur-

thermore, they reflect the investor’s preferences features.

We define that X dominates Y in the first order if

FX(η) 6 FY(η),∀η ∈ <

which is a probabilistic constraint. The first order stochastic

dominance assumes non-satiable investor’s preferences, as men-

tioned in Kopa and Post (2009). We can define the cumulative

of the cumulative distribution function as

F
(2)
X (η) =

∫η
−∞ FX(α)dα = E [(η−X)+]

Thus, we define that X dominates Y in the second order if

F
(2)
X (η) 6 F(2)Y (η),∀η ∈ <

which is

E [(η−X)+] 6 E [(η− Y)+] , ∀η ∈ <

The second order stochastic dominance assumes non-satiation

and risk aversion for the investor’s preferences considering the

entire distribution, see Kopa and Post (2015). The application

in a financial problem is evident when we want to link the ran-

dom realization of the optimal portfolio with the value of a

benchmark and we assume that the risk arises when the po-

sition goes below the benchmark value.22 Therefore, if we in-

troduce the first order stochastic dominance, the optimization

problem becomes

max E

[
n∑
i=1

ri(ξ)xi

]
s.t. Fri(ξ)xi(η) 6 FY(η),∀η ∈ <

x ∈ χ
22 Cf. Diamond and Stiglitz (1974).
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where the set χ corresponds again to the set of all feasible port-

folios when short sales are not allowed, i.e.

χ =

{
x|xi > 0,

n∑
i=1

xi = 1

}

Similarly, the introduction of the second order stochastic domi-

nance leads to the following formulation

max E

[
n∑
i=1

ri(ξ)xi

]
s.t. F

(2)
ri(ξ)xi

(η) 6 F(2)Y (η), ∀η ∈ <

x ∈ χ

If the random space of the realizations of ξ is finite and if the

realizations are equiprobable, then both the first and the second

order stochastic dominance constraints can be formulated with

a vector representation as proposed in Kuosmanen (2004). Post

and Kopa (2013) develop a linear formulation of general N-th

order stochastic dominance criteria for discrete probability dis-

tributions. A second order stochastic dominance constraint on

the portfolio return represents a constraint on the shortfall func-

tion and can be viewed as a continuum of the Average Value at

Risk constraint (AV@R). In the particular case of a constant Y

we would obtain the classical AV@R constraint.

Clearly, the AV@Rα can be derived by the V@Rα. For a given

cumulative probability distribution function G, the value at risk

is defined as

V@Rα(X) = G−1
X (α), 0 < α < 1

In the literature, according to the considered field, it is possi-

ble to have V@Rα = −G−1
α and the confidence level α could be

interpreted as 1 − α. Therefore, a correct specification of the
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value at risk we are referring to is needed. A simple modifica-

tion of the risk measure which includes the expected value of

the distribution is the value at risk deviation defined as

V@RDα(X) = E[X] − V@Rα(X), 0 < α < 1.

The V@Rα fulfills several important properties: translation in-

variance, isotonicity with respect to the first order stochastic

dominance, positive homogeneity, comonotone additivity. While

some other crucial properties, as the convexity, do not hold.

Nevertheless, it is a simple and meaningful measure used to

identify the maximum loss or the minimum gain that can oc-

cur with a given probability α. In case of neither smooth nor

plain distribution the information about the loss tail must be

much more complete and the V@Rα becomes less reliable. The

average value at risk, AV@Rα, fulfills this request giving the

average value of the tail beyond the V@Rα threshold. In the

literature it is also called conditional value at risk, CV@Rα, un-

derlining the conditioned distribution of the tail. If the support

of X is continuous, the AV@Rα is defined as

AV@Rα(X) =
1

α

∫α
0
G−1
X (u)du, 0 < α < 1

while, if the support of X is finite and then it assumes values

Xs, s = 1, ...,S, the AV@Rα corresponds to the optimal objective

value of the following linear problem as formulated in Rock-

afellar and Uryasev (2000, 2002)

AV@Rα(X) = max

{
a−

1

α

S∑
s=1

(zs · ps) : −a+Xs + zs > 0, zs > 0

}

Similarly to the value at risk deviation, the average value at risk

deviation is given by

AV@RDα(X) = E[X] −AV@Rα(X), 0 < α < 1.
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The AV@Rα has several properties: translation invariance, pos-

itive homogeneity, concavity, isotonicity with respect to the sec-

ond order stochastic dominance, strictness, Lipschitz continuity,

comonotone additivity, convex composition. For an overview

of the topic and a comparison of the statistical and mathemat-

ical properties between the V@Rα and the AV@Rα refer to the

unifying study made in Pflug (2000), Pflug and Römisch (2007)

and Gaivoronski and Pflug (2005). This property set makes the

AV@Rα very suitable to deal with stochastic financial problem

represented with a discrete tree. In fact, we typically want to

reach a wealth target and then care about a risk measure able to

capture the whole distribution of the tree leaves wealth. Recent

studies involve complex scenario generation structures which

produce a non smooth distribution of the final wealth. Then,

the AV@Rα represents a good answer to such issue. Several

applications which consider the AV@Rα as risk measure have

been proposed. Among them, we suggest: an optimal mul-

ticurrency asset allocation done in Topaloglou et al. (2002), a

pension fund ALM management optimization proposed in Bo-

gentoft et al. (2001), an individual pension plan asset optimiza-

tion developed in Kilianová and Pflug (2009).



3 P E N S I O N M A N A G E R A L M

P R O B L E M

The main goal of a pension fund manager is sustainability.

Very rarely a pension fund represents a gain source for the pen-

sion plan sponsor. Clearly, the investors have to pay fees to the

fund. These costs constitute the fund income, but the pension

fund should not be managed in a profit oriented way. Indeed,

the ALM ensures that the fund assets are and will be able to pay

back the annuities to the pensioners. The correct evaluation of

the liability actual value is fundamental in order to guarantee

a proper funding ratio of the pension fund. The ALM prob-

lem consists in an investment portfolio problem which takes all

internal and regulatory constraints into account and relies on

a market-based valuation approach in order to guarantee the

long term sustainability. In this chapter we outline the main

fundamental features of a general ALM problem applied to a

defined benefit pension fund in a stochastic optimization frame-

work. Then, we propose a liability side pricing based on a port-

folio replication approach.

3.1 model survey

In this framework, a multistage stochastic model is a suitable

approach considering as stochastic both the assets and the lia-

bilities processes. Moreover, in defined benefit pension funds,

44



3.1 model survey 45

risk management involves the measurement and assessment of

pension fund risks and the design, revision and monitoring

of the fund’s parameters (contributions, benefits, and invest-

ments). The main risks that defined benefit pension funds are

exposed to are: investment, inflation, and longevity risk. We an-

alyze a multicriteria objective model as suggested in Consigli

et al. (2011). The long term horizon is a crucial feature of a pen-

sion fund ALM model. We assume a final target after twenty

years, as well as three intermediate targets after one year, three

years and five years respectively. Nevertheless, we consider the

existing liability information which has a perspective of eighty

years because of the future annuity that will be paid to each

active member of the fund who has just started to work, assum-

ing forty years of contribution and forty retirement years. The

pension fund population could be divided into several classes.

We adopt three different classes according to the status of the

member:

• paying member, who is still paying the contribution to the

fund;

• pending member, who terminated the contributions and

is waiting for receiving the annuity;

• pensioner, who is receiving the annuity.

Paying and pending members could be subdivided according

to the year in which they will become pensioners in order to

consider different features in terms of annuity and indexation.

Therefore, the liability structure depends on the overall pension

fund membership structure, on the considered age distribution

of paying members, on the categories of paying members, and

on the structure of pending and pensioner members. A fair
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actual value of the liability is needed to evaluate the funding

gap and the funding ratio of the fund which typically repre-

sent a target of the management. Moreover, we evaluate the

perspective net payments the fund will pay to the pensioners.

Depending on the scheme features, such cash flows may be

reevaluated with specific indexes (e.g. inflation) for each mem-

bers’ category.

The asset universe should consider a much more detailed

fragmentation than the pension fund provider universe which

considers only macro asset classes. In particular, we can iden-

tify as asset classes:

• cash;

• treasury and corporate bonds (for different maturity bas-

kets);

• treasury inflation protected securities (for different matu-

rity baskets);

• private equity;

• public equity;

• defensive and cyclical infrastructure;

• real estate;

• renewable.

Each class could be divided according to the rating level or

to the country segmentation. The more the asset universe is

populated, the more flexible will be the optimization, but, on

the other hand, the more difficult will be the tractability of the

stochastic problem and of the fund management itself. The as-

set model includes the specification of the asset return model
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for long-term scenario forecasting, the estimation model and all

the functionalities needed to generate, from relevant data histo-

ries, scenarios for the coefficients to be included in the decision

problem. The tree representation of the asset classes returns re-

quires specific forecast models where the usual stochastic pro-

cesses are not suitable. Moreover, each asset class has some

characteristic features, as dividend or coupon payments, decay

factors, inflation indexation, etc., which have to be considered

directly in the constraints formulation. The asset universe can

include also derivative contracts, e.g. interest rate swaps and

inflation swaps.

