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Chapter 1

Introduction

Statistical surveillance is the continuing collection, analysis and interpretation of

data concerning the health of a system and its main instruments are control charts.

These instruments have been traditionally used to monitor industrial processes.

However, they are increasingly being used in many applications �elds such as engi-

neering, economics, �nance, epidemiology and environmental statistics.

In literature a number of di�erent control charts have been introduced begin-

ning from the simplest Shewhart control chart, which dates back to 1920's and was

introduced to monitor the mean quality level of a production process, see Bayart 1 .

A popular alternative is the Exponentially Weighted Moving Average (EWMA),

which is e�ective in discovering small level shifts. There are several variations and

application �elds of the EWMA control chart. For example, recently Lazariv and

Schmid 2 and Zhang and Pintar 3 study some EWMA control charts for the variance

of a stationary time series, whith interesting application in �nance.

However, despite the use of univariate control charts is a useful solution in sev-

eral situations, in other cases it is ine�cient and can lead to wrong conclusions. In

fact, many situations are characterized by several related variables, and multivariate

methods are required. In this context, Lowry et al. 4 extended the EWMA algorithm

to the multivariate case and developed the multivariate exponentially weighted mov-

ing average (MEWMA) control charts, that is one of the most popular instruments

related to statistical surveillance.

Recently, MEWMA control charts are meeting new application �elds. For exam-
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ple Fassó and Locatelli 5 consider a generalized one-sided MEWMA control chart,

which is capable to monitor dimension and deformation in production of vehicle

brake discs. Sparks 6 considers social networks monitoring, by means of detecting

changes in communication volume between social network members. Moreover, con-

sidering �nance data, Golosnoy and Schmid 7 present some control charts based on

exponential smoothing in order to monitor the weights of the "global minimum vari-

ance portfolio". Epidemiology and health surveillance are another emerging area.

For example, Tse et al. 8 present a multivariate control chart based on likelihood ratio

tests that allows to discover the variance-covariance shift due to a disease outbreak

and Han and Zhong 9 compare MEWMA based spatio-temporal control charts.

A further development of statistical surveillance is motivated by advanced tech-

nological applications, where �exible models are often necessary for properly moni-

toring process outputs which are given by nonlinear curves or pro�les. The simplest

approach is given by Fan et al. 10 , which use a piecewise linear approximation. Chang

and Yadama 11 propose a method to monitor non-linear pro�les, which is capable

to detect mean shifts or shape changes. Cano et al. 12 introduce a novel hybrid

nonparametric-parametric procedure for monitoring nonlinear pro�les, which con-

siders the shape property of the pro�les. Zou and Qiu 13 develop an innovative

multivariate statistical process control method based on the LASSO, which is capa-

ble to detect the shift of a small number of components in a large multivariate vector.

Finally, Qiu et al. 14 propose nonparametric pro�le monitoring where within-pro�le

data are correlated.

In this work, we propose the innovative f-MEWMA control chart that integrates

splines into the multivariate exponentially weighted moving average scheme. In

particular, our approach transforms the multiple data pro�les in spline form, thus

generating a multivariate functional object which is repeatedly observed over time.

Then its trend is monitored by the f-MEWMA control chart, which is able to detect

the early onset of anomalies in the given system. In particular f-MEWMA extends

the traditional MEWMA control chart exploiting functional data and is capable of

monitoring the health of a system which, at each run, generates complex output

data given by nonlinear pro�les In order to show the e�ectiveness of f-MEWMA
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algorithm, we consider a steam sterilizer for medical equipments that, for each ster-

ilization run, measures several variables in high frequency giving a set of sterilization

pro�les. During each sterilization run, several variables (temperature, pressure etc.)

are measured in high frequency. Hence variables are functions of sterilization time

for each sterilization run. Because the pro�les of each sterilization run are arbitrarily

nonlinear smooth functions of sterilization time, we use splines to model them.

The rest of the thesis is structured as follows.

In the Chapter 2, �rst of all, we present the W&H Sterilization that is the com-

pany that �nanced our research project. The W&H managers made available to us

both laboratories and three new sterilizers Lisa522 Fully Automatic in order to per-

form the experiments. Moreover, we present the sterilizer Lisa522 Fully Automatic,

dividing this Chapter in two parts:

� In the �rst part, we describe the engineering characteristics of our steam steril-

izers (technical projects and operational functioning), the three types of cycle

(in our experiments we use Universal 134), the phases that compose each ster-

ilization cycle. Finally we describe the log-�les that the sterilizer produces.

In particular, these log-�les contain the operating parameters (variables) that

the sterilizers sensors measure second by second.

� In the second part, we provide an overview of some sterilizer components that

we tampered with in order to perform altered sterilization cycles and, then, we

study the behavior of our sterilizers in anomalous conditions. In particular,

we made the choice of the components taking into account both the frequency

of the fault of a give component, based on market data, and the technical

feasibility of the simulation of this faults/anomalies.

Chapter 3 presents the statistical methods that we used in Chapter 4 to build the

our innovative control chart. We divide this Chapter in two parts:

� In the �rst part, we introduce the Functional Data Analysis (FDA) and recall

spline concepts. In particular, we use cubic spline to model each sterilization

cycle. Moreover, we introduce the connection between splines and linear mixed
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models in which we show �xed and random e�ects. Finally, exploiting the

linear mixed model representation, we introduce the penalized least square

function.

� In the second part, we introduce the statistical surveillance and some con-

trol charts. Moreover, we introduce our innovative approach called functional

MEWMA or f-MEWMA that is developed by combining together functional

data analysis and Multivariate Exponentially Weighted Moving Average con-

trol chart. Our method is able to monitor the health of a system which, at

each sterilization cycle, generates complex output data given by nonlinear pro-

�les. Finally, we introduce a probabilistic classi�er that allows to classify each

sterilization cycle with respect to the selected components/faults.

Chapter 4 presents the data and the results of our research. In particular, we divide

this Chapter in two parts:

� In the �rst part, we describe the design of experiments that we used to per-

formed the sterilization cycles. In particular, we followed a quasi balanced

DOE involving six factors which are related to components that we described

in Chapter 2. For each factor we considered two levels: fault free (good runs)

vs altered. Finally, we perform an exploratory analyses of the collected data.

In particular, by nonparametric ANOVA (Kruskal-Wallis test), we compare

the behavior of the sterilizer when it works in normal conditions with respect

it works in altered conditions.

� In the second part, we show how to applicate the algorithm f-MEWMA to

the data generated from the above sterilizers, in order to demonstrate the

e�ectiveness of the our method. Moreover, we present a probabilistic anomalies

classi�er that allows to classify the sterilization cycles with respect to faults.

Finally, in Chapter 5 we present our conclusions and future developments.
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Chapter 2

Lisa 522, Variables and Faults

Sterilization is de�ned as the end result of a process that tends to ensure the con-

dition in which the survival of bacteria is highly unlikely. Therefore, to perform a

sterilization it is necessary to use a medical device called sterilizer or autoclave. In

particular, a sterilizer is a pressure chamber used to sterilize equipment and sup-

plies by subjecting them to high pressure saturated steam at several temperatures.

Autoclaves are found in many medical settings, laboratories, and other places that

need to ensure the sterility of an object. In our case, dentists use the sterilizers

Lisa 522 Fully Automatic to sanitize dental instruments that they use for curing

their patients. Lisa 522 is a sterilizer produced by W&H Sterilization. In particular,

W&H is a company that operates in more than 110 countries worldwide and manu-

factures instruments and transmission equipment for dentistry. The W&H products

are among the most high-quality tools available on the market, used in dental o�ces,

dental clinics, dental laboratories and in microsurgery. This company makes signif-

icant investments in research and development in order to improve their products,

in particular sterilizers.

First of all, in this Chapter we present the Lisa 522 from the engineering point

of view. Moreover, we describe variables that the sterilizer measures second by

second, the types of cycle (in particular we used the Universal134) and phases in

which each sterilization run is divided. Finally, we describe the laboratory activities

and in particular the components that we tampered with in order to simulate some

anomalies/faults related to above components.
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2.1 Lisa522 Fully Automatic

Lisa522 Fully Automatic is a sterilizer manufactured by W&H Sterilization. With

the programmable delayed cycle start it is possible to save time and energy. Made-

to-measure automatic cycles reduces the cycle time according to the number and

type of items to be sterilized. An integrated memory card with USB reader archives

the sterilization and test cycle reports.

Figure 2.1: Lisa 522 Fully Automatic

The sterilizer Lisa522 has an integrated and automatic traceability system with

user identi�cation and load release option. The double micro-processor technol-

ogy manages the integrated traceability software which guarantees the speed and

e�ciency of the sterilization cycles.

The patented water separation and �ltering system of the Lisa sterilizer prevents

the penetration of oil residues and other impurities in the vacuum pump. Through

the automatic Air Detection System the automatic cycle performance is ensured

and the result is an additionally extra safety infection prevention. Lisa 522 Fully

Automatic sterilizers feature type B sterilization cycles. They are developed, man-

ufactured and tested according to the European Norm EN 13060 for small water

steam sterilizers.

At the end of each sterilization cycle (run), Lisa 522 Fully Automatic produces

a log-�le that contains the measures of the operating parameters (variables). We

will describe these variables in subsection 2.3.
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2.1.1 2CS System

The patented 2CS system is designed to collect condensate that drops to the bottom

of the sterilization chamber during all steam phases of sterilization cycles, and return

it to the steam generator to produce more steam. As a result the sterilizer uses

considerably less water, and as the returned condensate from the chamber is boiling

hot, it also helps to save energy and time. The 2CS process is active:

� during the fractionated pre-vacuum after every steam phase;

� during the sterilization (plateau).

Before describing the system 2CS, we explain the operation of the solenoid valve

EVD that regulates the injections of steam into the chamber by 2CS. In particular:

� when EVD switches ON (horizontal ; bit=1 ; step 56), then the steam enters

into the chamber;

� when EVD switches OFF (vertical ; bit=0 ; step 55), allows to recover con-

densate (loop 2CS) and then to use it in the cycle (saving water).

The system 2CS consists of below three steps.

Figure 2.2: System 2CS - Step1
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During steam injections into the sterilizer chamber (solenoid valve EVD is switched

horizontal), condensate collects at the bottom/rear of the chamber and �ows to the

2CS tower of the steam generator.

Figure 2.3: System 2CS - Step2

Whenever solenoid valve EVD switches vertical, there is a closed circuit between

the 2CS tower and the steam generator main chamber (pressure balance; equal

pressure). As a consequence, the water collected in the 2CS collector drops (gravity)

through the internal one-way valve into the steam generator.

The steam generator turns the water into steam, which is injected into the cham-

ber through valve EVD (switched horizontal; bit=1; step=56).

Finally, we explain the operation of the Air Detector system, called T-AD, that

is monitored by the variable TAir). Every sterilization cycle on Lisa 500 sterilizers

features a pre-vacuum air removal phase. During this phase air is removed from the

chamber/load and is replaced with steam. At the end of the pre-vacuum phase prior

to heating the load to sterilization conditions, the air detector checks for the presence

of non-condensible gases (air), thus ensuring that the pre-vacuum air removal phase

was successful.

