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�On a given day, a given circumstance, you think you have

a limit. And you then go for this limit and you touch this

limit, and you think, 'Okay, this is the limit.' As soon as

you touch this limit, something happens and you suddenly

can go a little bit further. With your mind power, your

determination, your instinct, and the experience as well,

you can �y very high.�

� Ayrton Senna





Abstract

Although the research community around combinatorial interaction testing
has been very active for several years, it has failed to �nd common solutions
on some issues. First of all, there is not a common abstract nor concrete lan-
guage to express combinatorial problems. Combinatorial testing generator
tools are strongly decoupled making di�cult their interoperability and the
exchange of models and data. We propose a new framework for Combinato-
rial Interaction Testing. Our project starts from the de�nition of a speci�c
language for combinatorial problems. It features and formally de�nes the
concepts of parameters and types, constraints, seeds, and test goals. The
language is de�ned by means of Xtext, a framework for the de�nition of
domain-speci�c languages. Xtext is used to derive a powerful editor inte-
grated with eclipse and with all the expected features of a modern editor.
Eclipse plugins architecture is used to make our framework extensible. A
practitioner can easily add test generators, importers, and exporters as plu-
gins. This new framework , CitLab, aims to be a Laboratory for Combi-
natorial Interaction Testing tailored for the practitioners and the researchers
who want to devise new solutions and compare them with existing ones. We
present the e�ectiveness of this framework through the description of its use
in several research projects. The research activities presented in this thesis
are focused on the improvement of the state of art of Combinatorial and on
the novel uses of this testing technique. Beside the description of the devel-
opment of our framework, this thesis deals with many aspect of CIT from
the research about new algorithm for Test Suite generation to its application
for testing of the SPLs.

v





Contents

Abstract iv

1 Introduction 1
1.1 Publications arising from this thesis . . . . . . . . . . . . . . . 4
1.2 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Combinatorial Interaction Testing 5
2.1 Combinatorial testing time-line . . . . . . . . . . . . . . . . . 6
2.2 A small example . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Research area . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 CITLAB Language 11
3.1 Language de�nition . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Parameters and their types . . . . . . . . . . . . . . . . 11
3.1.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Seeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.4 Test Goals . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Xtext implementation 21
4.1 Language and its editor with Xtext . . . . . . . . . . . . . . . 22

4.1.1 DSL development . . . . . . . . . . . . . . . . . . . . . 22

5 Framework architecture 29
5.1 De�ning the extension points . . . . . . . . . . . . . . . . . . 29

5.1.1 Test generation plugins . . . . . . . . . . . . . . . . . . 30
5.1.2 Translation to and from other notations and tools . . . 34
5.1.3 Test suite exporters . . . . . . . . . . . . . . . . . . . . 35
5.1.4 Validators . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 MDD generator 37
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Multivalued Decision Diagram . . . . . . . . . . . . . . . . . . 39

vii



viii Contents

6.3 Using MDD for CIT . . . . . . . . . . . . . . . . . . . . . . . 40
6.4 An MDD-based algorithm for CCIT . . . . . . . . . . . . . . . 43

6.4.1 Optimization: Weighting compatibility . . . . . . . . . 44
6.4.2 Optimization: Repetitions . . . . . . . . . . . . . . . . 46

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.5.1 Optimal threshold value . . . . . . . . . . . . . . . . . 48
6.5.2 Using compatibility . . . . . . . . . . . . . . . . . . . . 48
6.5.3 Number of repetitions . . . . . . . . . . . . . . . . . . 50
6.5.4 Comparison with other tools in CitLab . . . . . . . . 51
6.5.5 Threats to validity . . . . . . . . . . . . . . . . . . . . 53

6.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.7 Future work and Conclusions . . . . . . . . . . . . . . . . . . 55

7 CIT Validation process 57
7.1 Background work . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2.1 Using Logics and SAT/SMT solvers for CIT problems . 59
7.2.2 Desired properties of combinatorial models and tests . 61

7.3 Validation of CIT models . . . . . . . . . . . . . . . . . . . . . 62
7.3.1 Inconsistent constraints . . . . . . . . . . . . . . . . . . 62
7.3.2 Constraints Vacuity . . . . . . . . . . . . . . . . . . . . 64
7.3.3 Useless parameter values and useless parameters . . . . 66

7.4 Validation of CIT test suites . . . . . . . . . . . . . . . . . . . 67
7.4.1 Test Suite Correctness . . . . . . . . . . . . . . . . . . 67
7.4.2 Test Suite Minimality . . . . . . . . . . . . . . . . . . 69

7.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 72
7.5.1 Consistency of constraints . . . . . . . . . . . . . . . . 72
7.5.2 Vacuity detection . . . . . . . . . . . . . . . . . . . . . 74
7.5.3 Useless parameter values and useless parameters . . . . 74
7.5.4 Test suite validation . . . . . . . . . . . . . . . . . . . 75

7.6 Implementation in CitLab . . . . . . . . . . . . . . . . . . . 76
7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Feature models testing in CitLab 79
8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.1.1 Feature Modeling frameworks . . . . . . . . . . . . . . 81
8.1.2 Feature Model semantics . . . . . . . . . . . . . . . . . 81

8.2 Translation from FM to CitLab . . . . . . . . . . . . . . . . . 83
8.2.1 Representation of every feature . . . . . . . . . . . . . 83
8.2.2 Adding implicit constraints . . . . . . . . . . . . . . . 84
8.2.3 Cross-tree constraints . . . . . . . . . . . . . . . . . . . 84



Contents ix

8.2.4 Extra testing requirements . . . . . . . . . . . . . . . . 88
8.3 Simpli�cation Process . . . . . . . . . . . . . . . . . . . . . . 89

8.3.1 Constraint simpli�cation . . . . . . . . . . . . . . . . . 90
8.3.2 Parameter simpli�cation . . . . . . . . . . . . . . . . . 90

8.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.4.1 Testing the correctness of the transformation . . . . . . 92
8.4.2 E�ect of the simpli�cation over the parameters and the

constraints . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.4.3 Comparison with approaches

using Boolean variables . . . . . . . . . . . . . . . . . . 93
8.4.4 Test generation . . . . . . . . . . . . . . . . . . . . . . 96

8.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . 103

9 Using Decision Trees for Algorithm Selection 105
9.1 Algorithm Selection problem . . . . . . . . . . . . . . . . . . . 106
9.2 The importance of the "right" algorithm . . . . . . . . . . . . 107

9.2.1 Aiding the selection . . . . . . . . . . . . . . . . . . . . 107
9.3 How to solve algorithm selection problem . . . . . . . . . . . . 108
9.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.4.1 De�ning the "best" combinatorial generation algorithm 108
9.4.2 CitLab as a framework for benchmarcks comparison . 109
9.4.3 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . 110
9.4.4 Tools for Data Mining . . . . . . . . . . . . . . . . . . 111

9.5 Process of Building the Decision Tree . . . . . . . . . . . . . . 111
9.5.1 Problem Understanding . . . . . . . . . . . . . . . . . 112
9.5.2 Data Understanding and Preparation . . . . . . . . . . 113
9.5.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.5.5 Deployment . . . . . . . . . . . . . . . . . . . . . . . . 120

9.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.7 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . 127
9.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

10 Results achieved by CitLab 131





List of Figures

2.1 History of Combinatorial testing . . . . . . . . . . . . . . . . . 7
2.2 Testing procedure for CIT . . . . . . . . . . . . . . . . . . . . 10

3.1 A smartphone example . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Xtext fragments and artifacts . . . . . . . . . . . . . . . . . 23
4.2 Validation of seeds . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Content assist . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 A meta model for Tests Suites . . . . . . . . . . . . . . . . . . 25
4.5 UML Class Diagram of the grammar of CitLab . . . . . . . . 26
4.6 UML Class Diagram of CitLab logic constructs . . . . . . . . 27

5.1 TestGenerator extension point and corresponding extension 30
5.2 UML Class Diagram of some implemented extensions . . . . . 32
5.3 Test Suite Ecore Class Diagram . . . . . . . . . . . . . . . . . 33
5.4 A fragment of the Xtext exporter to CASA . . . . . . . . . . 34

6.1 MDD for the combinatorial problem of Listing 6.1 . . . . . . . 41
6.2 The MDD representing the pair (eV = true, fC = 2MP) . . . . 42
6.3 MVS for the phone with the constraints . . . . . . . . . . . . . 43
6.4 an MDD representing a single test case . . . . . . . . . . . . . 43
6.5 CitLab plugin classes . . . . . . . . . . . . . . . . . . . . . . 47
6.6 Test suite size and time depending on the threshold . . . . . . 48
6.7 Greedy vs Compatibility comparison with optimization . . . . 49
6.8 Tuple coverage rate for b_12 with optimization . . . . . . . . 49
6.9 Test suite size and time depending on the repetitions settings

(repeat
min

repeat
max

repeat
better

). . . . . . . . . . . . . . . . . . 50
6.10 Test suite size size and time time depending on the number of

repetitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.11 Comparison with ACTS and CASA . . . . . . . . . . . . . . . 51
6.12 Number of models that present the minimum cost for each

generator for timetest from 0.01 to 5000 secs. . . . . . . . . . . 52

xi



xii List of Figures

7.1 Example of useless parameter and useless parameter value . . 67
7.2 TestSuiteValidator UML . . . . . . . . . . . . . . . . . . . . . 76
7.3 Model Validator UML . . . . . . . . . . . . . . . . . . . . . . 77

8.1 Examples of Feature model notations . . . . . . . . . . . . . . 80
8.2 A two alternative model . . . . . . . . . . . . . . . . . . . . . 83
8.3 A small complete example . . . . . . . . . . . . . . . . . . . . 88
8.4 FeatureIDE importer plugin . . . . . . . . . . . . . . . . . . . 92
8.5 Reduction of the number of parameters . . . . . . . . . . . . . 94
8.6 Reduction of the number of constraints . . . . . . . . . . . . . 95
8.7 Comparison of number of CitLab Parameters vs Boolean vari-

ables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.8 Comparison of CitLab constraints vs SPLOT constraints . . . 98
8.9 Variability variation due to simpli�cation process . . . . . . . 99
8.10 Variability comparison with SPLOT . . . . . . . . . . . . . . . 100
8.11 Implementation in CitLab . . . . . . . . . . . . . . . . . . . 103

9.1 A decision tree representing the exit selection in a crowded
parking area. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.2 Training set attributes and characteristics . . . . . . . . . . . 114
9.3 Pearson chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.4 FBT: feature-based decision tree . . . . . . . . . . . . . . . . . 119
9.5 CBT: cost-based decision tree . . . . . . . . . . . . . . . . . . 119
9.6 Test generator distribution of the optimum predictor . . . . . 121
9.7 Generation tools distribution using FBT . . . . . . . . . . . . 123
9.8 Generation tools distribution using CBT . . . . . . . . . . . . 124
9.9 Performance comparison of Predictors versus the use of a �xed

tool using the optimum as measure of comparison . . . . . . . 126
9.10 Performance comparison of predictors versus random selection

of generators using the optimum as measure of comparison . . 127



List of Tables

2.1 A minimal SmartPhone product line . . . . . . . . . . . . . . 7
2.2 A test suite for pairwise coverage of the SmartPhone example 8

5.1 Extension points de�ned by CitLab . . . . . . . . . . . . . . 31

6.1 Characteristics of the CCIT benchmarks. . . . . . . . . . . . . 47

7.1 Vacuous constraints . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Useless parameter values and useless parameters . . . . . . . . 75
7.3 Test suite validation . . . . . . . . . . . . . . . . . . . . . . . 76

8.1 Conventional translation . . . . . . . . . . . . . . . . . . . . . 82
8.2 Representing features and setting isChosen function . . . . . 85
8.3 Constraints to be added . . . . . . . . . . . . . . . . . . . . . 86
8.4 Translation to CitLab model for model of Fig. 8.3 . . . . . . 87
8.5 Parameter simpli�cation . . . . . . . . . . . . . . . . . . . . . 91
8.6 Pairwise with ACTS (time in seconds) . . . . . . . . . . . . . 101
8.7 Pairwise with CASA (time in seconds) . . . . . . . . . . . . . 101

9.1 FBT confusion matrix for the test set . . . . . . . . . . . . . . 122
9.2 CBT confusion matrix for the validation set . . . . . . . . . . 123
9.3 Total Mean Cost varying single test cost . . . . . . . . . . . . 125

xiii





1
Introduction

Combinatorial interaction testing (CIT) has been an active area of research
for many years. In a recent survey [63] Nie and Leung count more than
12 research groups that actively work on CIT area and many other groups
and tools are missing in the count. In a previous survey, Grindal et al.
[40] presented 16 di�erent combination strategies, covering more than 40
papers. There are several web sites listing tools and approaches (like [66]),
and publishing benchmarks and evaluations of tools and algorithms (like
[27]). Being each of these tools the outcome of independent research and
development processes, every one has its own user interface (some graphical,
other textual), its own syntax, its own algorithms, and its own benchmarks
(if any). Despite they all are designed to tackle the very same tasks, as
a matter of fact,there is not a common abstract meta-model to represent
combinatorial problems with a precise semantics for parameters, values, their
constraints, and related concepts, nor exists a common modeling syntax or
model exchange format between tools.

The lack of a common syntax and semantic framework for CIT makes
harder the research in this area w.r.t. the following issues:

� The comparison among tools and approaches, an activity very useful
and used in research literature, is instead quite unreliable since every
user must remodel in its own language and tool the case studies taken
from another tool or from the literature, with possible errors and mis-
understandings. If the researchers could exchange examples using such

1



2 Chapter 1. Introduction

common syntax (like XML, or textual, or graphical), the comparison
of techniques and approaches would be facilitated and more technically
sound.

� While conceptually modeling an abstract CIT task, a research group
may use a term with a meaning, while other groups use the same term
with a slightly di�erent meaning (for example seed or partial test).

� Limited assistance in writing the models: very often generation tools
do not o�er any editing capabilities (only a grammar and a parser)
and are rarely integrated in any IDE for programming or design. Very
often the formats accepted by algorithms and tools are quite hard to
understand1.

� All the CIT generation tools are strongly decoupled making di�cult
to switch the use from one tool to another and also di�cult the reuse
of information (e.g. custom settings) and data already inserted and
available in one tool.

This situation is also an obstacle for practitioners from fully advantage
from such many di�erent CIT generation techniques available, other than
slowing down the research in this area.

Sometimes, designers may prefer a tool or a technique because it provides
an usable graphical or a web interface instead of searching for the best tool
that suites their needs. For instance, one the most used tools ACTS [1],
has a very nice graphical interface regardless the fact that the generation
methods it supports (IPOG [57] and variants) may be not suitable for the
design of particular combinatorial test suites since, for instance, its support
for constraints is not as powerful as in others.

Similar di�culties rise for researchers willing to devise a new CIT tech-
nique and compare it with existing ones. In order to experiment a new test
generation algorithm, a researcher should de�ne a proper grammar and a
parser, develop the libraries to manipulate the model data, and translate
the benchmarks found in literature into the newly de�ned language. These
activities can be error-prone and quite time consuming without adding any
actual contribution to the real problem of generating �better� combinatorial
tests.

In this thesis, we present CitLab, a laboratory for combinatorial testing
that tries to address all the aforementioned issues. CitLab features:

1Consider for instance one of the best tools for Constrained CIT, CASA [21]. CASA
accepts only constraints written as a conjunction of disjunctions over the symbols (CNF),
in a quite di�cult format to write for humans.
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� A rich abstract language with a precise formal semantics for specifying
combinatorial problems.

� A concrete syntax with a well-de�ned grammar that allows practition-
ers to write models and researchers to share examples and benchmarks
written in a "common" notation. Besides the concrete syntax given
in Xtext, CitLab provides also an ANTLR grammar and an XMI
interchange format for CIT models.

� A framework based on the Eclipse Modeling Framework (EMF) which
provides tools and run-time support to (automatically) produce a set
of Java classes for combinatorial models, along with a set of adapter
classes and utility libraries that enable manipulating combinatorial
problems in Java application using simple APIs. This allows devel-
opers to access combinatorial models inside their programs and tools.

� An editor integrated in the Eclipse IDE for editing combinatorial prob-
lems. The editor provides users with all the expected features in a
modern programming environment like syntax highlighting, code com-
pletion, run-time error checking, quick �xes, and outline view.

� A simple EMF meta-model also for combinatorial test suites.

� A rich collection of Java utility classes and methods, speci�cally devel-
oped for combinatorial problems in CitLab, which can be reused for
manipulating combinatorial models and test suites. For instance, Cit-
Lab provides utility methods for generating all the test requirements
for a combinatorial coverage of strength t, a set of methods to check
if a test suite satis�es all the requirements, and a set of methods for
semantic validation of models and test suites.

� A framework for introducing new test generation algorithms which can
be added to CitLab as plugins. This allows researchers to develop
new generation techniques and plug them in the framework without
the burden of de�ning a grammar, a parser, an abstract syntax tree
visitor, and so on.

� A framework for introducing code translators for importing and ex-
porting models and tests to other notations based on Model to Text
(M2T) or Model to Model (M2M) transformations. This could facil-
itate the use of CitLab language as language for exchanging models
and benchmarks.



4 Chapter 1. Introduction

1.1 Publications arising from this thesis
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2
Combinatorial Interaction Testing

Combinatorial Interaction Testing (CIT) systematically explores t-way fea-
ture interactions inside a given system, by e�ectively combining all t-tuples
of parameter assignments in the smallest possible number of test cases. This
allows to budget-constraint the costs of testing while still having a testing
process driven by an e�ective and exhaustive coverage metric [23, 53]. The
most commonly applied combinatorial testing technique is pairwise testing,
which consists in applying the smallest possible test suite covering all pairs
of input values (each pair in at least one test case). In fact, it has been
experimentally shown that a test suite covering just all pairs of input values
can already detect a signi�cantly large part (typically 50% to 75%) of the
faults in a program [29, 78]. Dunietz et al. [31] compared t-wise coverage
to random input testing with respect to the percentage of structural (block)
coverage achieved, showing that the former achieves better results if com-
pared to random test suites of the same size. Burr and Young [14] reported
93% code coverage from applying pairwise testing of a large commercial soft-
ware system, and many CIT tools (see [66] for an up to date listing) and
techniques have already been developed [30,40,53] and are currently applied
in practice [10, 52, 77]. CIT is used in a variety of applications for unit, sys-
tem, and interoperability testing. It has generated both high-level test plans
and detailed test cases. In several applications, it greatly reduced the cost of
test plan development. Testers can base their input on detailed development
requirements or on a system's high-level functional requirements.

5



6 Chapter 2. Combinatorial Interaction Testing

2.1 Combinatorial testing time-line

Combinatorial (t-way) testing may be regarded as an adaptation of design
of experiment methods for testing software systems because in both cases,
information about the SUT is gained by exercising it and the test plan satis-
�es relevant combinatorial properties. In the 1930s, Ronald Fisher developed
the Design of Experiments. Rao introduced orthogonal arrays in the 1940s.

From the 1950s, Genichi Taguchi developed a methodology for apply-
ing statistics to improve quality in manufacturing and established the Qual-
ity Engineering. His methodology got a great reputation and was named
"Taguchi method" in the United States. Shortly after, software QA engineers
at Fujitsu started to apply the Design of Experiments to Software Testing in
1983, and they published some papers in 1984 and 1987. In the late 1980s, a
few case studies were reported from NEC and IBM Japan, however, in 1989,
Fujitsu introduced this technique to AT&T. After that, OATS, CATS and
AETG algorithms were developed by the companies of AT&T and Bellcore
constellation. From the mid 1990s, combinatorial testing began to spread in
the US.

In 1995, Dr. Phadke's paper was translated into Japanese and printed in
the journal of Quality engineering. Some case studies were reported in the
community of quality engineering in the late 1990s. However, combinatorial
testing got much attention again after HAYST method was announced by
Fuji Xerox in 2004.

The algorithms reported in this thesis have been developed after 2004.
This evolution process is described in Fig. 2.1.

2.2 A small example

There are basically two approaches to combinatorial testing use combina-
tions of con�guration parameter values, or combinations of input parameter
values. In the �rst case, we select combinations of values of con�gurable
parameters. For example, a server might be tested by setting up all 4-way
combinations of con�guration parameters such as number of simultaneous
connections allowed, memory, OS, database size, etc., with the same test
suite run against each con�guration. The tests may have been constructed
using any methodology, not necessarily combinatorial coverage. The com-
binatorial aspect of this approach is in achieving combinatorial coverage of
con�guration parameter values. (Note, the term variable is often used inter-
changeably with parameter to refer to inputs to a function.) In the second
approach, we select combinations of input data values, which then become
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Figure 2.1: History of Combinatorial testing

part of complete test cases, creating a test suite for the application. In this
case combinatorial coverage of input data values is required for tests con-
structed.

Combinatorial testing can be applied to a wide variety of problems:
highly-con�gurable software systems, software product lines which de�ne a
family of software, hardware systems, and so on.

As an example, Table 2.1 reports the input domain model of a simple
smart-phone product line containing only three parameters: the display can
have 16 or 8 million colors or be in black and white (BW), the frontCamera
can have 1 or 2 mega-pixels (1MP and 2MP) or not be present (NOC).
The phone can also have an emailViewer. We will use this simple example
throughout the chapter and to explain our approach.

Table 2.1: A minimal SmartPhone product line

display frontCamera emailViewer

16MC 2MP true
8MC 1MP false
BW NOC

While testing of all the possible con�gurations for the phone would require
3 · 3 · 2 = 18 tests, pairwise coverage can be obtained by the optimal test
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Table 2.2: A test suite for pairwise coverage of the SmartPhone example

display frontCamera emailViewer

1 16MC 1MP false
2 16MC 2MP true
3 16MC NOC false
4 8MC 2MP false
5 8MC 1MP true
6 8MC NOC true
7 BW 2MP false
8 BW 1MP true
9 BW NOC false

suite containing only 9 tests shown in Table 2.2.

2.3 Research area

Changai Nie and Hareton Leung [63], in a recent survey propose eight cate-
gories for the classi�cation of the CIT research projects:

1. Modeling (Model): Studies on identifying the parameters, values, and
the interrelations of parameters of SUT.

2. Test case generation (Gen): Studies on generating a small test suite
e�ectively.

3. Constraints (Constr.): Studies on avoiding invalid test cases in the test
suite generation.

4. Failure characterization and diagnosis (Fault): Studies on �xing the
detected faults.

5. Improvement of testing procedures and the application of CT (App.):
Studies on practical testing procedure for CT and reporting the results
of the CT application.