In general, the model structure follows the major ALM for-

mulations proposed in the literature in terms of cash balance

constraints, duration mismatch evaluation, investment risk cap-

ital allocation, turnover and liquidity constraints. The main

innovation of the model is to consider the expiring asset and

the coupon payments which can occur also in an intra-period

instant. Especially in a long term scheduling, to consider each

time period as decisional can make the problem impossible to

handle in a computational sense, even if linear. Therefore, we

assume to have non-decisional intra-periods in which we eval-

uate the coupon payments and the liability net payments and

we compute the resulting net cash flow that will be included

in the cash balance of the next decisional stage. Adopting this

setting it is possible to stay closer to the real features of the

problem and still have an handleable formulation. Moreover,

in the intra-period stages, it is possible to evaluate the target

variables even if the decision variables are not defined, for in-

stance if they depend on the risk allocation of the portfolio or

on the mismatch between cash account and net payments.
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The target variables regards:

• the mismatch between liquidity and net payments (T1);

• a risk exposure measure (T2) which includes both the du-

ration mismatch between asset and liability and a mea-

sure of the market risk associated to the portfolio compo-

sition;

• a return measure (T3);

• the funding ratio of the pension fund given by the assets

fair value over the actual value of the future liabilities (T4).

The objective function is multicriteria and it is formulated as a

linear combination between expected values of the target vari-

ables and expected shortfall of each variables with the respec-

tive target. Moreover, to each variable we assign a specific

weight, again as a linear combination. Therefore, the objective

assumes the following form

min

[
α ·

4∑
k=1

λkE
[
Tktk

]
+ (1−α) ·

4∑
k=1

λkE
[
T̃ktk − T

k
tk
|Tktk 6 T̃ktk

]]

with
∑4
k=1 λk = 1. It is possible to have jointly minimizing

and maximizing variables, and the model user is free to set

arbitrarily the stage where each target variable plays a role.

3.2 liability pricing model

In this section, we provide a simple description of the em-

ployed liability pricing model for the Defined Benefit Obliga-

tion (DBO) estimation. The liability model can be developed un-

der alternative assumptions on the adopted indexation scheme.
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We consider a case of inflation adjustment. The pension fund al-

ways knows the future net pension payments over a long-term

horizon, depending on the retirement of current employees as

defined in the pension agreement. Since these payments are

inflation linked and the known amount is nominal we need to

construct a replication portfolio. A sequence of inflation ad-

justed pension payments can be replicated with an appropri-

ate portfolio of discount bonds and options. Within a twenty

year horizon problem we need to compute the evolution of the

Pension Funds liability - specifically its Defined Benefit Obli-

gation (DBO) - as discounted values of inflation adjusted pen-

sion payments. At year zero, the DBO will thus reflect the

discounted value of pension payments from year one to the far

future. We may assume that, due to discounting and progres-

sive reduction of passive members, a truncation year will be

considered. Assuming to trace pension payments up to fifty

years and a unique indexation scheme (e.g. inflation based),

the replicating portfolio should include discount bonds matur-

ing at t = 1, 2, 3, ..., 50 years and carrying a nominal value equal

to the payment of pensions in those years. Further, we assume

that the pensioners benefit from an indexation scheme which

includes a cap and a floor set of rates. In the case of inflation

adjustment, in each year, pensions are revalued according to

the occurred inflation but with a maximum possible revalua-

tion - the cap rate - and also with a protection of minimum

revaluation - the floor rate. From the perspective of portfolio

replication not only should we then consider a set of discount

bonds maturing in the years t = 1, 2, ..., 50 but also, for each

year, we should consider a set of options, caps and floors, also

maturing in those years. At each time point the replication port-
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folio will evolve so to span the entire set of residual maturities

and discarding the liabilities already matured.

Let us consider an underlying interest rate process consistent

with the log-normal assumptions at the grounds of Black’s pric-

ing model for interest-rate sensitive instruments. In which case

considering a nominal liability of l(t) at time t, the fair value

of a caplet contract is

Caplet(t, T) = l(T) ·
[
e−rR(t,T)·(T−t)N(dC1 )

−(1+ kC)T−te−rN(t,T)·(T−t)N(dC2 )
]

dC1 =
ln
(

1
(1+kC)T−t

)
+
(
rN(t, T) − rR(t, T) + σ2

2

)
(T − t)

σ
√
T − t

dC2 = dC1 − σ
√
T − t

where rR(t, T) is the real spot interest rate at t for payments at

T , rN(t, T) is the corresponding spot curve, σ is the volatility of

the inflation process (here assumed to be constant), while kC is

the cap level expressed on annual basis and compounded over

T − t.

Similarly, for the floorlet contract we have

Floorlet(t, T) = l(T) ·
[
−e−rR(t,T)·(T−t)N(−dF1)

+(1+ kF)T−te−rN(t,T)·(T−t)N(dF2)
]

dF1 =
ln
(

1
(1+kF)T−t

)
+
(
rN(t, T) − rR(t, T) + σ2

2

)
(T − t)

σ
√
T − t

dF2 = d
F
1 − σ

√
T − t

where kF is the floor level expressed in annual basis and com-

pounded over T − t.
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Finally, the computation of the zero coupon bond (ZCB) at

time t for the payments at T follows the equation

ZCB(t, T) = liab(T) · (1+ rR(t, T))−(T−t)

Then the replicating portfolio at time t is given by the following

formula

M∑
T=t+1

ZCB(t, T) −Caplet(t, T) + Floorlet(t, T)

where we assume to have information about the pension net

payments until the year M.

A correct pricing of the liability side is a fundamental matter

for a pension fund in order not to run into an underfunded

balance. That is true for any pension fund, in particular for

defined benefit ones.



4 P E N S I O N P L A N S P O N S O R

P R O B L E M

In general, a private pension fund is an investment fund

which receives periodical contributions from the private investor

and provides an annuity during the retirement. The main func-

tion of a pension plan is to help the subscribers survive their

savings. Then, a reasonable aim for this kind of investment

would be to guarantee an integration of the public retirement

pension such that the total income before and after the retire-

ment does not vary relevantly. Typically, the pension plan is

composed of pension funds which differ sufficiently from each

other in order to let the investors choose the optimal pension

perspective investment among a well diversified asset universe.

Often, such pension funds are issued following some standard

investment allocations: a guaranteed capital, a low risk profile,

an high yield investment, etc. The competition among the pri-

vate pension plan sponsors is becoming stronger and stronger.

They all would like to offer suitable and reliable pension funds

for their contributors. This means that the offer could be some-

how standard for huge providers, but for small and medium

ones the pension funds composition should be defined accord-

ing to the needs of future subscribers. The case of pension plans

issued only for some workers categories or for the employees

of a single company is a typical situation in which a policy de-

cision following a rigorous statistical analysis of the members

is required. For a given pension plan members population, our

goal is to identify the best pension funds that should be issued,

52
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i.e. their optimal asset allocations. The project consists of two

steps. The former is a precise statistical analysis of a database

containing the subscribers of the fund. The aim of this prelim-

inary study is to cluster the population and identify a set of

representative members. Thus, we assume that the optimal in-

vestment portfolio for each of these representatives will define

each pension fund of the pension plan. Therefore, the second

step consists in the formulation and implementation of a multi-

stage stochastic program (MSP) in order to define the optimal

asset allocation for each representative member.

The statistical analysis of the first step is briefly investigated

in Section 4.1. In Section 4.2 the second step explores the mod-

elization of the MSP.

4.1 first step - population analysis

The population analysis consists in a statistical description of

a dataset. The dataset we are considering has 5577 individuals.

We assume they belong to an homogeneous population and

represent the active population of the pension plan, i.e. those

who are currently contributing to the pension fund. The fo-

cus of the study is twofold: give to the pension plan sponsor a

complete and rigorous view of the actual fund participants and

investigate the most characterizing features in order to have a

reliable starting point for the sequent clusterization. The anal-

ized members’ features are:

• age and remaining working life

• gender
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• accumulated wealth

• average annual contribution

• percentage of the salary chosen for contribution

• diversification attitude

• withdraw and switch behavior

The age analysis uses as input data the year when each mem-

ber joined the fund. For the considered dataset the result shows

a uniform distribution in the last decades. The male and female

cardinality is almost equal. The accumulated wealth analysis

highlights a huge variety starting from the younger employees

with almost null wealth to the top managers positions which

create a heavy right tail. The mean value is 70,000 euros, the

standard deviation is 46,000 euros. To analyze better the ac-

cumulation process, we introduce a contribution ratio given by

the accumulated wealth per year passed in the fund. The contri-

bution ratio distribution is highly concentrated between 3,000

euros and 6,000 euros per year.

A particular focus is dedicated to the diversification choice.

Up to now, the fund is composed of seven pension funds and

we analyze the number of positions opened for each pension

funds and for each member. A first analysis investigates the fa-

vorite funds, a second one shows the individual inclination to

invest simultaneously in more than one fund, i.e. to adopt for

the pension perspective savings the same diversification strate-

gies that are usually performed for investment portfolios.

The withdraw decision is studied both in terms of frequency

and in terms of quantity. In our dataset, according to the pen-

sion plan regulation, the minimum number of years between
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the entering date and the time of the first withdraw is eight.