A temperature sensor mounted in the air detector tower reads the steam temper-

ature while a pressure transducer mounted in the sterilizer chamber reads the steam

pressure. The sterilizer software checks if the temperature and pressure readouts are

15



Figure 2.4: System 2CS - Step3

in accordance with the saturated steam pressure-temperature correlation. In case

the correlation is o� (there is air present in the chamber) the alarm code A190 is

generated and the cycle is aborted.

2.1.2 ECO System

The procedure ECO-DRY allows the adaptation of the drying time according to the

amount of load placed inside the chamber. The procedure involved ECO-DRY the

variables: ECO3, H20, DV2. With loads of more than 4 kg drying time is automatically

set to 16 minutes.

2.1.3 ECO3 Variable

ECO3 is an accumulation variable of dissipated energy by the generator during a

speci�c period of the phase PPH identi�ed as PPH1. The variable ECO3 is related

to amount of load placed into the chamber of sterilizer. Physically, this is due to

the fact that the greater the load to be heated, more electrical energy must be

introduced into the system. Figure 2.5 shows the threshold values of the variable

ECO3 and corresponding estimates of load weight (kg).
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Figure 2.5: Variable ECO3 - Threshold values and estimates of load weight (kg)

2.1.4 DV2 Variable

DV2 is the duration of the step60. During this step the sterilizer passes by a known

and �xed pressure (1.32 absolute bar) to another known and �xed pressure (0.50

absolute bar). The time that the sterilizer employs to perform this step is strongly

correlated to the amount of load fed into the chamber of sterilizer. Physically, the

sterilization chamber is brought to depression by the vacuum pump and the neces-

sary time depends on residual moisture in the chamber and the load volume. Figure

2.6 shows the threshold values of the variable DV2 and corresponding estimates of

load weight (kg).

Figure 2.6: Variable DV2 - Threshold values and estimates of load weight (kg)

2.1.5 H2O Variable

H2O is the amount of water used during the cycle. The greater the load that must

be heated, the higher the steam that must be generated and then more water must

be introduced into the system. Figure 2.7 shows the threshold values of the variable

H2O and corresponding estimates of load weight (kg).

Figure 2.7: Variable H2O - Threshold values and estimates of load weight (kg)
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2.1.6 Cycles

The sterilizer has three programs of sterilization (types of cycle): Universal134,

Prion134, Universal121. Below, we describe these types of cycle:

� Universal134:This is the default sterilization cycle of the sterilizer. The cycle

is a type-B sterilization cycle (suitable for all types of loads; solid, porous,

hollow A and B; unwrapped, bagged, single or double wrapped) that features

a pre-vacuum phase, a plateau phase of 4 minutes at a temperature of 134

�and a post vacuum drying phase.

� Prion134:This is a special sterilization cycle in accordance with the WHO's

recommendations on CJD (Creutzfeld Jakob Disease) for a longer sterilization

plateau. The cycle is a type-B sterilization cycle (suitable for all types of

loads; solid, porous, hollow A and B; unwrapped, bagged, single or double

wrapped) that features a pre-vacuum phase, a plateau period of 18 minutes at

a temperature of 134 �and a post vacuum drying phase.

� Universal121: This is a low-temperature sterilization cycle (121�) primarily

designed to sterilize items that cannot withstand the higher temperatures of

the 134 �default cycle (plastics, textiles). The cycle is a type-B sterilization

cycle (suitable for all types of loads; solid, porous, hollow A and B; unwrapped,

bagged, single or double wrapped) that features a plateau period of 15 minutes

at a temperature of 121 �and a post vacuum drying phase.

Figure 2.8 describes the pro�le of pressure with respect to di�erent types of cycle.

All available sterilization cycles feature the same pressure pro�le as shown in the

Fig. 2.8. Only the duration of the plateau period, drying time and the sterilization

temperature varies.

However, in this project we have considered the cycle Universal 134 because it

is mostly used by dentists.

2.1.7 Phases

Table 2.1 describes the 11 phases that compose a single run. Moreover, Figure 2.9
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Figure 2.8: Pressure pro�le of the 3 available type-B sterilization cycles

shows the trend of the Pressure into the chamber (variable PChamb) and highlights

the phases of a sterilizer cycle.

Figure 2.9: Pro�le of run with its phases

The main phases are the �rst eight. After the DRY phase there are three phases:

SEP (duration 45�); LEV (duration17�-18�); END (it is not always present).

The duration of DRY phase is 360� when the chamber is empty and 960� when the

weight load is at least 4 kg.
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Phase Description

PV1 The sterilizer creates the vacuum

PP1 Injection of steam into the chamber

PV2 The sterilizer creates the vacuum

PP2 Injection of steam into the chamber

PV3 The sterilizer creates the vacuum

PPH Injection of steam into the chamber

PR Sterilization phase

DRY Dry phase

SEP Water drain

LEV Leveling

END End of cycle

Table 2.1: Run phases description

Finally, we talk about PR phase (plateau). This phase represents the actual steril-

ization of the dentist instruments and its duration is constant (240 seconds in the

cycle type Universal 134).

The plateau, shown in Fig. 2.10, is composed of 4 steps (53-54-55-56) and its

trend is set by sterilizer software, in particular:

� the ascents (micro-phase 1), represent recoveries of H2O that are not entered

in the steam generator but in the collecting tray H2O system 2CS (Figure 2.2).

In this micro-phase switches to the EVD horizontal (EVD=1) and the steam

generator switches on.

� the descents (micro-phase 2-3), represent recoveries of H2O that are inserted

in the steam generator (Figure 2.3). In this micro-phase, the EVD switches to

vertical (EVD=0) and the steam generator is switched o�.

Moreover, in the step 56 the steam generator is always switched on.
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Figure 2.10: Plateau phase and its micro-steps

2.2 Load Types

Table 2.2 reports the types of load that it is possible to insert into the chamber of

Lisa522.

Load Code Description

Empty 1 The chamber of sterilizer is empty (0 kg).

Solid 2 The chamber of sterilizer contains only metal.

Porous 3 The chamber of sterilizer contains only porous patches.

Mixed 4 The chamber of sterilizer contains both metal and porous.

Table 2.2: Types of load

According to information of the market, the load types most frequently used by

dentists are Solid (only metal) and Mixed (metal and porous patches), moreover 2/3

kg are the weight more frequent. However, to characterize the sterilizer behavior,

we performed several sterilization cycles with the following weights: 0 kg (empty

sterilizer), 4 kg, 6 kg and 8 kg. It is possible to see more details of the combinations

between load types and weights in Fig. 4.1.
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2.3 Variables Description

For each sterilization cycle the sensors of our steam sterilizers measure, second by

second, some operating parameters or variables, that we describe in Table 2.3. These

variables are stored in the dataset Lisa_TOT.

Variabile UdM Description

TChambInt � Internal temperature of the chamber.

TChambExt � Outside temperature detected near the radial band.

TAir � Temperature of the �uid in a point of the circuit.

TSteamGen � Temperature of the steam generator.

TCPU � Temperature detected near the CPU.

TCondenser � Temperature measured on condenser tubes.

TPowerBoard � Temperature measured near the card implementation loads.

PChamb bar Internal pressure of the chamber.

PowerSteamGen kWh Power applied instantly to the generator.

PowerChambHeat kWh Power applied instantly to the radial band.

I24 mA Current intensity measured on 24 Volt channel.

H2O cc Cumulative water that is fed into the generator.

Table 2.3: Variables recorded for each run

Moreover, Lisa_TOT contains another information. In particular we use the

following factors to implement the exploratory analysis in Chapter 4:

� CCycle: represents the programs of sterilization listed in Section 2.1.6

� ID_Phase: represents the phases of each sterilizer cycle showed in Table 2.1.

These factors allow to study and understand the Lisa522 behavior in di�erent

phases of a sterilizer cycle.

2.4 Faults

Each product has di�erent modes of failure, therefore an analysis of potential failures

helps analysts to understand the impact of potential risks of failure. In particular,
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failure analysis is the process of data collecting and analysis that is useful to deter-

mine the cause of a potential failure, in order to improve existing products.

Therefore, we performed an analysis of W&H service reports and selected the

sterilizer components for which the defects occur more frequently. In particular, we

made the choice of above components taking into account both the frequency of the

fault and the technical feasibility of the simulation of these faults in our experiments.

After choosing the above components, we have tampered with them thanks to

the help of the W&H technicians. Below, we describe both each components/fault

and the manumissions the we have introduced. To verify the proper functioning of

the sterilizer we thought to test some of its components in order to determine the

sterilizer behavior in normal and altered conditions. Therefore, we have performed

the altered runs tampering with, one at a time, the components of Lisa522. In

particular, these components are: Door Seal, Pressure Transducer, 2CS, Vacuum

Pump, Bacteriological Filter. In next subsections we describe the above components

and their manumissions.

Figure 2.11: Damaged components of Lisa 522
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2.4.1 Door Seal

A door seal is a mechanical component which �lls the space between two mating

surfaces, generally to prevent dispersion from or into the joined objects while under

compression. In our case, this component allows to hold pressure and temperature

inside the chamber. It is guaranteed for 800 sterilization cycles or one year. An

early exchange of the seal can be due to the use of chemical components used by the

dentist (e.g., disinfectants under the rules of use of the sterilizer). The seal that we

used in our experiments (see Fig. 2.11 a), was used in the laboratory for thousands

of sterilization cycles. In particular, the double lip of the seal is worn unevenly.

This seal has lost some of its elastic properties and, therefore, the capacity to hold

temperature and pressure is not optimal.

2.4.2 Pressure Transducer

A pressure sensor measures pressure, typically of gases or liquids. In our case, this

component, shown in Fig. 2.11 b, measures the pressure into the chamber of the

sterilizer. We tampered this component by the sterilizer software. In particular we

consider two cases (A and B):

� Reference Pressure A: 0.000 absolute bar.

� Pressure Measure A: 0.010 absolute bar (0.030, for code 23).

� Reference Pressure B: 3.500 absolute bar.

� Pressure Measure B: 3.490 absolute bar (3.470, for code 23).

Theoretically, above alterations of this component should in�uence some algo-

rithms that compare pressure and temperature at a given time.

2.4.3 2CS

2CS is a speci�c and patented component of Lisa 522. is designed to collect conden-

sate that drops to the bottom of the sterilization chamber during all steam phases of

sterilization cycles, and return it to the steam generator to produce more steam. As
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a result the sterilizer uses considerably less water, and as the returned condensate

from the chamber is boiling hot, it also helps to save energy and time. The 2CS

process is active during the fractionated pre-vacuum after every steam phase, and

during the sterilization (plateau). We tampered the lower diaphragm (green washer)

of the 2CS system, puncturing the membrane as shown in Fig. 2.11 c. The e�ect is

that there is no recovery of condensate and water consumption increases.

2.4.4 Vacuum Pump

This component, shown in Fig.2.11 d, removes the air into the sterilizer chamber

in order to create saturated steam. The vacuum pump that we have use in the

experiments causes poor performance of our sterilizers. In fact, the above fault

causes long vacuum phases and then a sterilization cycle more long, moreover, this

entails a greater energy consumption.

2.4.5 Bacteriological Filter

A bacteriological �lter, shown in Fig.2.11 e, is a �ltration component that prevents

organisms above a certain size from passing through, limiting the movement of most

bacteria. The e�cacy of a bacterial �lter is determined by the size of the particles

that can travel through it. On medical devices bacterial �lters limit the spread

of microorganisms between patients. Moreover, in our sterilizers this component

regulates the input of air into the sterilizer chamber. We occluded to 90% of bac-

teriological �lter. This tampering simulates the e�ect of a �lter clogged with dust.