6. Priority of test cases (Prior.): Studies on the order of test execution to
detect faults as early as possible in the most economical way.

7. Metric (Metric): Studies on measuring the combination coverage of CT
and the e�ectiveness of fault detection.
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8. Evaluation (Eval.): Studies on the degree to which CT contributes to
the improvement of software quality

This thesis tries to improve some aspect of CIT that involve the categories
1, 2, 3 and 8.
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3
CITLAB Language

The �rst goal of our project is the de�nition of a domain speci�c language
for combinatorial problems. We identify four parts we want to model: the
parameters and their types, the constraints among them, the seeds to be
included in the �nal test suites, and further test goals de�ned by the user.
Fig. 3.1 shows an example of combinatorial model, called Phone, a modi�ed
version of an example given in [25]. Constraints, seeds, and test goals are
removed by the example for simplicity and they will be discussed later in the
section.

3.1 Language de�nition

3.1.1 Parameters and their types

A model for a combinatorial problem consists in several parameters (at least
2) which can take values in their domain. To describe a combinatorial prob-
lem would be su�cient to specify the number of variables and their cardinal-
ity. Many papers, like [46], simply use the exponential symbolic notation xy

to model y parameters each of which can take x values. For heterogeneous
alphabets, the notation is extended as xy11 x

y2
2 · · ·xynn to model yi parameters

that take xi values with i = 1 . . . n . A CitLab model consists in six parts:
De�nitions, Types, Parameters, Constraints, Seeds, and TestGoals.

In the De�nitions section, the user can de�ne numerical constants. For

11
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Model Phone

De�nitions:
Number threshold = 27;
end
Types:
EnumerativeType cameraType { 2MP 1MP NOC };
end
Parameters:
Boolean emailViewer;
Range textLines [ 25 .. 30 ];
Enumerative display { 16MC 8MC BW };
Enumerative rearCamera : cameraType;
Enumerative frontCamera : cameraType;
end
Constraints: ... end
Seeds: ... end
TestGoals: ... end

Figure 3.1: A smartphone example
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instance, the following statement introduces a constant with its value. Con-
stants can be used in constraints, test goals, and seeds.

Number threshold = 27;

In the Parameters section the designer speci�es the parameters (inputs)
of the system. CitLab language forces the designer to name parameters and
to specify their types by listing all the values in their domain. Four kinds of
parameter type are introduced:

� Enumerative for parameters that can take a value in a set of symbolic
constants. Enumerative parameters are declared in the following way.
For instance if the display of the cell phone can be colored (with 16
or 8 millions colors) or black and white, we introduce the following
parameter.

Enumerative display {16MC 8MC BW};

� Boolean for parameters that can be either true or false, which can be
declared as follows. For instance if the phone can have an email viewer,
the designer can introduce the following parameter.

Boolean emailViewer;

� Numerical values in a range for parameters that take any value in an
integer range. The user can also specify an integer step. For instance,
if the phone has a number of lines between 10 and 30, but the designer
want to test only this parameter every 5 values, he/she can write:

Range textLines [ 10 .. 30 ] step 5;

Note that the step can be omitted and in that case its value is 1,
otherwise it must be a divisor of the di�erence between the two extreme
values.

� A list of Numbers for parameters that take any value in a set of
integers. It is like an enumerative, but mathematical comparisons and
operations are allowed over these parameters.
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Numbers year {2012 2013};

Types can be implicitly introduced directly when declaring a parameter
belonging to an anonymous type or they can be de�ned with their name in
the Types section to be used in parameters declaration. For instance, a type
can be de�ned as follows and this allows two parameters to share the same
domain.

Types:
EnumerativeType

cameraType { 2MP 1MP NOC};
end
Parameters:
Enumerative rearCamera : cameraType;
Enumerative frontCamera : cameraType;

end

De�nition 1. t-way coverage A test suite achieves the t-way combination
coverage if for all the t-way combinations of the n parameters in P , every
variable-values con�guration is covered by at least a test.

Comparison with other approaches

It is apparent that the exponential notation xy11 x
y2
2 · · ·xynn can be easily trans-

lated in the proposed notation without any loss of information. It su�ces to
introduce

∑
yi parameters pij with range domain [1 .. xi] with i = 1 . . . n

and j = 1 . . . yi.

Note that sometimes parameters are referred as factors and their cardi-
nality as level [11].

In AETG [59], parameters and their values are de�ned in the basic con-
struct relation that is a table with columns for each input item, and rows for
the values of each input item. Input items are called �elds and represent the
parameters. Each �eld can have a di�erent number of values, each of which
is a symbolic string. The translation to the CitLab language is straightfor-
ward. For instance, in AETG, the problem of Fig. 3.1 would be represented
as the following table:
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emailViewer textLines display rearCamera frontCamera
true 25 16MC 2MP 2MP
false 26 8MC 1MP 1MP

27 BW NOC NOC
28
29
30

Sometimes (like in [57]) parameters are named Pi and their domains are
number starting from 1 to the domain cardinality. Also in this case the
translation is straightforward.

3.1.2 Constraints

In most con�gurable systems, constraints or dependencies exist between pa-
rameters. Constraints may be introduced for several reasons, for example, to
model inconsistencies between certain hardware components, limitations of
the possible system con�gurations, or simply design choices [26]. Constraints
were �rst described as being important to combinatorial testing in [23] and
were introduced in the AETG system. In our approach, tests that do not
satisfy the constraints are considered invalid and do not need to be produced.
For this reason, the presence of constraints may reduce the number of tests
of the �nal test suite (but it may also increase it [26]). However, the gener-
ation of tests considering constraints is generally more challenging than the
generation without them, and several test generation techniques still do not
support constraints, at least not in a direct manner.

De�nition 2. Constraints A constraint is a predicate P over the parameters,
i.e., P(p1, . . . , pn). We say that a test t satis�es a predicate P or it is a model
of P and we write t |= P i� P holds by substituting each parameter pi in P
with the value of pi in t.

In CitLab, we adopt the language of propositional logic with equality
and arithmetic to express constraints. To be more precise, we use proposi-
tional calculus, enriched by the arithmetic over the integers and enumerative
symbols. As operators, we admit the use of equality and inequality for any
variable, the usual Boolean operators for Boolean terms, and the relational
and arithmetic operators for numeric terms.

In the CitLab language all the constraints must be listed in a section
called Constraints (and included between two # symbols). For instance, as-
sume that the user wants to model the following two constraints
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� if the display is black and white, then the phone cannot have any
camera

� if the phone has a email viewer and front camera, the display is colored
and the lines greater than the given threshold (de�ned as constant).

The following declarations can be added in the model in the Constraints
section:

Constraints:

# display==display.BW => rearCamera==cameraType.NOC #

# emailViewer==true or frontCamera!=cameraType.NOC =>
display!=display.BW and textLines>=threshold #

end

We assume that all the constraints must be satis�ed by any test case,
i.e., the constraints are conjoint with an implicit ∧ operator. For a precise
semantics of constraints and some formal de�nitions, see [34].

De�nition 3. Constraints A constraint is a predicate P over the parameters,
i.e., P(p1, . . . , pn). We say that a test t satis�es a predicate P or it is a model
of P and we write t |= P i� P holds by substituting each parameter pi in P
with the value of pi in t.

In the CitLab language all the constraints must be listed in a section
called Constraints (and included between two # symbols). For instance, the
following constraint may be listed in the model of Fig. 3.1,

# emailViewer or frontCamera != NOC =>
display != BW and textLines >= threshold #

It models the requirement that, if the phone has an email viewer or a
front camera, then the display cannot be black and white and the lines of
the email viewer must be greater than or equals to the threshold.

We assume that all the constraints must be satis�ed by any test case, i.e.,
the constraints are conjoint with an implicit ∧ operator.

De�nition 4. valid tests Let Cj be the constraints of a combinatorial prob-
lem with j = 1 . . .m. A test t is valid if it is a model of the constraints, i.e.,
∀j t |= Cj or equivalently t |=

∧
j Cj.
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Due to the presence of constraints, not all the t-way combinations are
coverable. We say that a combination is not coverable if there is no valid test
that can cover it. A test suite still achieves the full coverage if it contains
only valid tests and it covers all the coverable combinations.

Finding if there exists a model that satis�es the constraints, and build-
ing that model, is an NP-complete problem, since it can be translated to a
SATis�ability problem. However, checking if a test is valid is linear with the
dimension of the constraints and can be performed easily.

Note that the constraints may be inconsistent, i.e., it is impossible to �nd
any test that satis�es them. Consistency checking of constraints is again a
SATis�ability problem.

De�nition 5. consistent constraints Let Cj be the constraints of a combina-
torial problem with j = 1 . . .m. The constraints are consistent if there exits
at least a test that satis�es them, i.e., ∃t t |=

∧
j Cj.

Comparison with other approaches The CitLab language is expres-
sive enough to represent most constraints we found in examples and case
studies presented in many papers. Note that, in order to deal with con-
straints, some methods require to remodel the original speci�cation, while
very few directly support constraints in CIT. Cohen et al. [26] found that
just one tool, PICT [28], was able to handle full constraints speci�cation,
that is, without requiring remodeling of inputs or explicit expansion of each
forbidden test case. Test generation in the presence of (general) constraints
has become a very active research topic in the CIT arena [16,25].

Most tools provide a limited support for constraints. For instance, AETG
[23, 59] requires to separate the inputs in a way that they become uncon-
strained, and only simple constraints of type if then else (or requires
in [26]) can be directly modeled in the speci�cation. The translation of those
templates into our logic is straightforward. For example the requires con-
straint is translated by an implication; the not supported to a not, and so
on.

Many approaches [26, 44] allow constraints only in the form of forbidden
con�gurations [45]. A forbidden combination would be translated in our
model as a not statement. For instance, a forbidden pair x = a, y = b would
be represented by the following constraint:

# not (x = a and y = b) #
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Requiring to explicitly list all the forbidden combinations can soon be-
come impractical. As the number of input grows, the explicit list may explode
and it may become practically unfeasible and error-prone to build it.

3.1.3 Seeds

The testers can also force the inclusion of their favorite test cases by specify-
ing them as seed tests [11]. The seed tests must be included in the generated
test set without modi�cation. Since seeds represent tests the user has already
executed or will execute in any case, the generation algorithm should take
advantage of the seeds and avoid redundant coverage of interactions.

In CitLab, seeds can be added in the Seeds section and can be expressed
as a sequence of assignments as follows. For instance, the user wants to force
the inclusion of the following combinatorial test, by writing in the model:

Seeds:
# emailViewer=false , display=display.16MC,
frontCamera=cameraType.NOC, year = 2012,
rearCamera=cameraType.2MP, textLines=30 #

end

De�nition 6. seed Given a combinatorial problem with parameters pi with
i = 1, . . . , n, a seed assigns to each parameter pi a value in Di, except if Di

has cardinality 1.

Note that some seeds may be invalid if they violate the constraints.
Checking if a seed violates a constraint is easy and has linear complexity.

Comparison with other approaches Many approaches and tools sup-
port seeds, like AETG [11, 23], PICT [28], NSS [64], and t-tuples and IPOs
[18]. Some approaches support also partial seeds, i.e., tests that have some
parameters with unassigned values.

3.1.4 Test Goals

CitLab allows the tester to introduce extra testing requirements by means of
test goals. They must be considered in addition to the desired t-wise coverage.
In fact, the user may be interested to test some particular critical situations
or input combinations, for instance simple incomplete combinations, or more
generic relations than simple combinations among parameters. For instance,
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if the user wants to be sure that the test suite contains at least a test in
which at least one camera is missing and the display has at least threshold
lines, he can write the following test goal:

# (rearCamera == cameraType.NOC or frontCamera ==
cameraType.NOC) and textLines >= threshold #

Note that most tools do not support test goals and seeds, however we
decided to include them in the language because one of the CitLab aims is
to provide a standard common language capable to represent a rich variety
of combinatorial testing concepts.

De�nition 7. test goals A test goal is a predicate tg over the parameters
pi. A test goal tg is consistent i� there exists a test that can achieve it, i.e.,
formally ∃t t |= tg. A test goal tg is feasible i� there exists a valid test that
can achieve it, i.e., formally ∃t t |=

∧
j Cj ∧ tg.

Inconsistent test goals are never feasible. All the feasible test goals should
be covered.

De�nition 8. covered test goals Given a set of feasible test goals TG , a test
suite covers them if for each test goal tg ∈ TG there exists at least test that
makes tg true.

A test generation method may support or not extra test goals. Checking
feasibility of test goals is an NP-complete problem, since it can be reduced
to a SATis�ability problem (assuming the all the parameters have �nite do-
main). In CitLab we assume that a generator method, if it supports test
goals, it will also be able to check if they are feasible. We may add in the
future a feasibility checker of test goals based on the use of SAT or SMT
solving as done in [15]. However, checking if a test suite covers a test goal is
easy.

Comparison with other approaches Test goals can be used to represent
partial seeds, used for instance by AETG [23]. Partial seeds do not specify
the value of each parameter, however they must be covered by the �nal test
suite. Most tools, like AETG, complete the partial test cases by �lling in
random values for the missing �elds and adding the completed seeds to the
test suite.
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Xtext implementation

Xtext [82] is a framework for development of programming languages and
domain speci�c languages. The developer can describe his very own DSL us-
ing Xtext simple EBNF grammar language and the generator will create a
parser, an AST-meta model (implemented in EMF) as well as a full-featured
eclipse text editor from that. The framework integrates with technology from
eclipse modeling such as EMF, GMF, M2T and parts of EMFT. Development
with Xtext is optimized for short turn-arounds, so that adding new features
to an existing DSL is a matter of minutes. Still sophisticated programming
languages can be implemented. The APIs of the DSL and its speci�c editor
are generated as eclipse plugins; this important feature permits the develop-
ment of tools, related to the DSL, that are fully based on the eclipse-IDE
integration. Xtext generator uses the special modeling work�ow engine
(MWE2) to con�gure the generator.

Xtext uses the lightweight dependency injection (DI) framework Google
Guice to wire up the whole language as well as the IDE components created
by its generator. Most parts of Xtext are implemented as services. A service
is an object which implements a certain interface and which is instantiated
and provided by Guice. When Guice instantiates an object, it also supplies
this instance with all its dependent services. This architecture makes Xtext
one of the most interesting framework for development of DSL.

The DSLs developed using Xtext can be translated to other languages
or notations. Xtext 2.0 provides the possibility to integrate a Model to
Text (M2T) code generator. The code generation is done with Xtend2 that

21
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substitutes the old template language XPand. Xtend2 is a statically-typed
programming language which is tightly integrated with and runs on the Java
Virtual Machine. It is the natural successor to Xtend which allows to have
XPand template syntax as an expression, in fact it is more Java like than
XPand, but also has some similarities. The introduction of Xtend2 makes the
developer able to choose the model to model transformations approach in the
code generation. It o�ers in fact a polymorphic dispatch, extension methods
or the template syntax. Xtend �les are directly compiled to Java source code,
which means that the developer does not have to manage byte-code when he
wants to debug a generation process.

4.1 Language and its editor with Xtext

4.1.1 DSL development

The development of a DSL and its corresponding editor, using Xtext, passes
through the following �ve stages from the de�nition of the DSL grammar to
the creation of a fully eclipse integrated text editor:

1. Grammar de�nition.

2. Con�guration of the artifacts generator.

3. Generation of the DSL APIs and of the editor plugin.

4. Implementation of the scope and the validation rules.

5. Re�nement of the text formatting and the content proposal provider.

In order to develop a new DSL it is necessary to create a new Xtext project
where the practitioner describes his very own DSL using the Xtext simple
EBNF grammar language. The next operation consists of de�ning the lan-
guage con�gurations of the code generator. The whole generator is composed
by fragments (as listed in Fig. 4.1) for generating parsers, the serializer, the
EMF code, the outline view, etc. One of the most important features that
Xtext o�ers is the translation of of a DSL grammar to an EMF meta-model.
Xtext generator uses a special DSL called MWE2 - the modeling work�ow
engine.

Fig. 4.5, 4.6 show how the Ecore-model produced by the Xtext generator
after the parsing of the EBNF grammar language.

For the development of the CitLab language was necessary to customize
many generated artifacts:
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Class Generated Artifacts
EcoreGeneratorFragment EMF code
XtextAntlrGeneratorFragment ANTLR
GrammarAccessFragment Grammar access
ResourceFactoryFragment EMF resource
ParseTreeConstructorFragment Serializer
JavaScopingFragment Scoping
JavaValidatorFragment Model validation
CheckFragment Model validation
FormatterFragment Code formatter
LabelProviderFragment Label provider
OutlineNodeAdapterFactoryFragment Outline node
TransformerFragment Outline
JavaBasedContentAssistFragment Content assist
XtextAntlrUiGeneratorFragment Content Helper
SimpleProjectWizardFragment Project wizard

Figure 4.1: Xtext fragments and artifacts

JavaScopingFragment - Scoping The auto generated scope-provider re-
sults fully operating for all the semantic and syntactical expression except for
the assignments that present cross-reference. The CitLab language ensures
the correctness of its cross-reference domains using a custom AbstractDeclar-
ativeScopeProvider, without this customization it would be possible to write
inconsistent assignments.

CheckFragment - Model validation Xtext provides several levels of
validation for the de�ned language. The �rst level regards the syntactical
validation done by the lexer and the parser, a cross link validation done by a
linker and a concrete syntax validation done by the serializer that validates all
constraints that are implied by a grammar. Besides these �rst three kinds of
validation that are automatically introduced by Xtext, the user can specify
additional constraints for the model by providing generator fragments. We
have introduced the validation fragments for the following rules:

1. In each expression of kind x = y, where x is a parameter and y is a
value, y must belong to the domain of x.

2. A seed must assign a value to each parameter.

3. No seed can violate any constraint.
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Figure 4.2: Validation of seeds

The validation of the last requirement (3), requires the evaluation of con-
straints. This is performed by two classes:

� Logic Evaluator: evaluates Boolean expression starting from the value
of its operands.

� Arithmetic Evaluator: computes the integer value of a numeric expres-
sion.

The validation is performed run-time while the user types the model. If
the validator �nds an error in the model it generates an error message. The
nature of the error is indicated in the error-log view of eclipse and the point
in which the error occurs is marked in the editor. The editor is able to check
the presence of inconsistencies between seeds and constraints while the user
writes them.

Editor-Contributes Once the grammar, the meta-model of the language,
and the validation rules are de�ned, Xtext generates an eclipse-based devel-
opment environment providing editing experience known from modern IDEs.
The editor provides the developer with an IDE integrated in eclipse for writ-
ing combinatorial models in the CitLab language. The editor features a
content assist, quick �xes, a project wizard, template proposal, outline view,
hyperlinking, and syntax coloring. For instance, the content assist shown in
Fig. 4.3 helps the user to write the seeds and constraints while he types.

Figure 4.3: Content assist
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Figure 4.4: A meta model for Tests Suites

Test Suite meta-model and Java utils CitLab introduces also a simple
meta-model for tests and test suites. The meta-model is shown in Fig. 4.4.
which reports also a fragment of the language meta-model. A TestSuite,
which refers to a Model, contains several Tests which can contain several
Assignments. Each assignment gives a String value to a Parameter. We have
added also the code to check the validity of the assignments and of the tests.
We have developed several classes and methods capable to perform routine
tasks like generating all the test requirements for a given strength, checking
if a test or a seed violates some constraints, and checking if a test goal is
covered by a given test suite.
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Figure 4.5: UML Class Diagram of the grammar of CitLab



4.1. Language and its editor with Xtext 27

F
ig
u
re

4.
6:

U
M
L
C
la
ss
D
ia
gr
am

of
C
it
L
a
b
lo
gi
c
co
n
st
ru
ct
s





5
Framework architecture

Besides the de�nition of a language for combinatorial problems, together with
its editor, meta-model, and Java API to manipulate combinatorial models,
a further goal of CitLab is to introduce a framework for the de�nition and
implementation of actual test generators and a set of exporters/importers to
and from other languages to foster tools interoperability. In order to ease
the development and deployment of such components that can extend its
capabilities, CitLab relies on the extension techniques as de�ned by the
eclipse framework. In eclipse, a framework or a platform can accept new
contributions as plugins by de�ning extension points. External contributors
can add to the framework new plugins by implementing extensions. One can
think of an extension point as a port � an entry point for other plugins to
o�er services.

5.1 De�ning the extension points

An extension is a plug that connects to the right port. An extension point
de�nes a contract between the platform and the service provider introduced
as plugin. The extension implementation is the actual service which will be
added to the platform by using the plugin mechanism of eclipse.

There are several bene�ts from this architecture. New plugins can be dy-
namically added and removed from the platform without recompiling them.
Third-party tools can be easily added to the platform by registering them as

29
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Figure 5.1: TestGenerator extension point and corresponding extension

extensions. A plugin includes some descriptive information and the platform
extension point can decide how to use it. For instance, a plugin can declare
to support a feature and the platform can decide if it is worth loading the
extension or not. The development of a plugin is strongly decoupled with
the development of the platform, making easy for third-parties to contribute
to the framework.

Very often an extension point introduces a Java interface or an abstract
class that must be implemented by the extensions. As depicted in Fig. 5.1,
CitLab introduces an extension point called TestGenerator which de�nes
the abstract class ICitlabTestGenerator declaring the methods necessary
for any test generator. A plugin (XYZ in Fig. 5.1) must de�ne a class
(XYZTestGenerator) extending the required abstract class in order to
extend the platform with new test generators and register this extension into
the platform. The platform will become aware of new generator and will be
able to create and call instances of that class when needed.

CitLab introduces the six extension points listed in Tab. 5.1 together
with the abstract classes and the required methods, while some implemented
extension are repoterted in Fig.5.2.

All the code for CitLab is available under the Eclipse Public License1.