Considering the calendar year in which each member required

the withdraw, it is clear that he/she uses this option either be-

cause the regulatory eight years have expired or due to the

2008/2014 financial crisis. The average amount withdrawn de-

pends on the age of the members: as far as the older ones

are concerned they withdraw 45% of the amount, while the

younger ones withdraw 62% of the amount. However, only the

22% of the pension fund population requires a withdraw.

The switch option among the pension funds is not widely

used. Only the 4% of the pension plan population moved the

accumulated wealth at least once. In those cases, the switch

occurs typically from risky funds to low risk ones.

From a cross analysis, we observe a strong correlation be-

tween the switch and the diversification attitude. The partici-

pants who require a switch are experiencing a diversified port-

folio. Generally, we can distinguish between members with

static and concentrated portfolios and members implementing

dynamic and diversified strategies.

The strategies choice study brings out also the risk attitude

of the pension plan members. The lowest risk pension funds

represent the main investment. Only a few contributors switch

to riskier positions due mainly to the following two reasons:

the perspective of a long investment window, if they are young

members, or a natural attitude for risk which leads them to

invest the savings in order to seek for some extra gain during

the market high volatility periods.

Thanks to the previous results, we start the clustering analy-

sis having as main characterizing features three elements: the

accumulated wealth, the portfolio risk level, the remaining work-
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ing years. The aim of the clusterization is to extract a set of rep-

resentative members among the whole population. For each

of them, we propose an optimal portfolio allocation consider-

ing the investors’ features and the stochastic environment. The

pension plan sponsor wants to offer the best pension funds to

the active members. Then, the optimal obtained portfolios (one

for each representative) will be suggested to the pension plan

sponsor to become the pension funds that should be offered.

Clearly, the cardinality of the representative members set and

the number of pension funds will coincide. Therefore, the clus-

ter cardinality must be decided by the provider, taking into

account the suitability for the members and the manageability

for the pension fund manager.

In order to create the cluster sets, we adopt the k-means

Lloyd’s algorithm using the cityblock distance which measures

the distance between two elements xi, xj having p attributes as

d(xi, xj) =
∑p
k=1 |x

k
i − x

k
j |, i.e., each centroids is a component-

wise median of the points in that cluster, see Lloyd (1982) and

Kaufman and Rousseeuw (2009). As already mentioned, the

number of clusters is a sponsor’s decision. The choice should

consider the representativeness of the clusters. Therefore, we

propose the cluster analysis assuming sequentially three, four

and five clusters, i.e., three, four and five centroids (the repre-

sentative members) and three, four and five optimal portfolios

(the pension funds) respectively.

4.1.1 Clusterization Results

The results of the cluster analysis are reported in Table 5

in which for each representative we propose the wealth, the
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risk/reward profile and the expected remaining working years.

In order to identify the best cluster cardinality choice we de-

wealth in e risk profile years to retirement

Three clusters

Repres. 1 105,000 very low 13

Repres. 2 43,000 very low 28

Repres. 3 41,000 high 32

Four clusters

Repres. 1 104,000 very low 13

Repres. 2 43,000 very low 27

Repres. 3 66,000 medium 28

Repres. 4 38,000 high 33

Five clusters

Repres. 1 132,000 very low 9

Repres. 2 78,500 very low 17

Repres. 3 66,800 medium 28

Repres. 4 35,000 very low 31

Repres. 5 38,000 high 33

Table 5: Centroids features for each cluster cardinality choice

velop a silhouette analysis. The silhouette value s(xi) describes

how each point i is similar to the points in its own cluster and

it is defined as

s(xi) =
m(xi) − a(xi)

max[m(xi),a(xi)]

where a(xi) is the average distance from the i−th point to the

points in the same cluster and m(xi) is the minimum average

distance from the i−th point to the points in different clusters,

see Kaufman and Rousseeuw (2009). As distance measure we
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adopt the cityblock distance. The silhouette analysis of the clus-

ter cases produces: Figure 1 for three clusters, Figure 2 for four

clusters, Figure 3 for five clusters. In Rousseeuw (1987) the sil-

Figure 1: Silhouette of the three clusters case

Figure 2: Silhouette of the four clusters case

houette analysis is used to compare different choices of cluster

cardinality. A negative silhouette value for some elements of

the population suggests a non efficient choice of the cluster car-

dinality. Moreover, de Amorim and Hennig (2015) suggests to

use the silhouette index defined as 1/N
∑N
i=1 s(xi) to quantify

the validity of the whole clustering. In our case, we compute
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Figure 3: Silhouette of the five clusters case

the values reported in Table 6. The results highlight the quality

cluster cardinality silhouette index

3 0.4818

4 0.5145

5 0.4946

Table 6: Silhouette index value for each cluster cardinality choice

of the four-cluster choice. Therefore, we go on studying only

the four-cluster case and its representatives reported in Table 5.

Figure 4 graphically represents the clusters (differentiated by

the color) and the centroids (the black dots) of the four-cluster

case. The x-axis represents the wealth, the y-axis the remaining

working years and the z-axis the risk profile. The values are

normalized.
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Figure 4: Cluster analysis of the four clusters case

4.2 second step - pension plans

optimal allocation

Given the representative employees defined in the previous

section, each pension funds allocation will coincide with each

representative member optimal portfolio allocation. Therefore,

we need a model to describe the pension problem for a private

investor. The aim of the procedure is to define the optimal as-

set allocation for an employee in a retirement perspective. We

have to deal with two main features: a long-term horizon with a

fixed and given sequence of portfolio rebalancing stages and an

uncertainty environment regarding the assets returns and the

salary evolution. These elements lead naturally to a multistage

stochastic approach, see Dupačová et al. (2002). The considered

framework is a defined contribution pension fund. The distinc-

tion between defined contribution and defined benefit pension
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funds, especially in terms of securities included, is described

and analyzed in Consiglio et al. (2015).

4.2.1 Multistage Stochastic Model

We suppose that the decision times correspond to all the

stages but the last one in which we just compute the accumu-

lated final wealth. The stochasticity arises from two sources:

the assets returns and the salary process. The investment uni-

verse is composed of n assets which are the benchmarks that

the fund manager is able to replicate. Thus, ρi,t,s are the as-

set returns where the index i = 1, ...,n represents the assets,

t = t0, ..., T represents the stages and s = 1, ...,S represents the

scenarios; ρsalt,s is the salary growth rate. Both processes are

modeled as Geometric Brownian motions. In particular, the

salary stochasticity is crucial in the definition of a consistent

model for the private investor optimal allocation. Several pen-

sion fund ALM models use the salary modeling also to con-

sider the stochastic contributions which are the inflows gener-

ated by the members of the fund. A special focus on the im-

pact of salary uncertainty in a private asset allocation model

is proposed in Cairns et al. (2006). Considering the approach

suggested in Cairns et al. (2006) we assume that the salary is

correlated with the riskiest assets. Then, having the mean µi

and the standard deviation σi for each process and a correla-

tion matrix corri,j, we assume the following structure for the

assets price evolution

dPit = µiP
i
tdt+ σiP

i
tdW

i
t, ∀i, ∀t

E(dWi
t,dW

j
t) = corri,jdt ∀i, ∀j, ∀t
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where Wt is the Wiener process.

The stochasticity is represented by a discrete scenario tree

composed of S paths and characterized by a regular branching.

We define the non negative decision variables: ci,t,s, r+i,t,s and

r−i,t,s. Respectively, ci,t,s expresses the level of contribution we

want to invest in the asset i, on the stage t, in the scenario s,

while the rebalancing variables r+i,t,s and r−i,t,s allow the redistri-

bution of the accumulated wealth among assets, indeed, they

quantify respectively how much we buy and how much we sell

of each asset at the beginning of each stage, i.e. before adding

the contribution.

Finally, we can list the set of constraints in order to express

the regulatory bounds and the cash balance conditions.

Salary process

Fixing the initial level salt0,s equal to the actual salary of the

employee, we can easily describe the salary process

salt,s = salt−1,s · (1+ ρsalt,s ), ∀t > t0,∀s. (14)

Maximum contribution level

In each stage the employee does not want to invest more than

a certain maximum percentage of his/her salary. Therefore, we

introduce the parameter propensity to save (ps) and the parame-

ter employer contribution (e) which represents a supplementary

contribution added from the employer as a percentage of the

employee’s contribution. Moreover, the time structure of the

problem defines the stages every ∆t years, but in real life the

contribution is added in the pension fund yearly (sometimes

also monthly). Therefore, considering the growth rate of the

salary constant over each period, we compute the actual value

of a growing annuity paying one euro for ∆t years multiplying
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by ∆t. In particular, we assume that the contribution would

be paid at the beginning of each year. Thus, the constraint de-

scribing the maximum contribution level assumes the following

form
n∑
i=1

ci,t,s 6 salt,s · ps · (1+ e) ·∆t, ∀t, ∀s. (15)

Portfolio Balance

We define the set of constraints that describes the portfolio al-

location, the rebalancing decisions and the wealth account. For

this purpose, we introduce the holding variable hi,t,s which rep-

resents the amount we hold in each asset, and the total wealth

variable wt,s. Moreover, we define the initial portfolio vector hi,0

in case the investor already has a position in the pension fund

and the initial cash parameter w0 if the investor wants to add

a further amount of money, e.g. a shift from another pension

fund and/or an initial extra contribution:

hi,t0,s = hi,0 + r
+
i,t0,s − r

−
i,t0,s + ci,t0,s, ∀i,∀s. (16)

n∑
i=1

r+i,t0,s =

n∑
i=1

r−i,t0,s +w0, ∀s. (17)

r−i,t0,s 6 hi,0, ∀i, ∀s. (18)
n∑
i=1

r−i,t0,s 6 θ
n∑
i=1

hi,0, ∀s. (19)

hi,t,s = hi,t−1,s · (1+ρi,t,s)+ r+i,t,s− r
−
i,t,s+ ci,t,s, ∀i, t0 < t < T ,∀s.