The e�ect is that the load will not be completely dry at the end of the sterilization

cycle.
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Chapter 3

Statistical Methods

This Chapter is divided in two parts. In the �rst part we introduce the Functional

Data Analysis (FDA) and recall spline concepts. In particular, we talk about the

models that we used to treat the functional data coming from our steam sterilizers.

In the second part, we introduce the SPC and some control charts. Moreover, we

present our innovative approach called functional MEWMA or f-MEWMA that inte-

grates splines into the multivariate exponentially weighted moving average scheme.

In particular, our approach transforms the multiple data pro�les in spline form, thus

generating a multivariate functional object which is repeatedly observed over time.

This method is capable of monitoring the health of a system which, at each run,

generates complex output data given by nonlinear pro�les. Finally, we introduce a

probabilistic classi�er that allows to classify each sterilization cycle with respect to

the faults that we described in Section 2.4.

3.1 Functional Data Analysis

In some circumstances is virtually impossible to model the data using traditional

parametric techniques, therefore it is necessary to use more �exible regression tech-

niques, in particular nonparametric regression.

Ramsay et al. 15 de�ned Functional Data Analysis (FDA) as a branch of statistics

that analyses data providing information about curves, surfaces or anything else

varying over a continuum. The continuum is often the time. The assumption is that
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these curves are intrinsically smooth and this characteristic often de�nes functional

data analysis. In particular, functional data analyses uses the information about

slopes and curvatures of curves, as re�ected in their derivatives. Plots of �rst and

second derivatives as functions of t, or plots of second derivative values as functions

of �rst derivative values, may reveal important aspects of the processes generating

the data.

The basic philosophy of Functional Data Analysis (FDA) is to consider the ob-

served functional data as single objects, rather than as a sequence of individual

observations, see Ramsay et al. 15 and Ramsay and Silverman 16 .

Statistical methods for FDA are natural but not obvious extensions of the clas-

sical methods applied to multivariate data that do not have simple underlying form.

In fact, FDA methods can be used to address complex high dimensional objects

that can be characterized as continuous functions. Models for functional data and

methods for their analysis may resemble those for conventional multivariate data,

including linear and nonlinear regression models, principal components analysis,

kernel smoothing, splines, etc. However, the possibility of using derivative informa-

tion greatly extends the power of these methods. In particular, the use of kernel

smoothing and splines ensures the smoothness assumptions of the functional data.

Applications and developments of FDA are �ourishing, for example, spatial sam-

pling of functional data are considered in Bohorquez et al. 17 . Moreover, functional

heteroskedastic regression is used in Fassó et al. 18 for atmospheric pro�les based on

radiosonde data.

In order to de�ne a suitable functional representation for the sterilization runs,

splines are reviewed in the rest of this section. Azzalini and Scarpa 19 provide an

evocative introduction of splines from an historical viewpoint: "The term spline

originally meant the �exible strips of wood used to shape ships hulls. Some points

on the cross-section of the hull were chosen, and the rest of the curve of the hull

was derived by forcing the wooden strips to pass through such points, leaving them

free to �t into the rest of desired curve according to their natural tendency". Indeed,

splines are used in mathematics and statistics to build piecewise polynomials which

approximate functions known only at certain points called knots, according to a
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logic resembling the mechanics of wood strips described above. In particular, a

spline function passes through the knots and it is free at the other points, with the

assumption that it is intrinsically smooth.

3.1.1 Spline

To introduce the spline we will start with the straight line regression model :

yi = β0 + β1xi + εi (3.1)

Figure 3.1 provides a graphical representations of this model. In particular,

Figure 3.1(a) depicts Eq. 3.1, with the line representing the underlying regression

function and the points representing a typical disposition of the data for this model.

Figure 3.1(b) displays the corresponding basis for the above model, and then these

are the functions 1 and x.

Figure 3.1: Simple linear regression model

Note that the right-hand side of Eq. 3.1 is a linear combination of these functions,

which is the reason because we use the word basis. In fact, from linear algebra, a

basis of a vector space is a set V of elements of that space, such that any element
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of the space can be expressed uniquely as a linear combination of elements of V .

For example, β0 + β1x is a linear combination of the basis functions 1 and x. Thus,

[1, x] is a basis for the vector space of all linear polynomials in x.

Therefore, the basis functions correspond to the columns of the X-matrix for

�tting the regression are:

X =


1 x1

...
...

1 xn


Therefore, the vector of �tted values ŷ can be obtained from this matrix and y

through the formula

ŷ = X(X ′X)−1X ′y = Hy (3.2)

The matrixH is called the hat matrix since converts y to ŷ. A simple extension

of the simple linear model is the quadratic model :

yi = β0 + β1xi + β2x
2
i + εi (3.3)

The Eq. 3.3 is represented in Figure 3.2. It is possible to note that there is an

extra basis function: x2, which corresponds to the addition of the β2x
2
i term to the

model showed in Eq. 3.1.

The X-matrix for the quadratic model is:

X =


1 x1 x2

1

...
...

...

1 xn x2
n


and �tted values can be obtained using Eq. 3.2 with this particular X.

Now, we see how to accommodate a di�erent type of nonlinear structure. For

example, we consider the model showed in Figure 3.3. called broken stick model,

because it consists of two di�erently sloped lines that join together at x = 0.55.

One mode to handle this type of structure is to introduce a basis function that is

zero to the left of 0.55 and then is a positively sloped function from 0.55 onward. The
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Figure 3.2: Quadratic model

broken line in the top panel of Figure 3.3 can be obtained as a linear combination

of the three basis functions in the bottom panel. A compact mathematical way of

expressing the new basis function is (x− 0.55)+.

In particular, (x− 0.55)+ is the positive part of the function (x− 0.55) because

the '+' sets it to zero for those values of x where (x−0.55) is negative (i.e. x < 0.55).

A function such as (x− 0.55)+ is also sometimes referred to as a truncated line (see

Fig. 3.3).

Then, the broken stick model (with a break at x = 0.55) is

yi = β0 + β1xi + β11(xi − 0.55)+ + εi (3.4)

which can be �t using 3.2 with

X =


1 x1 (x1 − 0.55)+

...
...

1 xn (xn − 0.55)+


Now suppose a structure that is more complicated than the broken stick model.

About this, Ruppert et al. 20 show an interesting for which there is a straight line
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Figure 3.3: Broken stick regression model

structure in the left-hand half, but the right-hand half is prone to a high amount

of detailed structure. This model is called whip model since the right-hand half is

free to move around like the lash of a whip, while the left-hand side corresponds to

the whip sti� handle and is linear. Therefore, how could we change the basis? The

basis (x− 0.4)+, (x− 0.55)+, ..., (x− 0.85)+ will model any whiplike structure with

a handle between x = 0 and x = 0.5. Then we can use ordinary least squares to �t

such a model with the X-matrix:

X =


1 x1 (x1 − 0.4)+ (x1 − 0.45)+ . . . (x1 − 0.85)+

...
...

...
...

...

1 xn (xn − 0.4)+ (xn − 0.45)+ . . . (xn − 0.85)+


From this example it is clear that it is possible to handle any complex type

of structure simply adding more functions of the form (x − κ)+ to the basis or,

equivalently, by adding a column of (xi− κ)+ values to the X-matrix. The value of

κ corresponding to the function (x− κ)+ is usually called knot. This is because the

function is made up of two lines that are tied together at x = κ.

A function such as (x − 0.4)+ is called linear spline basis function and a set of
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such functions is called a linear spline basis. The spline model is:

f(x) = β0 + β1x+
K∑
i=1

ui(x− ki)+. (3.5)

In general, we choose k points k1 < k2 < ... < kK called knots along the x-axis.

A function f(x) is constructed so that it passes exactly through the knots and is free

at the other points, with the constraint that it presents regular overall behavior.

Usually, if we need smooth and accurate derivatives, it is necessary to increase

the order of the spline. Ramsay et al. 15 say that, a practical rule is to impose the

order of the spline basis to be at least two higher than the highest order derivative

to be used. Therefore, by this rule, a cubic spline is a good choice.

Azzalini and Scarpa 19 also note that the degree that is almost universally used

is p = 3, and we therefore speak of cubic splines. The reason for this is that the

human eye cannot perceive discontinuity in the third derivative.

Therefore, after the quadratic model, a further extension of the simple linear

model is the cubic model :

yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi (3.6)

The X-matrix for the cubic model is:

X =


1 x1 x2

1 x3
1

...
...

...
...

1 xn x2
n x3

n


and �tted values can be obtained using Eq. 3.2 with this particular X.

Since the function (x− ki)p+ has p− 1 continuous derivatives, higher values of p

lead to smoother spline functions. In this work we chose the cubic spline in order

to insure an adequate grade of smoothness. Therefore, starting to the Eq. 3.5, a

polynomial spline of degree 3 is based on the following piecewise polynomial

m(x) = β0 + β1x+ β2x
2 + β3x

3 +
K∑
i=1

ui(x− ki)3
+ (3.7)

where K is the number of knots.
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In Figure 3.4 we report an example of functional data related to the sterilizer

case study. In particular, this plot shows the functional form (cubic spline) of the

variable TChambInt, with 30 knots, or ten for each macro-phase, in 82 fault free

sterilization runs.

Figure 3.4: Cubic Splines of TChambInt variable measured at standardized times x

for 82 fault free sterilization runs.

The fundamental block of spline functions are the so called spline basis functions.

To see this, let us consider the positive part function, given by (x)+ = x if x > 0 and

(x)+ = 0 else. Using this, a linear spline basis si given by 1, x, (x−k1)+, ..., (x−kK)+

and any linear combination of such basis is a piecewise linear function with knots at

k1, ..., kK . More generally, a polynomial spline of degree p is based on the following

piecewise polynomial that is the generalization of the Eq. 3.5

m(x) = β0 + β1x+ ...+ βpx
p +

K∑
i=1

ui(x− ki)p+ (3.8)

where K is the number of knots. Moreover, the unknown coe�cient vectors β =

(β0, ..., βp)
′ and u = (u1, ..., uk)

′ de�ne, respectively, the global and local behavior.

Finally, for more elaborate penalized spline models there are computational ad-

vantages to keeping the number of knots relatively low. A reasonable default is to

choose the knots to ensure that there are a �xed number of unique observations, say

4-5, between each knot. For large data sets this can lead to an excessive number of

knots, so a maximum number of allowable knots (say, 20-40 total) is recommended.
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A simple default choice of K that usually works well is

K = min

(
1

4
c, 35

)
(3.9)

where c is number of unique xi.

However, in our case study, the choice of knots does not a�ect the detection

ability of anomaly by f-MEWMA control chart.

3.1.2 Linear Mixed Models

Gurrin et al. 21 say that linear mixed models extend the linear regression model for

longitudinal data. In order to see the connection among splines and linear mixed

model, let us consider n observations y = (y1, ..., yn)′ at times x = (x1, ..., xn)′ , such

that y = m(x) + ε where m() is as in Equation (3.8) and ε is a Gaussian error with

variance covariance matrix σ2
εI. Moreover, let us introduce the n× p design matrix

of �xed e�ects:

X =
[
1, x, ..., xp

]
(3.10)

and the n×K design matrix of random e�ects

Z =
[
(x− κ11)+, ..., (x− κk1)+

]
. (3.11)

Following e.g. Gurrin et al. 21 and references therein, the standard form of the linear

mixed model is

y = Xβ +Zu+ ε (3.12)

where β and u are, respectively, the �xed and random e�ects introduced in the

previous section. Moreover, the random e�ect vector u is assumed Gaussian with

zero mean and variance covariance matrix given by G.