5.1.1 Test generation plugins

Any test generator plugin must introduce a class that implements the ab-
stract class ICitLabTestGenerator. A test generator must declare if it
supports the constraints, the seeds and the test goals (accept methods).
Moreover, it must de�ne a method that actually computes the test suite for

1All the source code is available at http://code.google.com/a/eclipselabs.org/

p/citlab/.
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Extension Point Abstract Methods

TestGenerator ICitLabTestGenerator
TestSuite generateTests(Model m, int nWise)
boolean acceptConstraints(List<Constraint> c)
boolean acceptSeeds(List<Seed> s)
boolean acceptTestGoals(List<TestGoal> tg)

Exporter ICitLabExporter
void export(Model m)
boolean acceptConstraints(List<Constraint> c)
boolean acceptSeeds(List<Seed> s)
boolean acceptTestGoals(List<TestGoal> tg)

Importer ICitLabImporter
Model import(Reader r)

TestSuiteExporter ICitLabTestSuiteExporter
void save(TestSuite ts, String �le)

TestSuiteValidator ICitLabTestSuiteValidator
boolean isValid()
boolean isComplete()
boolean isMinimal()

ModelValidator ICitLabModelValidator
String Analyze(CitModel model)

Table 5.1: Extension points de�ned by CitLab
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Figure 5.3: Test Suite Ecore Class Diagram

the n-wise coverage of a given model (generateTests method). The method
will be invoked by the CitLab user interface upon an user request. If an ex-
tension does not support some model features, like constraints for instance,
the CitLab user interface will prompt the user and will suggest to strip
the model from that feature in order to continue with the test generation.
Any test generator can decide to partially support a feature. For instance, a
test generator may support only constraints having a particular pattern (like
forbidden tuples or CNF). In this case, its method acceptConstraints will
examine the constraints and it will decide if they conform to the requested
pattern. In order to standardize the format of the test suite, produced by
the di�erent generator plugins, we have designed a Test Suite Ecore Model.
The output of each generators must be translated to these Java objects in
order to respect the CitLab standard and to preserve every links to the
original CitLab model. The Class Diagram of the Test Suite is reported in
Fig.5.3. These classes are embedded in an Eclipse plugin that also exposes
the utilities described in 4.1.1.
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...
def getSize(Parameter param){
switch (param) {
Enumerative:
'''�(param as Enumerative).type.elements.size�'''

Boolean :'''2'''

Number :'''1'''

Range:
'''�(((param as Range).end−

(param as Range).begin) as Integer).toString�'''

}
}

Figure 5.4: A fragment of the Xtext exporter to CASA

5.1.2 Translation to and from other notations and tools

CitLab introduces also two extension points for importing and exporting
models from and to other notations and tools (as reported in Tab. 5.1)
By de�ning exporters and importers, the researchers could use the CitLab
language as a sort of pivot language. In DSLs, a pivot language can be used
for exchanging models in several notations employed by di�erent tools.

A possible way to de�ne importers and exporters is to use Model to
Text (M2T) or Model to Model (M2M) transformations. To this purpose,
Xtend 2 can be used. For instance, we have de�ned an exporter to the
CASA [21] language by de�ning a model to text transformer in Xtend. The
transformer is translated to a Java class which extends abstract class required
by the exporter extension point. Inside the transformer, the designer can use
polymorphic dispatching of template de�nitions and easily navigate through
models. For instance, a fragment of the transformer for CASA is reported in
Fig. 5.4 in which the size of a domain is converted to a string.

Transformations could also be de�ned at higher level, between meta-
models (if provided by the target notations). In this case, the meta-model
provided by CitLab for combinatorial problems, could be used as pivot
meta-model by providing suitable model to model transformations in order
to allow tools interoperability. According to the view presented in [9], a
pivot meta-model of a given formalism or language L is intended as a plat-
form independent modeling language which abstracts a certain number of
general concepts about L. The integration among tools supporting L can be
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achieved by providing, for the notation L′ (a dialect of L) of each tool TL′ ,
a meta-model - seen as a platform speci�c modeling language - and model
transformations to the pivot and from the pivot to the L′-meta-model. Hence,
the meta-model of the notation Li of a tool TLi can be linked to the meta-
model of the notation Lj of another tool TLj by the composition of the two
transformations from Li-meta-model to the pivot and from the pivot to the
Lj-meta-model. In this way, the interoperability between tools TLi and TLj

is achieved by translating PSM (Platform-speci�c Model) models written in
Li to Lj and vice versa.

5.1.3 Test suite exporters

The third extension point is TestSuiteExporter that allows designers to add
new plugins for exporting the test suites generated into �les in speci�c for-
mats. The plugin must introduce a class that extends the abstract class
ICitLabTestSuiteExporter. In CitLab we have already implemented an
exported towards the Microsoft Excel format.

5.1.4 Validators

The last two extension points are TestSuiteValidator and ModelValidator.
They allows designers to add new plugins for validating the test suites pro-
duced using the generators or for validating a combinatorial model. The
plugins must introduce a class that extend the abstract class ICitLabTest-
SuiteValidator or the abstract class ICitLabModelValidator. In Cit-

Lab we have implemented two validators as described in Chapter 7.
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E�cient test generation for CIT is still an open problem especially when ap-
plied to real models having meaningful size and containing many constraints
among inputs and components. In this chapter we present a novel technique
for the automatic generation of compact test suites starting from models
containing constraints given in general form. It is based on the use of Multi-
valued Decision Diagrams (MDDs) which prove to be suitable to e�ciently
support CIT. We devise and experiment several optimizations including a
novel variation of the classical greedy policy normally used in similar algo-
rithms. The results of a thorough comparison with others similar techniques
are presented and show that our approach can provide several advantages in
terms of applicability, test suite size, and generation time.

6.1 Introduction

Combinatorial Interaction Testing (CIT) helps tester to �nd defects due to
the interaction of components or inputs. It is based on the assumption that
not every parameter or parameter value contributes to every fault and many
faults are caused by interactions among parameters. CIT tests the interac-
tion in a systematic way. For instance, pairwise testing requires that every
pair of parameter value is tested at least once. It can be generalized by the
t-way testing requiring that every t-tuple is included in the test suite. CIT
has been proved to be very e�ective in �nding faults [53,54].

37
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A major problem in CIT is the generation of compact test suites, espe-
cially when the cost of executing each test case is high. Suitable tools can
produce very compact test suites. For instance [54], consider a manufactur-
ing automation system that has 20 controls, each with 10 possible settings
�a total of 1020 combinations, which is far more than a software tester would
be able to test in a lifetime. A good CIT tool can produce a test suite for
the pairwise testing with only 180 tests in it. Note that the general prob-
lem of �nding a minimal set of test cases that satis�es t-wise coverage is
NP-complete [75,80].

Applying CIT to highly-con�gurable software systems is complicated by
the fact that, in many such systems, the parameters are rarely independent
from each other. There exist constraints that model dependencies among
parameters that render certain combinations invalid or some combinations
mandatory [25]. The presence of constraints increases the complexity of the
test generation task: if constraints on the input domain are to be taken
into account, even �nding a single test or con�guration that satis�es the
constraints is NP-complete [11], since it can be reduced in the most general
case to a satis�ability problem. The presence of constraints may either reduce
or increase the size of the �nal test suite, since some combinations may
become infeasible while others may become more di�cult to cover [11]. For
this reason, several works, like this, target explicitly the test generation for
CIT in the presence of constraints. In this chapter we focus on reaching a
good trade o� between the size of the generated test-suite and its time of
generation.

Our algorithm is a classical greedy algorithm which produces a test at
the time, similar to AETG [23] (as opposed to algorithms proceeding by one
parameter at the time, like IPO [78] and its variants [18,57]). When building
a single test, it chooses the best parameter and assigns the best value to it
until a test is complete. However, we advance with respect to the state of
the art by adopting the following original approaches:

� we employ a data structure, called Multivalued Decision Diagram which
is particularly suitable to combinatorial problems in order to represent
inputs, their domains, and constraints over those inputs;

� we soften the classical greedy algorithm by reducing the importance of
the number of tuples covered by the test currently built, by weighting
parameters and tuples depending on the constraints in order to reduce
the �nal size of the test suite;

� we introduce several optimizations, including constraints partitioning,
in order to speed up the test generation.
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6.2 Multivalued Decision Diagram

Binary Decision Diagrams (BDD) and Multi Valued Decisions Diagrams
(MDD) are commonly used structures for representing Boolean functions
and multi-valued functions, respectively. Such decision diagrams are widely
used within the domain of system design veri�cation. A Multi-Valued De-
cision Diagram (MDD) is a directed acyclic graph used to represent/encode
some multi-valued function f(X) X = {x0, x1, . . . , xn−1}, where the xi are p-
valued, i.e. each xi can have value 0, . . . , p−1. The function takes values from
0 to q−1 . Such a function can be represented by a MDD which is a directed
acyclic graph (DAG) with up to q terminal nodes each labeled by a distinct
logic value 0, 1, . . . , q−1. Every non-terminal node is labeled by an input vari-
able and has p outgoing labeled edges; one corresponding to each logic value.
The diagram is ordered if the variables adhere to a single ordering on every
path in the graph, and no variable appears more than once on any path from
the root to a terminal node. an MDD is a natural extension of the reduced
ordered binary decision diagrams (ROBDDs) to the multiple-valued case. It
is easy to see that BDDs may be considered a special variant of MDDs, where
the value of the range p for representing the input and output values for the
function is equal to 2. Due to the nature of combinatorial problems, we focus
on MDDs representing two-valued logic functions and we allow the inputs in
X to have domains of di�erent size. If we de�ne the set of possible values
for variable xk as Dk = 0, 1, . . . , |Dk| − 1 and D = D1 × D2 × D3 × . . .Dn,
a two-valued logic function is a mapping D → B, where B is the Boolean
constant set {F,T}. This mapping, f : D → B, can be represented by
an MDD and can be used to select the values in D that can be accepted:
if the values X for the variables in D are valid, then f(X) = T, otherwise
f(X) = F. MDDs can represent logic function using less memory and shorter
path then BDDs. From a theoretical point of view, Nagayama [62] demon-
strated that the amount of memory used by mapping Boolean function with
Boolean variables to heterogeneous MDD is lesser than using OBDD directly.
O'Sullivan et al. [41] have experimentally compared BDDs and MDDs over
a set of real-world and arti�cially constructed instances with non Boolean
domains for compiling constraint satisfaction problems (CSPs). They have
demonstrated that MDDs are often smaller than log-BDDs on con�guration
instances. In all the considered product con�guration instances the MDD
representation uses roughly four times fewer edges than log-BDDs. Further-
more, direct BDDs are two to �ve times larger than the log-encoded BDDs.
In order to achieve this performance improvement, it is very important the
use of techniques that can reduce the size of MDDs. To our knowledge, Med-
dly [5] is the only opensource C/C++ library that natively supports these
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Model phone
Parameters:
Enumerative display { 16MC 8MC BW };
Enumerative frontCamera { 2MP 1MP NOC };
Boolean emailViewer;

end
Constraints: # emailViever => display != BW # end

Listing 6.1: A mobile phone example

DDs. According to our opinion, Meddly native support for MDDs and their
variants, along with its performance makes it a good candidate for applica-
tions in areas where these DDs make sense. Meddly provides a breadth of
builtin operations for all supported DDs:

� Unary: Complement, Cardinality.

� Binary on booleans: Union, Intersection, Di�erence.

� Binary on integers and reals: +,−,×, :.

� Relational: =, <,>,≤,≥≥, min, max.

� Symbolic: Given an initial set of states and a next state function,
Meddly can symbolically generate the reachable states in one step.

Meddly supports several operations between MDDs, including the com-
plement, the union, and the intersection. These operations can be mapped to
logic operation between the Boolean functions represented by our Boolean-
valued MDDs. Given an MDD m with function f , its complement m{ rep-
resents the function ¬f . The union between two MDDs m1 ∪m2 represents
the function f1∨f2. The intersection between two MDDs m1∩m2 represents
the function f1 ∧ f2. Given the MDD m, its cardinality |m| is the number of
all the possible paths to the terminal node T. The cardinality can be used
to check consistency among Boolean functions: if f1 and f2 are inconsistent,
the intersection between their MDDs is empty.

6.3 Using MDD for CIT

A combinatorial model with n parameters each with cardinality pi can be
easily represented by an MDD that has n non-terminal nodes labeled by the
name of every parameter and each node for parameter Pi has pi outgoing
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labeled edges to the node for Pi+1 for i < n and to the T terminal node for
Pn. We call this MDD MTS. For instance, the MDD in Fig. 6.1 represents
the MTS for the phone given in Listing 6.1 ignoring its constraints. In the
following �gures, edges sharing the same starting and �nal node, are shown
with a unique arch and the list of labels.

dis eV fC T
16MC,8MC,BW 2MP,1MP,NOCtrue,false

Figure 6.1: MDD for the combinatorial problem of Listing 6.1

Every path from root to the terminal T is a valid con�guration. The
MTS represents all the tests, i.e., all the possible paths from the start to the
terminal node. The cardinality of MTS is equal to

∏n
i=1 pi which is equal to

the total number of possible tests.
A test case is a set of u values, one for each parameter. The set of all

possible tests is TSA = P1×P2×P3× . . . Pu and has
∏u

i=1 pi elements. The
coverage criterion Z of a CIT problem is de�ned by its strength t. A test set
TSZ ⊆ TSA ful�lls the criterion if every t-wise combination of values from
di�erent parameters is covered with at least one test case in TSZ.

The equality formula that associates parameter Pi to one of its values v,
i.e., Pi = v can be easily represented by the following function.

f(p1, . . . , pn) =

{
T if Pi = v
F if Pi 6= v

Such function can be represented by an MDD in which all the paths,
traversing the edge outgoing the node Pi with label v, terminate to the ter-
minal T while all the other ones terminate in F. For instance, the assignment
eV = true is represented by the following MDD.

dis eV fC

fC

T

F

16MC,8MC,BW true

false

2MP,1MP,NOC

2MP,1MP,NOC

A similar MDD representation can be given for every tuple, which assigns
values to a list of parameters. A path terminates to the node T if and only
if it contains an assignment contained also in the tuple. For instance, the
tuple (eV = true, fC = 2MP) is represented by the MDD shown in Fig. 6.2.
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dis eV fC

fC

T

F

16MC, 8MC,BW true

false

2MP

1MP,NOC

2MP,1MP,NOC

Figure 6.2: The MDD representing the pair (eV = true, fC = 2MP)

In most con�gurable systems, constraints or dependencies exist between
parameters. Since we assume that the constraints corresponding to a CIT
problem can be described by propositional logic with equality, we can de-
scribe every model constraint ci using a Boolean general formula containing
operators ¬,∨,∧ over equalities among parameters and their values. Every
constraint can be represented by an MDD modeling its truth function. The
MDD for any constraint can be built using the representation of equality
formulas and the operations between MDDs presented in Sect. 6.2.

Let U =
⋃u

i=1 Pi be the set of all possible input values. We de�ne an an
assignment for each values in U so every value is associated to its own param-
eter. Our approach is based on the modeling of the combinatorial interaction
test problem with constraints as a single propositional logic formula.

In order to include the constraints in the MDD MTS representing the
unconstrained model, we can use the operations between MDDs. The con-
junction of the MDD MTS with all the constraints ci restricts the set of
satisfying interpretations of the function associated to MTS such that it con-
tains exactly those interpretations that correspond to valid test cases. Let
mci be the MDD for the constraint ci, and the MDD MVS be de�ned by the
following formula: MVS =

⋂n
i=1mci ∩MTS.

The MDDMVS can be obtained by integrating the constraints ci into the
MDD MTS by changing its original topology. A constraint changes the state
of one or more paths from valid to not-valid. In the original MDD there are
n levels and n not-terminal nodes, where n is the number of parameter. In
order to model not-valid paths it is necessary to duplicate some nodes. The
MDD MVS preserves the number n of levels but has some more not-terminal
nodes. TheMVS represents all the valid tests, i.e. all the possible paths from
the start to the terminal T node.

An example of the MDDMVS representing the model and the constraints
for the phone problem is shown in Fig. 6.3. For instance, the combination
(dis = BW, eV = true) is not valid, since the requirement prohibits a BW
display with the emailViewer.

On the contrary, the test (dis = 16MP, eV = true, fC = 2MP) is a valid
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dis eV

eV

eV

fC

fC

fC

T

F

16MC true,false 2MP,1MP,NOC

8MC

true,false
1MP,NOC

2MPBW

false

true

2MP,1MP,NOC

Figure 6.3: MVS for the phone with the constraints

test, as shown by the corresponding path leading to the terminal T node in
the MDD.

an MDD with cardinality 1, i.e. with only one path to the T terminal
node, represents one valid test. An example is shown in Fig. 6.4.

dis eV

eV

fC

fC

T

F

16MC

8MC,BW

true

true, false

true, false

2MP

1MP,NOC

2MP,1MP,NOC

Figure 6.4: an MDD representing a single test case

6.4 An MDD-based algorithm for CCIT

We have devised an automatic algorithm for the generation of combinatorial
test suites based on the use of MDDs. The algorithm takes as input the
MDD MVS representing the intersection between the model domain and the
constraints and produces as output the desired test suite R. It builds one test
at the time until all the testing requirements are achieved. When building a
single test, it proceeds in a greedy manner: it chooses one optimal parameter,
that is not already set in the test, and its optimal value, according to our
weighting criteria, and it adds this assignment to the test to be built. In the
following we explain in details the algorithm which is reported in Alg. 1.

Firstly, we populate a list of tuples TTC including all the combinations to
cover based on a given coverage criterion C, usually t-wise coverage. Some
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Algorithm 1 Generation of the test suite R
Input: MVS : MDD for the model with the constraints
Output: R: set of MDDs representing the test set
TTC ← feasibleTuples(MVS )
R← ∅
while TTC 6= ∅ do . Build single test Mnc

Mnc ←MVS

P ← sortParamList(TTC)
for all Pi ∈ P do . Fix every parameter in P

value← chooseBest(Pi,Mnc, TTC)
Mnc ←Mnc u Pi = value
if |Mnc| = 1 then

break
end if

end for
TTC ← removeCoveredTuples(Mnc)
R← R ∪Mnc

end while

tuples may be infeasible because of the constraints. In order to �lter all the
valid tuples, we use MDDs as well: the function feasibleTuples returns all the
tuples required by the criterion C that have a non-empty intersection with
the MDD MVS .

We then start the iteration part where we generate, for each iteration, a
test case Mnc represented by an MDD with �nal cardinality equal to 1. At
the end of each iteration we update TTC removing the tuples covered by the
generated Mnc until TTC is empty.

In the single iteration we initializeMnc to the valid setMVS , we then sort
all the parameters (sortParamList) by simply counting for every parameter
p the number of tuples in TTC that contain p. We then start assigning every
Pi to the best value for it, by taking the value producing an assignment that
is compatible with Mnc and that maximizes the coverage of tuples in TTC .

This basic algorithm is a classical greedy algorithm that generates a test
at the time and tries to cover as many uncovered tuples as possible. It can
be improved in several directions, as explained in the following sections.

6.4.1 Optimization: Weighting compatibility

Although most greedy algorithms consider only the number of remaining
tuples that will be covered in order to determine the best choice [13], it is
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Algorithm 2 Computation of weights

function assignWeight(TTC ,MVS )
for all T ∈ TTC do weight(T )← 0 end for
for all (Ti, Tj) ∈ TTC × TTC with i < j do

if MVS u Ti u Tj = ∅ then
weight(Ti)← weight(Ti) + 1
weight(Tj)← weight(Tj) + 1

end if
end for

end function

well known that such greedy policy can lead to bigger test suites, even for
unconstrained models1. In the presence of constraints, this greedy policy can
be even more ine�cient. One reason is that, in the presence of constraints,
this policy leaves at the end all the tuples that are �more" di�cult to cover,
because the constraints limit the number of valid test cases that can cover
them. In this way, the last generated tests cover only a few tuples not covered
yet, leading to bigger test suites.

We propose to weight every tuple depending on its compatibility degree
with respect to the other tuples not covered yet considering also the con-
straints. Heavy tuples are more di�cult to cover and they should be �xed
sooner than light tuples. To weight tuples, we introduce a dynamic func-
tion weigth that measures the weight of every tuple and we modify the Alg.
1 by calling the function in Alg. 2 that assigns the weights before order-
ing the parameters. We modify the functions sortParamList and chooseBest
accordingly in order to consider tuple weights.

The function assignWeight increases the weight (initially set to 0) for
all the tuple pairs (Ti, TJ) with Ti and Tj in TTC that are mutually exclusive
by considering also the constraints. Checking if two tuples are compatible
can be performed by using the usual intersection operator among MDDs. For
instance the tuples (dis = BW, fC = 2MP) and (fC = 2MP, eV = true) would
have their weight increased because they are incompatible due to the con-
straints and this can be easily computed using the MDD of Fig. 6.3.

Although we can rely on the e�ciency of MDDs for the computation of
weights, Alg. 2 has complexity N2/2 where N is the number of remaining
tuples to cover (TTC) and this can increase the computation time. For this
reason we de�ne a simpli�ed algorithm (Alg. 3) that is less precise but it

1Bryce and Colbourn report in [12] the example in which a simple greedy algorithm
provides a solution of 1,222 tests. Relaxing the greedy behavior or other algorithms can
provide much smaller test suites till 910 tests
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Algorithm 3 Approximate and faster computation of weights

function assignWeightFromParams(TTC)
for all T ∈ TTC do weight(T )← 0 end for
for all Pi and Ti ∈ TTC with Pi ∈ Ti do

weight(Pi)← weight(Pi) + 1
end for
for all Ti ∈ TTC and Pi ∈ Ti do

weight(Ti)← weight(Ti) + weight(Pi)
end for

end function

is much faster than Alg. 2. This algorithm 3 �rst assigns a weight to every
parameter depending on the number of remaining tuples to cover (TTC) that
contain it. Then, every tuple gets a weight that is the sum of the weights
of the parameters in it. It does not consider the model and its constraints
(MVS ), it does not need to perform any operation among MDDs, and for this
reason is much faster.

We devised the following policy. If the number of tuples to be covered
(|TTC |) is greater than a threshold, the weighting is performed by Alg. 3
otherwise the more precise Alg. 2 is used instead.

