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Abstract

In this work we present a high-order Discontinuous Galerkin (DG) space approximation coupled with two high-order temporal

integration methods for the numerical solution of time-dependent compressible flows. The time integration methods analyzed are

the explicit Strong-Stability-Preserving Runge-Kutta (SSPRK) and the Two Implicit Advanced Step-point (TIAS) schemes. Their

accuracy and efficiency are evaluated by means of an inviscid test case for which an exact solution is available. The study is carried

out for several time-steps using different polynomial order approximations and several levels of grid refinement. The effect of mesh

irregularities on the accuracy is also investigated by considering randomly perturbed meshes. The analysis of the results has the

twofold objective of (i) assessing the performances of the temporal schemes in the context of the high-order DG discretization and

(ii) determining if high-order implicit schemes can displace widely used high-order explicit schemes.
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1. Introduction

Computational Fluid Dynamics (CFD) has mainly focused on steady state problems, and even the more advanced

CFD codes based on high-order spatial discretization are sometimes inefficient for unsteady computations requiring

high accuracy. However, the solution of the unsteady phenomena is needed in many areas including turbomachin-

ery and Internal Combustion Engine (ICE). In turbomachinery unsteady phenomena can be due, for example, to

rotor/stator interaction, valve closure, formation of Karman vortex street and many others while ICE are characterized

by highly unsteady phenomena of in-cylinder flows. The understanding of these complex unsteady flows must be

improved to increase the efficiency of such systems.

Simulations of unsteadiness require high computing time, therefore high accurate time integration schemes are

mandatory to perform efficient unsteady simulations and to capture the significant flow features of transient problems.

Higher-order spatial schemes additionally contribute to time-dependent efficiency. The error at a specified final time
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(global error) is the sum of the errors at each integration step (local error): the error accumulates linearly in time

(see [1,2] for a detailed demonstration). The local error consists of three components: the temporal truncation error,

the spatial truncation error and the algebraic error. A simulation requiring many time-steps to reach a numerical

solution within the engineering accuracy (two to three significant digits) needs to be performed at extremely small

local errors. High order schemes are the most efficient means of achieving the high levels of local accuracy required

at each integration step [2].

Among the high-order spatial numerical schemes usually considered for the accurate and efficient solution of CFD

problems, one of the most promising is the Discontinuous Galerkin (DG) finite elements method. Advantages and

capabilities of DG methods are actively investigated in many different fields of computational physics, such as gas

dynamics, compressible and incompressible flows, turbomachinery, magneto-hydrodynamics and many others. For

a recent overview of DG methods we refer to [3]. The development of DG methods was mainly focused on the

spatial discretization. The time discretization can be performed also by a discontinuous approximation [4,5], but the

most usual approach is the application of the method of line in which the system of equations, resulting form the space

discretization, is advanced in time with one of the time-integration methods developed for solving ordinary differential

equations.

Two of the most widely used approaches for the numerical solution of unsteady flows are the high-order explicit

Runge-Kutta methods [6–8] and the implicit Backward Differentiation Formulae (BDF) [9–11]. All these methods

present advantages and limitations. Explicit Runge-Kutta schemes are high-order schemes easy to implement and

parallelize, and require only limited memory storage. However, for problems requiring high spatial resolutions of very

thin boundary layers and characterized by very stiff system of equations, the time step restriction would result in an

inefficient time integration technique. In this regard, the class of Strong-Stability-Preserving Runge-Kutta (SSPRK)

time discretization methods offers significant advantages as its better stability property enable the increase in the

maximum allowable time step.

The implicit multi-step BDF schemes are very efficient for stiff initial-value problems but are not self-starting

schemes and are A-stable only up to the second-order. Starting from the BDF approach, in order to obtain A-stable

method with higher order of accuracy, the multi-step and multi-stage ideas have been combined in [12,13] to obtain

Extended BDF (EBDF) and Modified Extended BDF (MEBDF) methods A-stable up to order 4, and in [14,15] to

obtain Two Implicit Advanced Step-point (TIAS) algorithm A-stable up to order 6. On the other hand, implicit

methods consist of one or more non-linear systems at each time-step, thus the use of efficient solution algorithms is

required to make them competitive respect to explicit schemes.