3.1.3 Penalized Least Squares

The quality of a nonparametric function estimated by polynomial splines depends

on the number of knots, but there are two strategies to bypass this problem:

� The adaptive choice of knots based on model choice strategies.
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� The regularization of the estimation problem through the introduction of

roughness penalties, that allows to constrain the knots in�uence.

Usually it is preferred to use the second strategy. The basic idea of penalized

splines (P-Splines) can be synthesized as follows:

1. Approximate a function f(x) with a polynomial spline that uses a large number

of knots. This ensures that f(x) can be approximated with enough �exibility

to represent even highly complex functions.

2. Insert an additional penalty term that prevents over�tting and minimize the

penalized least squares (PLS) criterion instead of the traditional least squares

criterion.

Interestingly, thanks to the above representation, see Green 22 , the maximum

Gaussian likelihood smoothing spline estimators β̂ and û minimize the penalized

least squares (PLS) function

PLS(β, u) = ||y −Xβ − Zu||2 + α||u||2 (3.13)

where α represents the ratio of variance components, α = σ2
ε/σ

2
u, and ||u|| is the

Euclidean norm of the vector u. This provides �tted curves ŷ(x) = m̂(x) that are

spline smoothers, hence formally linking linear mixed models to spline smoothing.

Equation (3.13) highlights that α = σ2
ε/σ

2
u is a smoothing parameter. If value of α

increases then the penalty term receives greater weight and the regression becomes

smoother. Optimization of (3.13) is performed using standard software such as R

or MATLAB/OCTAVE, which implements Reinsch 23 approach. As a result we get

estimates β̂, û and ŷ.

In order to assess the goodness of �t of the spline model used, various quantities

are available. From the practical point of view a popular choice is the mean square

error:

MSE(ŷ) = E[diag[(y − ŷ)(y − ŷ)′]] (3.14)

In the application of next section we use cubic smoothing splines with p = 3 and

α = 1.

36



3.2 Statistical Surveillance

As mentioned, statistical surveillance is the continuing collection, analysis and in-

terpretation of data concerning the health of a system and its main instruments are

control charts that are also used in statistical process control. These instruments

have been traditionally used to monitor industrial processes. However, they are

increasingly being used in many applications �elds such as engineering, economics,

�nance, epidemiology and environmental statistics.

In particular, above instruments help to detect if the process shifts, in order to

adopt corrective actions before many nonconforming "units" (in our case sterilization

cycles) are performed.

Therefore, in next Section, we introduce the principal control charts and intro-

duce our innovative f-MEWMA.

3.2.1 Introduction to Control Charts

In general, a control chart (see Figure 3.5) is a graphical instrument of a quality

characteristic that has been measured or computed from a sample versus the sample

number or time (Montgomery 24). Usually, a control chart contains:

� Center line (CL) that represents the average value of the quality characteristic

corresponding to the in-control state.

� Two other horizontal lines, called the upper control limit (UCL) and the lower

control limit (LCL), are also shown on the chart.

Above control limits are chosen base on the process is in control, then the sample

points will fall between them. If these points plot within the control limits, the

process is assumed to be in control. However, if a point falls outside of the control

limits then that is interpreted as a "signal" that the process is out of control, and

investigation and corrective action are required in order to �nd and eliminate the

causes responsible of this behavior.

It is possibile give a general model for a control chart. Let w be a sample statistic

that measures some quality characteristic of interest, and suppose that the mean of
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Figure 3.5: A typical control chart

c is µc and the standard deviation of w is σc (Montgomery 24). Then the center line,

the Upper Control Limit, and the Lower Control Limit become:

UCL= µc + Lσc

Center line= µc

LCL= µc − Lσc

where L is the "distance" of the control limits from the center line, expressed in

standard deviation units. This general theory of control charts was �rst proposed

by Walter A. Shewhart, and control charts developed according to these principles

are often called Shewhart control charts. Montgomery 24 says that an important

disadvantage of a Shewhart control chart is that it uses only the information about

the process contained in the last sample observation and it ignores any information

given by the entire sequence of points. This feature makes the Shewhart control chart

relatively insensitive to small process shifts, say, on the order of about 1.5σ or less.

This potentially makes Shewhart control charts less useful in phase II monitoring

problems.

Two very e�ective alternatives to the Shewhart control chart may be used when

small process shifts are of interest: the cumulative sum (CUSUM) control chart,

and the exponentially weighted moving average (EWMA) control chart.
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3.2.2 EWMA Control Chart

The exponentially weighted moving average (EWMA) control chart is also a good

alternative to the Shewhart control chart when we are interested in detecting small

shifts. The performance of the EWMA control chart is approximately equivalent to

that of the cumulative sum control chart, and in some ways it is easier to set up and

operate.

The EWMA control chart was introduced by Roberts 25 and it is very e�ective

with respect to small process shifts. The exponentially weighted moving average is

de�ned as

qi = λyi + (1− λ)qi−1 (3.15)

where 0 < λ ≤ 1 is a constant and the starting value is the process mean, then that

q0 = µ0. In some cases the average of preliminary data is used as the starting value

of the EWMA, then that q0 = x̄. The weight is 1− (1− λ)i.

If the observations yi are independent random variables with variance σ2, then

the variance of qi is

σ2
qi

= σ2

(
λ

2− λ

)
[1− (1− λ)2i] (3.16)

Therefore, the EWMA control chart is constructed by plotting qi versus the

sample number i (or time). The center line is µ0. Instead, the control limits of the

EWMA, for i is large, control chart are

UCL = µ0 + Lσ

√
λ

2− λ
[1− (1− λ)2i] (3.17)

LCL = µ0 − Lσ
√

λ

2− λ
[1− (1− λ)2i] (3.18)

where L is the width of the control limits. Note that the term [1 − (1 − λ)2i]

approaches unity as i gets larger. This means that after the EWMA control chart

has been running for several time periods, the control limits will approach steady-

state values given by
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UCL = µ0 + Lσ

√
λ

2− λ
(3.19)

LCL = µ0 − Lσ
√

λ

2− λ
(3.20)

However, it is recommend to use the exact control limits in equations 3.17 and

3.18 for small values of i, because this improves the performance of the control chart

in detecting.

Finally, Montgomery 24 suggests that values of λ between 0.25 and 0.05 work

well in practice, with λ = 0.05, λ = 0.10, and λ = 0.20 that are the most popular

choices. A good rule of thumb is to use smaller values of λ to detect smaller shifts.

Finally, L = 3 works reasonably well.

3.2.3 The Multivariate Quality Control Problem

There are many situations in which the simultaneous monitoring or control of two or

more related quality characteristics (variables) is necessary. For example, suppose

that a sterilizer measures the variables Temperature (y1) and Pressure (y2).

Because both quality above variables are measurements, they could be monitored

by applying the a control chart to each variable. The process is considered to be

in control only if the sample means fall within their respective control limits. In

particular, this is equivalent to the pair of means (ȳ1, ȳ2) plotting within the shaded

region in Fig. 3.6.

However, monitoring these two variables independently can be very misleading.

In fact, for example, in Figure 3.6, it is possible to note that one observation appears

somewhat di�erent with respect to the others. That point is within in the control

limits on both of the univariate charts for (y1) and (y2), however, when we examine

the two variables simultaneously, the unusual behavior of the point is fairly obvious.

Process-monitoring problems in which several related variables are of interest

are sometimes called multivariate quality-control (or process-monitoring) problems

Montgomery 24 . The original work in multivariate quality control was done by

Hotelling 26 .
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Figure 3.6: Control region by independent control limits.

3.2.4 Description of Multivariate Data

In univariate statistical quality control, it generally use the normal distribution to

describe the behavior of a continuous quality characteristic (Montgomery 24). The

univariate normal probability density function is

f(x) =
1√

2πσ2
e−

1
2

(x−µ
σ

)2 (3.21)

The mean of the normal distribution is µ and the variance is σ2. It is possible

to note that (apart from the minus sign) the term in the exponent can be written

in this way

(x− µ)(σ2)−1(x− µ) (3.22)

Above quantity measures the squared standardized distance from x to the mean

µ, where the term "standardized" means the distance expressed in standard devia-

tion units.
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This same approach can be used in the multivariate normal distribution case.

In fact, we suppose to have p variables, called x1, x2, ..., xv, that we put in a v-

component vector x′ = [x1, x2, ..., xv]. Let m = [m1,m2, ...,mv] be the vector of the

means of the above variables, and let Σ the variances-covariances matrix, where the

main diagonal elements of are the variances of the x 's and the o�-diagonal elements

are the covariances. Moreover, the squared standardized (generalized) distance from

x to µ is

(x− µ)′Σ−1(x− µ) (3.23)

Figure 3.7: A multivariate (bivariate) normal distribution with v = 2 variables.

The multivariate normal density function is obtained by replacing the standard-

ized distance shown in equation 3.23 by the multivariate generalized distance in

equation 3.22 and changing the constant term with a more general form that makes

the area under the probability density function unity regardless of the value of v.

Thus, the multivariate normal probability density function is

f(x) =
1√

2π|Σ|
e−

1
2

(x−µ)′Σ−1(x−µ) (3.24)

where −∞ < xj < +∞, j = 1, 2, ..., v

In Fig. 3.7 is shown a multivariate normal distribution for v = 2 variables (called

bivariate normal). It is possibile to note that the density function is a surface.
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3.2.5 Multivariate EWMA Control Chart

In recent decades, multivariate statistical methods for monitoring and controlling

complex processes have received increasing attention. The �rst work in multivari-

ate quality control dates back to Hotelling 26 , while Montgomery 24 and Woodall

and Montgomery 27 provide recent overviews of multivariate control charts and a

perspective of applications of statistical process monitoring in di�erent �elds.

In order to de�ne the traditional multivariate EWMA of Lowry et al. 4 , for each

run i, let us suppose that observations yi are v dimensional random vectors, with in-

control zero mean and variance covariance matrix Σ. Also, suppose we want detect

a drift intervening at time i0 in the process mean E(yi) 6= 0 for i ≥ i0. In this

frame, a MEWMA control chart is based on exponentially smoothed observations:

Qi = λyi + (1− λ)Qi−1 (3.25)

where 0 ≤ λ ≤ 1, Q0 = 0. Then the detector is de�ned by

T 2
i = Q′iΣ

−1
Q Qi (3.26)

where ΣQ is the v × v (asymptotic) variance covariance matrix of Qi

ΣQ =
λ

2− λ
Σ. (3.27)

The MEWMA control chart is then obtained by plotting T 2
i against i and giving an

out-of-control signal if T 2
i > h. The upper control limit h > 0 is related to detection

delay, false alarms and the so called average run length as discussed Prabhu and

Runger 28 . In order to have a simple approximation, it can be observed that, if we

assume that yi is Gaussian distributed, so is, asymptotically, also Qi and, hence, T
2
i

is approximately χ2 distributed with v degrees of freedom. Hence, h can be initially

computed as the 0.999 quantile of the χ2 distribution.