6.4.2 Optimization: Repetitions

Our algorithm produces non deterministic results, since when ordering the
parameters and when identifying the best value for the chosen parameter, it
may occur that two or more choices are equally valid. In this case the algo-
rithm randomly chooses one possibility. The choice may a�ect the behavior
of the test generation only much later (typically only in the last steps). One
possibility is to repeat with a di�erent random seed the entire algorithm (ex-
cept the evaluation of tuple feasibility) in order to see if by chance a better
solution is found. We call this optimization repetition, as de�ned in [13].
We manage the repetition policy by setting the following three parameters
repeat

min
, repeat

max
, and repeat

better
. When repetition is activated, the algo-

rithm generates at least repeat
min

times a new test suite. It keeps generating
new test suites unless for repeat

better
the test suite is not smaller than the

best found so far. In any case no more than repeat
max

generation runs will
be executed. The smallest test suite found is returned.
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Figure 6.5: CitLab plugin classes

6.5 Experiments

We have implemented the algorithm presented in the previous section in a
prototype tool called medici (MultivaluEd Decision diagrams for Combina-
torial Interaction testing). We have integrated medici in CitLab [19], as
a generator plugin. medici is written in C++ and is based on Meddly [5]
for the MDDs. It has been embedded in CitLab and it is freely available2.
CitLab simply exports the necessary input �le for medici and executes it
as reported in Fig. 6.5. Note that medici accepts constraints in general
form and thanks to the fact that it uses MDDs, it avoids the time consuming
conversion to CNF.

As benchmarks for CCIT problems we have gathered a wide set of 117
models with constraints taken from the literature (Casa [21, 25, 38], Fo-
CuS [74], ACTS [1], and IPO-S [18]) and from SPLOT SPLs repository,
and used (in subsets) also by many other papers. The benchmarks can be
found on the CitLab web site and can be used for further comparisons. For
the sake of brevity, we show, in Tab. 6.1, only some useful statistical sum-
mary of the data reported on the web site. We run the experiments on a PC
with two Intel(R) Xeon(R) CPU E5-2630 @ 2.30GHz and 64 GByte of RAM.
We exploit the multi-core architecture by running 20 threads in parallel and
we run all the experiments with the pairwise coverage and 50 runs.

Table 6.1: Characteristics of the CCIT benchmarks.

#Variable #Constraints Domain size #Valid confs Ratio3

Minimum 3.00 0 8.00 1.00 2.44×10−29

Maximum 259.00 388 9.26×10+77 2.44×10+62 1.00
Mean 44.85 27.46 1.16×10+76 5.89×10+60 0.25
Median 15.00 15 8.35×10+04 2.60×10+04 7.86×10−02

2CitLab and its medici plugin can be found at http://sourceforge.net/projects/
citlab/
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Figure 6.6: Test suite size and time depending on the threshold

Let sizem be the average of the test suite size for model m over all the
runs and timem be the average of the time for model m, we introduce size
and time de�ned as: size = Σsizem which is the sum of the averages of the
test suite sizes and time = Σtimem which is the sum of the averages of the
executions times (in seconds). We will use size and time as performance
indexes.

6.5.1 Optimal threshold value

We perform an experiment in order to discover the impact of the threshold
introduced in Sect. 6.4.1 over the test generation size and time (with 1 repe-
tition). Fig. 6.6 reports how the test suite size and time changes depending
on the value of the threshold4. As the graph shows, the test suite size has
a minimum for a threshold around 500, while it becomes sensibly greater
with thresholds smaller than 250. The time becomes signi�cantly greater for
threshold greater than 250. From now on, we chose as optimal threshold the
default value of 250.

6.5.2 Using compatibility

We experiment the e�cacy of the use of the compatibility and weights in
order to choose the optimal parameter and value w.r.t. the classical greedy
algorithm as explained in Sect. 6.4.1 by performing a comparison with a
version of medici that avoids this optimization and uses a greedy algorithm
over the number of covered combinations. The results are shown in the chart
of Fig. 6.7.

3Ratio=(#Valid con�gurations / Domain Size)
4Threshold values are in the set {0,10,50,100,250,500,1000,2000}.
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Figure 6.7: Greedy vs Compatibility comparison with optimization

Figure 6.8: Tuple coverage rate for b_12 with optimization

We observe that using the compatibility leads to smaller test suites (size
is around 4% smaller on average) with an increase of the time (time) of
around 15%. Using the proposed technique slows the rate in which uncovered
tuples are covered but reduces the �nal test suite size. For instance, Fig. 6.8
reports the size of still uncovered tuples (y-axis) while generating tests for
one model (the number of tests already generated is on the x-axis). By
maximizing the coverage of tuples (dotted line), the test generation covers
more tuples at the beginning but at the end it needs new tests to cover
the residual uncovered tuples. By using compatibility and by weighting the
tuples (continuous line), the algorithm covers fewer tuples at the beginning
but at the end all the residual tuples are easily covered with few tests. The
�gure shows that the problem of �nding minimal test suites is not easily
solvable by using pure greedy algorithms, since only near the end the our
proposed approach outperforms the classical greedy approach.
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Figure 6.9: Test suite size and time depending on the repetitions settings
(repeat

min
repeat

max
repeat

better
).

6.5.3 Number of repetitions

Regarding the number of repetitions (options repeat
min

, repeat
max

, repeat
better

introduced Sect. 6.4.2), the situation is more clear, since the use of these op-
tions is purely incremental and increasing the number of tries will always in-
crease the time and decrease (or keep equal) the number of tests. The choice
of the optimal values for these options, is however a typical multi-objective
optimization, in which we try to optimize the two con�icting objectives of
a small test suite size and a small generation time. We test for the repeat
options the values {1, 5, 10, 15, 20, 30, 50} which give rise to 27 valid con�g-
urations. The data for the execution of all the con�gurations is shown in Fig.
6.9 (and later in Tab. 6.11). The graph con�rms that the two objectives of
minimizing both size and time are con�icting: it is possible to obtain smaller
test suite but at the expense of the test generation time. Our technique
allows the tester to decide of spending more time in order to have smaller
test suites. To give users guidance in the choice of the best values for these
options, we try to model the behavior of our algorithm by hypothesizing the
following law:

size = minSize + k
log(time−minTime)

saying that the value of size is a constant, minSize which is the minimum
size that medici could �nd in an unlimited amount of time, plus a quantity
that decreases by increasing time. minTime is the minimum amount of time
that medici would take to generate a test suite without any retry and k
is a constant representing the loss of e�ciency in size in this case (time =
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Figure 6.10: Test suite size size and time time depending on the number of
repetitions

size ΣσS time ΣσT

ACTS 3387.5 0.5 73.7 2.4
CASA 3185.4 4391.2 14781.2 14305.9
medici 3214.4 6633.5 7871 965.4

Figure 6.11: Comparison with ACTS and CASA

minTime). To �nd the constant values we have applied nonlinear regression
analysis using the statistical tool R by minimizing the sum of squares of the
distances. R �nds the values minTime = 740, minSize = 3024 and k = 1693,
which originate the gray line drawn in Fig. 6.10. Since the line approximates
su�ciently well the behavior of the algorithm, a tester can use the proposed
law, once he/she has executed some tests and estimated the constants, the
costs and the bene�ts of further test generation time.

From all the con�gurations, we select one con�guration with (repeat
min

,
repeat

max
, repeat

better
) equal to (10,30,5) which represents a good compromise

between time and speed and it can be considered as a good candidate for
a default use of medici. From now on, we will use this version for further
comparison.

6.5.4 Comparison with other tools in CitLab

We
perform a comparison with the other external tools supported by CitLab,
namely ACTS [1,57] and CASA [21,38] to check if medici actually improves
over the current state of combinatorial tools. ACTS is a tool developed by
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Figure 6.12: Number of models that present the minimum cost for each
generator for timetest from 0.01 to 5000 secs.

the NIST and implements several variants of the In Parameter Order (IPO)
strategy. CASA is a tool developed at the University of Nebraska and it is
based on simulated annealing, a well-studied meta-heuristic algorithm. Both
support constraints, are freely available, have a large user base, and are very
often used in comparison studies. Using CitLab allows us to perform all
the experiments in a very controlled environment on the same computer and
using exactly the same examples.

Due to the high number of models and experiments we can give only some
cumulative results. Table 6.11 reports the results of the comparison: we have
computed the mean, and the standard deviation (σ) of the size and time (in
secs) among all the 115 runs for every model. Besides the sum of averages
(size and time), the table displays the sum of the standard deviations.

Table 6.11 shows that ACTS is the fastest but it produces also the biggest
test suites. ACTS has a deterministic algorithm and hence the standard
deviation of its sizes is null. medici is always slower than ACTS but it
produces smaller test suites. medici is around 200 times slower than ACTS,
but it produces a test suite on the average 5.4% smaller than ACTS. On
the other hand, CASA is the slowest of all, but it produces rather small test
suites. CASA has a very high standard deviation both in time and in size
(running CASA only once may not lead to the best solution of its). medici is
faster than CASA and it has a smaller standard deviation. CASA produces
a test suite on the average 1% smaller than medici, but its generation time
is, on average, double that of medici.

Overall, we can say that medici performances are between CASA and
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ACTS. To better guide the user in the choice of the best test generator tool,
we can roughly estimate the cost of testing (cost) as the total time for test
generation (timegen) plus test execution, which depends on the size of the test
suite (size) and time necessary to execute every single test (timetest): cost =
timetotal = timegen + size × timetest . Using the data previously computed, we
have also calculated the cost for each model and for each generator selecting
a meaningful set of timetest . Fig. 6.12 shows the number of models that
present the minimum average cost for each generator varying the timetest .
ACTS outperforms both CASA and medici if each test takes on average less
than 10 seconds. This is in line with what was found by Garvin et al. [37].
If the time for executing a single test increases, CASA and medici cost less
than ACTS in most models. Even for very costly test execution (e.g. tests
that require some human intervention), medici can still compete with CASA
in a meaningful number of models.

6.5.5 Threats to validity

We have identi�ed some threats to validity of the proposed study and we
present some countermeasures we have employed. First, the benchmark
data may be not representative. We have tried to collect models from many
sources: to the best of our knowledge this is one of the biggest benchmark
set of constrained combinatorial models used for test generation. The mod-
els represent a wide heterogeneous range of real life and academic models.
Second, we are aware that our tool, medici, may produce incomplete and
incorrect test-suites that allow it to perform better than the other tools. To
avoid this, besides performing unit testing we have used the CitLab �valida-
tor" [4] that checks that the resulting test suite actually cover all the required
tuples (except those infeasible). We use this program for debugging medici.
In order to have con�dence of the data obtained in the experiments, we have
executed 50 runs for every con�guration. Using multi-threads allows us to
reduce the experimental time, but it may alter the running time, since an
ordinary user will generally launch only one execution at the time. However,
we believe that the comparison is still fair because we have treated all the
generators in the same way.

6.6 Related work

Combinatorial interaction testing has been an active area of research for many
years. In a recent survey [63] Nie and Leung count more than 12 research
groups that actively work on CIT area and many other groups and tools
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are missing in the count. In a previous survey, Grindal et al. [40] presented
16 di�erent combination strategies, covering more than 40 papers. There
are several web sites listing tools and approaches (like [66]), and publish-
ing benchmarks and evaluations of tools and algorithms. The most studied
area in CIT is the test suite generation, where several research groups con-
tinuously challenge existing algorithms and tools in order to provide better
approaches in terms of execution times, supported features, and minimality
of the produced test suites. Finding an algorithm that improves over the
current state of the art has become a hard research task.

There are several families of CIT test generation tools, including bio-
inspired, algebraic, logic-based [16], and greedy. In [13], Bryce et al. pre-
sented a general framework of greedy construction algorithms, in order to
study the impact of each type of decision on the e�ectiveness of the resulting
heuristic construction process. To this aim, they designed the framework
as a nested structure of four decision layers, regarding respectively: (1) the
number of instances of the process to be run, (2) the size of the pool of can-
didate rows from which select each new row, (3) the factor ordering selection
criteria and (4) the level ordering selection criteria. The approach presented
in this work �ts exactly in the greedy category of algorithms modeled by that
framework, and it is structured in order to be parametric with respect to the
desired number of repetitions and the factor and level ordering strategies.
Note that their study concluded that factor ordering is predominant on the
resulting test suite size, and that density-based level ordering selection crite-
ria was the best performing one out of those tested. In the present work, we
explored original ways of rede�ning the density concept. In fact, while Bryce
et al. compute it as the expected number of uncovered pairs, we weight tuple
compatibility and we order parameters accordingly.

Comparison with BDD-based tools. Regarding the data structure we
use, a comparison can be done with works using for CCIT binary decision
diagrams (BDDs) which are similar to MDDs. Salecker et al. [72] developed
a test set calculation algorithm which uses BDDs as e�cient data structure
to represent the combinatorial interaction testing problem with constraints.
Both their and our approach are based on the modeling of the combinatorial
interaction test problem with constraints as a single propositional logic for-
mula. MDDs are a more e�cient data structure for CCIT than BDDs: while
modeling CCIT using BDDs requires a logic subformula corresponding to
all possible alternatives for selecting values from each parameter Pi, MDDs
permit to avoid the representation of these subformulas for single parame-
ters; the bene�t produced by this technique is the absence of the implicit



6.7. Future work and Conclusions 55

constraints introduced to represent value selection. Unfortunately the tool
presented in [72] is not available and a fair comparison is di�cult. For sanity
check, we found that on the same models presented in [72], medici without
repetitions was able to produce a smaller test suite (486.2 vs 547) and the
time required in [72] was 2.3 times the time for medici (687 vs 1606 secs),
although our PC is only 1.8 times faster (considering the SPECint of around
42.6 vs 23.5).

Segall et al. [74] developed FoCuS, another BDD-based CCIT tool. In
their approach each parameter is represented by one or more binary variables
in the BDD. In order to build the BDD of valid tests, they �rst built for each
constraint (called restriction) the BDD representing the set of tests allowed
by it. A test is valid if and only if it is valid according to all restrictions,
therefore the set of valid tests is exactly the intersection of the sets of tests
allowed by the restrictions. This is computed by the conjunction of the BDDs
representing these sets. Their approach is therefore very similar to ours in
terms of problem representation, and we believe that also their approach
would bene�t from the use of MDDs instead of BDDs. Unfortunately FoCuS
is not publicly available. However, again for sanity check, we found that on
the same models presented in [74] medici produced smaller test suites (923.5
vs 934) while published data for FoCuS do not include generation time.

6.7 Future work and Conclusions

We plan to work in several directions in order to improve our approach and
the tool. medici (as most other test generation tools, with the notable
exception of ACTS) does not support constraints containing arithmetic ex-
pressions. CitLab already adopts the language of propositional logic with
equality and arithmetic to express constraints. To be more precise, it uses
propositional calculus, enriched by the arithmetic over the integers and enu-
merative symbols. Although arithmetic expressions are quite rare in models
published in the literature, we plan to extend medici in order to deal with the
arithmetic constraints expressed in CitLab, since we believe that industrial
studies often use them.

Moreover, we have experimented only pairwise coverage, even if medici,
ACTS, and CASA support n-wise coverage. Initial experiments shows that
medici performs well also with n-wise coverage. Overall, we believe that
the technique presented in this chapter and implemented in a prototype tool
is a viable alternative to other commonly used tools for tests generation of
combinatorial tests in the presence of constraints. Our techniques exploits
an e�cient data structure (MDDs) that proved to be suitable to represent
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and solve constrained combinatorial models and promise to scale better than
BDDs [41]. We have also devised several optimizations, like weighting, that
combined with a classic greedy approach allow us to obtain very good results,
as demonstrated by our experiments. The use of the framework CitLab

has allowed us to de�ne a wide body of benchmarks and to perform the
comparison with other tools in a simple and fair way.



7
CIT Validation process

In Combinatorial Interaction Testing, models specify a set of parameters with
associated domains, and some constraints over the parameters. Test genera-
tion tools produce, starting from these models, test suites for achieving some
given coverage criteria. The validation of both the models and the produced
test suites is a worthwhile activity. Validating the models permits to early
discover possible defects in them, to feed the test generations tools with good
inputs and, possibly, to improve the quality of the testing process. Validat-
ing the produced test suites, instead, permits to check if the test generation
tools are correct and to judge their quality. This section proposes to validate
the models by checking that the constraints are consistent, that there is no
constraint implied by the other constraints, and that the parameters and
their values are really necessary. The proposed test suite validation, instead,
consists in checking that the tests respect the type de�nitions and the con-
straints, that all the test requirements are covered, and that all the tests in
the test suite are valid and necessary. For every error we propose a possible
technique able to identify the potential causes and to suggest �xes for those
problems. Experiments show that the targeted defects are widespread both
in benchmark and real-life models.

57
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7.1 Background work

For di�erent programming languages, several tools automatically look for
common errors as, for example, FindBugs, PMD and Checkstyle for Java, or
Splint for C1. These tools look for erroneous code but also for stylistic con-
ventions violations that may indicate a possible problem. For example, the
pattern Unwritten �eld of FindBugs signals if a �eld has never been written
and always returns its default value: the violation of this pattern could show
that the �eld is not necessary or that it must be updated somewhere.

A model review technique has been developed for the Software Cost Re-
duction (SCR) method [47], a requirements speci�cation method that uses a
tabular notation to de�ne mathematical functions. There are di�erent tables:
condition, event, and mode transition tables. Each table describes a variable
or a mode as a function of modes and/or events and/or conditions. The au-
thors de�ned a formal requirements model specifying the properties that any
SCR speci�cation must satisfy, and developed a tool, the consistency checker,
for checking these properties. They identi�ed eight categories of properties:
Proper Syntax, Type Correctnesses, Completeness of Variable and Mode Class
De�nitions, Initial Values, Reachability, Disjointness, Coverage and Lack of
Circularity. Some properties are similar to ours. For example, Coverage re-
quires that at least one condition in each row of a condition table must be
true; this is similar to our consistency check.

The UML state machines are an object-based variant of Harel statecharts.
In [69] the authors present a set of rules that seek to avoid common types
of errors by ruling out certain modeling constructs for UML state machines
or Statecharts. The authors state that the �rst rules that must be respected
are the UML well-formedness rules. These rules are expressed as OCL con-
straints over UML models; the satisfaction of these constraints assures the
syntactical correctness, which is a prerequisite for executing more complex
checks. An example of well-formedness rule is the rule CompositeState-1
that states that a composite state can have at most one initial vertex. The
authors then reviewed di�erent style guides proposed for statecharts and
their dialects. They devised two categories of rules. Syntactical Robustness
Rules identify syntactical constructions that, although syntactically correct
according to the well-formedness rules, should be avoided because they could
produce misleading models. Semantic Robustness Rules try to detect incor-
rect model behaviours, e.g., race conditions. Some syntactical robustness
rules map to our checks. For instance, rules MiracleState and Connectivity,

1http://findbugs.sourceforge.net/, http://pmd.sourceforge.net/,
http://checkstyle.sourceforge.net/, http://www.splint.org/
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requiring that each state is reachable, are similar to our useless parameter
and value check since they all require model minimality.

In [2] a model review technique is proposed for Abstract State Machines
(ASMs), an extension of Finite State Machines. Seven meta-properties have
been devised for checking the consistency, the completeness and the minimal-
ity of ASM models. Some of these meta-properties inspired our current work.
For example, a meta-property requires that every controlled function can take
any value in its co-domain: this meta-property is similar to the control we
do to check that every parameter value is useful (see Section 7.3.3).

A model review technique has been developed also for models of the
NuSMV model checker [3]; the authors identi�ed ten meta-properties for
checking the consistency, the completeness and the minimality of NuSMV
models. We have been inspired also by some of these meta-properties. One
meta-property checks that the temporal properties of the NuSMV speci�-
cation are not vacuously satis�ed: in a similar way, we check that the con-
straints are not totally/partially vacuous. Note that, however, our de�nition
of vacuity is slightly di�erent from the classical de�nitions [7, 55].

Test suite reduction has been extensively used in regression testing. Cha-
vatal [22] proposes the use of a greedy heuristic that selects at a time a test
case that covers most yet to-be-covered requirements, until all requirements
are satis�ed. Our algorithm in Alg. 8 is an instantiation of that proposed
by Chavatal. Harrold and colleagues [43] propose a similar, but improved
heuristic that generates solutions that are always as good or better than the
ones computed by Chavatal. Their technique selects a representative set of
test cases from a test suite that provides the same coverage as the entire test
suite. This selection is performed by identifying, and then eliminating, the
redundant and obsolete test cases. We plan to translate Harrold's algorithm
also for combinatorial test suites.

7.2 Notation

7.2.1 Using Logics and SAT/SMT solvers for CIT prob-
lems

In this section, in order to analyze combinatorial models and tests, we adopt
a logic-based approach.

De�nition 1. Test A test t = (v1, . . . , vm) is an assignment of values to all
the parameters of the combinatorial problem that respects the type de�ni-
tions, i.e., ∀i ∈ {1, . . . ,m} : vi ∈ Di. Let D = D1 × . . .×Dm be the domain
of the tests, i.e., t ∈ D.
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De�nition 2. A test t is a model for a formula ϕ if it makes the formula ϕ
true, formally t |= ϕ.

De�nition 3. Constraint A constraint ci is a formula over some parameters
of the combinatorial problem.

De�nition 4. Test validity A test t is valid, if t is a model of the con-
straints, i.e., t |=

∧n
i=1 ci.

Given a formula ϕ over the parameters in P , there are several decision
problems regarding the truth evaluation of ϕ.

De�nition 5. Satis�ability A formula ϕ is satis�able if there is model for
it. Formally, ∃t ∈ D : t |= ϕ.

Satis�ability can be proved with a SAT/SMT solver. There are some
formulas that are always true, regardless the test.

De�nition 6. Validity A formula ϕ is valid if and only if it is true under
every interpretation, i.e., every possible assignment to the parameters makes
ϕ true. Formally, ∀t ∈ D : t |= ϕ, or brie�y |= ϕ.

To prove validity one can use a satis�ability solver, thanks to the following
theorem.

Theorem 7. A formula ϕ is valid if ¬ϕ is not satis�able.

In combinatorial testing, test requirements are given as a set of tuples
which are to be covered by the tests. Each tuple can be represented as a
formula in a straightforward way by a conjunction of equalities. For instance,
the pair (pi = vj, pk = vh) can be represented as pi = vj ∧ pk = vh. A test
covers a test requirement, thus a tuple tp, if it makes tp true. A satis�ability
solver can be used also to check if a test requirement is feasible.