(20)
n∑
i=1

r+i,t,s =

n∑
i=1

r−i,t,s, t0 < t < T ,∀s. (21)

r−i,t,s 6 hi,t−1,s · (1+ ρi,t,s), ∀i, t0 < t < T ,∀s. (22)
n∑
i=1

r−i,t,s 6 θ ·wt,s, t0 < t < T , ∀s. (23)

wt,s =

n∑
i=1

(hi,t−1,s · (1+ ρi,t,s)), t > t0,∀s. (24)
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Equation (16) defines the holding in the first stage for each as-

set as the sum of the initial portfolio allocation, hi,0, and of the

buying/selling of the initial portfolio and of the initial wealth,

r+i,t0,s and r−i,t0,s, and of the first period contribution, ci,t0,s. The

initial portfolio reallocation is defined using equations (18) and

(19), while equation (17) defines the buying as reallocation of

the initial portfolio plus the allocation of the initial wealth. As

far as the other stages are concerned, equation (20) defines the

holding as capitalization of the previous holding for each as-

set plus the reallocation of the accumulated wealth and plus

the contribution. The portfolio reallocation follows equations

(21), (22) and (23). Equations (19) and (23) define the turnover

constraints through the parameter θ which states that it is not

possible to sell more than a fixed percentage θ of the portfolio.

Finally, equation (24) computes the accumulated wealth in each

stage for each scenario. According to this wealth variable we

build the target constraints and the objective function. More-

over, we want to include a risk exposure constraint. In order

to keep the problem linear, we assume that each asset has an

associated risk coefficient, rci, and we set a risk level R that the

portfolio cannot exceed in average:

n∑
i=1

hi,t,s · rci 6 R ·
n∑
i=1

hi,t,s, ∀t,∀s. (25)

Since we use a stochastic tree structure, we include the set of

all the nonanticipativity constraints on the decision variables.

As suggested in Kilianová and Pflug (2009), we define a mul-

ticriteria objective function including two wealth targets and

the Average Value at Risk Deviation (AV@RD) as risk measure,

where AV@RD(x) = E(x)−AV@R(x). In particular, we include

the multicriteria objective as suggested in Dupačová et al. (2002)
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and considering the investor risk adverse, the optimal portfolio

allocation depends on the minimization of the AV@RD of the

final wealth. A wealth target can be chosen in an intermediate

stage, Πtint
, and in the final stage, ΠT , according to investor’s

policy. Adopting the ε-Constrained Approach the objective as-

sumes the following form

min
S∑
s=1

(wT ,s · ps) − a+
1

α

S∑
s=1

(zs · ps) (26)

s.t. −a+wT ,s + zs > 0, zs > 0 (27)
S∑
s=1

wtint,s · ps > Πtint
(28)

S∑
s=1

wT ,s · ps > ΠT (29)

(14) − (25) (30)

In (26) we minimize the AV@RD on the last stage, i.e. on the

final wealth, for a given confidence level α. According to Rock-

afellar and Uryasev (2000, 2002), the discrete definition of the

AV@RD needs the inequality (27) in order to define jointly the

variables a and zs. The wealth target constraints (28) and (29)

force the average of the accumulated wealth on the intermedi-

ate stage and on the final stage to be greater than or equal to

a fixed amount Πtint
and ΠT , respectively. For this purpose,

the definition of a benchmark wealth is needed. We assume

that the returns ρbt,s of the benchmark wealth are strictly linked

with the evolution of the returns of the assets. Indeed, we

define the benchmark returns equal to the average1 of the as-

sets returns which singly satisfy the risk exposure constraint,

i.e. I = {i|rci 6 R}, then ρbt,s = 1/|I|
∑
i∈I ρi,t,s, ∀t, ∀s. Then,

assuming that the contribution touches the bound in (15), i.e.

1 Cf. DeMiguel et al. (2009).
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Cbt,s = salt,s · ps · (1+ e) · ∆t, ∀t, ∀s, and starting from the ini-

tial wealth, i.e. wbt0,s =
∑n
i=1 hi,0 +w0, ∀s, the evolution of the

benchmark wealth is

hbt0,s = w
b
t0,s +C

b
t0,s ∀s (31)

hbt,s = h
b
t−1,s · (1+ ρbt,s) +Cbt0,s t > t0, ∀s (32)

wbt,s = h
b
t−1,s · (1+ ρbt,s) t > t0, ∀s. (33)

Then, the values of the two targets become as follows

Πtint
= E[wbtint,s] (34)

ΠT = E[wbT ,s] (35)

The whole described formulation is a linear programming prob-

lem.

4.2.2 Problem Settings

The proposed model is applied to the four representative

members defined with the cluster analysis in order to identify

the four optimal pension funds that should be issued by the

pension plan sponsor. Let us assume that the pension fund

manager is able to replicate artificially six different securities

which are the investment universe we deal with. The pension

funds are a combination of these assets: a guaranteed capital

security, two low risk, a medium risk and two high risk assets.

Their risky level is described by the associated risk coefficient

rci = [0 1 2 3 7 8]
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We assume that the returns processes for the assets and the

salary (∗) follow a multivariate normal distribution character-

ized by the following statistics

µ =



0%

1.5%

2.0%

4.5%

5.0%

5.5%

1.0%∗


σ =



0%

1.5%

2.0%

9.5%

10.0%

10.5%

1.0%∗



corr =



1 0 0 0 0 0 0∗

0 1 0.9 −0.1 −0.1 −0.1 0∗

0 0.9 1 0 0 0 0∗

0 −0.1 0 1 0.9 0.8 0.9∗

0 −0.1 0 0.9 1 0.9 0.9∗

0 −0.1 0 0.8 0.9 1 0.9∗

0∗ 0∗ 0∗ 0.9∗ 0.9∗ 0.9∗ 1∗


In (15) the propensity to save parameter ps is 7%, while the

employer contribution e is 50%. Moreover, we let the solver free

to find the best here-and-now solution by setting null the initial

portfolio, i.e. hi,0 = 0 ∀i, and accumulating the whole wealth

as extra initial contribution w0. The initial salary is settled for

each representative to 15,000 euros, i.e. salt0,s = 15000. This

choice is driven by the evidence of an highly dishomogeneous

salary level of the clusters elements, thus, we adopt as fixed

initial salary the average net salary of the whole population.

In the multicriteria objective function (26) the Average Value

at Risk Deviation (AV@RD) is computed considering a confi-

dence level α = 5%. The intermediate wealth target constraint

(28) is always defined at the second stage. The stochastic tree
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grows on six stages and the tree branching is 8-5-5-5-5, then

5,000 scenarios. We propose different time lengths between

stages according to the representative member we are going

to consider.

4.2.3 Results

The first representative participant is characterized by an ini-

tial wealth of 104,000 euros, w0 = 104000, by a very low risk

profile, R = 1, and by thirteen remaining working years, then

we define that the time length between the six stages is 2, 2,

2, 2 and 5 years respectively. The optimal dynamic allocation

is shown in Figure 5, where the white asset is the guaranteed

capital security, and then the asset risk level is identified by the

color: from dark green the less risky, to dark red the riskiest.

Figure 5: Allocation percentage - First representative member

The dynamic evolution of the asset allocation highlights a slow

shift to a less risky portfolio in the final stage. The main used

asset is the low risk one with a partial constant diversification
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adopting some more risky assets. The allocation in the guaran-

teed capital asset is remarkable in the here-and-now solution

and increases through the stages reaching more than the 50%

of the portfolio. The evolution of the wealth through the stages

is shown in Figure 6.

Figure 6: Wealth evolution - First representative member

The wealth slightly increases principally because of the investor’s

contribution and residually because of the financial returns.

The allocation is mainly determined by the relatively short hori-

zon and the very low risk/reward profile of the first represen-

tative. The final wealth distribution and its statistics are shown

in Figure 7.
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mean 143,930

median 143,150

st. dev. 3,578

V@R0.05 140,850

AV@R0.05 140,310

kurtosis 5.17

skewness 0.94

Figure 7: Final wealth distribution and related statistics, First repre-

sentative member

The distribution is highly concentrated around the final wealth

target. Indeed, we observe that mean, median, V@R and AV@R

are very close each other. This feature express both a very safe

profile in terms of risk and a remarkable results in terms of

AV@RD reduction.