The objective of this work is twofold: (i) to assess and investigate the performance of the explicit SSPRK and the

implicit TIAS temporal schemes in the context of the high-order DG discretization and (ii) to determine if high-order

implicit schemes can displace widely used high-order explicit schemes. The performances of the above temporal

schemes have been evaluated by means of an inviscid isentropic convecting vortex aimed at testing the DG-SSPRK

and DG-TIAS schemes capability to preserve vorticity in an unsteady inviscid flow. The study is carried out for

several time-steps using different polynomial order approximations and several levels of grid refinement, considering

also the effect of mesh irregularities on the accuracy of the results. Furthermore, long-time simulations are performed

to clearly illustrate the advantages of the high-order time discretization.

In the following of the paper the governing equations and their DG space discretization are presented in Section 2.

Section 3 is devoted to time discretizations. Numerical results are discussed in Section 4. Conclusions are reported in

Section 5.

2. Governing equations and DG space discretization

The compressible Euler equations in conservative form based on the set of conservative variables q =
[
ρ, ρu, ρv, ρE

]T
are:

∂q
∂t
+ ∇ · Fc (q) = 0, (1)
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where Fc (fc, gc) is the inviscid flux vector given by:

fc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu
ρu2 + p
ρuv
ρHu

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , gc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρv
ρvu
ρv2 + p
ρHv

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

In these equations ρ is the fluid density, u and v are the x and y velocity components respectively and p is the pressure.

E is the total internal energy for unit mass and the total enthalpy for unit mass is given by H = E + p/ρ.
In order to construct the DG discretization of Eq. (1), we consider an approximationΩh of the domainΩ consisting

of a set of non-overlapping elements τh = {K}, denoting by ∂Ωh the boundary of the discrete approximation and by Γ0
h

the set of internal edges. We consider piecewise polynomial functions on τh with no global continuity requirement. If

Pn (K) denotes the space of polynomial functions of degree at most n in the element K, and considering the function

space:

Vh = {vh ∈
(
L2 (Ωh)

)N+2
: vh ∈ (Pn (K))N+2 ∀K ∈ τh},

where N is the number of spatial dimensions, the DG formulation of Eq.(1) is then as follows: find qh ∈ Vh so that∫
Ωh

vh · ∂qh

∂t
dx −

∫
Ωh

∇vh : Fc (qh) dx +
∫
Γ0

h

(
v−h − v+h

)
·H
(
q+h , q

−
h , n

−) dσ +
∫
∂Ωh

(vh ⊗ n) : H
(
q+h , q

b
h, n
)

dσ = 0, (2)

holds for an arbitrary test function vh ∈ Vh. In this equation (·)− and (·)+ symbols denote left and right state, see Fig. 1,

and H
(
q+h , q

−
h , n

−) and H
(
q+h , q

b
h, n
)

are the numerical flux functions at the interior and boundary faces, respectively.

For the inviscid numerical flux any of the numerical flux functions commonly considered in the finite volume method

can be used. In the present work we employ the Godunov flux, i.e. the physical flux of the exact solution of a planar

Riemann problem in the direction normal to the boundary.

K �

K �

E

n�

n�

Fig. 1. Two elements K+ and K− sharing edge E.

3. Time discretization

The DG space discretization, Eq. (2), results in the following system of ordinary differential equations:

M
dQ
dt
+ R (Q) = 0, (3)

where M is the global block diagonal mass matrix, Q is the global vector of unknown degrees of freedom and R (Q) is

the vector of ”residuals”, i.e., the vector of nonlinear functions of Q resulting from the integrals of the DG discretized

space differential operators in Eq. (2).

The above system is advanced in time with one of the time-integration methods developed for ordinary differential

equations. In the following, the SSPRK and TIAS methods are briefly described.
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• Strong-Stability-Preserving Runge Kutta (SSPRK) method.

In Runge-Kutta schemes the solution is advanced in several stages and the residual is evaluated at intermediate

states. The solution of the system (3) is advanced from time t to time t + Δt applying the following expression:

q0 = qt,

qi =

i−1∑
k=0

αikqk + βikΔt (M)−1 R
(
qk
)
, i = 1, 2, ..., s.

qt+Δt = qs,

where i is the stage counter and αik and βik, are the multistage coefficients. These coefficients are used to weight

the residual at each stage and can be optimized in order to expand the stability region of the scheme.

