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1 Abstract

The problem of transporting goods or resources from a set of supply points (production plants) to a
set of demand points (destination factories or customers) is an important component of the planning
activity of a manufacturing firm. Critical parameters such as customer demands, row material prices,
and resource capacity are quite uncertain in real problems. An important issue is then represented
by the decision on quantities to acquire and store at each destination factory before actual demands
reveal themselves. This is involved in the tactical planning of the firm supply chain operations. The
significance of uncertainty has prompted a number of works addressing random parameters in tactical
level supply chain planning involving distribution of raw material and products (see for example [7],
[18], [15], [8], [9] and [19]).

In this paper we analyze the effect of two modelling approaches, stochastic programming and
robust optimization, to a real case of a transportation problem under uncertainty. To the best of
our knowledge, a direct comparison between SP and RO on such a class of problems has not been
addressed yet in literature. Moreover, robust optimization is relatively new concept and there is very
little work applying it in a logistic setting. Stochastic Programming (SP) and Robust Optimization
(RO) are considered two alternative techniques to deal with uncertain data both in a single period
and in a multi-period decision making process. The main difficulty associated with the former is
the need to provide the probability distribution functions of the underlying stochastic parameters.
This requirement creates a heavy burden on the user because in many real world situations, such
information is unavailable or hard to obtain (see for example [6] and [16]). On the other side Robust
Optimization addresses the uncertain nature of the problem without making specific assumptions on
probability distributions: the uncertain parameters are assumed to belong to a deterministic uncer-
tainty set. The drawback of this approach is the potentially strong dependence of the solution on the
rather arbitrarily chosen uncertainty set. RO adopts a min-max approach that addresses uncertainty
by guaranteecing the feasibility and optimality of the solution against all instances of the parameters
within the uncertainty set. A vast literature about the hypotheses that have to be imposed on the
structure of the uncertainty set in order to have computationally tractable problems are available,
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see [17] and [4] for polyhedral uncertainty sets and [3] for ellipsoidal uncertainty sets. The original
RO model deals with static problems where all the decision variables have to be determined before
any of the uncertain parameters are realized. This is not the typical situation in most transporta-
tion problems that are multiperiod in nature, and where a decision at any period can and should
account for data realizations in previous periods. An extension of robust optimization to a dynamic
framework was introduced by [3] via the concept of affinely adjustable robust counterpart (AARC),
where part of the decision variables, the so-called adjustable variables, have to be determined after a
portion of the uncertain data is realized. The dependence of the adjustable variables on the realized
data is represented by an affine function. Other contributions along this line may be found in [2]
and in [5]. Notice that the role of adjustable variables in AARC formulation is quite similar to the
role of second stage (or recourse) variables in SP formulation. However, SP allows to compute first
stage and second stage variables at once, while this is not the case for AARC formulation.

The transportation problem considered, is inspired by a real case of gypsum replenishment in Italy,
provided by the primary Italian cement producer. The logistic system is organized as follows: a set of
suppliers, each of them composed of a set of several plants (origins) located all around Italy have to
satisfy the demand of gypsum of a set of cement factories (destinations) belonging to the same cement
company producer. The weekly demand of gypsum at cement factories is considered stochastic. We
assume a uniform fleet of vehicles with fixed capacity and allow only full-load shipments. Shipments
are performed by capacitated vehicles which have to be booked in advance, before the demand
is revealed. When the demand becomes known, there is an option to discount vehicles booked
but not actually used from different suppliers. The cancellation fee is given as a proportion of
the transportation costs. If the quantity shipped from the suppliers using the booked vehicles is
not enough to satisfy the demand of the factories, residual product is purchased from an external
company at a higher price, which is also uncertain. The problem consists in determining the number
of vehicles to book, at the end of each week, from each plant of the set of suppliers, to replenish
gypsum at cement factories in order to minimize the total cost, given by the sum of the transportation
costs from origin to destinations (including the discount for vehicles booked but not used) and the
cost of buying units of product from external sources in case of inventory shortage. The problem
described can be classified as a transportation problem under uncertainty where a set of retailers is
served by a set of suppliers. A particular case is given by the so-called single-sink transportation
problem, in which a single retailer is served by a set of suppliers. This problem has been also deeply
studied, in particular when the total cost is given by the sum of a variable transportation cost and
a fixed charge cost to use the supplier ([11], [10], [1] and [13]).