De�nition 8. A test requirement tp is feasible if tp ∧
∧n

i=1 ci is satisfabile.

We exploit, whenever necessary, a Satis�ability Modulo Theories (SMT)
solver, namely Yices [32], for representing and solving the formulas derived
from combinatorial problems and tests. An SMT problem is a decision prob-
lem for logical formulas with respect to combinations of background theories
expressed in classical �rst-order logic with equality. Yices can easily deal with
the CitLab models. An SMT instance is a generalization of a boolean SAT
instance in which various sets of variables are replaced by predicates from a
variety of underlying theories. Obviously, SMT solvers provide a much richer
modeling language than that provided by SAT solvers. We have embedded
Yices in CitLab using JNA (Java Native Access) and we exploit the fol-
lowing commands of the Yices APIs (besides those for creating domains and
variables):
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� mk_context creates the logical context.
� assert asserts a constraint in the logical context. After one assertion,
the logical context may become inconsistent.

� push creates a backtracking point. The logical context can be viewed
as a stack of contexts.

� pop backtracks, i.e., it restores the context from the top of the stack,
and pops it o� the stack.

� check checks if the logical context is satis�able.
� del_context deletes the logical context.

In order to check the satis�ability of a formula in Yices, we add the
formula to the logical context by the command assert and then we execute
the command check. Whenever we need to check the satis�ability of a set
of formulas having a common subset, we can do, in order to decrease the
computation time, an incremental checking by exploiting the commands push
and pop.

We use the SMT solver not only as satis�ability checker, but also as an
equivalence prover, thanks to Thm. 7.

7.2.2 Desired properties of combinatorial models and
tests

In this section we introduce some properties that should be proved in order
to assure that a combinatorial model and tests have some quality attributes.
These properties refer to attributes that are de�ned independently from the
particular combinatorial speci�cation to be analyzed and they should be true
in order to guarantee a certain degree of quality for the combinatorial model
and tests. For this reason, we call them meta-properties. The violation of
a meta-property always means that a quality attribute is not met and may
indicate a potential/actual fault in the model or in the tests. Although we
will actually de�ne the meta-properties in the following sections, we introduce
now three generic categories of quality attributes.

� Consistency requires that there are no elements that con�ict with
each other. For instance, the constraints should not be contradictory
(see Sect. 7.3.1).

� Completeness requires that every feasible requirement must be cov-
ered by at least one test (see Sect. 7.4.1).

� Minimality guarantees that the speci�cation does not contain ele-
ments de�ned or declared in the model but never used. These defects
are also known as over-speci�cation. For example, if a parameter value
is never used, it could be removed from the parameter domain (see
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Sect. 7.3.3). Another minimality meta-property checks that the test
suite is minimal (see Sect. 7.4.2).

7.3 Validation of CIT models

7.3.1 Inconsistent constraints

In classical deductive propositional logic, a theory is consistent if it does not
contain a contradiction. A simple syntactic contradiction happens when the
theory contains both the formula ϕ and its contradiction ¬ϕ. In general, we
consider a theory (semantically) consistent if and only if it has a model, i.e.,
there exists an interpretation under which all formulas in the theory are true.
In brief, the theory is satis�able.

We can extend the concept of consistency to combinatorial models with
constraints. Given a set of parameters together with their domains, we can
check if the constraints over these parameters are consistent, i.e., if they
actually allow at least a possible valid assignment to every parameter of the
model. An inconsistent set of constraints restricts too much the problem
space to the point that no solution is possible.

De�nition 9. A set of constraints C = {c1, . . . , cn} is consistent if
∧n

i=1 ci
is satis�able. A model is consistent if its constraints are consistent.

Example 1. An example of inconsistent set of constraints is {a∧¬b, a→ b}.

In order to discover if a model is consistent, we use the SMT solver Yices
by simply checking the satis�ability of the conjunction of the constraints.

How to deal with inconsistent constraints

Once the model has been proved inconsistent, the designer is interested in
identifying which constraints are responsible for such inconsistency. In the
simplest case a single constraint ci is inconsistent by itself, i.e., it is a contra-
diction (|= ¬ci). Single inconsistencies must be identi�ed and removed (or
corrected).

Example 2. For example, the constraint reported below is inconsistent.

# a=5 and a=6 #
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Algorithm 4 Algorithm for �nding a maximum consistent subset
Require: an inconsistent set of constraints C
Ensure: it returns a consistent subset of C
for i = (|C| − 1), . . . , 1 do

for all {C ′ ⊂ C : |C ′| = i} do
if isConsistent(C ′) then

return C ′

end if

end for

end for

return ∅

Identifying single inconsistencies using Yices is easy: it is su�cient to
check each constraint for satis�ability.

However, in most cases there is not a single inconsistent constraint, but
the inconsistency derives from the interaction of the constraints. In this case,
the designer may be interested in �nding a maximum subset of consistent
constraints.

De�nition 10. Given an inconsistent set Γ of constraints, we say that Ω is a
maximum consistent (or satis�able) subset (MCSS) of Γ, if Ω ⊂ Γ and every
subset ∆ (such that Ω ⊂ ∆ ⊆ Γ) is inconsistent.

Finding the MCSS can be done by a greedy algorithm, as the one shown
in Alg. 4. It checks for consistency all the proper subsets of C, going from the
biggest ones to the singletons. As soon as a consistent subset C ′ is found, it is
returned. The proposed algorithm has the advantage of returning a consistent
subset, but does not precisely identify the causes of the original inconsistency:
we can only know that the constraints in C \C ′ are inconsistent with at least
one of the constraints in C ′. In order to exactly discover the constraints
responsible for the inconsistency, one should use an algorithm for �nding the
minimum unsatis�able core [60], i.e., the smallest set of constraints that is
still unsatis�able.

Example 3. Let's consider the inconsistent set of constraints C = {a ∧
¬b, a→ b, a ∨ b}. The algorithm �rst selects the subsets of size |C| − 1; the
subset C1 = {a∧¬b, a→ b} is still inconsistent, subsets C2 = {a∧¬b, a∨ b}
and C3 = {a → b, a ∨ b}, instead, are consistent. The algorithm returns
the �rst subset found consistent (C2 or C3); note that the two subsets are
not equivalent: C2 admits only {a = true, b = false}, while C3 admits two
tests di�erent from the one admitted by C2. The modeler should check if the
returned set actually captures the intended requirements of the system.
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7.3.2 Constraints Vacuity

In this section we extend the notion of vacuity to combinatorial constraints.
Generally, vacuity has been applied to properties of behavioral models in
formal veri�cation. A property is vacuously satis�ed if that property is sat-
is�ed and proved true regardless of whether the model really ful�lls what the
speci�er originally had in mind or not. For example, the property a → b is
vacuously satis�ed by any model where a is never true. Vacuity is an indica-
tion of a problem in either the model or the property. Several techniques to
detect vacuity have been proposed (e.g., [7, 55]) and also tools that perform
vacuity detection have been developed (e.g., [39]). In classical formal veri�-
cation, to detect vacuity as de�ned in [7,55], it is enough to replace parts of
the property and see if the replacement has any e�ect on the result of the
veri�cation. A common technique to detect vacuity [55] consists in replacing
a subformula φ of property ϕ with true or false (depending on the polarity
of φ in ϕ) and checking for its satis�ability.

In our case, however, the constraints do not represent properties that
can be derived from the model, but the model itself, i.e., the whole and
only formal speci�cation, and the classical de�nitions do not apply. We still
borrow the term vacuity to indicate a constraint or one of its subformulas
which is useless. Intuitively, a constraint, or a part of it, is vacuous if it can
be removed, either because it is always true or because it is implied by the
other constraints. We distinguish between total vacuity and partial vacuity.

De�nition 11. A constraint ci is totally vacuous i� |=
(∧

k∈{1,...,n}−{i} ck

)
→

(ci ≡ true).

Intuitively, a constraint is totally vacuous if it is implied by the other
constraints which make the constraint useless, since it does not add any
further restriction to the model.

Example 4. Let's consider the set of constraints C = {¬a, a → b}. The
constraint a→ b is totally vacuous. Indeed, ¬a→ (a→ b) is valid.

Tautologies used as constraints are a special case of total vacuity.

Example 5. Let's consider the set of constraints C = {a ∧ b, c ∨ ¬c}. The
constraint c ∨ ¬c is totally vacuous, since it is a tautology.

A constraint could be partially vacuous, when it contains an occurrence
of a subformula φ which is useless, i.e., it is implied by the other constraints
and by the other part of the same constraint. Therefore φ could be removed
in that occurrence.
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Algorithm 5 Given a predicate R, reduce returns the set of all the for-
mulas obtained from R by removing one occurrence of a subformula in R
function reduce(R)

if R is atomic then

return ∅
else if R = A ◦B then

ra←reduce(A)
rb←reduce(B)

return ra ◦B ∪ rb ◦A ∪ {A,B}
else if R = ¬A then

return ¬reduce(A)
end if

end function

where

◦ is ∨ or ∧
{x1, . . . , xn} ◦R = {x1 ◦R, . . . , xn ◦R}, ∅ ◦R = ∅
¬{x1, . . . , xn} = {¬x1, . . . ,¬xn}, ¬∅ = ∅

In order to discover if a constraint ci is partially vacuous, we generate, by
the function reduce reported in Alg. 5, all the possible formulas that can be
obtained from ci by removing only an occurrence of one of its subformulas2.
Partial vacuity is checked using the following de�nition.

De�nition 12. A constraint ci is partially vacuous only if there is ϕ ∈
reduce(ci) such that |=

(∧
k∈{1,...,n}−{i} ck

)
→ (ci ≡ ϕ).

If formula in Def. 12 is true, then ϕ is equivalent to ci (assuming all the
other constraints). Using ϕ instead of ci would give an equivalent simpler
model.

Example 6. Let's consider the set of constraints C = {c1, c2} with c1 = a∧b
and c2 = (a∨b)∧d. reduce(c2) = {a∧d, b∧d, a∨b, d}. The constraint c2 is
partially vacuous because it is equivalent to d: indeed, c1 → (c2 ≡ d) is valid.
Note that the whole constraint is not vacuous: indeed, c1 → (c2 ≡ true) is
not valid.

In order to check a constraint for total vacuity in Yices, we check the
formula introduced in Def. 11 for validity. For checking partial vacuity of
constraint ci, we check, for every formula in reduce(ci), the validity of the
formula introduced in Def. 12. Note that one may stop as soon as she/he
�nds a ϕ in reduce(ci) which makes the formula of Def. 12 true.

2The algorithm can be easily extended to deal with other boolean operators as →, ↔,
and ⊕.)
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How to deal with vacuous constraints

The vacuity of a constraint may actually be caused by an error in it. The
user may have mistyped an element or an operator and this may cause the
vacuity. Instead, if the constraint is correct, it can be eliminated or simpli�ed
in order to make the model simpler (and possibly the test generation faster).
When a single constraint is totally vacuous, it can be eliminated without
problems; note that, after its removal, the vacuity should be checked again,
since some of the other vacuous constraints may have become not vacuous.
When a constraint ci is partially vacuous several times, i.e., there exist ϕ1

and ϕ2 in reduce(ci) which are equivalent to ci, ci can be substituted by
either ϕ1 or ϕ2 and its vacuity must be checked again.

In some cases, however, the user may be interested in keeping also totally
vacuous constraints as further properties of the system. It is common in
formal modeling having, stated in the model, properties which are implied
by the assumptions or axioms asserted in the model. Indeed, a vacuous
constraint represents a property of the system under test which is implied
by other constraints. So, it should be classi�ed as property and not as
constraint. We plan to add to the CitLab language also a notation for
properties, together with the support for proving them.

7.3.3 Useless parameter values and useless parameters

A parameter p can contain in its domain some values which are never taken
by p.

De�nition 13. The value vjk of a parameter pj is useless if, due to the
constraints, pj can never assume value vjk.

De�nition 14. If the parameter p can assume only a value, then the whole
parameter is useless.

We consider such elements useless, since they can be ignored during the
test generation process.

In order to discover if the value vjk ∈ Dj of parameter pj is useless, we
check with Yices if pj = vjk ∧

∧n
i=1 ci is unsatis�able. Totally, we must check∑m

j=1 |Dj| values. Once we know which parameter values are useless, we
can also identify the useless parameters. Indeed, given a parameter p, if all
its values except one are useless, then p can be classi�ed as useless. Note
that, if the model is consistent, each parameter can take at least one value.
Uselessness checking should be done only on consistent models.
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Model uselessModel
Parameters:

Enumerative a {a1 a2 a3};
Enumerative b {b1 b2 b3};

end
Constraints:

# a == a.a1 #
# b != b.b1 #

end

Figure 7.1: Example of useless parameter and useless parameter value

How to deal with useless elements and parameters

Uselessness of parameters and values can be caused by errors in the con-
straints: the test designer may have inadvertently introduced a restriction
not present in the real system under test. In this case, the constraints should
be revised. If this is not the case, the useless parameters and values can be
removed from the model. However, if they are contained in some constraints,
also the constraints must be modi�ed accordingly.

Parameters removal can ease the test suite generation process, since size
reduction of a combinatorial model domain decreases signi�cantly the gener-
ation time. If a useless parameter is removed, it may be reintroduced in the
tests with its unique value.

Example 7. Consider, for instance, the CitLab model in Fig. 7.1. Due to
the �rst constraint (a == a.a1), parameter a can take only value a1. In this
case, parameter a could be removed during the test generation process and,
if necessary, inserted again in the test suite. Due to the second constraint
(b !=b.b1), instead, the domain of b can be reduced, excluding value b1. In
both cases the corresponding constraint must be removed as well.

7.4 Validation of CIT test suites

Test suite validation checks that the test suites produced by a generation
tool are correct (see Sect. 7.4.1) and minimal (see Sect. 7.4.2).

7.4.1 Test Suite Correctness

We introduce the following de�nitions.
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1. A test suite is sound if every test is syntactically correct and valid:
(a) an assignment of values to the parameters is a syntactically correct

test if it satis�es the type de�nitions;
(b) a test is valid if it does not violate any constraint (see Def. 4).

2. A test suite is complete if every feasible test requirement is covered.

De�nition 15. Test suite correctness A test suite is correct if it is sound
and complete.

Checking if a test suite is sound only requires syntax checking and the
tests validity assessment. In order to assess if a test t is valid, it is enough to
substitute the values of the parameters in t in each constraint ci and check
that every ci evaluates to true.

Example 8. Let's consider the model with a parameter x de�ned in the
domain {1, . . . , 100} and the constraint x > 10. The following test suites are
both not sound:

� {{x = 101}}: Although the test suite satis�es the constraint, it does
not respect the type de�nition of x (the test is not syntactically correct).

� {{x = 9}}: The test suite does not satisfy the constraint (the test is
not valid).

Checking the completeness of a test suite requires a satis�ability solver,
since it is not possible to judge if a test requirement is feasible or not by
syntax checking. The completeness check can be performed by Alg. 6. It
checks if every tuple is covered by at least one test in TS . If a tuple tp is not
covered, it checks its feasibility using the SMT solver and returns false if tp
is feasible and not covered.

How to deal with incorrect test suites

An unsound test suite must be �xed before it can be used. There are two
main ways: either discard any invalid test or modify it in order to make it
valid. Removing an invalid test is easier than �xing it, but it may reduce the
testing coverage. On the other hand, �xing a test requires a greater e�ort,
since it is not clear in general which assignments in the test are responsible
for its invalidity.

An incomplete test suite can still be useful, although it may not exercise
the system under test as well as required. The tester may use a test generator
tool that accepts an existing possibly incomplete test suite (often called seeds)
and tries to generate the missed test cases. With a slight modi�cation, Alg. 6
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Algorithm 6 Test suite completeness check
Require: test suite TS to be checked

Require: the domain D of the parameters

Require: the required n-wise coverage
Ensure: it returns true if TS is complete, false otherwise

TP ← all the n-tuples from D
for all tp ∈ TP do

covered ← false
for all t ∈ TS do

if t covers tp then

covered ← true
break

end if

end for . if not covered, check feasibility

if ¬covered then

if tp ∧
∧n

i=1 ci is satis�able then
return false

end if . tp is infeasible

end if

end for

return true

can also be used to measure the incompleteness of a test suite by counting
the number of feasible tuples that are not covered. As in classical testing,
coverage measures can be used to assess the quality of the test suite and of
the tool that has generated it. Our approach would correctly count only the
feasible test requirements.

7.4.2 Test Suite Minimality

Combinatorial test generators can produce very compact test suites, which,
however, could still contain redundant tests. For example, tools generating
at every step a test that covers still uncovered tuples, may generate at some
point a test which might also cover several other tuples previously covered by
tests and these previously generated tests may become useless. An optimum
test case should satisfy two objectives simultaneously. First, it must satisfy
the maximum number of uncovered requirements (tuples). Second, it must
have the minimum overlap in requirements coverage with other test cases.
The smallest ideal test suite is that in which each tuple is covered by exactly
one test case, but this very seldom can happen: in most cases, a tuple will
be covered by many tests, creating possible redundancies. A certain level
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of redundancy is in general unavoidable. However, some redundancies are
useless: some tests that overlap may be eliminated without reducing the
total coverage of the test suite. This problem is also known as test suite
reduction or minimization [43].

First of all, we want to discover if a test suite could be reduced without
losing coverage. We introduce the following de�nition.

De�nition 16. A test suite TS is minimal if there exists no subset TS ′ ⊂ TS
such TS ′ satis�es all the testing requirements as the original set TS does,
i.e., that all the tuples covered by TS are also covered by TS ′.

How to recognize a non-minimal test suite? We can postulate that a test t
is redundant if all the tuples covered by t are also covered by other tests. On
the contrary, a test case can be de�ned essential, i.e., it cannot be removed
from the test suite, as follows.

De�nition 17. A test case ti is essential if it covers at least one tuple tp
in TP (the set of all the tuples for a given n-wise coverage) not covered by
other test cases of the test suite TS . Formally, ∃tp ∈ TP : (ti |= tp ∧ (¬∃tj ∈
TS : (i 6= j ∧ tj |= tp))).

Theorem 18. A test suite TS is non-minimal i� TS contains at least a not
essential test.

Alg. 7 reports the algorithm we use to check if a test suite is minimal.
It checks if each test t of the test suite is essential, i.e., for every tuple tp
it collects (in cov) the tests that cover tp. If cov contains only one test,
then that test is essential and collected in EssentialTests. If all the tests are
essential, then the test suite TS is minimal.

How to deal with non-minimal test suites

Test suite reduction (also known as test suite minimization) is often applied
in the context of regression testing, when one wants to �nd a minimal subset
of test cases which satisfy all the testing requirements as the original set does.
The problem of �nding the minimal test suite that satis�es a set of test goals
can be reduced, in polynomial time, to the minimum set covering problem
which is NP-hard. A simple greedy heuristic for the minimum set covering
problem de�ned in [22] can be adapted to the test suite minimization.

In order to obtain a �nal test suite with fewer test cases, we try to build
a reduced test suite in which the requirements coverage is preserved and
all the test cases are essential. Note that, however, if the test suite is non-
minimal, then one cannot simply remove all the not essential test cases, since
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Algorithm 7 Test suite minimality check
Require: test suite TS to be checked

Require: set of tuples TP
Ensure: it returns true if TS is minimal, false otherwise EssentialTests ← ∅
for all tp ∈ TP do

cov ← ∅
for all t ∈ TS do

if t covers tp then

cov ← cov ∪ {t}
end if

end for

if |cov | = 1 then

EssentialTests ← EssentialTests ∪ cov
end if

end for

return |EssentialTests| = |TS |

a not essential test case may become essential after another not essential test
case is removed from the test suite. The choice of which tests to include
in the �nal test suite is critical. We have implemented a greedy algorithm,
reported in Alg. 8, which can reduce the original test suite, still covering
all the requirements. At every step it chooses the test that covers most
uncovered tuples. When there is a tie between multiple test cases, one test
case is randomly selected.

Example 9. Let's consider the test suite TS = {t1, t2, t3} whose tests cover,
respectively, requirements {a, b}, {a, c} and {b, d}. If in the �rst iteration
the greedy algorithm collects test t2, in the second iteration it must collect
the test t3 since it covers most uncovered tuples. At this point, all the tuples
have been covered. So, the greedy algorithm reduces TS as mTS = {t2, t3}.

Note that the algorithm may fail to reduce the test suite, even
if this test suite is non-minimal.

Example 10. Let's consider the same test suite shown in Example 9. If in
the �rst iteration the greedy algorithm collects test t1, it must also collect
both tests t2 and t3 in two following iterations. So the �nal test suite is
not minimized, i.e., mTS = TS . However, as seen in Example 9, TS is
non-minimal.
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Algorithm 8 Reduction algorithm
Require: test suite TS to reduce

Require: set of tuples TP covered by TS
Ensure: it returns a possibly minimal test suite

TS ′ ← TS
mTS ← ∅
while TP 6= ∅ do

t← getMostCoveringTest(TS ′,TP)
CoveredTPs ← getCoveredTPs(TP , t)
if CoveredTPs = ∅ then

return mTS
end if

mTS ← mTS ∪ {t}
TS ′ ← TS ′ \ {t}
TP ← TP \ CoveredTPs

end while

return mTS

7.5 Experimental results

As model set for CIT problems we have gathered a set of 64 models with
constraints taken from the literature (CASA [25], FoCuS [74], ACTS [1],
and IPOs [18]) and used (in subsets) also by many other papers. We have
implemented the validation framework in CitLab and we have performed
experiments over models and their test suites generated with di�erent tools.
The benchmarks are available at the CitLab web site3. We have performed
the experiments on a Linux PC with an i7 processor 3770 (3.4 GHz) and 16
GB of RAM.