The second representative member is characterized by an ini-

tial wealth of 43,000 euros, w0 = 43000, by a very low risk

profile, R = 1, and by twenty seven remaining working years,

then we define that the time length between the six stages is

5, 5, 5, 5 and 7 years respectively. The optimal dynamic alloca-

tion is shown in Figure 8. The optimal allocation is very similar

to the first representative one. The whole dynamic brings the

investor’s choice from an initial prudential allocation to a very

low risk portfolio. With respect to the previous representative

the here-and-now solution is slightly more risky with a lower

allocation in the guaranteed capital asset. The evolution of the

wealth is shown in Figure 9.
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Figure 8: Allocation percentage - Second representative member

Figure 9: Wealth evolution - Second representative member

The wealth dynamic seems to be more rewarding than the first

representative. The reason of this feature is mainly the longer

horizon which allows an higher contribution level and increases

the financial effect despite of the low risk profile. The final

wealth distribution and its statistics are in Figure 10.
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mean 114,180

median 113,370

st. dev. 2,933

V@R0.05 111,930

AV@R0.05 111,640

kurtosis 6.97

skewness 1.21

Figure 10: Final wealth distribution and related statistics, Second rep-

resentative member

As the previous representative, the distribution is concentrated

on the final target and the three location values are very close

each other. The standard deviation is even less than the first rep-

resentative and also the AV@RD is lower as well. The risk/re-

ward investor’s profile is fully respected in terms both of allo-

cation and of final wealth distribution.

The third representative member is characterized by an initial

wealth of 66,000 euros, w0 = 66000, by a medium risk profile,

R = 3, and by twenty eight remaining working years, then we

define that the time length between the six stages is 5, 5, 5,

6 and 7 years respectively. The optimal dynamic allocation is

shown in Figure 11.
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Figure 11: Allocation percentage - Third representative member

The allocation is significantly more risky than the two previous

representative. The guaranteed capital asset enters the port-

folio only from the second stage. The here-and-now solution

involves only risky assets. The dynamic moves again the port-

folio on a more safe allocation getting close to the final stage.

The riskiest asset is included within the allocation from the sec-

ond stage and its allocation remains almost constant till the

end. The most used asset is the medium risk/reward one which

fully reflects the investor’s profile. The evolution of the wealth

through the stages is shown in Figure 12.
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Figure 12: Wealth evolution - Third representative member

The wealth evolution benefits from both a long-term horizon

and a quite risky allocation. The allocation in all the assets

is almost constant in terms of wealth. It seems that the new

contribution and the financial gains are used to increase the

proportion of guaranteed capital asset stage by stage. The final

wealth distribution and its statistics are shown in Figure 13.

mean 181,940

median 179,920

st. dev. 8,833

V@R0.05 174,210

AV@R0.05 173,560

kurtosis 6.01

skewness 1.30

Figure 13: Final wealth distribution and the related statistics, Third

representative member

The final wealth statistics highlight again a very concentrated

distribution. With respect to the previous ones, the standard
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deviation is higher but it is compensated by an higher returns.

The AV@RD is still low guaranteeing a good quality of the solu-

tion. The fourth representative member is characterized by an

initial wealth of 38,000 euros, w0 = 38000, by a high risk profile,

R = 10, and by thirty three remaining working years, then we

define that the time length between the six stages is 6, 6, 7, 7

and 7 years respectively. The optimal dynamic allocation is in

Figure 14.

Figure 14: Allocation percentage - Fourth representative member

The fourth representative is the youngest and the most risk

lover among the four representatives. The allocation reflects

the risk attitude including a huge portion of the riskiest assets

in the here-and-now solution and moving only a residual part

of the portfolio to the guaranteed capital asset in the last stages.

The evolution of the wealth through the stages is shown in Fig-

ure 15.
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Figure 15: Wealth evolution - Fourth representative member

The wealth gain is huge thanks to the financial gains which

largely affect the solution. The long-term horizon helps and en-

large this feature. The final wealth distribution and its statistics

are shown in Figure 16.

mean 211,110

median 196,260

st. dev. 52,947

V@R0.05 166,670

AV@R0.05 160,086

kurtosis 17.56

skewness 2.77

Figure 16: Final wealth distribution and related statistics, Fourth rep-

resentative member

The final wealth statistics fully reflects the investor’s profile.

The distribution is less concentrated on the final target than the

previous representatives ones. The standard deviation is quite
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high but the AV@R value is still satisfying and the AV@RD is

not too high as well. Clearly, the investor risk/reward profile

determines the allocation and the final statistics are its natural

consequence.

To summarize, the four optimizations produce four dynamic

investment strategies, one for each of the representative mem-

bers. According to the aim of the proposed analysis, the op-

timal pension funds portfolios are the here-and-now solutions

of each strategy and are called pension funds A, B, C and D.

The pension funds compositions are reported in Table 7. The

percentage allocation is almost similar in fund A and fund B

which invest the 91% and the 95% in the two lower risk assets

and only a residual percentage in the medium risk asset. Fund

C moves to a more balanced allocation by investing the 20% in

a high risk security and nothing in the guaranteed capital as-

set. The most aggressive fund is D which allocates more than

50% in the two riskiest assets. Analyzing the wealth evolution,

it is clear that young representative members can afford riskier

positions and achieve higher returns than older investors. Con-

sequently, the final wealth distribution reflects the portfolio risk

attitude. For the first and the second fund the distance between

the mean and the AV@R is smaller than the other two. The kur-

tosis values highlight fatter tails for the third and the fourth

investor. The features of the dynamic allocations and the statis-

tics of the final wealth distributions represent the risk/reward

level of each pension funds.
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pension fund A B C D

guaranteed capital 17% 11% 0% 0%

low risk 1 74% 84% 1% 0%

low risk 2 0% 0% 79% 48%

medium risk 9% 5% 0% 0%

high risk 1 0% 0% 20% 31%

high risk 2 0% 0% 0% 21%

Table 7: Pension funds allocations

The constitution of a suitable set of pension funds is a crucial

goal for a pension plan sponsor. In particular, in case the pen-

sion plan is offered to a homogeneous group of people, the

sponsor should analyze the population and offer a product ac-

cordingly to its features and needs. In the proposed case study,

the optimal portfolios which are the pension funds that the pen-

sion plan sponsor should issue, have been created after the clus-

terization of the population in four classes. The number of pen-

sion funds follows the number of clusters. Clearly, the pension

plan sponsor has to decide if the proposed investment strate-

gies are sufficiently different from each other, in order to justify

the implementation of all of them. The correct balance between

the pension fund effort and the members satisfaction is hard

to reach. In our case, pension funds A and B have a similar

composition, therefore the sponsor could decide to join them

in a single fund or to maintain all of them to better fit the pop-

ulation features. Indeed, the next step would be to implement

an individual portfolio optimization in order to define for each

real member, the optimal allocation using as asset universe the

issued pension funds.



5 I N D I V I D U A L P E N S I O N

P R O B L E M

The purpose of this chapter is to define the optimal asset alloca-

tion for an employee in a retirement perspective having as asset

universe the pension funds identified in the previous chapter.

This aim is achieved by a dynamic stochastic programming ap-

proach. We describe a formulation that partially follows the

pension plan sponsor multistage stochastic problem. Therefore,

we investigate only the new parts of the model proposing an

extension both in the constraints setting and in the targets con-

struction.

5.1 multistage stochastic model

The main innovative elements are the investor’s behavior for-

mulation and the stochastic dominance constraints which join

and substitute the deterministic ones. As before, we suppose

that the decision times correspond to all the stages but the last

one in which we just compute the accumulated final wealth.

The stochasticity arises from three sources: the pension funds

returns, the salary process and the investor’s behavior. In gen-

eral, the investment universe is composed of n different pen-

sion funds which are the portfolios we found in the previous

chapter.

79
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In particular, ρi,t,s are the pension funds returns where the in-

dex i = 1, ...,n represents the fund, t = t0, ..., T represents the

stages and s = 1, ...,S represents the scenarios, and ρsalt,s is the

salary growth rate. The pension funds returns and the salary

stochastic processes are modeled as correlated Geometric Brow-

nian Motions having mean µi and standard deviation σi for

each process and correlation matrix corri,j. The investor’s be-

havior is the choice of the investor to withdraw an amount of

money from the pension fund. We assume that this decision

can be made only in one predetermined stage with a certain

probability. The stochasticity is introduced using again a dis-

crete scenario tree.

We define the non negative decision variables: li,t,s, ci,t,s, r+i,t,s
and r−i,t,s. Respectively, li,t,s is a binary variable and represents

the allocation choice, i.e. it is equal to 1 only if we choose to

invest in the pension fund i, on the stage t, in the scenario

s; then ci,t,s expresses the level of contribution we want to in-

vest in this fund; the rebalancing variables r+i,t,s and r−i,t,s allow

the redistribution of the accumulated wealth among the chosen

pension funds quantifying respectively how much we buy and

how much we sell of each of them at the beginning of each

stage, i.e. before adding the contribution.