The Runge-Kutta scheme employed in this work is the 5-stage fourth-order accurate SSP Runge-Kutta scheme,

SSPRK (5,4). For further details about the coefficients of the optimal SSPRK (5,4) scheme we refer to [16].

• Two Implicit Advanced Step-point (TIAS) method.

This new implicit multi-step scheme involves four stages: the first three are predictor stages that use a standard

k-step BDF scheme, the last one is a corrector stage that uses an advanced implicit k-step formula of order

k+1. The TIAS scheme was presented in [14,15] and the stability properties of this approach were investigated

in detail in [17]. Assuming that approximate solutions Qn+ j have been calculated at tn+ j with 0 ≤ j ≤ k − 1,

the general k-step TIAS algorithm of order k + 1 consists of successively solving the following four stages to

advance the solution in time:

– Stage 1. Compute the first predictor Q̄n+k of order k with a k-step BDF:

M

⎛⎜⎜⎜⎜⎜⎜⎝Q̄n+k +

k−1∑
j=0

α̂ jQn+ j

⎞⎟⎟⎟⎟⎟⎟⎠ + Δtβ̂kR
(
Q̄n+k

)
= 0.

– Stage 2. Compute the second predictor Q̄n+k+1 of order k with a k-step BDF:

M

⎛⎜⎜⎜⎜⎜⎜⎝Q̄n+k+1 + α̂k−1Q̄n+k +

k−2∑
j=0

α̂ jQn+ j+1

⎞⎟⎟⎟⎟⎟⎟⎠ + Δtβ̂kR
(
Q̄n+k+1

)
= 0.

– Stage 3. Compute the third predictor Q̄n+k+2 of order k with a k-step BDF:

M

⎛⎜⎜⎜⎜⎜⎜⎝Q̄n+k+2 + α̂k−1Q̄n+k+1 + α̂k−2Q̄n+k +

k−3∑
j=0

α̂ jQn+ j+2

⎞⎟⎟⎟⎟⎟⎟⎠ + Δtβ̂kR
(
Q̄n+k+2

)
= 0.

– Stage 4. Compute the corrected solution Qn+k of order k + 1 using:

M

⎛⎜⎜⎜⎜⎜⎜⎝Qn+k +

k−1∑
j=0

α̃ jQn+ j

⎞⎟⎟⎟⎟⎟⎟⎠ + Δt
[
β̃k+2R

(
Q̄n+k+2

)
+ β̃k+1R

(
Q̄n+k+1

)
+ βkR

(
Q̄n+k

)

+
(
β̃k − βk

)
R (Qn+k)

]
= 0.

In the first three stages α̂ j and β̂k are the BDF coefficients and in the last one α̃ j, β̃k+2, β̃k+1, β̃k and βk are the

TIAS coefficients. In particular, β̃k+2 and βk are free coefficients which determine the stability properties of the

scheme, while the other coefficients, expressed in terms of β̃k+2, are determined such as the scheme has order
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k + 1. The residuals in stage 4 are computed once that each of the previous three stages has been solved:

R
(
Q̄n+k

)
= − M
Δtβ̂k

⎛⎜⎜⎜⎜⎜⎜⎝Q̄n+k +

k−1∑
j=0

α̂ jQn+ j

⎞⎟⎟⎟⎟⎟⎟⎠ ,

R
(
Q̄n+k+1

)
= − M
Δtβ̂k

⎛⎜⎜⎜⎜⎜⎜⎝Q̄n+k+1 + α̂k−1Q̄n+k +

k−2∑
j=0

α̂ jQn+ j+1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

R
(
Q̄n+k+2

)
= − M
Δtβ̂k

⎛⎜⎜⎜⎜⎜⎜⎝Q̄n+k+2 + α̂k−1Q̄n+k+1 + α̂k−2Q̄n+k +

k−3∑
j=0

α̂ jQn+ j+2

⎞⎟⎟⎟⎟⎟⎟⎠ .

The TIAS scheme employed in this work is the 4-stage sixth-order accurate TIAS scheme, TIAS (4,6). For

further details about the coefficients of TIAS (4,6) and the numerical techniques employed to improve the

efficiency of the scheme we refer to [18].