7.5.1 Consistency of constraints

The aim of this experiment is to determinate if some of the models under
test present any inconsistent constraint. The constraints validation process
performed over the 64 models took about 5.6 seconds and it proved that all
the models have only consistent constraints. This result was expected since
these models have been extensively used for test generation and no test can
be generated from inconsistent models.
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Table 7.1: Vacuous constraints

Vacuous constraints
Model(# constr.) # useless partially (but totally

subform. not totally)
# % # % Sum %

bench_01 (24) 7 4 16.7 2 8.3 25.0
bench_02 (22) 2 2 9.1 0 0.0 9.1
bench_03 (10) 0 0 0.0 1 10.0 10.0
bench_04 (17) 11 7 41.2 2 11.8 52.9
bench_05 (39) 9 0 0.0 1 2.6 2.6
bench_06 (30) 40 8 26.7 22 73.3 100.0
bench_07 (15) 20 3 20.0 11 73.3 93.3
bench_08 (37) 22 6 16.2 11 29.7 45.9
bench_09 (37) 51 13 35.1 24 64.9 100.0
bench_10 (47) 31 9 19.1 16 34.0 53.2
bench_11 (32) 11 5 15.6 6 18.8 34.4
bench_12 (27) 12 5 18.5 4 14.8 33.3
bench_13 (26) 17 9 34.6 4 15.4 50.0
bench_14 (15) 10 5 33.3 3 20.0 53.3
bench_15 (22) 3 3 13.6 0 0.0 13.6
bench_16 (34) 41 10 29.4 22 64.7 94.1
bench_17 (29) 0 0 0.0 1 3.4 3.4
bench_18 (28) 3 0 0.0 3 10.7 10.7
bench_19 (43) 6 2 4.7 0 0.0 4.7
bench_20 (48) 30 12 25.0 14 29.2 54.2
bench_21 (46) 65 12 26.1 32 69.6 95.7
bench_22 (22 17 6 27.3 10 45.5 72.7
bench_23 (15) 13 4 26.7 7 46.7 73.3
bench_24 (29) 9 3 10.3 6 20.7 31.0
bench_26 (32) 16 3 9.4 11 34.4 43.8
bench_27 (20) 3 1 5.0 3 15.0 20.0
bench_28 (37) 6 1 2.7 3 8.1 10.8
bench_30 (35) 38 10 28.6 17 48.6 77.1
CommProt (128) 814 73 57.0 24 18.8 75.8
Concurr (7) 7 1 14.3 0 0.0 14.3
gcc (40) 6 2 5.0 0 0.0 5.0
HealthC2 (25) 14 2 8.0 0 0.0 8.0
ProcComm2 (125) 43 7 5.6 97 77.6 83.2
Services (388) 81 27 7.0 0 0.0 7.0
SmartHome (43) 33 16 37.2 17 39.5 76.7
Storage1 (95) 205 41 43.2 0 0.0 43.2
Telecom (21) 5 1 4.8 0 0.0 4.8



74 Chapter 7. CIT Validation process

7.5.2 Vacuity detection

The aim of this experiment is to determine the presence of partially/totally
vacuous constraints. The experiment took 45.5 seconds. Table 7.1 reports the
37 models that present at least a form of vacuity; for each model, we report
in round brackets the number of its constraints. The second column reports
the number of (occurrences of) subformulas that cause a partial vacuity in
a constraint: such subformulas are useless. The next columns report the
number and the percentage of constraints that are partially vacuous, but
that are not also totally vacuous. Then, the number and the percentage
of totally vacuous constraints are reported. Finally, the table shows the
percentage of constraints that have any form of vacuity (partial or total).
We can notice that there are more useless subformulas than partially vacuous
constraints: indeed, a partially vacuous constraint can have more than one
useless subformula. The number of totally vacuous constraints can be high
(e.g., 77.6% for ProcComm2 ); however, not all the vacuous constraints can
be removed at once. As explained in Section 7.3.2, in order to remove vacuity,
one should remove a vacuous constraint at a time, and check for vacuity after
each removal: indeed, after the removal of a vacuous constraint, (some of)
the other vacuous constraints could become no more vacuous.

The constraints vacuity has proved to be a widespread problem. Almost
all the benchmarks bench_n, that have been �randomly synthesized starting
from real case studies� [25], manifest this problem. However, many real life
models are a�ected too. In general, vacuity is di�cult to detect by hand and
a tool like that presented in this chapter is essential for discovering it.

7.5.3 Useless parameter values and useless parameters

The aim of this experiment is to determine the presence of useless parameters
values and useless parameters. Table 7.2 shows the results. Checking useless
parameters and values over the 64 models took about 6.2 seconds. We have
found that 23 models have at least one useless parameter value and one
useless parameter. As expected, we note that each useless boolean value
corresponds to a useless parameter. Instead, a useless enumerative value
does not necessarily imply that the corresponding parameter is useless.

The presence of so many combinatorial models with useless parameters
has surprised us, since they have been extensively used in experiments in
the literature. We discovered that most of them (bench_n) have been ran-
domly synthesized. Nonetheless, they should be �xed in order to make them
more plausible as real models and be considered suitable as benchmarks for

3https://code.google.com/a/eclipselabs.org/p/citlab/
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Table 7.2: Useless parameter values and useless parameters

Useless parameter values Useless parameters
Bool Enum Total Bool Enum Total

# %
bench_01 2 0 2 2 0 2 2.06
bench_02 1 0 1 1 0 1 1.06
bench_04 2 1 3 2 0 2 3.45
bench_06 12 0 12 12 0 12 15.58
bench_07 4 0 4 4 0 4 13.33
bench_08 3 1 4 3 0 3 2.52
bench_09 10 4 14 10 0 10 16.39
bench_10 4 2 6 4 1 5 3.40
bench_11 3 0 3 3 0 3 3.13
bench_12 3 0 3 3 0 3 2.04
bench_13 5 1 6 5 0 5 3.76
bench_14 2 1 3 2 0 2 2.17
bench_15 1 0 1 1 0 1 1.72
bench_16 13 0 13 13 0 13 14.94
bench_20 8 1 9 8 0 8 5.06
bench_21 13 2 15 13 0 13 15.29
bench_22 7 0 7 7 0 7 8.86
bench_23 1 2 3 1 0 1 3.70
bench_24 2 0 2 2 0 2 1.68
bench_26 3 0 3 3 0 3 3.16
bench_30 8 0 8 8 0 8 10.13
ProcComm2 0 10 10 0 3 3 12.00
SmartHome 14 0 14 14 0 14 36.84

testing technique. One model (ProcComm2), however, claims to be a �real-
life test space instance generated by or for our customers� [74]. In another
case (SmartHome), useless parameters are present because the model has
been automatically obtained from a feature model without applying any op-
timization [20].

7.5.4 Test suite validation

We have performed experiments over the test suite generated in 10 di�erent
runs with three di�erent tools: ACTS [1], CASA [25] and MEDICI (an inter-
nal tool for test generation we are developing). The test suite used was the
same of the previous experiment (64 models) and we chose to perform a pair-
wise generation. Results are shown in Table 7.3. The three tools produced
complete and correct test suites for all the models. MEDICI and CASA al-
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ways produced minimal test suites, while ACTS (which was the fastest in
test generation) produced a non-minimal output for two benchmarks. We
have applied 10 times the reduction algorithm presented in Alg. 8 to the test
suites obtained in these two cases. In all the cases the reduction algorithm
was able to reduce the test suite. In one case, however, the produced test
suite was still non-minimal.

The time to check if all the test suites are minimal is 50 seconds, while
the reduction of one test suite takes 0.8 seconds.

Table 7.3: Test suite validation

# test suites
Tool Complete Correct Minimal
ACTS 64 64 62
MEDICI 64 64 64
CASA 64 64 64

7.6 Implementation in CitLab

Figure 7.2: TestSuiteValidator UML

Fig. 7.2 and Fig. 7.3 show how the validation functionalities, described
in the previous sections, are implemented as CitLab plug-in. A plug-in
exposes two classes in order to satisfy the requirements of the extension
points describe in 5.1.4 and these classes dynamically invoke Yices native
code using JNA and allowing users to validate both the models and the
testsuites generated in the framework.



7.7. Conclusions 77

Figure 7.3: Model Validator UML

7.7 Conclusions

We have presented a set of quality checks that CIT models and test suites
should pass: the constraints are consistent and do not contain useless parts,
all the parameters and values are useful, test suites do not violate the con-
straints and cover all the testing requirements, and the �nal test suite does
not contain tests that can be removed without loss of coverage. We have de-
vised suitable techniques, based on an SMT solver, to perform these checks
and established some policies about how to deal with violations of these
properties.

We have identi�ed the following use cases of our validation framework
involving di�erent kinds of users. The �rst set of users are the clients of
combinatorial testing, i.e., those who apply combinatorial testing to real
systems. Our validation framework helps designers to identify defects in
models: an inconsistent or vacuous constraint and a useless parameter or
value are often an evidence of a defect in the model. Testers can use our
validation framework in order to assess the quality of the test suites they
use. The test suite may require to be �xed and some tests may be discarded
because they are wrong or useless. The measure of coverage can be used by
testers to determine the quality of the testing process.

The second set of users are the providers of CIT tools and frameworks. By
using our validation framework, researchers can check the quality of the mod-
els they use for benchmarking and experimenting their algorithms. Moreover,
the validation framework can be used to validate (and eventually debug) new
test generation algorithms, to see if the test suites they generate are actually
correct and minimal. The presence of our validation component inside the
proposed CIT framework CitLabmakes also the comparison and integration
of test generation techniques more fair, since it guarantees a way to ensure
that every tool embedded in CitLab is producing correct results.





8
Feature models testing in CitLab

Feature models are commonly used to represent product lines and systems
with a set of features interrelated each others. Test generation from feature
models, i.e. generating a valid and representative subset of all the possible
product con�gurations, is still an open challenge. A common approach is
to build combinatorial interaction test suites, for instance achieving pair-
wise coverage among the features. In this chapter we show how standard
feature models can be translated to combinatorial interaction models in our
framework CitLab, with all the advantages of having a combinatorial test-
ing environment (in terms of a clear semantics, editing facilities, language for
seeds and test goals, and generation algorithms). We present our translation
which gives a precise semantics to feature models and it tries to minimize the
number of parameter and constraints while preserving the original semantics
of the feature model.

8.1 Background

In software product line engineering, feature models are a special type of
information model representing all possible products of a software product
line in terms of features and relationships among them. Speci�cally, a basic
feature model is a hierarchically arranged set of features, where each parent-
child relation between them may be one of the following types:

Mandatory � child feature is required.

79
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(a) Conventional notation

(b) FeatureIDE notation

Figure 8.1: Examples of Feature model notations
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Optional � child feature is optional.
Or � at least one of the sub-features must be selected.
Alternative (xor) � exactly one of the sub-features must be selected
In addition to the parental relationships, cross-tree relations are allowed,

to specify incompatibility or requirement kind of constraints between fea-
tures, in the form:

A requires B � The selection of feature A in a product implies the selection
of feature B.

A excludes B � A and B cannot be part of the same product.
Feature models can be visually represented by means of feature diagrams.

Figure 8.1 depicts a simpli�ed example model presented in [8] and inspired by
the mobile phone industry, in order to present the visual notation commonly
adopted for feature modeling. The example also shows how a model can be
used to specify a product family, that is, to determine the features that will
be supported (loaded) in a particular phone con�guration of the considered
family. According to the model, all phones must include support for calls,
and displaying information in either a basic, color or high resolution screen.
Furthermore, the software for mobile phones may optionally include support
for GPS and multimedia devices such as camera, MP3 player or both of them.

Extensions to the basic feature model notation have been proposed in
literature, e.g. allowing specifying the cardinality of the features and/or
additional type of information. However, in our experiments, we consider
only basic feature models.

8.1.1 Feature Modeling frameworks

Several languages/tools for specifying/analyzing feature models are currently
available, some of them already mature enough to be part of a software
production IDEs. In this work, FeatureIDE [79] has been used to design or
import the models used in the evaluation section. FeatureIDE is an open-
source framework for feature-oriented software development (FOSD) based
on Eclipse. FOSD is a paradigm for the construction, customization, and
synthesis of software systems. Code artifacts are mapped to features, and a
customized software system can be generated given a selection of features.
The set of software systems that can be generated is then a software product
line (SPL).

8.1.2 Feature Model semantics

Feature models semantics can be rather simply expressed by using proposi-
tional logics as already done in [8]. Every feature becomes a propositional
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Type Notation Propositional formula

Mandatory p→ A
∧
A→ p

Optional A→ p

Alternative p→ alt(a1, a2 . . . an)
∧
a1→

p
∧
a2→ p

∧
· · ·
∧
an→ p

Or p→
(a1
∨
a2
∨
· · ·
∨
an)

∧
a1→

p
∧
a2→ p

∧
· · ·
∧
an→ p

Table 8.1: Conventional translation

letter or a Boolean variable, and every relationship among features becomes
a propositional formula modeling the constraints about them as reported in
Tab. 8.11.

Example 11. Note that in case of alternative features, the translation using
Boolean variables introduces many variables which are mutually exclusive.
For instance, the model in Fig. 8.2 introduces 8 Boolean variables for a
system with just two main features (A and B), because each of them ex-
pands to four alternative leaf features a1 . . . a4 and b1 . . . b4. Several complex
constraints are necessary to constraint valid products. In case of many al-
ternative features, the complexity of the model would grow. Reducing their
complexity would be a bene�t to the user, which would be facilitated in the
model comprehension, and would also allow the available tools to manage
larger models.

Variability factor This index measures the ratio between the number of
valid products and the total number of possible feature combinations, which
is equal to 2n where n is the number features. In case of Boolean variables,
n is also equal to the number of variables. The feature model variability can
be used to measure the �exibility of the feature model. For instance, a small
factor means that the number of combinations of features is very limited
compared to the total number of potential products [8].

1Where the alt operator represents the exclusive or among all its arguments and it is
de�ned as alt(a1, a2, . . . , an) = (a1 ∧ ¬a2 ∧ · · · ∧ ¬an)

∨
· · ·
∨
(¬a1 ∧ ¬a2 ∧ · · · ∧ an).
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Figure 8.2: A two alternative model

8.2 Translation from FM to CitLab

In this section we present a procedure to translate feature models into com-
binatorial models. Our translation is performed in three steps:

� Every feature, starting from the root feature, is translated to an element
(variable or literal constant) in the combinatorial problem.

� Additional constraints are added in order to represent relationships
among features as speci�ed by the hierarchies in the future model.

� Cross-tree constraints are translated and added to the model.

Several simpli�cations can be applied to the �nal combinatorial model,
but these will be presented in the next section.

8.2.1 Representation of every feature

During the �rst step, all the features (corresponding to all the nodes in the
feature model diagram) are translated as Boolean variables, enumerative vari-
ables or enumerative constants, according to Tab. 8.2. Alternative features
are translated as an enumerative variable, where the sub features, which are
mutually exclusive by de�nition, are represented as values in a corresponding
enumerative type. This represents a main di�erence between the proposed
approach and the classical one: just a single enumerative variable is intro-
duced to model alternative sub-features, instead of a set of Boolean variables.
However, any other feature type is still translated to a Boolean variable, as
in the classical approach.

During this step, the function isChosen is set for each encountered fea-
ture. isChosen de�nes the predicates that must hold if a feature is selected.
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It associates every feature to a propositional formula (i.e., a Boolean expres-
sion):

isChosen : Feature→ Expression

Consequently, isChosen(x) means that feature x is present in the con-
sidered product con�guration.

8.2.2 Adding implicit constraints

During the second step of the translation, the feature model is visited again
starting from the root node and constraints among the features in the orig-
inal model are translated into constraints between the variables of the cor-
responding combinatorial task. Constraints are built depending on the node
and its parents semantics mapping, as shown in Table 8.3. We refer to these
constraints as implicit, since they are implicitly implied by the type of rela-
tionships child-parent of the nodes.

8.2.3 Cross-tree constraints

Sometimes cross-tree constraints are used to limit valid product con�gu-
rations and to model relationships among features. These constraints can
be translated easily in CitLab, which accepts as constraints general form
Boolean expressions. Speci�cally, they are translated as follows:

FM constraint CitLab constraint
A requires B isChosen(A)⇒ isChosen(B)
A excludes B isChosen(A)⇔ ¬isChosen(B)

Example 12. Fig. 8.3 reports a small example which, however, contains all
the feature kinds. Table 8.4 reports the results obtained by visiting each node
during the visit of the diagram. The columns show the CitLab Parameter,
the value of the isChosen function, and the implicit constraints. Listing 8.1
reports the CitLab code before simpli�cation.

Variability factor In our case, the variability factor can be computed as
the ratio between the number of valid products and the size of Cartesian
product of the parameter domains.
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Feature Constraint

A and its parent are
alternative

A 6= NONE⇔
isChosen(A)

A is Or and its parent
is of any kind

isChosen(A)⇒
(isChosen(a1) ∨ · · · ∨
isChosen(an))

∧
∀i isChosen(ai)⇒
isChosen(A)

A is di�erent from Or
and parent is alterna-
tive

skip

A mandatory and par-
ent not alternative nor
or

isChosen(A)⇔
isChosen(P )

A optional and parent
not alternative nor or

isChosen(A)→
isChosen(P )

Table 8.3: Constraints to be added
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Figure 8.3: A small complete example

8.2.4 Extra testing requirements

Once the combinatorial model is derived from a feature model, the tester can
apply the usual combinatorial interaction testing criteria in order to obtain
set of products that cover the family of products in a desired way. Besides
this standard use of CIT, our approach supports two additional features that
are implemented in CitLab.

Pre-built product con�gurations:

known con�gurations that must be included in the �nal suite of test con-
�gurations can be imported into the combinatorial model as a list of seeded
tuples of feature combinations, which are already supported by some com-
binatorial generation algorithms integrated in CitLab. For instance, in the
FM of Fig. 8.1 if the tester wants to force the inclusion of a speci�c product,
he/she can write the following seed in CitLab:

Seeds:
# Calls = true,GPS = false, Screen = Color, Media = MP3#

CitLab automatically checks that a seed sets the value to every parame-
ter (hence to every feature) and that it satis�es the constraints (implicit and
cross-tree).

Further testing goals

Testers may want to add extra requirements about the testing activity in form
of further conditions over the product space that they want to cover. These
test goals must be achieved either beside or by the combinatorial coverage
and represent particular product con�gurations the tester wants to be sure
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Model model
Parameters:
Enumerative model { a1 a2 a3 NONE };
Boolean a11;
Boolean a12;
Boolean a21;
Boolean a22;
Enumerative a3 { a31 a32 NONE };

end
Constraints:
# model!=NONE #
# a11==true => model==a1 #
# a12==true => model==a1 #
# model==a2 => ( a21==true || a22==true) #
# a21==true => model==a2 #
# a22==true => model==a2 #
# a3!=NONE <=> model==a3 #

end

Listing 8.1: CitLab code for model in Fig. 8.3

that they will be included in the �nal test suite. These extra constraints
can be added in CitLab by means of test goals. For instance, in the FM of
Fig. 8.1 if the tester wants to include at least a product in which the GPS is
present but Media is not MP3, he can write the following test goal:

TestGoals: # GPS == true and Media != MP3#

A test goal is covered if there exists at least a test that satis�es it.
For now, we assume that these extra testing requirements are manually

inserted by the user after the translation is performed. We plan to study a
way introduce them in the source feature models. For a precise semantics of
test goals and seeds, see [34].

8.3 Simpli�cation Process

The combinatorial model resulting from the imported feature model can be
optimized in order to reduce the number of unnecessary variables and con-
straints. Although the proposed optimization is proposed in the context of
feature model combinatorial testing, it can be applied to any combinatorial
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Model model_smp
Parameters:
Enumerative model { a1 a2 a3 };
Boolean a11;
Boolean a12;
Boolean a21;
Boolean a22;
Enumerative a3 { a31 a32 NONE };

end
Constraints:
# a11==true => model==a1 #
# a12==true => model==a1 #
# model==a2 => ( a21==true || a22==true) #
# a21==true => model==a2 #
# a22==true => model==a2 #
# a3!=NONE <=> model==a3 #

end

Listing 8.2: CitLab code for model in Fig. 8.3 after simpli�cation

model and it has been implemented in CitLab as model transformation and
added to its public APIs. We perform two types of syntactical simpli�cations:

� We simplify the constraints of the model in a semantic preserving way.
The goal is to ease the test generation, which in the presence of con-
straints can be more di�cult [25].

� We completely remove unnecessary parameters and constraints.

8.3.1 Constraint simpli�cation

We apply the rules presented in the following table, which reports the con-
straint to be simpli�ed (column A), the condition under which it can be
simpli�ed (column B), and the performed simpli�cation (column C), where a
and b can be either atomic proposition or complex propositions. It is straight-
forward to prove that the simpli�cations preserve the �nal semantics of the
constraints.

8.3.2 Parameter simpli�cation

Once the constraints have been simpli�ed, we can simplify the model param-
eters, as reported in Tab. 8.5. In those cases, under some assumptions, the
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(A) (B) (C)
Constraint If already present Replaced by
a→ b a b
a→ b b - (remove)
a↔ b a b
a↔ b b a

Parameter Constraint Action

Boolean x x = true or x = false
remove x and remove the constraint
(if x does not compare in other con-
straints).

enum A{a1... an} A 6= ai
remove ai from type A and remove
the constraint (if ai does not com-
pare in other constraints).

enum A{a1... an} A = ai
remove A and the constraint (if nei-
ther A nor ai compare in other con-
straints).

Table 8.5: Parameter simpli�cation

parameters can be simpli�ed and the constraints removed.

Example 13. For the example of two alternative features given in Fig . 8.2,
the resulting CitLab �le is the following one:

Model model
Enumerative A {a1 a2 a3 a4};
Enumerative B {b1 b2 b3 b4};
end

Note that in this speci�c case, our simpli�cation algorithm is able to re-
move all the constraints. Using unconstrained models, the tester has access
to a wide set of tools, including most algebraic and bio-inspired tools for com-
binatorial testing (like [12]), which are very powerful in terms of generation
time and test suite size, but they cannot easily deal with the constraints.

Note that since we operate only at syntactical level, we may miss some
possible simpli�cations but the process is simple and fast. We plan to use in
the future a constraint solving engine (like a SMT solver).

We propose a complete example of translation form a feature model to a
CitLab model.
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Figure 8.4: FeatureIDE importer plugin

8.4 Experiments

We have implemented in CitLab an importer of FeatureIDE models, which
can read feature models in the FeatureIDE native format and also in the
SPLOT format (sxfm). We have also implemented an importer that trans-
lates feature models in SPLOT format into a combinatorial problem with only
Boolean variables with the classical semantics given by [61]. These importers
are CitLab plugins and they are integrated in the framework together with
other test generators as shown in Fig. 8.4.