Finally, we can list the set of constraints in order to express

the regulatory bounds and the cash balance conditions. The

constraints according to the salary process (14) and the con-

tribution amount (15) are now referred to the pension funds

instead of the assets, except this only difference they are equal.

We must include some specific constraints in addition to the

previous ones, considering the reduced investment universe
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and some regulatory bounds.

Diversification bound

At most we can invest in L pension funds up to the n funds

available:
n∑
i=1

li,t,s 6 L, ∀t,∀s. (36)

Total minimum contribution

The individual who decides to enter in the pension plan must

save at least a minimum amount (m1):

n∑
i=1

li,t,s · ci,t,s > m1, ∀t, ∀s. (37)

Single pension fund minimum contribution

The pension plan requires a minimum amount (m2) invested in

each chosen pension fund:

li,t,s · ci,t,s > m2 · li,t,s, ∀i, ∀t,∀s. (38)

Allowed contribution

Clearly, ci,t,s is positive only if we choose the corresponding

pension fund, in this case it must satisfy (15), (37) and (38) as

well:

ci,t,s 6 li,t,s ·M, ∀i,∀t,∀s. (39)

Portfolio Balance

The following constraints describe the portfolio allocation, the

rebalancing decisions and the wealth account. They are al-

most equal to the corresponding constraints in the pension plan

sponsor model. We only need to reformulate them according to

the new investment universe and the behavior variable. There-

fore, we introduce the holding variable hi,t,s which represents
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the amount we hold in each pension fund, and the total wealth

variable wt,s. Moreover, we define the initial portfolio vector hi,0

in case the investor has already a position in the pension fund,

and the initial cash parameter w0 if the investor wants to add

an amount of money, e.g. a shift from another pension fund

and/or an initial extra contribution. The coefficient dt,s repre-

sents the stochastic invested wealth after withdraw, in percent-

age. Thus, dt,s = 1− bd, where bd is the withdraw percentage,

for the nodes in a predetermined stage and dt,s = 1 otherwise:

hi,t0,s = r
+
i,t0,s − r

−
i,t0,s + ci,t0,s + hi,0, ∀i,∀s. (40)

n∑
i=1

r+i,t0,s =

n∑
i=1

r−i,t0,s +w0, ∀s. (41)

r−i,t0,s 6 hi,0, ∀i, ∀s. (42)
n∑
i=1

r−i,t0,s 6 θ
n∑
i=1

hi,0, ∀s. (43)

hi,t,s = hi,t−1,s · (1+ ρi,t,s) · dt,s + r+i,t,s − r
−
i,t,s + ci,t,s, (44)

∀i, t0 < t < T , ∀s.

wt,s =

n∑
i=1

(hi,t−1,s · (1+ ρi,t,s)) · dt,s, t > t0, ∀s. (45)

n∑
i=1

r+i,t,s =

n∑
i=1

r−i,t,s, t0 < t < T , ∀s. (46)

r−i,t,s 6 hi,t−1,s · (1+ ρi,t,s), ∀i, t0 < t < T ,∀s. (47)
n∑
i=1

r−i,t,s 6 θ ·wt,s, t0 < t < T ,∀s. (48)

r+i,t,s 6 li,t,s ·M, ∀i, t < T , ∀s. (49)

Equations (40)-(43) and (46)-(48) reproduce exactly equations

(16)-(19) and (21)-(23), respectively. Equation (44) defines the

holding as capitalization of the previous holding for each pen-

sion fund (decreased by the withdraw dt,s) plus the realloca-

tion of the accumulated wealth and plus the contribution. With
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(49) we ensure that the buying follows the strategy choice. Fi-

nally, equation (45) computes the accumulated wealth in each

stage for each scenario considering again the withdraw variable

dt,s. According to this wealth variable we build the target con-

straints and the objective function.

Using a stochastic tree structure, we include the set of all the

nonanticipativity constraints on the decision variables.

We define the multicriteria objective function including two

wealth targets and the Average Value at Risk Deviation

(AV@RD) as risk measure. We refer to this model as the De-

terministic Wealth Target (DWT). We adopt the ε-Constrained

Approach fixing two wealth targets:

min
S∑
s=1

(wT ,s · ps) − a+
1

α

S∑
s=1

(zs · ps) (50)

s.t. −a+wT ,s + zs > 0, zs > 0 (51)
S∑
s=1

wtint,s · ps > Πtint
(52)

S∑
s=1

wT ,s · ps > ΠT (53)

(14) − (15), (36) − (49) (54)

In (50) we minimize the AV@RD on the last stage, i.e. on the

final wealth, for a given confidence level α. According to Rock-

afellar and Uryasev (2000, 2002), the discrete definition of the

AV@RD needs the inequality (51) in order to define jointly the

variables a and zs. The first wealth target (52) forces the aver-

age of the accumulated wealth on an intermediate stage (tint)

to be greater than or equal to a fixed amount Πtint
. Similarly,

the final wealth target (53) is fixed at the level ΠT . As in the

previous model, these two targets assume at first a determinis-

tic value. Further, we propose two more formulations using the

Stochastic Dominance (SD) concept. In particular, (52) and (53)
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are replaced with the First order Stochastic Dominance (FSD)

and the Second order Stochastic Dominance (SSD) constraints

in two distinct models. For this purpose, the definition of a

benchmark wealth is needed and we adopt the same formu-

lation used for the definition of the benchmark in Section 4.2.1

including the withdraw variable dt,s. Then we replace (32) with

hbt,s = h
b
t−1,s · (1+ ρbt,s) · dt,s +Cbt0,s t > t0,∀s (55)

We define the two targets of the DWT simply as the expected

value of the benchmark wealth. Then, the values of the two

targets become as follows

Πtint
= E[wbtint,s] (56)

ΠT = E[wbT ,s] (57)

In order to implement the Stochastic Dominance constraints,

since we deal with a finite number of scenarios and they are

equiprobable, it is useful to define the FSD conditions on an

intermediate stage and on the final stage using the vector for-

mulation as proposed in Kuosmanen (2004):

wtint
> Ptint

·wb
tint

(58)

wT > PT ·wb
T (59)

Ptint
and PT represent two square permutation matrices where

all elements are binary variables satisfying the following condi-

tions ∑
i

Pi,j = 1 (60)

∑
j

Pi,j = 1 (61)

The SSD formulation is basically the same:

wtint
> Wtint

·wb
tint

(62)
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wT > WT ·wb
T (63)

And the elements of Wtint
and of WT again must satisfy the

following conditions ∑
i

Wi,j = 1 (64)

∑
j

Wi,j = 1 (65)

The only difference between matrices W and matrices P is that

in W the elements do not have to be binary, but they just have

to belong to the interval [0, 1], i.e. each row and each column

represent a convex combination.

The formulation with SD produces a Mixed Integer Program.

It is still computationally manageable but we remark a time

consuming optimization for the FSD case because of the high

number of binary variables in the permutation matrices.

5.2 problem settings

The aim of this section is to propose an individual portfolio tool

able to suggest the optimal investment in a retirement perspec-

tive for any of the pension fund participants, i.e. for any of the

5577 members we considered for the pension fund provider

problem and for whom we defined the pension funds of the

pension plan. Therefore, we choose randomly one of the active

member and we define the setting of the model according to

his/her features. The investment universe is composed of the

four pension funds defined previously, in addition we include

a pure guaranteed capital fund as imposed by the Italian regu-

larization.
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According to the pension funds composition reported in Ta-

ble 7, we assume that the returns processes for the pension

funds and the salary (∗) follow a multivariate normal distribu-

tion characterized by the following statistics

µ =



0%

1.51%

1.48%

2.64%

3.75%

1.0%∗


σ =



0%

1.39%

1.29%

2.74%

5.41%

1.0%∗



corr =



1 0 0 0 0 0∗

0 1 0.975 0.817 0.679 0.678∗

0 0.975 1 0.746 0.545 0.529∗

0 0.817 0.746 1 0.937 0.820∗

0 0.679 0.545 0.937 1 0.908∗

0∗ 0.678∗ 0.529∗ 0.820∗ 0.908∗ 1∗



Moreover, their risky level is described by the associated risk

coefficient, computed accordingly to the pension funds compo-

sition

rci = [0 1 1 3 5]

The chosen investor is a 25 year woman with a remaining work-

ing life of 40 years. She wants to achieve two wealth goals:

a final pension benefit in 40 years and an intermediate objec-

tive after 8 years. For this reason and because of the Italian

frequency rebalance rules, we propose a time structure com-

posed of five periods, each of eight years, i.e. ∆t = 8 and

then t = 0, 8, 16, 24, 32, 40. She has a medium/high risk profile,

R = 5. In (36) we assume that she cannot invest in more than
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four pension funds up to the five available, i.e. L = 4. The

initial net salary is 15,000 euros, i.e. salt0,s = 15000. In (15)

the propensity to save parameter ps is 7%, while the employer

contribution e is 50%. The single pension fund minimum con-

tribution m1 in (38) is 200 euros, while the total minimum con-

tribution m2 in (37) is 300 euros. We suppose that the investor

just started to work, then her initial wealth is null, i.e. w0 = 0,

and the initial portfolio is null as well, i.e. hi,0 = 0, ∀i. The

turnover coefficient θ is equal to 20%. Using this setting we

define the portfolio balance equations (16)-(49).