4. Numerical results

In this section we present some numerical results demonstrating the performances of the proposed high-order

DG-SSPRK and DG-TIAS schemes. The test case is an isentropic convecting vortex for which an exact solution is

available. A uniform flow with a Mach number of M∞ = 0.05 is perturbed by an isentropic vortex centered at (x0, y0).

The resulting initial flow variables are:

u = u∞ − (u∞β) (y − y0)

R
e−r2/2,

v =
(u∞β) (x − x0)

R
e−r2/2,

T = T∞ − 1

2

(γ − 1)

γ
(u∞β)2 e−r2

,

with T∞ = 1, u∞ = M∞ ∗ √γ, where γ = 1.4 is the ratio of specific heats of the fluid, β = 0.02, R = 0.005

and r =
√

(x − x0)2 + (y − y0)2 is the distance from the vortex center. The superposed vortex should be transported

without distortion by the flow with a velocity of (u∞, 0), thus the initial flow solution can be used to assess the accuracy

of the computational method.

The vortex is initially placed at (x0, y0) = (0.05, 0.05) in the domain 0 ≤ x ≤ 0.1 and 0 ≤ y ≤ 0.1. Periodic

boundary conditions are set at top and bottom boundaries and at left and right boundaries, respectively. The test case

has been computed on three successively refined uniform cartesian grids by using polynomial approximations from

P2 up to P5. The grids are composed by 16× 16 (coarse), 32× 32 (medium) and 64× 64 (fine) elements. The analysis

is performed up to a final time corresponding to 50 periods T of vortex revolution. For each polynomial degree a

temporal refinement study has been performed in order to determine the largest time-step value that ensures that the

temporal discretization error does not affect the solution accuracy on a given mesh. Table 1 shows the appropriate time-

step determined for each space discretization level and each temporal discretization algorithm. For the computations

that refer to the SSPRK (5,4) method, exploiting the superior stability characteristics of this scheme with respect to

other Runge-Kutta schemes, the CFL number has been set according to the rule:

CFLRK-45 = 2 · 1

2k + 1
,

where k is the degree of the polynomial approximation.
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TIAS (4,6) SSPRK (5,4)

Grid P2 P3 P4 P5 P2 P3 P4 P5

Coarse T/40 T/80 T/160 T/320 T/1680 T/2400 T/3055 T/3735

Medium T/80 T/160 T/320 T/640 T/3360 T/4800 T/6110 T/7470

Fine T/160 T/320 T/640 T/1280 T/6720 T/9600 T/12220 −
Table 1. Time-step size for different discretization levels as a function of the vortex period T .

In the following, we focus our attention on the u- and v-velocity components as this test case is aimed at testing

the DG-SSPRK and DG-TIAS schemes capability to preserve vorticity in an unsteady inviscid flow. Figures 2 and 3

show the contour plots of u- and v-velocity components, respectively, after 50 periods T for P2, P3, P4 and P5 spatial

discretizations obtained on the coarse grid using either the DG-SSPRK or DG-TIAS scheme. Overall it is evident that

accuracy improves when higher-order spatial discretizations are employed. In particular, the higher-order P5 scheme

provides the best shape-retaining transport capability: the initial velocity component fields keep better their shapes.

On the other hand, the figures show that by using the P2 scheme the initial flow field is significantly diffused and

dispersed. Note that the noisy patterns in Fig. 3 are associated with fluctuations in the v-velocity component ranging

from order of 10−5 for the P2 solution to order of 10−8 for the P5 solution. These fluctuations reduce using the medium

and the fine grids.

A more quantitative comparison is reported in Fig. 4, where the exact and the computed velocity component

profiles along the y = 0.05 and x = 0.05 lines are shown for different spatial discretizations on the coarse grid. It can

be observed that the use of P5 scheme yielded very accurate solutions, even for very coarse grid size. Conversely, as

showed for the velocity contours, the P2 discretization produced the worst results.