As case studies we have taken 52 SPLOT2 models which are often used
as benchmarks3

8.4.1 Testing the correctness of the transformation

Formally proving the correctness of the proposed transformation would re-
quire a standard formal framework for feature models semantics, which is not
available yet, although Schobbens and Benavides have made some progress
in this direction [8,73]. In this chapter we focus on testing the correctness of
the proposed transformation by comparing it with the classical transforma-
tion using propositional logics. We want to asses the semantic equivalence:
all the proposed transformation rules preserve the semantics of the feature

2SPLOT can be found at http://www.splot-research.org/.
3Note that beacuse of a bug in FeatureIDE sxfm parser, we had to modify few SPLOT

examples.
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model. To systematically test the correctness of our translation we need to
check the following characteristics:

� Consistency : our approach generates only valid products, i.e., products
that satisfy the constraints.

� Completeness : our approach generates all the valid products.

The consistency is checked automatically within the integrated test case eval-
uator of CitLab. CitLab has an integrated logic evaluator to check for
inconsistency and whether a parameter (feature) con�guration is a valid test
case or not. We rely on the fact that the internal evaluator works correctly.

The completeness is checked by simply verify for every case study that the
number of distinct valid product of our approach is equal to the number of
valid products found by the SPLOT analyzer. Note that the number of prod-
ucts including invalid ones may di�er, but the number of valid con�gurations
must be the same in order to preserve semantical equivalence.

The semantical equivalence ensures a biunivocal correspondence between
one test case produced by CitLab and one possible valid product.

8.4.2 E�ect of the simpli�cation over the parameters
and the constraints

We want to check if the simpli�cation process reduces the number of param-
eters and constraints. Fig. 8.5 reports the number of parameters and (Fig.
8.6) reports the number before (CTL) and after the simpli�cation (CTL S).
The simpli�cation process has always reduced the number of both quantities
in the models considered for experimentation. Our technique was able to
remove all the constraints in 4 models.

8.4.3 Comparison with approaches
using Boolean variables

We want to compare our approach with those using Boolean variables (like
[8]) to check the e�ectiveness of our methodologies over the following quan-
tities of the �nal models:

# parameters: we should obtain smaller models

# constraints: we should obtain simpler models

variability: we should obtain more compact models
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Fig. 8.7 compares the number of CitLab parameters (after simpli�ca-
tion) w.r.t. the number of features in the original model. It is apparent that
our technique is able to reduce the number of parameters of problem. This
should make the test generation faster to perform.

Fig. 8.8 compares the number of CitLab constraints w.r.t. the number
of constraints in the model obtained by using the classical translation im-
plemented by SPLOT. Since SPLOT represents all the constraints in CNF,
in order to perform a fair comparison, we have converted also the CitLab
constraints to CNF and the �gure compares the total number of clauses in
the CNF expressions. As the �gure shows, our �nal models have always fewer
constraints than those in SPLOT.

Fig. 8.9 shows the variability factor before and after the simpli�cation
process, while Fig. 8.10 compares the variability factor of CitLab mod-
els with that of SPLOT models. The �gures show that the simpli�cation
increases the variability factor and that our �nal models have a higher vari-
ability factor than the original SPLOT models. This means that in our
approach valid products occur more often in the product space.

8.4.4 Test generation

A major advantage of our approach is that the tester can relay for test
generation on di�erent algorithms and tools developed for CIT. We want to
evaluate the impact of our approach to the actual generation of combinatorial
test suites.

Table 8.6 reports the results of pairwise test generation using ACTS4

which implements the IPOG algorithm [58] and which is integrated in Cit-
Lab as generator plugin. We have run 100 test generations for 4 SPLOT
models, by using the translation to only Boolean variables (BOOLEAN) and
the method proposed in this chapter (CITL), where the simpli�cation is ap-
plied (S) or not. Note that the coverage requirements for all these translation
methods are the same. We generally obtain better results, i.e., both faster
generation and smaller or equal test suites, with the proposed translation
than that using only Boolean variables. However, there is one exception. For
the Dell Laptop example, we have a smaller test suite but at the expenses
of of the test generation time. It seems that IPOG can further reduce the
test suite size when using our models containing fewer parameters (8 pa-
rameters against 48 features) and simpler constraints. Per the biggest case
study (Printer) and the BOOLEAN translation, ACTS did not complete the
generation.

4http://csrc.nist.gov/groups/SNS/acts/
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Aircraft FameDBMS Dell laptops Printer
Time Size Time Size Time Size Time Size

BOOLEAN 0.046 10 1.169 13 0.519 39 out of memory
BOOLEAN S 0.014 10 0.976 13 0.785 39 out of memory
CITL 0.017 10 0.020 13 4.296 36 20 180
CITL S 0.005 8 0.006 12 2.043 37 12 180

Table 8.6: Pairwise with ACTS (time in seconds)

CitLab by CASA Oster [65] PACOGEN [48]
Size Time Size Size

Sienna 20 1.76 24 20
Inventory 9 3.06 12 15
ArcadeGame 13 37.90 25 14
Web Portal 15 24.01 26 16
Doc generator 13 11.41 18 17

Table 8.7: Pairwise with CASA (time in seconds)

Table 8.7 reports the test generation of 5 case studies5 using our transla-
tion and the test generator tool CASA [36] which is integrated in CitLab as
generator plugin. In our experiments, CASA is able to produce smaller test
suites than others test generation algorithms speci�cally designed for SPL
testing.

Overall, we can say that our encoding has also advantages during test
generation (in terms either of time or test suite size): some tools can take
advantage of our simpler encoding and testers can bene�t from having access
to very powerful test generation frameworks not designed speci�cally for
SPLs. However, further experiments are needed in order to give a �nal
positive evaluation regarding test generation.

8.5 Related Work

There exist several attempts to give a precise semantics to feature models.
Batory connects feature models, grammars, and propositional formulas [6]
by giving a very simple yet clear meaning to feature models. The proposed
connection allows arbitrary propositional constraints to be de�ned among
features and enables o�-the-shelf satis�ability solvers to debug feature mod-

5We chose these examples because data about using other tools is available in literature
papers.
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els. It would also allow the use of tools for generating combinatorial test
suites, although this topic is not tackled in [6].

A more complete (including several variants of Feature Diagrams) and
powerful semantics of feature models is presented by Shobbens [73], who
emphasizes the necessity of precision and unambiguity for e�cient and safe
tool automation. They provide a formal semantics by a generic construction
called Free Feature Diagrams (FFDs). Test generation from FFDs can be
complex though.

Benavides at al. present several mapping from feature models to other
formal notations (propositional logic and CSP) [8]. They focus more on
automated analysis instead of testing, but our translation has been greatly
in�uenced by their survey.

Regarding testing feature models and SPLs, a good survey can be found
in [33]. A �rst attempt to apply CIT in the form of covering arrays to SPLs,
using a simple variant of feature models called Orthogonality Variability
Model (OVM), can be found in [24]. They de�ne several testing criteria
which are adaptation of combinatorial criteria to OVMs and identify some
open issues like scalability, the use of constraints, and the benchmarking. We
believe that reducing the problem of SPL testing to a CIT problem can help
to deal with all the issues mentioned in that paper.

In [67], the authors propose a scalable toolset using Alloy to automatically
generate test cases satisfying T-wise from SPL models. The proposed tools
set is based on the use of a SAT solver. However, an extension of the approach
by using also Constrain Programming is presented in [68]. In that paper the
authors present and evaluate two techniques, one focusing on generality and
using high level strategies in order to improve the test generation. The other
emphasizes providing e�cient generation.

The tool PACOGEN is presented in [48]. PACOGEN relies on constraint
programming to generate con�gurations that satisfy all constraints imposed
by the feature model and to minimize the set of the tests con�gurations.
Extensive experiments, based on the state-of-the art SPLOT feature models
repository, shows that PACOGEN scales well and produces reasonable small
test suites also for large SPLs. A specialized algorithm (called ICPL) for
generating covering arrays from feature models is presented in [51].

All these algorithms are speci�c to SPL testing but we believe that they
could be used also for combinatorial testing, although they may need some
modi�cation in order to accept generic combinatorial problems. On the other
hand, SPL testing could bene�t from CIT algorithms, tools, and concepts
(like seeds and test goals). Our experiments who that reusing CIT test
generation tools for SPL testing can have great advantages.
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8.6 Conclusion and Future Work

We have presented a mapping from feature models to combinatorial inter-
action problems which can leverage a combinatorial testing framework like
CitLab in order to generate test suites for software product lines or for
system products. Our translation provides several advantages over classical
mappings, like the reduction of the parameters and constraints, the possible
use of concepts like seeds and test goals, and the exploitation of external tools
developed during these years for CIT. The approach has been implemented
in CitLab in a friendly easily usable way as shown in Fig. 8.11

Im
po
rte

r

Ge
ne
rat

or

Te
stS

uit
e E

xp
ort

er

So
ftw

ar
e/
Pl
ug
in
s L

ev
el

.xm
l/.
sx
fm

�le
.ci
tl
�le

Te
stS

uit
e

.cs
v �

le

Te
sts

pla
n e

dit
or

Us
er
lev
el

Ci
tL
ab

Te
stS

uit
e

ex
po
rte

r

Ci
tL
ab

Im
po
rte

r

Ci
tL
ab

Ge
ne
ra-

to
rs

Fe
at
ur
eId

e

SP
LO

T

Figure 8.11: Implementation in CitLab

For now, we support only simple feature models, but we plan to extend
our translation to support feature models with extended notations, like those
with cardinality and grouping.





9
Using Decision Trees for Algorithm

Selection

It has been widely observed that there is no a single best CIT generation
algorithm; instead, di�erent algorithms perform best in terms of test suite
size and time, also depending on di�erent combinatorial models. Rather
than following the traditional approach of leaving the choice of the best
generator for a given class of models and for given testing requirements to
the user, we want to automate the algorithm selection process among a given
set of techniques (called portfolio). The proposed approach takes as input
a distribution of combinatorial models and their test suites generated using
several tools, then, using data-mining techniques, it permits to predict the
algorithm that performs better given the cost estimated to execute a single
test and the model characteristics. As predictors, we decide to use decision
trees because they have been one of the most widely used decision support
tool for many years. Their attraction lies in the simplicity of the resulting
model, where a decision tree (at least one that is not too large) is quite easy to
view, understand, and, importantly, explain even if it may not always deliver
the best performances. We demonstrate the e�ectiveness of our approach to
automated algorithm selection in extensive experimental results on data sets
including models commonly presented in literature.

105



106 Chapter 9. Using Decision Trees for Algorithm Selection

9.1 Algorithm Selection problem

Algorithm selection problem is widely studied in literature. John R. Rice
formalized the concept of algorithm selection in [71] seeking to answer the
question: "Which algorithm is likely to perform best for my problem?".
In the early 1990s, the scienti�c community recognizes Algorithm selection
problem as a learning task so, the machine learning community has developed
the �eld of meta-learning, focused on learning about learning algorithm per-
formance on classi�cation problems. M. G. Lagoudakis and M. L. Littman
in [56] consider the problem of algorithm selection: dynamically choose an
algorithm to attack an instance of a problem with the goal of minimizing the
overall execution time. This conception is similar to the one that aimed our
approach even if they formulate the problem as a kind of Markov decision
process (MDP), and use ideas from reinforcement learning to solve it while
we used decision tree technique. We focused our work on the use of machine
learning techniques applied to the combinatorial testing algorithm selection
in order to minimize the sum of generation time and execution time for the
generated test- suites. The SATzilla team in [83] made an interesting obser-
vation about the absence of a dominant SAT solver and about the fact that
di�erent solvers perform best on di�erent instances. They suggest, rather
than following the traditional approach, to choose the best solver for a given
class of instances. We notice a similar situation for the di�erent generation
algorithms for combinatorial interaction testing and we advocated the need
to aid the practitioners in algorithm selection. Their approach takes as in-
put a distribution of problem instances and a set of component solvers, and
constructs a portfolio optimizing a given objective function (such as mean
runtime, percent of instances solved, or score in a competition).

We automated the selection of an algorithm at a time while they execute
di�erent algorithms in parallel. We plan to implement parallel execution
tool and to set di�erent execution timeouts for the di�erent algorithms ac-
cording to the di�erent probabilities given by our classi�er. Very few works
that apply machine learning techniques to combinatorial testing. Jia at al.
presents in [50] an algorithm for combinatorial interaction testing based on
a Hyperheuristic search. They have implemented a reinforcement learning
agent that is iteratively used for the tuning of the con�guration parameters
of the simulation annealing operators during the test-suite generation.
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9.2 The importance of the "right" algorithm

During the last years, the combinatorial interaction testing (CIT) community
has proposed many approaches for solving combinatorial testing problems.
New techniques, tools, and algorithms are continuously proposed, bench-
marked, and proved to improve over the state of the art in many cases. It
remains unclear which approach must be considered as the best : it seems
even impossible to state that a certain tool/technique clearly outperforms
the others. In fact, even if we consider only the two main families of gener-
ation algorithms, namely greedy techniques and meta-heuristic approaches,
we cannot say that one is surely better than the other. It is well known
that greedy techniques are faster because they perform every decision only
once while meta-heuristic ones may revisit their choices. It is reasonable to
postulate that greedy algorithms run faster but meta-heuristic searches pro-
duce smaller samples size. Although recent works focus their attention to
the improvement of both these techniques in order to �ll their gaps in terms
of performance, the contrast, between the size reduction of samples and the
generation time reduction, is sharp. The reason lies in the nature of the prob-
lem: CIT is clearly a multi-objective problem where optimal decisions need
to be taken in the presence of two con�icting objectives: namely generation
time versus test suite size. Depending on how much the tester is willing to
wait and on the cost of executing a single test, one tool or another may be
the best choice. Moreover, also the features of the model under test may
in�uence the choice of the tool. A tool may perform very well for small mod-
els but have problems of scalability. In this chapter, we use a mathematical
model that formalizes the goal of minimizing the testing costs.

9.2.1 Aiding the selection

It would be good that the tester could choose the right algorithm among
many. This was the original intent of CitLab framework [19,34]. As previ-
ously described, it allows CIT researchers to share their models and to run the
major CIT tools (if supported) into a common environment for a scrupulous
performance comparison. CitLab supports already several test generation
tools and new one may be added in the future. However, the choice of the
right algorithm to use is still left to the testers. In this chapter, we try to
introduce an automatic component that can suggest the user the right choice
depending on several inputs (cost of executing a single test, characteristics
of the model, and so on).
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9.3 How to solve algorithm selection problem

Our approach tries to solve a classical selection problem of one algorithm in
an algorithm portfolio. This idea was originally presented by Huberman et
al. [49] to describe the strategy of running several algorithms in parallel, po-
tentially with di�erent algorithms being assigned di�erent amounts of CPU
time. Several authors have since used the term in a broader way that encom-
passes any strategy that leverages multiple black-box algorithms to solve a
single problem instance.

We use the term portfolio to describe a set of algorithms from which to
choose the one or ones best for the model under test. Namely, the algorithms
for CIT test generations supported in CitLab are ACTS [1, 57], CASA [21,
38], and MEDICI [35].

We propose to use as tool for supporting the user in the decision of the
technique to be used for test generation, decision trees, which can guide
in a simple way the users in the best choice. We present the process of
building such decision trees by using a data mining process that starts from
the analysis of the performance of CASA, ACTS and MEDICI over a selection
of 114 models. The ideal solution to the algorithm selection problem would
be to consult an oracle that knows exactly the amount of time that each
algorithm would take to solve a given problem instance and the size of the
test suite that would be generated, and then to select the algorithm with the
best performance. In the context of the CIT, knowing the exact time and the
exact test suite size is almost impossible without actually executing the tool
itself. Moreover, in general, there is no need to know the size of and the time
since the tester su�ces to know which tool to execute in order to achieve
a certain goal (for example a very small test suite size). For these reasons,
our decision trees will learn which tool to select for a particular model under
test.

9.4 Background

9.4.1 De�ning the "best" combinatorial generation al-
gorithm

There are many algorithms and tools for combinatorial test generation. In
a recent book [84], Zhang et al. have counted 12 tools/framework actively
maintained for CIT testing, while the pairwise web site1 lists around 39

1http://www.pairwise.org
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tools. Another recent survey lists around 50 papers dealing with test gener-
ation [63]. The research community and some commercial activities contin-
uously propose new algorithms (or improved version of existing techniques)
and software for CIT test generation. It is apparent that the choice of the
right tool for test generator can be di�cult. Even if one wants to focus on
one single tool, it may have several options that make even its usage not an
easy task. To simplify the problem we can limit our attention to free tools,
consider models containing constraints, ignore other aspects like usability,
interoperability and so on, and focus only on the test generation time and
test suite size. Even in this case the identi�cation of the best test generator
is not easy because the test generation for CIT is a typical multi objective
problem in which test suite size and test generation time are two con�icting
objectives: a tool can be very fast but produce enormous test suites, while
another may guarantee to �nd very small complete test suite but require
hours of computation.

In order to allow a fair comparison among tools, to guide the choice of
the best suitable one, and to devise a technique to extract the decision tree
that can help the user in the choice, we �rst borrow the model proposed
in [38] for roughly estimating the cost of testing (cost) as the total time for
test generation (timegen) plus test execution time, which depends on the size
of the test suite (size) and on the time necessary to execute every single test
(timetest):

cost = timetotal = timegen + size × timetest (9.1)

In this model, we assume that the cost of testing (both test generation
and execution) is equal to the time required for the activity. In case the cost
is linearly bound to the time, for instance, because testing requires the use
of a dedicated server that has an hourly cost, or because tests are manually
executed by a person with a temporal cost, our model still holds (provided
that a constant is introduced). We leave as future work the study of other
models of costs. The cost of executing one single test is also called unitary
execution cost (UEC).

9.4.2 CitLab as a framework for benchmarcks compar-
ison

In order to enable a real choice between several algorithms and to avoid a
vendor lock-in, we use CitLab. CitLab allows importing/exporting models
of combinatorial problems from/to di�erent application domains,as reported
in Chap. 8, by means of a common interchange syntax notation and a cor-
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#people at exit 1 > 10?

exit 1 #people at exit 2 > 20?

exit 2 exit 3

no yes

no yes

Figure 9.1: A decision tree representing the exit selection in a crowded park-
ing area.

responding inter-operable semantic meta-model. As previously described,
CitLab already supports three main generation techniques: ACTS [1, 57],
CASA [21, 38], and MEDICI [35]. All three support constraints and they
are freely available. ACTS and CASA have a large user base and they are
very often used in comparison studies. Using CitLab allows us to perform
all the experiments in a very controlled environment on the same computer
and using exactly the same models. We assume in this chapter that the CIT
portfolio is constituted by the three tools mentioned above. We plan to add
more generators in the future.

9.4.3 Decision Tree

We propose the use of decision trees for the suggestion of right tool for test
generator. Decision trees (also referred to as classi�cation and regression
trees) are the traditional building blocks of data mining and the classic ma-
chine learning algorithm. Since their development in the 1980s, decision
trees have been the most widely deployed machine-learning based data min-
ing model builder. Their attraction lies in the simplicity of the resulting
model, where a decision tree (at least one that is not too large) is quite easy
to view, understand, and, importantly, explain. Classi�cation tree structure
is used in many di�erent �elds, such as medicine, logic, problem solving, and
management science. It is also a traditional computer science structure for
organizing data.

Fig. 9.1 shows a simple decision tree that can be used to decide the exit
in a parking area depending on the number of people in it.
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9.4.4 Tools for Data Mining

For data mining, we use the free and open source software Rattle [81], built on
top of the R statistical software package [70]. Rattle has been developed using
the Gnome toolkit with the Glade graphical user interface (GUI) builder.
Rattle provides considerable data mining functionality by exposing the power
of the R Statistical Software through a graphical user interface. There is a
Log Code tab, which replicates the R code for any activity undertaken in
the GUI, which can be copied and pasted. Rattle can be used for statistical
analysis, or model generation and it allows the partition of the dataset into
training, validation, and testing subsets.

We consider R one of the most comprehensive statistical analysis pack-
age available. It incorporates all of the standard statistical tests, models,
and analyses, as well as providing a comprehensive language for managing
and manipulating data. New technologies and ideas often appear �rst in R.
Rattle (the R Analytical Tool To Learn Easily) provides a simple and logi-
cal interface for data mining. The application runs under GNU/Linux and
MS/Windows. We choose Rattle because it provides an intuitive interface
that takes the practitioner through the basic steps of data mining.

9.5 Process of Building the Decision Tree

In this section, we explain the process of building a decision maker for the
selection of the best algorithm for combinatorial test generation. With de-
cision maker, we mean a statistical predictor that is able to forecast which
generator produces the minimum total test cost for a speci�c model. The
predictor will need some data as inputs, like the cost of execution of a single
test and some of the features of the model, and will produce as suggestion
an algorithm.

The process of �nding such decision maker is a typical data-mining prob-
lem. The CRISP-DM (Cross Industry Standard Process for Data Mining) [76]
identi�es �ve steps within a typical datamining project:

1. Problem Understanding

2. Data Understanding and Preparation

3. Modeling

4. Evaluation

5. Deployment
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9.5.1 Problem Understanding

During this phase, we try to understand the project objectives and require-
ments, and then identify the data that de�ne the problem.

The main objective of this project is to �nd a decision tree that can help
the user to choose the right CIT generator that minimizes the cost de�ned
in Equation 9.1. We want to devise a predictor that given an estimated cost
for each single test (timetest) and a certain model, is able to suggest a test
generator that minimizes the �nal cost. Note that the time required for each
test generation (timegen) and the size of the produced test suite depend on
both the chosen test generator and on the attributes of the combinatorial
model. The cost for a single test timetest plays a very important role in the
selection of a test generator, because for small values of timetest the cost is
mainly due to the timegen , while for big values of timetest , the size is more
important. Since timegen and size depend on the generator and they are
generally negatively correlated, the timetest greatly in�uences the choice of
the best test generator. So the �rst data that in�uence our problem is:

� UEC: the unitary execution cost. This is given by the tester as an
average of the expected time required to execute a single test.

Regarding the model attributes that in�uence the test generation; we can
identify the following possible candidates:

� N.var: number of variables.