3.3 f-MEWMA Control Chart

In this section we introduce the f-MEWMA control chart which extends the tra-

ditional MEWMA and allows to monitor multiple nonlinear pro�les using splines.
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Speci�cally, the proposed approach transforms each sterilization run in a multivari-

ate functional object. Since the random e�ects ui are zero mean Gaussian random

vectors with zero mean in the fault free case, we apply a MEWMA control chart to

ui in order to detect a generic drift of these objects over time. In particular, the

algorithm is iterative for i = 1, ..., r and, for each i, it consists of the following two

steps:

1. f-step At run i the observed ni × v dimensional pro�le matrix yi is

transformed in spline form obtaining the estimated spline coe�cients. In particular

Equation (3.8) is used with p = 3 giving v cubic splines, one for each column

component of yi. Then the vector bi is obtained by stacking the v vectors of random

coe�cients ûi,j, j = 1, ..., v.

2. MEWMA-step Vector bi is considered as a Gaussian random vector with

variance covariance matrix Σ and processed in order to generate f-MEWMA control

chart. In particular, we calculate the quantity

Qi = λbi + (1− λ)Qi−1. (3.28)

Next, exploiting Equation (3.26), the functional detector T 2
j is obtained and plotted

against i to depict the f-MEWMA control chart, giving a functional out-of-control

signal if T 2
i > h for some h > 0.

Notice that, in case we have a univariate pro�le, i.e. v = 1, above algorithm

de�nes a f-EWMA control chart. Moreover, since bi may be assumed to have a

v ×K Gaussian distribution, then, similarly to Section 3.2.5, the threshold h may

be computed as the 0.999 quantile of the χ2 distribution with v × K degrees of

freedom.

3.4 Classi�cation

In statistics and machine learning, classi�cation is the problem related to identify to

which of a set of categories an observation belongs, on the basis of a training set of
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data containing observations (or instances) whose category is known. An example

would be assigning a given email into "spam" or "non-spam" classes. In the ter-

minology of machine learning, classi�cation is considered an instance of supervised

learning, i.e. learning where a training set of correctly identi�ed observations is

available(Alpaydin 29).

Often, the individual observations are analyzed into a set of quanti�able prop-

erties, known variously as explanatory variables or features. These properties may

be categorical (e.g. "A", "B", "AB" or "O", for blood type), ordinal (e.g. "large",

"medium" or "small") and so on. Other classi�ers work by comparing observations

to previous observations by means of a similarity or distance function. An algorithm

that implements classi�cation is known as a classi�er.

A common subclass of classi�cation is probabilistic classi�cation. Algorithms

of this nature use statistical inference to �nd the best class for a given instance

(observation). Probabilistic algorithms return a probability of the instance being a

member of each of the possible classes. The best class is normally then selected as

the one with the highest probability.

In next Section we introduce a probabilistic classi�cation method that exploits

the Bayes formula.

3.4.1 Bayes Classi�er

Bayesian classi�cation procedures provide a natural way of taking into account any

available information about the relative sizes of the sub-populations associated with

the di�erent groups within the overall population. Bayesian procedures tend to

be computationally expensive and, in the days before Markov chain Monte Carlo

computations were developed, approximations for Bayesian clustering rules were

devised (Binder 30).

In our case, we veri�ed the ability to identify the type of fault (anomaly) using

probabilistic classi�cation technique, in particular Bayes 31 formula:

P (Ai|E) =
P (E|Ai)P (Ai)∑n
j=1 P (E|Aj)P (Aj)

(3.29)
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where

� P (A) is the prior probability of each fault.

� P (Ai|E) is the posterior probability of each fault since a given run (E).

Our classi�er is based on functional data, in fact it receives in input the spline

coe�cients. For each run, we calculated the posterior probability of each fault and

the diagnosis is made by identifying the the most likely fault. This approach requires

the de�nition of prior probabilities of the various anomalies that, in this experimental

context, we considered equal to the frequencies used in DOE (see Fig. 4.1).

To obtain the faults classi�cation we used the leave-one-out technique. In par-

ticular, we exclude one run at a time from the dataset and, then, we classify it

according to criterion of the the most likely fault.
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Chapter 4

Data, Application and Results

This work is based on a speci�c requirement of W&H Sterilization to control the

health of the sterilizer called Lisa522 Fully Automatic. This machine allows dentists

to sanitize dental instruments that they use for curing their patients. Thus, it is

important to understand if a sterilizer is working well and detect the early onset of

anomalies.

Therefore, in this Chapter, we present an exploratory analysis of the variables

measured by sterilizers sensors in order to understand the machine behaviour with

respect to di�erent types of load and types of fault. Moreover, we show how to im-

plement our f-MEWMA control chart and compare it with the results of traditional

MEWMA. Finally, we present the results related to the probabilistic runs classi�er.

4.1 Exploratory Analysis

Our study is focused on the sterilizer Lisa522 Fully Automatic. As mentioned, at

the end of each run this sterilizer produces a scl �le containing operating parameters

(variables and factors) that we described in Table 2.3.

We are here interested in understanding which are the measurable "physical"

consequences of the anomalies introduced in some components of our machines,

as described in Section 2 and variables of Table 2.3. Hence the �rst step is to

consider if these anomalies could generate mean di�erences among good and altered

sterilization runs for some variables such as temperature, pressure or sterilization
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time. To see this, we considered overall means, macro-phase means or micro-phase

means for all variables.

Because doubtfully, the above variables have Gaussian distributions, we imple-

mented both standard and nonparametric ANOVA (Kruskal-Wallis test) but we got

no clearly signi�cant and stable results, with load playing a major role comparing

to the six alteration factors.

This is consistent with the fact that these sterilizing machines have strict quality

requirements, ensuring that the dental equipments have been properly sterilized.

Hence mean pressure, temperature and time are unchanged under moderate aging

and misuse.

Considering dynamics instead of level, the second approach tried to compare

variances. But once again no clearly signi�cant results emerged. If an anomaly is

to alter dynamics instead of level or variance, than one could check if correlation

among physical quantities, e.g. pressure and temperature, is changed by modifying

e.g. door seal. To see this, a correlation analysis between the variables described in

Table 2.3 was implemented comparing correlations for good and altered runs. For

example the correlation between pressure and temperature has been averaged for

the failure free and altered runs. Once again no signi�cant di�erences among these

average correlations were found.

To verify the sterilizer behavior we planned a design of experiments consisting of

good runs, where all components of sterilizer work properly, and altered runs made

by tampering, one at a time, the following components of our sterilizer: Door Seal,

Pressure Transducer, 2CS, Vacuum Pump and Bacteriological Filter.

Therefore, this section describes the more important aspects of preliminary data

analysis. In particular, we implement descriptive analysis for each variable using

a dedicated software functions and, by nonparametric ANOVA, we compare the

behavior of the sterilizer when it works in normal conditions with respect to when

a component is altered.
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4.1.1 Data Description

In order to understand the sterilizer behavior, we performed several sterilization

runs over three new machines with same characteristics. In particular, we followed

a quasi balanced DOE involving six factors which are related to critical sterilizer

components, such as door seals, transducers and �lters, among others. Moreover

confounders such as machine and load have been randomized. Each factor was

considered at two levels: fault free vs altered. Although no interactions where

considered among above six factors, machine and load where found not interacting

signi�cantly with the factors.

Figure 4.1: DOE for three Lisa 522 using di�erent faults and loads

At the end, we performed 257 runs, with the following characteristics:

� 82 good runs: in this case the sterilizing machine do not present any induced

anomaly.
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� 175 altered runs: in this case we tampered with critical components, one at a

time, almost 30 runs per factor.

Fig. 4.1 shows the composition of design of experiments. The load types used

to realize above runs are: Solid (metal only), Porous (porous patches) and Mixed

(metal and porous patches). Each run has a di�erent duration which can range

between 30 and 45 minutes, according to type of load.

According to market information, we know that the 2 kg is the load weight most

used by the dentists. However, we have performed runs with further weights: 0 kg

(empty chamber), 0.5 kg, 1.5 kg, 4 kg, 6 kg and 8 kg.
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4.1.2 Correlation Analysis

Correlation analysis measures the relationship between two variables, for example

TChambInt and PChamb. To implement this analysis we report the following cases

with respect to the load type Empty, in order to study the physiological behavior

(when the chamber is empty) of our sterilizers:

� Correlation between variables with fault= no fault (good runs).

� Correlation between variables with fault=Door Seal.

� Correlation between variables with fault=Pressure Transducer.

� Correlation between variables with fault=2CS.

� Correlation between variables with fault=Vacuum Pump.

� Correlation between variables with fault=Bacteriological Filter.

In particular, this analysis have two aims:

� Calculate the correlation between the variables that the sterilizer measures for

each run.

� Compare the correlations between good runs and altered runs.

Therefore, we report the correlation matrices related to each type of fault and high-

light the highest correlations choosing a reasonable value r ≥ 0.85, taking into

account that the average of the correlation between TChambInt and PChamb is 0.92.
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Fault: No fault - Load: EC, 0 kg

Figure 4.2: Correlation matrix for good runs.

The highest correlations (≥ 0.85) are between the variables:

� TChambInt and TAir, r = 0.90.

� TChambInt and TSteamGen, r = 0.85.

� TChambInt and PChamb, r = 0.92.

� TCPU and TPowerBoard, r = 0.91.

� PChamb and TAir, r = 0.86.
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Fault: Door Seal - Load: EC, 0 kg

Figure 4.3: Correlation matrix for Door Seal runs.

The highest correlations (r ≥ 0.85) are between the variables:

� TChambInt and TAir, r = 0.88.

� TChambInt and PChamb, r = 0.91.

� TCPU and TPowerBoard, r = 0.91.

� PChamb and TAir, r = 0.90.

� PChamb and TSteamGen, r = 0.85.
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Fault: Pressure Transducer - Load: EC, 0 kg

Figure 4.4: Correlation matrix for Pressure Transducer runs.

The highest correlations (≥ 0.85) are between the variables:

� TChambInt and TAir, r = 0.89.

� TChambInt and TSteamGen, r = 0.86.

� TChambInt and PChamb, r = 0.91.

� TCPU and TPowerBoard, r = 0.93.

� PChamb and TAir, r = 0.88.
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Fault: 2CS - Load: EC, 0 kg

Figure 4.5: Correlation matrix for 2CS runs.

The highest correlations (≥ 0.85) are between the variables:

� TChambInt and TAir, r = 0.96.

� TAir and TSteamGen, r = 0.89.

� TChambInt and PChamb, r = 0.92.

� PChamb and TAir, r = 0.94.
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Fault: Vacuum Pump - Load: EC, 0 kg

Figure 4.6: Correlation matrix for Vacuum Pump runs.

The highest correlations (≥ 0.85) are between the variables:

� TChambInt and TAir, r = 0.88.

� TCPU and TPowerBoard, r = 0.95.

� TChambInt and PChamb, r = 0.92.

� PChamb and TAir, r = 0.85.
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Fault: Bacteriological Filter - Load: EC, 0 kg

Figure 4.7: Correlation matrix for Bacteriological Filter runs.

The highest correlations (r ≥ 0.85) are between the variables:

� TChambInt and TAir, r = 0.90.

� TChambInt and PChamb, r = 0.94.

� PChamb and TAir, r = 0.89.

Comments

For each type of fault, it is possible to note that the highest correlations concern

the variables TChambInt and PChamb, TChambInt and TAir, PChamb and TAir.