In the multicriteria objective function (26) the Average Value

at Risk Deviation (AV@RD) is computed considering a confi-

dence level α = 5%. Moreover, the investor wants to achieve

the intermediate target after eight years, i.e. tint = 8. As partic-

ular case of the SSD formulation, we analyze the sensitivity of

the optimal allocation with respect to the investment behavior,

in particular we assume that the probability to observe a with-

draw is 50%, the value of the withdraw is dt,s = 0.70 and that

this process is independent from the other stochastic processes.

In order to compare the three formulations (DWT, FSD, SSD),

we propose several experiments. Thus, the model changes ac-

cordingly to the formulation:

• DWT: (14)-(15) and (36)-(57);

• SSD: (14)-(15), (36)-(51), (31)-(33) and (62)-(65);

• FSD: (14)-(15), (36)-(51), (31)-(33) and (58)-(61).

Moreover, for the DWT case we adopt a regular branching

equal to 5-5-3-3-3 for the five periods, i.e. 675 scenarios, for

the SSD and the FSD we have to reduce it to 5-3-3-3-3, i.e. 405

scenarios, for computational complexity issues.
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The choice of the branching is confirmed by the following sta-

bility analysis. For each scenarios cardinality we run the model

100 times and we represent the optimal values in a box-plot

form. The results for the DWT case is shown in Figure 17.

Figure 17: Stability Analysis - DWT

The goodness of the 675 scenarios choice is evident in terms of

reduction of the optimal value volatility with respect to lower

cardinalities. The results for the SSD case is shown in Figure

18.

Figure 18: Stability Analysis - SSD

The 405 scenarios choice represents a good balance between

volatility of the optimal value and manageability of the prob-

lem from a computational point of view.
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For both cases we stop the analysis when the difference be-

tween the minimum and the maximum value is low enough to

guarantee to the investor a comparable level of satisfaction.

We do not run the stability analysis for the FSD case because

it is very time consuming taking more than one hour for each

run in the 405 scenarios case. Thus, we adopt the maximum

number of scenarios with which the model is still handleable.

5.3 results

5.3.1 Deterministic Wealth Target

Figure 19 shows the solution of the DWT case in terms of per-

centage optimal allocation adopting the wealth targets Πtint

and ΠT described in (56) and (57). The represented solution

for each stage is the average solution of all the nodes of that

stage.

Figure 19: Dynamic Allocation - DWT
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The allocation reflects the high risk/reward profile of the in-

vestor. The here-and-now solution involves only the two most

risky pension funds. The guaranteed capital fund is included

in the portfolio only since the third stage. The strategy moves

to a safer allocation through the stages getting close to the final

horizon. In the last decisional stage almost the 40% is invested

in the guaranteed capital fund and less than the 30% in the

two riskiest funds. In Figure 20 we present the average optimal

allocation showing the increasing wealth.

Figure 20: Dynamic Wealth - DWT

The wealth process benefits from both an aggressive allocation

and a long-term horizon. The contribution and the financial

gains define a remarkable increase through the stages.The port-

folio portion invested in the riskiest funds increase till the third

stage, then it stays constant and the gains and contributions are

invested in the safer funds in order to reduce the risk in the last

stages. The final wealth distribution and its statistics are shown

in Figure 21.
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mean 109,940

median 108,100

st. dev. 7,192

V@R0.05 103,790

AV@R0.05 103,230

kurtosis 7.68

skewness 1.53

Figure 21: Final wealth distribution, DWT

Comparing the whole time horizon, the wealth return is huge but in

the last stage the riskiness, i.e. the kurtosis and the standard devi-

ation of the final wealth distribution, is not too high. Also the dif-

ference between the mean and the AV@R is small. In general, we

observe a well balanced diversification in the five pension funds and

through the stages. The risk/reward profile is quite aggressive, but it

takes advantage of the double diversification (by investing in a com-

bination of pension funds which are themselves diversified portfolios

of assets) to achieve the risk targets.

5.3.2 Second order Stochastic Dominance

In Figure 22 we present the average optimal solution of the SSD

case as percentage allocation. As in the previous case, the rep-

resented solution for each stage is the average solution of all the

nodes of that stage. The here-and-now solution is more aggres-

sive than the DWT case. More than the 90% is invested in the

riskiest pension fund. The main difference with the DWT case is

a fast shift on a more safe and a more diversified portfolio which

guarantees the second order stochastic dominance and a great risk

reduction in the last stages. The turnover coefficient is fully ex-
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ploited. Since the second stage the guaranteed capital fund is

included in the portfolio and in the last decisional stage it rep-

resents more than the 40% of the portfolio. In Figure 23 we

present the average optimal allocation showing the increasing wealth.

Figure 22: Dynamic Allocation - SSD

Figure 23: Dynamic Wealth - SSD

As in the DWT case, the wealth process grows significantly through

the stages. The portfolio portion allocated in the riskiest fund de-

crease not only in percentage terms but also in monetary terms along
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the decisional stages. The final wealth distribution and its statistics

are shown in Figure 24.

mean 118,970

median 117,220

st. dev. 6,165

V@R0.05 114,410

AV@R0.05 113,890

kurtosis 10.85

skewness 2.03

Figure 24: Final wealth distribution, SSD

The portfolio is more balanced in terms of composition and this leads

to higher values of V@R and AV@R with respect to the DWT case.

We observe a distribution shifted to the right having all the location

statistics higher than the DWT case. Nevertheless, the final wealth

distribution has a lower standard deviation remarking the high qual-

ity of the second order stochastic dominance riskier features in terms

of kurtosis and standard deviation. The risk/reward profile is still

coherent with the investor’s characteristics.

In Figure 25 we propose a comparison between the distribution of

the benchmark wealth and the final wealth achieved by the investor.

In Figure 26 we show their cumulative distribution. The stochastic

dominance of the second order is clearly satisfied as shown in Figure

26, while the first order stochastic dominance in Figure 25 is neither

requested and then nor fulfilled.
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Figure 25: First Order Stochastic Dominance - SSD

Figure 26: Second Order Stochastic Dominance - SSD

The optimal solution has a better left tail than the benchmark one

but it suffers lower returns in the right part of the distribution. This

behavior is due to the fact that the optimal allocation moves to the

safer funds getting closer to the final horizon, while the benchmark

portfolio represents an equidistributed choice which turns out to be

much riskier.
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5.3.3 Second order Stochastic Dominance - Withdraw case

In the Italian private pension system it is often possible to withdraw

an amount of money from the existing pension account after a given

minimum contribution period. A low percentage (around 30%) can

be withdrawn for any reason at any time, while a larger amount (till

75%) is allowed for specific issues, e.g. health or housing, and only

after eight years. For this reason, we propose a further formulation of

the SSD framework in which the variable dt,s, representing the with-

draw choice, assumes an active role. In particular, we fix d2,s = 70%

to include the possibility that the investor decides to withdraw the

70% of the wealth accumulated on the second stage; the probability

that this event occurs is fixed at 50% and it is independent from other

stochastic processes. The second stage has been chosen because it

occurs eight years after the first stage and, accordingly to the pen-

sion plan regulation, a huge withdraw is possible only after at least

eight years. Clearly, we assume that the same event occurs also for

the benchmark wealth in order to have a fair comparison, otherwise

it would be impossible to reach the targets. We test also the cases

in which the investor withdraws accordingly to the salary level, con-

sidering the case in which she withdraws both in the lower salary

scenarios and in the higher ones. The results are almost the same,

therefore, we show only the outputs of the independence case. In Fig-

ure 27 we present the optimal solution of the SSD case including the

withdraw event as percentage allocation. As in the previous case, the

represented solution for each stage is the average solution of all the

nodes of that stage. The here-and-now allocation is completely con-

centrated in the riskiest pension fund. The withdraw in the second

stage makes the portfolio seeking for a huge return in the first stages

in order to compensate the withdraw and somehow to be prepared to

that event. After that, in order to satisfy the second order stochastic

dominance constraint and to reduce the objective risk measure, the
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portfolios quickly moves to the guaranteed capital pension fund till

the last decisional stage in which more than the 60% of the portfolio

is invested in it.

Figure 27: Dynamic Allocation - SSD withdraw

In Figure 28 we present the average optimal allocation showing the

increasing wealth.