We solve the problem both via a two-stage stochastic programming and robust optimization models
with different uncertainty sets. For the former the goal is to compute the minimum expected cost
based on the specific probability distribution of the uncertain demand of gypsum at the cement
factories and buying cost from external sources based on a set of possible scenarios. Scenarios of
demand, for all destinations at the first week of March 2014, are built on historical data directly,
using all the weekly values in March, April, May and June of the years 2011, 2012 and 2013. On the
other hand, scenarios of buying costs have been generated sampling from a uniform distribution in
an interval with a 20% deviation level with respect to the average value. In this way a scenario tree
composed of 48 leaves has been built. The resulting linear mixed-integer stochastic programming
model is implemented in AMPL and solved using the CPLEX 12.5.1.0. solver. An in-sample stability
for an increasing number of scenarios up to 1000 has been verified. The solution is firstly compared
with the Ezpected Value (EV) problem under the unique average scenario: the deterministic model
will always book the exact number of vehicles needed for the next period, it sorts the suppliers and
their plants according to the transportation costs and books a full production capacity from the
cheapest one, followed by the next-cheapest. As long as there is enough transportation capacity,
the model will never purchase extra gypsum from external sources. The EV model books much
fewer vehicles than the stochastic one resulting in a solution costing only 70% of the stochastic

Odysseus 2015 - 216



Stochastic versus Robust Optimization for a Transportation Problem

counterpart. When using the EV solution, the expectation expected value problem EEV is infeasible
since a minimum requirement constraint with the biggest supplier is no longer satisfied (see [12] and
[14]). The Ezpected Value of Perfect Information EVPI reduces to 20% of total cost showing the
advantage of having the information about future uncertainty at the first stage.

However, since the cement demand is highly affected by the economic conditions of the public
and private medium and large-scale construction sector, in the last years its variability has been
very high. Therefore a reliable forecast and reasonable estimates of demand probability distributions
are difficult to obtain. This is the main reason that lead us to consider also robust optimization
approaches. First we consider static approaches with uncertainty parameters respectively belonging
to boxes, ellipsoidal uncertainty sets or mixture of them, and secondly dynamic approaches, via
the concept of affinely adjustable robust counterpart. The main advantage of the RO formulations
considered, is that they can be solved in polynomial time and have theoretical guarantees for the
quality of the solution which is not the case with the aforementioned SP formulations. A robust
solution at the tactical level allows to find a feasible solution for the operational planning problem
for each possible realization of demand in the uncertainty set considered. The robust mixed-integer
linear optimization model with box uncertainty is modeled in AMPL and solved using the CPLEX
12.5.1.0. solver. Numerical results shows that the robust box-constrained solution is very conservative
having a total cost more than twice larger than the expected cost obtained by solving RP. However,
the choice of the box uncertainty set is preferable only if the feasibility of all the constraints is highly
required. We use also a different uncertainty set in order to get a less conservative outcome: a
box-ellipsoid uncertainty set which considers a box for the demand and an ellipsoid for the buying
cost is introduced. It requires relaxation of integrality constraints and the solution of a second-order
cone program SOCP. The box-ellipsoid approach can be solved in polynomial time using the MOSEK
solver and it allows to reduce the total cost while guaranteeing that the constraints of the problem
are satisfied with high probability. The behavior of the solutions obtained by the two described
approaches are different: in the box continuous case, the choice of buying gypsum from external
sources, is limited due to the largest buying cost. On the other side, the optimal solution of the
box-ellipsoidal model considers more convenient to buy from external sources than using some of the
suppliers because the buying cost is modelled with a less conservative ellipsoid uncertainty set. Still
the total cost is more than twice larger than the expected cost obtained by solving RP. These are
the results obtained using a static robust formulation.

In order to make a fair comparison with the stochastic programming methodology, dynamic ap-
proaches via the concept of adjustable/affinely adjustable robust counterpart are also considered.
The variables are then partitioned in nonadjustable, i.e. the ones to be determined before the ac-
tual data “reveals itself” and in adjustable ones. The adjustable variables, once the uncertain data
become known, should be able to adjust themselves by means of some decision rules, eventually
specified by affine functions of their arguments. Numerical experiments show that also adjustable
robust approach result in around 30% larger objective function values with respect to RP solutions
due to the certitude of constraints satisfaction. Conversely, the computational complexity is higher
for the stochastic approach.

In conclusion, the SP approach allows the company to reach higher profits, even if the computa-
tional effort is expensive expecially due to the scenario generation procedure. On the other hand
RO forces the firm to consider an higher cost solution which is strongly dependent on an arbitrarily
chosen uncertainty set, but with probability guarantee of costraints satisfaction.
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