Moreover, it is interesting to note that, in the altered runs, the correlation be-

tween TChambInt and TSteamGen drops below the threshold r = 0.85.
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4.1.3 Variables Distribution

Many commonly used inferential statistics operate under the assumption that the

population is normally distributed. Then, a preliminary analysis is to test the null

hypothesis that the data are normally distributed.

Therefore, in this section we perform a distribution analysis of the variables

that the sensors of the sterilizer measure during each run. In this case we consider

runs without fault and with load 0 kg (physiological behavior). In particular, we

choose the variables Duration and H2O because the �rst represents the velocity of

sterilization and the second is a parameter that measures the consumption of water.

With respect to water, the W&H patented 2CS condensate collecting system that

allows to save water in each sterilization cycle.

Figure 4.8: Distribution of variables H2O and Duration.

Figure 4.8 shows that the variables do not assume a Normal distribution. This

graphical evaluation is con�rmed by the Kolmogorov-Smirnov test (α = 5%). In

fact, the p-values, for each variable, are lower than 0.05, therefore the null hypothesis

"data comes from a standard normal distribution" is rejected.
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Figure 4.9: Distribution of variables measured by sensors of Steam Sterilizer

Figure 4.9 shows that the variables do not assume a Normal distribution. These

initial results are useful to orientate the analysis in the next section where we will use

the Kruskal-Wallis test (nonparametric ANOVA) to check the behavior di�erences

of the sterilizer according to the type of load.
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4.1.4 Load and Faults Analysis

In the next subsections we verify the sterilizer behavior in the phases pre-plateau

(PV1, PP1, PV2, PP2, PV3, PPH), because the other phases have constant du-

ration. Therefore, we consider the variable Duration because it is is a�ected by

type of load. Thus, we performed this control using Kruskal-Wallis (α = 0.05) test,

because the distributions of each variable are not Normal. Kruskal-Wallis test have

the following system of hypothesis:

� H0: data comes from the same distribution.

� H1: not all samples come from the same distribution.

In particular, we examine two kinds of load:

� EC - 0 kg: the chamber of sterilizer is empty.

� MIX - 2 kg: the chamber of sterilizer contains a 2 kg of mixed load.

To implement this analysis we used the Empty load type, in order to study the

physiological behavior of our sterilizers. Moreover, we choose a MIX load because

it is the most used by dentists. In fact, in this mode, they can be sterilized together

both metal tools and porous patches. With respect to weight, 2 kg is that most used

by dentists .
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Variable: Duration - Fault: Door Seal (code 10) - Load: EC, 0 kg

Below we report the boxplots related to the Duration of each phase, with respect

Door Seal fault. The title of each boxplot indicates the name of the studied phase,

instead the x-axis reports code 0 for good runs and code 10 for Door Seal fault.

Figure 4.10: Boxplots for Duration - Fault: Door Seal - Load: EC 0 kg.

The following Table shows the durations average of each phase both for good

runs and for Door Seal runs, and the p-value of the Kruskal-Wallis test performed

between good and altered runs.

Figure 4.11: Average of Duration - Fault: Door Seal fault - Load EC 0 kg

The returned p-values indicate that Kruskal-Wallis test does not reject the null

hypothesis for each phase, at a 5% signi�cance level. However, it is possible to note

that, on average, the injection phases of altered runs are longer than good runs ones.
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Variable: Duration - Fault: Pressure Transd (code 21) - Load: EC, 0 kg

Below we report the boxplots related to the Duration of each phase, with respect

Pressure Transducer fault. The title of each boxplot indicates the name of the phase,

instead the x-axis reports code 0 for good runs and code 21 for Pressure Transducer

fault.

Figure 4.12: Boxplots for Duration - Fault: Pressure Transducer - Load: EC 0 kg.

The following Table shows the average durations of each phase both for good

runs and for Pressure Transducer runs, and the p-value of the Kruskal-Wallis test

performed between good and altered runs.

Figure 4.13: Average of Duration - Fault: Pressure Transducer fault - Load EC 0 kg

The returned p-values indicate that Kruskal-Wallis test rejects the null hypoth-

esis for the phases PV2 and PV3, at a 5% signi�cance level. Moreover, it is possible

to note that, on average, the phases of altered runs are shorter than good runs ones.
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Variable: Duration - Fault: 2CS (code 30) - Load: EC, 0 kg

Below we report the boxplots for the Duration of each phase, with respect 2CS.

The title of each boxplot indicates the name of the phase, instead the x-axis reports

code 0 for good runs and code 30 for 2CS fault.

Figure 4.14: Boxplots for Duration - Fault: 2CS - Load: EC 0 kg.

The following Table shows the average durations of each phase both for good runs

and for 2CS runs, and the p-value of the Kruskal-Wallis test performed between good

and altered runs.

Figure 4.15: Average of Duration - Fault: 2CS - Load EC 0 kg

The returned p-values indicate that Kruskal-Wallis test rejects the null hypoth-

esis for the phases PV1 and PV3, at a 5% signi�cance level. Moreover, it is possible

to note that, on average, the vacuum phases of altered runs are longer than good

runs ones.

64



Variable: Duration - Fault: Vacuum Pump (code 40) - Load: EC, 0 kg

Below we report the boxplots for the Duration of each phase, with respect

Vacuum Pump. The title of each boxplot indicates the name of the phase, instead

the x-axis reports code 0 for good runs and code 40 for Vacuum Pump fault.

Figure 4.16: Boxplots for Duration - Fault: Vacuum Pump - Load: EC 0 kg.

The following Table shows the average durations of each phase both for good runs

and for Vacuum Pump runs, and the p-value of the Kruskal-Wallis test performed

between good and altered runs.

Figure 4.17: Average of Duration - Fault: Vacuum Pump - Load EC 0 kg

The returned p-values indicate that Kruskal-Wallis test rejects the null hypoth-

esis for the phase PV3, at a 5% signi�cance level. Moreover, it is possible to note

that, on average, the phases of altered runs, except PV1, are longer than good runs.
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Variable: Duration - Fault: Bacteriol. Filter (code 50) - Load: EC, 0 kg

Below we report the boxplots for the Duration of each phase, with respect

Bacteriological Filter. The title of each boxplot indicates the name of the phase,

instead the x-axis reports code 0 for good runs and code 50 for Bacteriological Filter

fault.

Figure 4.18: Boxplots for Duration - Fault: Bacteriological Filter - Load: EC 0 kg.

The following Table shows the average durations of each phase both for good

runs and for Bacteriological Filter runs, and the p-value of the Kruskal-Wallis test

performed between good and altered runs.

Figure 4.19: Average of Duration - Fault: Bacteriological Filter - Load EC 0 kg

The returned p-values indicate that Kruskal-Wallis test rejects the null hypoth-

esis for the phase PV1, at a 5% signi�cance level.
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Variable: Duration - Fault: Door Seal (code 10) - Load: MIX, 2 kg

Below we report the boxplots for the Duration of each phase, with respect Door

Seal. The title of each boxplot indicates the name of the phase, instead the x-axis

reports code 0 for good runs and code 10 for Door Seal fault.

Figure 4.20: Boxplots for Duration - Fault: Door Seal - Load: EC 0 kg.

The following Table shows the average durations of each phase both for good

runs and for Door Seal runs, and the p-value of the Kruskal-Wallis test performed

between good and altered runs.

Figure 4.21: Average of Duration for Door Seal- Load MIX 2 kg

The returned p-values indicate that Kruskal-Wallis test does not reject the null

hypothesis for each phase, at a 5% signi�cance level.

67



Variable: Duration - Fault: Press Transd (code 21) - Load: MIX, 2 kg

Below we report the boxplots for the Duration of each phase, with respect

Pressure Transducer. The title of each boxplot indicates the name of the phase,

instead the x-axis reports code 0 for good runs and code 21 for Pressure Transducer

fault.

Figure 4.22: Boxplots for Duration - Fault: Pressure Transducer - Load: MIX 2 kg.

The following Table shows the average durations of each phase both for good runs

and for Pressure Transducer (code 21) runs, and the p-value of the Kruskal-Wallis

test performed between good and altered runs.

Figure 4.23: Average of Duration - Fault: Pressure Transducer- Load MIX 2 kg

The returned p-values indicate that Kruskal-Wallis test does not reject the null

hypothesis for each phase, at a 5% signi�cance level. Moreover, it is possible to note

that, on average, the phases of altered runs, except PP1, are longer than good runs.
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Variable: Duration - Fault: 2CS (code 30) - Load: MIX, 2 kg

Below we report the boxplots for the Duration of each phase, with respect 2CS.

The title of each boxplot indicates the name of the phase, instead the x-axis reports

code 0 for good runs and code 30 for 2CS fault.

Figure 4.24: Boxplots for Duration - Fault: 2CS - Load: EC 0 kg.

The following Table shows the average durations of each phase both for good runs

and for 2CS runs, and the p-value of the Kruskal-Wallis test performed between good

and altered runs.

Figure 4.25: Average of Duration - Fault: 2CS- Load MIX 2 kg

The returned p-values indicate that Kruskal-Wallis test does not reject the null

hypothesis for each phase, at a 5% signi�cance level. Moreover, it is possible to note

that, on average, the phases of altered runs, except PP1, are longer than good runs.
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Variable: Duration - Fault: Vacuum Pump (code 40) - Load: MIX, 2 kg

Below we report the boxplots for the Duration of each phase, with respect

Vacuum Pump. The title of each boxplot indicates the name of the phase, instead

the x-axis reports code 0 for good runs and code 40 for Vacuum Pump fault.

Figure 4.26: Boxplots for Duration - Fault: Vacuum Pump - Load: EC 0 kg.

The following Table shows the average durations of each phase both for good runs

and for Vacuum Pump runs, and the p-value of the Kruskal-Wallis test performed

between good and altered runs.

Figure 4.27: Average of Duration - Fault: Vacuum Pump - Load MIX 2 kg

The returned p-values indicate that Kruskal-Wallis test rejects the null hypoth-

esis for the phases PV1, PP2 and PV3, at a 5% signi�cance level. Moreover, it is

possible to note that, on average, the phases of altered runs, except PV3, are shorter

than good runs.
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Variable: Duration - Fault: Bacter. Filter (code 50) - Load: MIX, 2 kg

Below we report the boxplots for the Duration of each phase, with respect

Bacteriological Filter. The title of each boxplot indicates the name of the phase,

instead the x-axis reports code 0 for good runs and code 50 for Bacteriological Filter

fault.

Figure 4.28: Boxplots for Duration - Fault: Bacteriological Filter - Load: EC 0 kg.

The following Table shows the average durations of each phase both for good

runs and fo Bacteriological Filter runs, and the p-value of the Kruskal-Wallis test

performed between good and altered runs.

Figure 4.29: Average of Duration - Fault: Bacteriological Filter- Load MIX 2 kg

The returned p-values indicate that Kruskal-Wallis test does not reject the null

hypothesis for each phase, at a 5% signi�cance level. Moreover, it is possible to note

that, on average, the phases of altered runs, except PPH, are longer than good runs.
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Therefore, since no changes related to level, variability and linear dynamics are

observed, if an e�ect is to be observed, this is related to curvature and functional

data analysis could help. We develop this in connection to control chart, since this

approach has a practical utility in maintenance management.