� N.constraints: number of constraints. In this case, we can normalize
the number of constraints by converting them to CNF and then by
counting the number of clauses.

� DomainSize: number of possible con�gurations ignoring any kind of
constraint of the model.

� N.valid: number of valid con�gurations (considering also the con-
straint).

All these variables are known to have some impact on the total cost of
the test.

The work, presented in this chapter, is focused on �nding new pattern
for predicting the behavior of combinatorial generators, analyzing the main
features of a given CIT model. We have developed a new approach to test
suites generation based on a portfolio of CIT generators. We can distinguish
two types of goals: veri�cation and discovery. With veri�cation, the sys-
tem is limited to verifying the user hypothesis. With discovery, the system
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autonomously �nds new patterns. We further subdivide the discovery goal
into prediction, where the system �nds patterns for predicting the future be-
havior of some entities, and description, where the system �nds patterns for
presentation to a user in a human-understandable form.

9.5.2 Data Understanding and Preparation

The data understanding phase starts with an initial data collection and pro-
ceeds with activities in order to get familiar with the data, to identify data
quality problems, to discover �rst insights into the data, or to detect inter-
esting subsets to form hypotheses for hidden information.

During this phase, we collect all the data (models and test generation
data), we compute the model attributes, and we select the relevant features
that can be used as input variables for the prediction model.

Collecting benchmarks As training instances for CIT problems we have
gathered a wide set of 114 models with constraints taken from the literature
(Casa [21, 25, 38], FoCuS [74], ACTS [1], and IPO-S [17]) and from SPLOT
SPLs repository, and used (in subsets) also by many other papers. The
benchmarks can be found on the CitLab web site and they can be used for
further comparisons. Fig. 9.2 shows the distribution of the characteristics
we are interested and that could in�uence the test generation process for the
models under observation. The data in Fig. 9.2 prove that our benchmarks
cover a rather wide range for every model attribute.

Test generation data We performed 50 runs over these 114 models for
4 di�erent generators: all the 3 tools with two con�gurations of MEDICI.
MEDICI, as many other tools, can be �ne tuned by using options: we use a
fast variant (MEDICI_1_1_1) and a more slow one (MEDICI_10_30_5)
which should produce fewer tests [35]. We use the same tool with two di�erent
con�gurations in order to prove that our approach could be used to decide
the parameters for a single given tool.

Using an R script we have calculated the total cost for each couple,
generator-model, varying the cost of a single test execution UEC in the set
{0.01, 0.1, 1, 10, 50, 100, 500, 1000, 5000} seconds.

Our machine learning work begins from this base of knowledge, the aim
of this work is to predict the generator that performs better for a model
according to a given single test cost and to its peculiar features.
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Figure 9.2: Training set attributes and characteristics
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Model features In order to gather the data about the models, we use the
CitLab APIs that allow querying the model and obtain structural data like
number of variables and so on. Obtaining the number of valid con�gurations,
however, is more complex: one could easily enumerate all the con�gurations
and count those valid. This is very time consuming. Instead, we use the capa-
bility of Multi-Valued Decision Diagrams embedded in MEDICI of counting
the number of valid paths in a very e�cient way.

Correlation features selection (CFS) We select the features that will
constitute the inputs of the decision trees. Good candidates should be un-
correlated with each other but highly correlated with the prediction out-
come [42]. In our case,the generator portfolio represents the prediction class.
We start our feature selection process by the observation of the correlation
test of Pearson. Its results are shown in Fig. 9.3. Pearson's correlation coef-
�cient between two variables is de�ned as the covariance of the two variables
divided by the product of their standard deviations as described by the eq.
9.2:

ρ =
cov(X, Y )

σXσY
(9.2)

Fig. 9.3 shows that UEC is uncorrelated to other variables (as expected)
and it must be considered. Regarding the model features, we note thatN.var
is correlated to all the other variables under test so it is the �rst candidate to
be excluded from our subset of features. Analyzing the Pearson chart, we can
also notice that N.valid and DomainSize are strongly correlated with each
other so one of them is the next candidate for the exclusion. Performing an
accurate analysis of correlation between the two candidates, we can estimate
that they are interchangeable in terms of correlation with the predictive class.
This condition led us to exclude N.valid because it requires a good amount
of time to be computed. Our features subset is composed by: DomainSize,
N.Constraints, and UEC.

9.5.3 Modeling

In this phase, we use Rattle to produce two predictive models based on
decision trees. Exploring some data mining and machine learning techniques
we have obtained two di�erent automatic decision makers:

1. CBT cost-based decision tree: this classi�er is able to select �the best�
generator evaluating only the test execution cost (UEC), ignoring all
the features of the model under test.
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Figure 9.3: Pearson chart

2. FBT feature-based decision tree: this classi�er receives as inputs also
the domain size of the model, numbers of constraints and the cost for
a single test execution and predicts the best generator.

Building the training/validate/test datasets Using the functionalities
of Rattle we have divided the dataset into three di�erent subsets: training,
validation, and test. The training subset is used during the modeling process
as base of knowledge for our predictive model (the decision tree), the other
two sets are used during the evaluation process.

The R script produced by Rattle and used to build the three subsets
follows.

# Randomly a l l o c a t e 70% of the datase t to t r a in ing ,
# 15% to va l i da t i on , and the remaining 15%
# to t e s t i n g
s e t . seed ( crv $ seed )
c r s $nobs <− nrow ( c r s $ datase t )
# Sp l i t t i n g the datase t in Train ing s e t (70%)
c r s $ sample <− c r s $ t r a i n

<− sample ( nrow ( c r s $ datase t ) , 0 . 7 * c r s $nobs )
# Val idat i on s e t (15%)
c r s $ va l i d a t e <− sample ( s e t d i f f ( seq_len ( nrow ( c r s $ datase t ) ) , c r s $

t r a i n ) , 0 .15 * c r s $nobs )
# Test Set (15%)
c r s $ t e s t <− s e t d i f f ( s e t d i f f ( seq_len ( nrow ( c r s $ datase t ) ) , c r s $ t r a i n

) , c r s $ va l i d a t e )
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Variable selection After the sub-setting process, we have selected the
input features of the decision according to the CFS previously performed,
and we have set the total cost (TC) as the risk variable and the generator
classes as target. The decision tree is in fact used as classi�er for the selection
of an optimal generator that minimizes the TC of testing. In the following
paragraphs, we describe the modeling process used to produce FBT. CBT
and FBT belong to the same modeling process but CBT takes as input
variables only UEC.

The R script used to select the input variables and the target follows.

# The f o l l ow i ng va r i ab l e s e l e c t i o n s have been noted .
# Se l e c t i n g the three numeric input va r i ab l e
c r s $ input <− c ( "N. c on s t r a i n t s " , "DomainSize" , "UEC" )
c r s $numeric<−c ( "N. c on s t r a i n t s " , "DomainSize" , "UEC" )
c r s $ c a t e g o r i c <− NULL
#Imposing the generato r c l a s s e s as t a r g e t
c r s $ t a r g e t <− " generato r "
c r s $ r i s k <− "TC"
c r s $ ident <− NULL
# Ignor ing the other f e a t u r e s
# o f the base o f knwoledge
c r s $ i gnore <− c ( "model" , "N. var " , "N. va l i d " , "run" , " s i z e " , "

time" )
c r s $weights <− NULL

Modeling We have obtained a compact decision tree using Rattle. Its
decision tree functionalities are based on the library rpart. Rattle allows
the user to set 4 con�guration parameters:

� Min split = argument speci�es the minimum number of observations
that must exist at a node in the tree before it is considered for splitting.

� Max depth = argument limits the depth of a tree.

� Min bucket = argument is the minimum number of observations in any
terminal leaf node (conventionally minsplit=3*minbucket).

� Cost complexity (cp) = argument is used to control the size of the deci-
sion tree and to select an optimal tree size. The complexity parameter
controls the process of pruning a decision tree.



118 Chapter 9. Using Decision Trees for Algorithm Selection

The following extract of code shows that we required that the minimum
number of observations in a node is 50 before attempting a split and that a
split must decrease the overall lack of �t by a factor of 0.015 (cost complexity
factor), we have also limited tree depth to 10. As parameters tuning process
performed, we have substantially performed a "backward tuning", where we
have obtained the �nal con�guration by generating iteratively a new model
by varying one parameter at a time and discarding the model and the change
in the con�guration parameter if the accuracy of the new model decreased
with respect to the previous one. We have pruned back the tree to avoid over-
�tting the data. We wanted to select a tree size that minimizes the cross-
validated error. Speci�cally we have iteratively examined the cross-validated
error results varying the complexity parameter, and we have selected the cp
associated with minimum cross-validation error. Rattle uses an information
gain measure for deciding between alternative splits. This decision algorithm
is based the concept of Shannon Entropy. The split that provides the greatest
gain in information (and equivalently the greatest reduction in entropy) is
the chosen split. The R script used to build the decision tree (FBT) follows.

# Bui ld ing d e c i s i o n t r e e
# Using the dataSet p r ev i ou s l y prepared we bu i ld
# the d e c i s i o n t r e e us ing rpar t
c r s $ rpar t <− rpar t ( genera tor ~ . ,
data=c r s $ datase t [ c r s $ t ra in , c ( c r s $ input , c r s $ t a r g e t ) ] ,
method=" c l a s s " ,
parms=l i s t ( s p l i t=" in fo rmat ion " ) ,

c on t r o l=rpar t . c on t r o l ( m in sp l i t =50,
minbucket=16, maxdepth=10, cp=0.015000) )

The two �nal decision trees CBT and FBT are reported in Fig. 9.5
and 9.4. Although FBT is more complex than CBT, both trees are rather
understandable and easy to follow in order to get guidance on what tool to
use even by hand.

9.5.4 Evaluation

During this phase, we evaluate the prediction models obtained in the previous
phase. The results of the evaluation are presented in Section 9.6.
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Figure 9.4: FBT: feature-based decision tree

Figure 9.5: CBT: cost-based decision tree
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9.5.5 Deployment

During this phase we describe how it is possible to re-use our predictive
models, computed using Rattle, in a Java application and consequently in-
tegrating them in the CitLab framework. Our deployment is based on the
use of the Predictive Model Markup Language (PMML), which is an XML-
based �le format developed by the Data Mining Group to provide a way for
applications to describe and exchange models produced by data mining and
machine learning algorithms. It supports common models such as logistic
regression, feed-forward neural networks and decision trees. Rattle supports
the export of predictive models to PMML language. Using JPMML is pos-
sible to use PMML models in Java allowing their integration in CitLab as
a plug-in for Eclipse. Using JPMML, we have noticed these pros and cons.
Advantages:

� No lock-in; you can run your models with any library that can read
PMML models.

� Runs inside the Java process. No inter-process communication.

� Pure Java solution at run-time.

Disadvantages:

� Supported models depend on the PMML library (for example, JPMML
does not support support vector machines SVM, even though it is in
the speci�cation of PMML 4.1).

9.6 Experiments

In the experiments, we want to compare the two decision trees and measure
the advantages of using our classi�ers against the use of a single generator.

First, we build the best possible predictor one could reasonably have. We
identify the generator that gives the minimum average total cost for each
model and for each single test cost over all the run we have performed, in
order to simulate an average optimum predictor. Starting from these data,
we build an optimum classi�er, which would always select on average the
best generator for every model. The main problem of the optimum predictor
is that it can be computed only after the data have been generated ("a-
posteriori" predictor).
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Figure 9.6: Test generator distribution of the optimum predictor

RQ1 Which generators would choose the optimum predictor?

Fig. 9.6. shows the distribution of the predicted generators performed
by the optimum predictor for each UEC. ACTS is the privileged choice for
small test costs due to its fast generation speed while CASA is the best
solution for high test costs because it is very slow compared to ACTS but it
produces smaller test-suites. MEDICI stays in between ACTS and CASA.
MEDICI_1_1_1 produces test suites a little smaller then ACTS's ones but
it is 10 times slower, MEDICI_10_30_5 produces test suites comparable to
CASA but it can be faster [35]. Overall, ACTS is chosen in the 85% of cases
for a single test cost of 0.01s and its percentage continuously decreases until
18% at the test cost of 500s while the percentages of the other generators
increase. We can estimate that for a single test cost of about 100s to 500s
the 4 generators under test reach a sort of stability point in the distribution
between the chosen generators. After this point, the increase of cost does
not produce any kind of further changes in the percentages of the selection
distribution.

The �gure con�rms that there is no one best generator. By varying the
UEC the distribution of generator choices may sensibly change. The data
also show that, even the test cost were �xed, the choice of the best generator
depends on the model features. This con�rms the validity of our assumptions.
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RQ2 When does FBT choose a wrong generator?

Fig. 9.7 shows the distribution of generators selected by FBT. It di�ers
from the optimum reported in Fig. 9.6. Gray cells of Tab. 9.1 display the
confusion matrix of the predictor. The di�erence between the optimum and
the predicted one is reported as percentage of generator confusion. A confu-
sion matrix displays the percentage of correct or incorrect predictions made
by a classi�er such as a Bayesian network or decision trees. It is automati-
cally computed by Rattle using the test set. Diagonal elements of the matrix
show the percentage of correct predictions, while o�-diagonal elements show
incorrect predictions. The sum of diagonal values represents the accuracy
of the classi�er under validation process. False negative rate (FNR) is com-
puted, for each row, as the ratio between the sum of o�-diagonal values (false
negatives) and the sum of each value of the row values (false negatives + true
positives). The high FNRs of the two con�gurations of MEDICI show a crit-
icality of FBT in their right identi�cation and prediction. FBT presents an
accuracy of 58%.

RQ3 When does CBT choose a wrong generator?

Fig. 9.8 shows a distribution of selected generators that di�ers, as ex-
pected, from the optimum reported in Fig. 9.6. The di�erence between
the optimum generator and the predicted one is reported in Tab. 9.2 as
percentage of generator confusion. We notice that CBT performs a trivial
choice between ACTS_IPOG and CASA ignoring the other 2 generators. For

2False negative rate is the proportion of events that are being tested for which yield
negative test outcomes with the test, i.e., the conditional probability of a negative test
result given that the event being looked for has taken place. False Negative Rate = (false
negative)/(true positive + false negative).

3accuracy=(true positives + true negatives)/(positives + negatives)

Table 9.1: FBT confusion matrix for the test set

Optimum choice Predicted
CASA M_1_1_1 M_10_30_5 ACTS FNR2

CASA 22% 1% 4% 1% 25%
M_1_1_1 8% 6% 4% 7% 76%
M_10_30_5 5% 2% 5% 0% 58%
ACTS_IPOG 7% 1% 2% 24% 29%
Accuracy3 58%
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MEDICI, the FNRs are 100%. CBT decision exchanges MEDICI_10_30_5
to CASA because MEDICI generator performance, in terms of size, is sim-
ilar to CASA's one but it di�ers from it in terms of time consumption at
the varying of models complexity. The reduction of FBT model to CBT
decreases the accuracy rate of 12% (from 58% to 46%). These data suggest
that a right estimation of the total cost produced by a generator and a right
selection of the generator should consider other feature besides the UEC.

Figure 9.7: Generation tools distribution using FBT

RQ4 Can our predictors outperform the other �xed generators?

Table 9.2: CBT confusion matrix for the validation set

Optimum choice Predicted
CASA M_1_1_1 M_10_30_5 ACTS FNR

CASA 22% 0% 0% 6% 21%
M_1_1_1 13% 0% 0% 12% 100%
M_10_30_5 11% 0% 0% 2% 100%
ACTS_IPOG 11% 0% 0% 24% 31%
Accuracy 46%
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Figure 9.8: Generation tools distribution using CBT

Table 9.3 reports the total cost over all the combinatorial models for the
optimum predictor in seconds and the percentage of variation w.r.t. the
optimum for all the other generators by varying the single test cost. The
numbers in bold are the minimum values for each cost with the exception of
the optimum. It shows that some generators performs very well when the
single test cost is small and other ones performs very well when the single
test cost increases. It shows that FBT outperforms �xed generator selection
in 7 cases over 9. In only one case, the FBT is defeated by CBT. For an UEC
of 50 both the decision trees are defeated by MEDICI_1_1_1 that is never
selected by CBT. The gap between both decision trees and the optimum
a-posteriori predictor makes the possibility of further improvements, in the
prediction strategy, concrete.

RQ5 How much is the gain achieved by using decision trees?

The performances of the 2 decision trees are reported as the Total cost
for generating the test-suites of the 114 models varying their single test cost.
Tab. 9.3 shows the performances of each strategy compared to the optimal
one (last row) varying the single test cost.

Fig. 9.9 shows the performances of the two predictors CBT e FBT versus
the use of a �xed generation tool. The data are presented as percentage of
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Figure 9.9: Performance comparison of Predictors versus the use of a �xed
tool using the optimum as measure of comparison

the di�erence between the total cost for a single generator or predictor and
the total cost obtained by the optimum predictor.
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Figure 9.10: Performance comparison of predictors versus random selection
of generators using the optimum as measure of comparison

RQ6 How much are decision trees better than a random selection?

We have compared decision trees with a random selector that randomly
choses the test generators. A random selector has the advantage that it
does not need anything to make the prediction. The decision trees strategies
always outperform a random selection policy as shown in Fig. 9.10. The
gap of performance decreases with the augment of the single test cost but it
remains signi�cant if compared to the results of the optimum.

9.7 Threats to validity

Our �ndings are subject to the following threats to validity. First, our deci-
sion tree models may fail to predict the right test generator for a particular
model and UEC. Indeed, our models can give only a statistical estimation,
but they cannot guarantee to �nd the best solution. However, the wide range
of models we have used to build the decision trees and the extensive set of
UECs can give a good con�dence that the right generator is most likely cho-
sen and even if this is not the case, the loss of time is always rather small.
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Even CBT, as shown in Table 9.3, behaves on average of all the models as the
best �xed generator for almost each UEC. One of the most signi�cant issues
that a�icts decision tree models is the over-�tting of training data which,
produces a loss of performance on new data. In general, when a decision tree
model is too complex is unable to correctly match new, previously unseen
data. The process that governs the complexity of a model is "Pruning". We
have tried to reduce the impact of this issue iteratively pruning our models
in order to �nd the less complex model that presents and acceptable error
rate according to Cost complexity pruning methodology.

9.8 Conclusions

The combinatorial testing community has produced many algorithms, tech-
niques, and tools for test generation in these years. Even if one considers only
the performances, it remains unclear which is the best solution. For example,
a very fast tool may produce a very big test suite that would require much
more time during the test execution. We have introduced a simple cost model
for comparing test generation tools and we have shown that there is no best
combinatorial tests generator. Depending on the cost of executing a single
test, a tool may be more suitable than another. In addition, combinatorial
model characteristics should play a role in the choice of the generator. In
order to automatize the decision of the right test generator, we have devised
a data-mining process able to produce two decision trees to be used in the
choice. Experimental results show that our decision trees can e�ciently help
the tester in the generation process with a signi�cant reduction of the total
testing cost. However we can isolate two points that are not worthwhile for
our approach adoption. The �rst weakness of our methodology is that our
predictor models take some data as inputs like number of variables, num-
ber of constraints, and so on, that may require some time to be computed.
The time spent to �nd model features may be greater than the time saved
by choosing the right generator. For this reason, we have chosen only very
simple model characteristics and we have devised the CBT model, which
requires only UEC. Moreover, we have ignored N.valid as input because it
is rather costly to be computed. Computing all the model features used by
FBT requires around 3.5 seconds for all the models.

The cost of switching to a general framework as CitLab that allows
the use of multiple generators may be not worthwhile for researchers using
already a speci�c tool. In addition in this case, our work can be used as
guidance to check if the chosen tool is suitable for the testing tasks to be
performed. For instance, a serious loss of time is very likely to occur if the
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tester uses ACTS for generating tests which require a lot of time each to be
executed. Our study shows that the random choice can lead to very high
time losses.

We plan to investigate on the in�uence of the complexity of constraints
over the generation time and over the size of the test-suites. The cost function
we have used in this chapter, could be improved by considering the complex-
ity of the constraints and the cardinality of the parameters that compose
the domains of the models under test. Another factor to consider could be
the number of attempts needed to produce the �nal test-suite. When the
system under test is very complex, it is necessary to run the generation tools
many times during the di�erent stages of software testing process. We want
also to experiment other predictive techniques like support vector machines
which seem, by a preliminary study, to have a more accuracy in terms of
classi�cation but they need further tunings to be deployed in Java.





10
Results achieved by CitLab

Conclusion

The research activity I performed, during my period as PhD student, demon-
strated that CitLab is a good Framework for Combinatorial Interaction
Testing, both for researcher and practitioners. In the previous chapters we
presented the e�ectiveness of this framework through the description of its
use in several research projects.

The timeline of the publications derived by the research activity on Cit-
Lab is reported below.

CitLab Publications Timeline

2012 � Citlab: a laboratory for combinatorial interaction testing
2013 � Combinatorial interaction testing with CitLab
2013 � Combinatorial testing for feature models using citlab
2014 � Validation of models and tests for constrained combinatorial

interaction testing
2014 � E�cient combinatorial test generation based on multivalued

decision diagrams
2015 � Using decision trees to aid algorithm selection in

combinatorial interaction tests generation

CitLab demonstrates its good usability as educational tool in university

131
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courses. It used in the following two courses:

� Model-based testing (NSWI157) at The Univerzita Karlova

� Software Testing and Check at The Università degli studi di Berg-
amo.

Also, a team of students of The Carnegie Mellon University working on the
NIST project on Combinatorial Testing released ComTest, an Open Source
plugin for Eclipse based on CitLab architecture.

The continued participation in the IWCT workshop, starting from the
edition of 2013, made CitLab known to Combinatorial Testing Community
and facilitated its di�usion as educational tool as reported in the following
timeline.

CitLab EDU adoption Timeline

2013-2014 � CMU-NIST ComTest project
2013-2014 � Software Testing and Check
2015-2016 � Model-based testing

The current and future research activities, based on CitLab, are focused
on the problem of the de�nition of Oracles for combinatorial testing and on
Speci�cation mutation. A model of a system con�gurability must be val-
idated in order to guarantee its conformance with respect to the software
implementation. My future works will be focused on checking if a model cor-
rectly identi�es constraints among the various software system's parameters
in order to detect and �x faults both in the model and in the real system.
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