Figure 28: Dynamic Wealth - SSD withdraw

Clearly, the wealth evolution suffers the withdraw event which oc-

curs after the computation of the wealth on the second stage. The
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dynamic is driven by the following steps: in the second stage the in-

vestor makes the contribution an the reallocation choice, he accounts

the accumulated wealth, he decides if he might withdraw or not and,

eventually, the withdraw is done at the end of the second stage induc-

ing a visible effect on the third one. Indeed, the wealth of the third

stage appears a step below its natural trend. The withdraw consists

in the 70% of the wealth accumulated in the second stage and the

event occurs with a probability of 50%. The remaining portfolio is

still invested mainly in the most risky pension fund and in the third

stage the investor makes the related contribution. Therefore, in the

third stage we observe a reduction of the wealth but the trend is still

positive. The final wealth distribution and its statistics are shown in

Figure 29.

mean 101,880

median 95,433

st. dev. 16,837

V@R0.05 87,928

AV@R0.05 85,722

kurtosis 3.25

skewness 1.09

Figure 29: Final wealth distribution, SSD withdraw

Comparing the dynamic solution with the no withdraw case, we ob-

serve a more polarized allocation: more weight on the riskiest pen-

sion fund and the inclusion of the guaranteed capital fund since the

second stage. The final wealth statistics highlights an aggressive port-

folio which has an higher standard deviation and also an higher

AV@RD both the absolute terms and in relative ones. In Figure 30

we propose a comparison between the distribution of the benchmark

wealth and the final wealth accumulated by the investor. In Figure 31

we show their cumulative distribution.
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Figure 30: First Order Stochastic Dominance - SSD withdraw

Figure 31: Second Order Stochastic Dominance - SSD withdraw

The second order stochastic dominance is fulfilled even if the two

cumulated distribution are very close each other in the right part of

Figure 31. The aggressive allocation allows the portfolio to compen-

sate and reach the same top returns as shown in Figure 30 avoiding

the worst losses on the left tail suffered by the benchmark portfo-

lio. Therefore, even in the withdraw case, the second order stochastic

dominance and the AV@RD reduction produce an optimal portfolio
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less riskier than the benchmark one but still able to reach the same

returns along the best scenarios.

5.3.4 First order Stochastic Dominance

In Figure 32 we present the optimal solution of the FSD case as per-

centage allocation. As in the previous case, the represented solution

for each stage is the average solution of all the nodes of that stage.

Figure 32: Dynamic Allocation - FSD

The dynamic allocation has as favorite pension fund one of the two

most risky. The riskiest fund is used only in the here-and-now so-

lution and the guaranteed capital pension fund enters the portfolio

only since the third stage and slightly increases its portion which

never goes above 25%. The other two low risk pension funds are

used mainly as diversification assets getting closer to the final hori-

zon. In Figure 33 we present the average optimal allocation showing

the increasing wealth.
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Figure 33: Dynamic Wealth - FSD

The wealth process highlights how the pension fund proportion is

constantly fed through the stages while in the previous cases the

wealth invested in the most risky funds remained fixed. The final

wealth distribution and its statistics are shown in Figure 34.

mean 122,260

median 120,760

st. dev. 10,494

V@R0.05 110,570

AV@R0.05 109,270

kurtosis 3.29

skewness 0.78

Figure 34: Final wealth distribution, FSD

The final wealth statistics remark an aggressive portfolio which reach

an higher final average wealth than the other cases. The V@R and the

AV@R are higher than the DWT case but lower than the SSD ones. In

this sense, the portfolio is riskier than the SSD one and the standard

deviation confirms this feature. The reason of the higher average
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returns and meanwhile of the riskier allocation lies in the first order

stochastic dominance constraint.

In Figure 35 we propose a comparison between the distribution of the

benchmark wealth and the final wealth accumulated by the investor.

In Figure 35 we show their cumulative distribution.

Figure 35: First Order Stochastic Dominance - FSD

Figure 36: Second Order Stochastic Dominance - FSD

The first order stochastic dominance constraint is stricter than the sec-

ond order one and then the optimal allocation has to move to a more
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aggressive portfolio in order to be sure to dominate the benchmark

portfolio for all possible realizations of the stochastic variables, i.e.

along all scenarios. The drawback is a more uncertain final wealth

distribution.

5.3.5 Summary results

We faced the problem of a private investor who has to choose how

to allocate his savings in a pension perspective. The stochastic dom-

inance constraints produce a remarkable impact in the investment

allocation. The evidences shown in Table 8 highlight that both the

second order stochastic dominance and the first order stochastic dom-

inance induce the here-and-now solution to be more and more aggres-

sive in order to satisfy the target constraints in the second stage and

then beat the benchmark in the stochastic dominance sense. Getting

close to the final horizon, and in particular in the last decisional stage,

the stochastic dominance constraints bring to a huge risk reduction

which is reflected in a greater diversification and in a wealth shift to

a more conservative allocation. Through the stages, the FSD is more

aggressive than the SSD to beat the benchmark for all possible sce-

narios. Indeed, even in the last decisional stage, more than 50% is

allocated in one of the most risky pension fund.

Here-and-now Last decisional stage

DWT SSD SSDw FSD DWT SSD SSDw FSD

Fund 1 0 0 0 0 38 41 61 25

Fund 2 0 0 0 0 2 5 1 12

Fund 3 0 0 0 0 32 33 6 10

Fund 4 49 9 0 83 25 18 13 53

Fund 5 51 91 100 17 3 3 19 0

Table 8: First stage and last stage solution for each model (in %)
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DWT SSD SSDw FSD

mean (e+04) 11.0 11.9 10.2 12.2

median (e+04) 10.8 11.7 9.5 12.1

st. dev. (e+04) 0.7 0.6 1.7 1.0

V@R0.05 (e+04) 10.4 11.4 8.8 11.1

AV@R0.05 (e+04) 10.3 11.4 8.6 10.9

kurtosis 7.68 10.85 3.25 3.29

skewness 1.53 2.03 1.09 0.78

Table 9: Summary statistics of the final wealth for each model

The withdraw event largely affect the portfolio choice in the first stage

in which the allocation is completely concentrated in the most risky

pension fund. The same case shown the most polarized final stage

allocation with the 61% invested in the guaranteed capital pension

fund and almost the 20% in the riskiest one.

The final wealth distribution statistics are reported in Table 9. The

allocation choice is coherently reflected in the statistics. The more ag-

gressive is the allocation, the higher are the mean and the median, the

higher is the standard deviation. The only exception is the SSD case

which is less riskier than the DWT and the FSD. The risk reduction

is highlighted not only by the lower standard deviation, but also by

the V@R and AV@R values which are remarkable higher for the SSD

allocation.

To conclude, the stochastic dominance has a double effect according

to the dominance order we want to impose. The FSD produces a

more aggressive portfolio which is able to beat the benchmark for all

the scenarios, the drawback is a slightly more risky performance. The

SSD cannot surpass the benchmark for every scenarios but produces

a well diversified portfolio which pushes the wealth higher then the

DWT with a huge risk reduction. The V@R and the AV@R point

out the high quality of the stochastic dominance framework and in
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particular of the SSD case. The SD formulation is better than the

DWT one from almost all points of view. The choice to introduce the

SSD or the FSD depends mainly on what the investor is looking for

in terms of risk/reward targets.



6 C O N C L U S I O N

In this thesis we analyzed the pension problem from the point of view

of the three main actors involved: the fund manager who takes care

of the strategical investment problem dealing with an ALM problem;

the pension plan sponsor, who decides the tactical allocation of the

pension funds issued; the individual investor who faces the problem

to allocate his/her savings in a retirement perspective, .

All these problems consider a long-term choice and require to face

some elements of uncertainty. Therefore, we dealt with them ap-

plying the state-of-the-art techniques provided by the Stochastic Pro-

gramming.

We proposed an overview of the literature quoting the milestone

works which made the history of the ALM and of the pension invest-

ment field, and we outlined the mathematical setting of the two-stage

and multistage stochastic problems exploring some risk measures rep-

resentable as chance constraints and the multicriteria setting.

The ALM problem for a pension fund has been widely investigated

in the literature. After a brief description of an ALM model, our

contribution has been to suggest a methodology to price the liability

side of a pension fund in case the net payments need to be adjusted

according to the inflation and in case we want to estimate the actual

value of all the future payments.

The main innovative parts are the formulations proposed for the pen-

sion plan sponsor problem and for the individual investor’s prob-

lem in a pension perspective. Our belief is that the importance and

the impact of the plan sponsor problem is nowadays underestimated.

Thus, we proposed a two-step approach in order to define the opti-

mal pension plan offer for a homogeneous population of members.
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The output is the allocation of the pension funds that the sponsor

should issue. The concrete implementation of such pension funds

has to be decided considering the suitability for the members and the

manageability for the pension fund manager.

The individual investor’s problem was already well known in the lit-

erature, our innovative proposal has been to include the stochastic

dominance formulation within the model. To adopt stochastic dom-

inance constraints is more demanding from a model, formula and

computation points of view. However, the solutions highlighted a

tangible difference both in the allocation and in the quality of the

risk/return profile of the portfolio. The difference between the DWT,

the SSD and the FSD solutions is clear and well define, and the advan-

tages of the SD formulation have been proved in the related chapter.

The SD framework induces a better balanced portfolio than the DWT

case. The risk diminution is more evident in particular observing the

V@R and the AV@R values which represent the left tail features and

then the SD reduces the huge losses problem. Therefore, we strongly

recommend a stochastic dominance formulation for an optimal indi-

vidual allocation in a pension perspective.
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Jitka Dupačová and Jan Polívka. Asset-liability management for

Czech pension funds using stochastic programming. Annals of Op-

erations Research, 165(1):5–28, 2009.

Jitka Dupačová, Marida Bertocchi, and Vittorio Moriggia. Postopti-

mality for scenario based financial planning models with an appli-

cation to bond portfolio management. World wide asset and liability

modeling, pages 263–285, 1998.
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