4.2 Control Chart Results

Nov we consider both traditional multivariate control charts for level changes and

functional control charts for curvature changes, applied to the seven variables of

Table 2.3, in particular: TChambInt, TChambExt, TSteamGen, TCondenser, PChamb,

PowerSteamGen and I24. To do this, we used the 82 failure free runs in order to

estimate the in-control parameters for both the MEWMA on levels of Section 3.2.5

and the f-MEWMA of Section 3.3.

In particular data and random e�ects have been standardized using in-control

values to assure zero mean before machine manumission and the exponential smooth-

ing factor has been kept constant in all cases, with λ = 0.05, to have a good power

against small shifts. In order to show the results of tampering with the door seal

component, we attach the 29 altered runs, after the above 82 failure free runs, sim-

ulating a failure intervened at run i0 = 83. First we focus on the level surveillance

with data vector yi given by the 7-dimensional run mean, for each run i.

4.2.1 MEWMA

First of all we report the results of traditional MEWMA control chart. In particular

the Figure 4.30 shows the matrices �ow related to MEWMA for Lisa:

� L-block: this block we collect the data and create the dataset Lisa_TOT. In

particular this dataset has n rows (sum of the observations of all runs) and v

columns (number of variables).

� M-block: in this block we process the dataset coming from L-block and re-

turns the MEWMA control charts. In particular, the output is a vector with
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dimension a x b, where a is the number of faults and b is the number of

statistics T 2 that identify each run.

Figure 4.31 depicts the MEWMA detector T 2
i against run index i, with vertical

line which identi�es the �rst altered run. In the same Figure the horizontal line

represents the threshold h. As expected it is apparent that the MEWMA control

chart for levels is not able to detect the anomaly induced on door seal.

Figure 4.30: MEWMA algorithm without functional data

Finally the MEWMA model (with λ = 0.05), is de�ned as follows:

Qi = 0.05yi + (1− 0.05)Qi−1

where yi is a vector that contains the output values of each phase and i represents

the i-th run. The quantity plotted on the control chart is

T 2
i = Q′iΣ

−1
Q Qi

where the covariance matrix is

ΣQ =
0.05

2− 0.05
Σ

and Σ is an identity matrix.

Figure 4.31 shows that the EWMA control chart, with respect to the v = 7 above

cited variables, is not able to detect the anomaly related to the Door Seal anomaly.
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Figure 4.31: MEWMA on levels for Door Seal anomaly; abscissa is experimental

run, ordinate is detector T 2
i ; vertical line identi�es the �rst altered run; horizontal

line represents the threshold h.

Figure 4.32, related to the variable TChambInt, and Figure 4.33, related to the

variable PChamb, show that the EWMA control chart is not able to detect the anoma-

lies with respect to all components/faults described in Section 2.4.

In next Section we consider the curvature surveillance. To do this, we used a

cubic spline for each of the v = 7 sterilizer variables and each run i, with K = 30

evenly spaced knots.

4.2.2 f-MEWMA

Using the estimated random e�ects ûi, we computed the overall 7-dimensional f-

MEWMA detector. Moreover we computed seven univariate f-EWMA detectors,

one for each variable. Figure 4.36 depicts the multivariate detector on the top

panel, and two representatives out of the seven univariate detectors on the bottom

panels. It is apparent that the overall detector signals the door seal anomaly quite

fast. From the bottom panels, it is also clear that the curvature of the chamber

internal temperature pro�le is much a�ected by the considered manumission. On

the other side the door seal defect does not a�ect the curvature of the condenser

temperature pro�le.

In order to assess model adequacy, Figure 4.34 shows the MSE for the 111 runs

of TChambInt. Recalling that data have be standardized to unit variance, it can
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Figure 4.32: EWMA for TChambInt with respect to all faults; abscissa is exper-

imental run, ordinate is detector T 2
i ; vertical line identi�es the �rst altered run;

horizontal line represents the threshold h.

be observed that these MSE's are quite small and insensitive to door seal anomaly,

con�rming that the penalized cubic splines with K = 30 knots do a good job for

these data. Similar results were obtained for the other six variables.

Below, we report the results of the control chart f-MEWMA that use functional

data. In particular the Figure 4.35 shows the matrices �ow that is divided in three

blocks:

� L-block: in this block we collect the data and create the dataset Lisa_TOT.

In particular we have n rows (sum of the observations of all runs) and v

columns (number of variables). In our case, the �nal dimension of L-matrix is

684277 x 7.

� B-block: this block allows the spline transformation of the dataset coming

from L-block and generates called FD_Lisa. In particular this dataset has r

rows (number of runs) and k columns (number of coe�cients). In our case,

r = g + f , where g = 82 represents the good runs and f is the number of

altered runs that changes according to type of fault (see DOE in Figure 4.1).
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Figure 4.33: EWMA for PChamb with respect to all faults; abscissa is experimental

run, ordinate is detector T 2
i ; vertical line identi�es the �rst altered run; horizontal

line represents the threshold h.

� M-block: this block processes the dataset coming from B-block and returns

the f-MEWMA control charts. In particular, the output is a matrix with

dimension (a = 6) x b = r, where a represents the number of faults and b is

the number of statistics T 2 that identify each run (i.e., the number of run).

Figure 4.36 shows the plots related to f-MEWMA control chart that considers the

above 7 variables with respect to type of faults described in Section 2. It s possible

to note that our f-MEWMA control chart is very e�ective to detect the anomaly

related to Door Seal. Moreover, we also show the f-EWMA for each variable and

fault in order to see their anomalies detecting performance.

Figure 4.37, related to the variable TChambInt, and Figure 4.38, related to the

variable PChamb, show that, for each type of fault, f-EWMA control chart detects

the anomalies with respect to components described in Section 2.4.

Figure 4.40 shows that, for each type of fault, f-EWMA control chart, related

to the variable I24, is not able to detects the anomalies related to components

described in Section 2.4. Figure 4.41 shows that, for each type of fault, f-EWMA
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Figure 4.34: Mean square error to evaluate the spline model goodness of �t for

TChambInt variable; abscissa is the run index i, ordinate is MSE.

Figure 4.35: f-MEWMA algorithm. The three block represent the data collection,

the data transformation in spline and the monitoring of system health, respectively.

control chart, related to the variable TSteamGen, is not able to detects the anomalies

related to components described in Section 2.4. Figure 4.42 shows that, for each

type of fault, f-EWMA control chart, related to the variable TCondenser, is not able

to detects the anomalies related to components described in Section 2.4. Figure

4.43 shows that, for each type of fault, f-EWMA control chart is not able to detects

the anomalies related to components described in Section 2.4. Figure 4.39 shows

that, for each type of fault, f-EWMA control chart detects, related to the variable

PowerSteamGen, the anomalies with respect to components described in Section 2.4.
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Figure 4.36: f-MEWMA for Door Seal anomaly; top panel is the 7-variate f-

MEWMA; bottom left panel is the TCondeser f-EWMA; bottom right panel is the

TChambInt f-EWMA; in all panels, abscissa is experimental run, ordinate is detec-

tor T 2
i , vertical line identi�es the �rst altered run and horizontal line represents the

threshold h.

Figure 4.37: f-EWMA for TChambInt with respect to all faults; abscissa is exper-

imental run, ordinate is detector T 2
i ; vertical line identi�es the �rst altered run;

horizontal line represents the threshold h.
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Figure 4.38: f-EWMA for PChamb with respect to all faults; abscissa is experimental

run, ordinate is detector T 2
i ; vertical line identi�es the �rst altered run; horizontal

line represents the threshold h.

Figure 4.39: f-EWMA for PowerSteamGen with respect to all faults; abscissa is

experimental run, ordinate is detector T 2
i ; vertical line identi�es the �rst altered

run; horizontal line represents the threshold h.
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Figure 4.40: f-EWMA for I24 with respect to all faults; abscissa is experimental run,

ordinate is detector T 2
i ; vertical line identi�es the �rst altered run; horizontal line

represents the threshold h.

Figure 4.41: f-EWMA for TSteamGen with respect to all faults; abscissa is exper-

imental run, ordinate is detector T 2
i ; vertical line identi�es the �rst altered run;

horizontal line represents the threshold h.
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Figure 4.42: f-EWMA for TCondenser with respect to all faults; abscissa is exper-

imental run, ordinate is detector T 2
i ; vertical line identi�es the �rst altered run;

horizontal line represents the threshold h.

Figure 4.43: f-EWMA for TPowerBoard with respect to all faults; abscissa is ex-

perimental run, ordinate is detector T 2
i ; vertical line identi�es the �rst altered run;

horizontal line represents the threshold h.
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4.3 Runs Classi�er

Now, we report the results of runs classi�cation, with respect to faults, using prob-

abilistic classi�cation technique.

Figure 4.44: Runs classi�cation using probabilistic classi�cation technique

The percentage of correct identi�cation is nearly 100% when using all variables.

However, using only the variables TChambInt and PChamb, this percentage does not

drop below 95%.

4.4 Data Flow and Software

In this Section we show the functions that we have developed by MATLAB/OCTAVE

environment. In particular, we have three type of them:

� Data Collection Functions: these functions, for each run, allow to import the

log �les generate by Lisa and convert them in MATLAB/OCTAVE dataset

called Lisa_TOT.

� f-MEWMA Building Functions: these functions allow to convert each steriliza-

tion cycle in a multivariate functional object, and, then create the f-MEWMA

control chart.

� Classi�er Functions: these functions allow to classify each sterilization run

with respect to the faults using a bayesian approach.
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4.4.1 Data Collection Functions

At the end of each run the sterilizer generates a scl �le that contains the operating

parameters. The scl �les are saved by sterilizer into an SD card. Figure 4.45 shows

the data collection process that allows to create a dataset.

Figure 4.45: Data collection �ow

As showed by the Figure 4.45, the process of data collection is composed by three

steps:

� SCL to XLS : Each scl �le is converted in a xls �le by a devoted VBA function.

� XLS Import : Each xls �le is imported in MATLAB/OCTAVE by a devoted

function.

� Dataset Creation: Thanks to a devoted functions is created a dataset for

each xls and then all datasets are stacked in order to create the �nal dataset

Lisa_TOT.

Therefore, Lisa_TOT is a dataset that contains the raw data that we process

using spline method. In particular, it is possible to divide the information that
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contains Lisa_TOT in three areas:

1. First Area: in this area there are information that identi�es each run (i.e., ID

Run, type of load, kgs, etc.).

2. Second Area: in this area there are the operating parameters (variables) that

the sterilizer has measured during each run (see Table 2.3).

3. Third Area: in this area there are the dummy variables that identify electro-

valves, phases and steps are active in each run.

In particular, Figure 4.46 shows in detail the functions that we have created to

implement the process of data collection.

Figure 4.46: Devoted functions for data collection process

Below we explain the devoted functions that import the xls �les and create the

dataset Lisa_TOT :

Main_File_Import

This is the main script that governs the whole data collection process and recalls

the devoted functions.
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Import_XLS

This function imports the xls �les (i.e. each run).

Create_Lisa_TOT

This function creates a dataset for each run.

Add_Support_Columns

This function adds information columns for each dataset of each run.

Stack_Lisa

This function stacks the individual dataset of each run and creates the dataset

Lisa_TOT.

4.4.2 f-MEWMA Building Functions

In this section we describe the functions �ow, as depicted in Figure 4.47, that allow

to generate the control charts f-MEWMA. We already explained the Data Collection

step in Section4.4.1.

Figure 4.47: Functions �ow.
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Below we explain the functions that transform the raw data in spline. In partic-

ular, the step spline Transformation includes the following functions:

Main_FD_mewma

This is the main script that governs the whole f-MEWMA generation process. In

particular, this script initializes the structure array FD_setup that is a data type

that groups related data using data containers called �elds. The �elds of FD_setup

are the following:

� n_phases: number of macro-phases in which is divided the sterilization cycle;

speci�cally, we identify 3 macro-phases (Start, Plateau, Dry). In particular,

each run has a di�erent duration which are included between 30 and 45 min-

utes, according to type of load and, moreover, we divided it in three macro-

phases. Therefore, in order to have runs with homogeneous lengths, steriliza-

tion time, called x, is standardized to have unit length for each macro-phase

as follows:

1. Preparation phase, the machine performs vacuum and steam injection

phases (0 < x < 1);

2. Sterilization phase, the machine performs the high temperature steriliza-

tion (1 < x < 2);

3. Dry phase, the machine performs load drying (2 < x < 3).

Note that each macro-phase can be divided in a number of micro-phases that

we described in Tab 2.1.

� n_knots: number of knots (10) for each macro-phase.

� y_tol: tolerance; it helps to connect knots and works together knots weights.

Finally, this script invokes, for each selected variable of Lisa_TOT, the functions

FD_Lisa_Transform2 and FD_mewma.
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FD_Lisa_Transform2

This function selects a fault at a time and constructs the dataset FD_Lisa.

The input parameters are:

� Lisa_TOT: described in section 2.3.

� variabili: represents the selected variables.

� faults: represents the code of each fault (10; 21; 23; 30; 40; 50).

� FD_setup: described in subsection Main_FD_mewma.

The output parameters are:

� FD_Lisa: this is the dataset the contains, for each run, the following infor-

mation: identi�er of run, type of fault, type of load and weight of load (kg).

Moreover, it contains, for each variable, the spline coe�cients.

� col_vn1: this is an integer variable that indicate the number of column of

FD_Lisa where start the coe�cients of splines.

FD_Lisa_Transform

This function calculates the number of run for each fault, controls and considers

only the variables with variance di�erent from zero, and prepares the splines vector

of coe�cients for each run.

The input parameters are:

� Lisa_TOT_fault: this is the dataset Lisa_TOT that contain only the runs of

a particular fault.

� variables: this is a cell that contains the selected variables (e.g., TChambInt

and PChamb).

� FD_setup: described in subsection Main_FD_mewma.

The output parameters are:

� Y_COEFS: this is the dataset that contains the coe�cients of splines for each

run and variable.
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� Bhead: this is a dataset the contains, for each run, some information as: iden-

ti�er of run, type of fault, type of load and weight (kg).

FD_Transform

This function estimates the spline coe�cients. In particular, to make this it invokes

a devote function.

The input parameters are:

� Lisa_TOT_fault: described in subsection FD_Lisa_Transform.

� col_vn1: described in subsection FD_Lisa_Transform2.

� runs: this vector contains the runs identi�ers.

� FD_setup: described in subsection Main_FD_mewma.

� faults: this vector contains the faults identi�ers.

The output parameters are:

� y_pp: returns the spline coe�cients.

� Bhead: described in subsection FD_Lisa_Transform.

SPAPS

To estimate spline coe�cients we used a devoted function of MATLAB spaps. This

function returns the B-form of the smoothest function f that lies within the given

tolerance of the given data points. Below we report the syntax:

[sp] = spaps(x, y, tol) (4.1)

where the input parameters are:

� x: Knots.

� y: Observed data.

� tol: Tolerance. When tol is nonnegative, then the spline f is determined as

the unique minimizer of the expression ρE(f) +F (Dmf), with the smoothing

parameter ρ so chosen that E(f) equals tol.
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instead the output parameter is:

� sp: returns the B-form of the smoothest function f that lies within the given

tolerance tol of the given data points (x(j), y(:, j)), where j = 1 : length(x).

The data values y(:, j) may be scalars, vectors, matrices, even ND-arrays.

Data points with the same data site are replaced by their weighted average,

with its weight the sum of the corresponding weights, and the tolerance tol is

reduced accordingly.

The distance of the function f from the given data is measured by

E(f) =
n∑
i=1

w(j)|y(:, j)− f(x(j))|2 (4.2)

with the default choice for the weights w making E(f) the composite trapezoidal

rule approximation. Further, smoothest means that the following roughness measure

is minimized:

E(f) = F (Dmf) =

∫ max(x)

min(x)

λ(t)|Dmf(t)|dt (4.3)

where Dmf denotes the m-th derivative of f . The default value for m is 2; the

default value for the roughness measure weight λ is the constant 1 and this makes

f a cubic smoothing spline.

spline�t

In OCTAVE environment, in order to transform the row data in spline form, it is

possible to use the splinefit function. In fact, it allows to �t a piecewise cubic spline

with breaks (knots) breaks to the noisy data, x and y.

pp = splinefit(x, y, breaks) (4.4)

where the input parameters are:

� x: number of knots.

� y: Observed data.
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� breaks: knots.

instead the output parameter is:

� pp: the �tted spline is returned as a piecewise polynomial, pp, and may be

evaluated using ppval. The splines are constructed of polynomials with degree

order. The default is a cubic, order=3.

FD_mewma

This function creates the f-MEWMA control charts for each fault.

The input parameters are:

� FD_Lisa: described in subsection FD_Lisa_Transform2.

� vett_m0: this vector contains the averages of good runs for each variable.

� vett_var0: this vector contains the variances of good runs for each variable.

� lambda: this is a constant belongs between 0 (not included) and 1.

� variables: described in subsection FD_Lisa_Transform2.

� faults: described in subsection FD_Transform.

The output parameters are:

� XX: this matrix contains the standardized values of the good runs.

� T2: this is a matrix that contains the values of MEMWA to visualize in a

control chart.

4.4.3 Matrices Flow

In this section we describe the matrices �ow (Figure 4.48) that represents the se-

quence of matrices generated from the above MATLAB/OCTAVE functions. The

�nal vector is generated by M-block and contains the f-MEWMA control chart point

T 2.
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Figure 4.48: Matrices �ow.

L-Matrix

This matrix represents the dataset Lisa_TOT, that is a dataset that contains

the raw data that are processed into the step Spline Tranformation.

The L-matrix have dimension n x k, in particular:

� n (rows): represents the operating time (expressed in seconds) of the steriliza-

tion cycles set. In general, n is the sum of the observations of all runs.

� p (columns): represents the number of selected variables (e.g., TChambInt and

PChamb). The variables are described in Table 2.3.

B-Matrix

This matrix contains the coe�cients of the spline. In particular:

� r (rows): represents the number of runs. In detail, r = g+f , where g represents

the number of good runs and f is the number of altered runs that changes

according to type of fault (see DOE in Figure 4.1).

� c (columns): represents the number of spline coe�cients.

M-Matrix

This matrix contains the T 2: a value for each run. These values are plotted on

f-MEWMA control chart.

The M-matrix have dimension a x b, in particular:
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� a (rows): represents the faults that we described in Section 2.4.

� b (columns): represents the number of runs.

Classi�er Functions

Below we explain the functions that implement this functional probabilistic clas-

si�er.

Figure 4.49: Classi�er Functions.

FD_diag_Bayes

This function, starting from FD_Lisa, calculates the means (centroids) and the vari-

ances of each spline coe�cient for each fault, excluding a run at a time. This

function, for each run, invokes the FD_Bayes function.

The input parameters are:

� FD_Lisa: described in subsection FD_Lisa_Transform2.

� col_vn1: described in subsection FD_Lisa_Transform2.

� variabili: selected variables.

� faults: selected faults.

The output parameters are:
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� Guasto_hat:

� P_gS: posterior probability of each run related to particular fault.

FD_Bayes

This function, for each run, calculates the multivariate normal probability density

function. This job is implemented for each fault. Therefore, for each fault, of each

run, it is calculates P (E|Ai) of the Eq. 3.29. At the end, the function FD_Bayes

applies the Bayes formula and calculates the posterior probability P (Ai|E), that

is the probability of a determinate fault given the i-th run. Finally, this function

calculates the maximum of the posterior probabilities related to each fault for each

run.

The input parameters are:

� S: spline coe�cients

� mhu_g: means (centroids) of spline coe�cients.

� SIGMA_g: variance of spline coe�cients.

� P_g: prior probability.

The output parameters are:

� g: identi�es the number of fault (it is a counter).

� P_gS: posterior probability.

Therefore, this procedure allows to associate, with a certain probability, the i-th

sterilizazion cycle to a determinate fault.
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Chapter 5

Conclusions

As mentioned, this work is based on a speci�c requirement of W&H Sterilization

to control the health of the sterilizer called Lisa522 Fully Automatic. This machine

allows dentists to sanitize dental instruments that they use for curing their patients.

Thus, it is important to understand if a sterilizer is working well and detect the

early onset of anomalies.

Therefore, in this work we considered the statistical surveillance of pro�le curva-

ture, which is relevant for technological systems whose health is given by nonlinear

pro�les and deterioration or aging is not related to level or variablity changes, rather

it a�ects pro�le curvature. In this frame, we proposed the innovative functional Mul-

tivariate Exponentially Weighted Moving Average control chart, in short f-MEWMA,

which is able to manage nonlinear pro�les, to monitor the behaviour of a system

over time and to highlight early on the onset of anomalies.

In our case the system is a sterilizing machine that, for each sterilization run,

measures several variables in high frequency. Each run is transformed in a multi-

variate functional object and an f-MEWMA control chart monitors the variation of

these objects over time. According to our experimental data, the new control chart

shows an excellent ability to detect anomalies. Finally, an important property of

f-MEWMA is that it is a generic instrument, therefore, it can be used in various

application �elds.

About future developments, From the methodological point of view some points

are still open and, in light of the interesting results, they are worth to be studied in
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some details. In particular, further research is necessary to understand the Average

Run Length (number of points that, on average, will be plotted on a control chart

before an out of control condition is indicated) of f-MEWMA. The case of serially

correlated runs is also important because is the case raising by delivered machine

working in medical centers instead of laboratory data. Moreover the approximation

to the χ2 distribution for the functional detector needs some insights.

Further, the second phase of this work involves the remote control of W&H

health sterilizers. In particular, our algorithm may be implemented both on stand

alone clients or on a centralized web server. We suggest the second solution in order

also to keep a uni�ed database giving valuable knowledge about LISA behaviour.

Figure 5.1: Lisa App screens

Implementation of our algorithm on a new generation of LISA instruments re-
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quires a straightforward calibration. This includes:

� the assessment and de�nition of a set of alternative setups;

� the implementation of a auto-learning procedure working on each new product.

Finally, Fig. 5.1 show the screens of Lisa App that we want to develop in order

to allow to maintainers to control the health state of each sold sterilizer.

In particular:

� Screen 1: This screen allows to search the sterilizers within a given ray o

research (5-10-20 km).

� Screen 2: This screen shows the list of sterilizers that are within the selected

geographical area.

� Screen 3: This screen shows, by a semaphore, the health state of a selected

sterilizer (Green: OK; Yellow: Anomaly; Red: Fault).

� Screen 4: This screen shows the services of a sterilizer and allows to add new

maintenances.
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