The accuracy analysis is now extended for both the temporal schemes to the two successive levels of grid refinement

by plotting the L2-norm errors of the u-velocity component versus 1/
√

nDOFs, with nDOFs equal to the total number

of degrees of freedom per equation for the different spatial discretizations. Convergence histories are shown only for

the u-velocity component as similar results are obtained for the v-velocity component. As expected, the left plot of

Fig. 5 shows that the convergence histories computed using the DG-SSPRK and the DG-TIAS schemes are almost

indistinguishable, with the higher-order discretizations achieving very low error levels. We remark that the DG-

TIAS convergence histories have been obtained using time-step sizes considerably larger than those employed for

the fourth-order accurate explicit scheme (see Table 1). For example to reach an accuracy level of order of 10−5

the implicit time-step size was 20 times bigger than the explicit one, while for an accuracy level of 10−7 this ratio

increased to 30. On the other hand, the TIAS scheme consists of 4 non-linear systems at each time step, thus an

efficiency study has been performed to evaluate if it outperforms the SSPRK method. To this purpose in the right

plot of Fig. 5 the L2-norm of the error of the u-velocity component is plotted as a function of the computational cost

expressed in work units for both the schemes and for different polynomial degrees. The work unit is defined as the

ratio between the wall clock time taken by the DG-TIAS or DG-SSPRK solvers and that obtained using TauBench,

an unstructured grid benchmark whose kernel is derived from Tau code [19]. The figure shows that the DG-TIAS

scheme has a similar asymptotic behaviour of the Runge-Kutta scheme but it outperforms this one. For example, to

achieve an accuracy level of order of 10−5 the DG-SSPRK scheme is about 3 times slower than the DG-TIAS scheme,

while for an accuracy level of 10−7 this ratio reduces to 2.5.

A further analysis has been carried out by performing a new set of simulations on perturbed grids to investigate the

effect of mesh irregularities on the accuracy of the proposed DG solvers. The perturbed meshes have been obtained

from the corresponding cartesian ones randomly displacing the mesh’s nodes, in both x- and y-coordinate directions,

with a maximum distance δmax = 0.15 · h, where h is the corresponding element size. Figure 6 shows the effect of the

perturbation imposed on the 16 x 16 cartesian grid. The analysis has been restricted to the more efficient DG-TIAS

scheme by using the same time steps of Table 1. The accuracy results are illustrated in the left plot of Fig. 7. The

convergence histories and the error levels achieved on both the perturbed and the cartesian grids are very similar,

even if P4 and P5 computations on the perturbed grids exhibit slopes reductions at approximately accuracy levels

of 10−7 and 10−8, respectively, thus demonstrating the robustness and the excellent dissipation property of the DG-

TIAS solver. The right plot of Fig. 7 shows the L2-norm of the error of the u-velocity component as a function of the

computational cost. The plot indicates that in order to reach an error level higher than 10−7 the perturbed computations
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require the same computational cost of the regular-grid. For higher accuracy levels the computations on the cartesian

grids outperform those on the perturbed ones due to their better asymptotic error reduction properties.
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Fig. 2. u-velocity contours on the coarse grid for different DG spatial discretizations.
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Fig. 3. v-velocity contours on the coarse grid for different DG spatial discretizations.
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Fig. 4. u-velocity on the x = 0.05 line (left) and v-velocity on the y = 0.05 line (right) on the coarse grid for different DG discretizations.
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Fig. 5. L2 error(u) as a function of 1/
√

nDOFs (left) and work units (right).

Fig. 6. 16 × 16 cartesian grid (left) and the corresponding randomly perturbed mesh (right).

Fig. 7. L2 error(u) as a function of 1/
√

nDOFs (left) and work units (right).
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5. Conclusions

In this paper we have investigated the effectiveness of two high-order temporal integration methods for the numer-

ical solution of time-dependent compressible inviscid flows. Space discretization is based on the high-order Discon-

tinuous Galerkin method, while time integration has been performed employing an explicit and an implicit scheme.

The explicit scheme is the 5-stage fourth-order accurate SSP Runge-Kutta scheme, SSPRK (5,4). The implicit scheme

is the 4-stage sixth-order accurate TIAS scheme, TIAS (4,6). The performances of the two temporal schemes have

been assessed by computing the convection of an isentropic vortex for several time-steps using different polynomial

order approximations and several levels of grid refinement. The comparison of the computational efficiency of the two

temporal scheme has shown that the computational effort required by TIAS (4,6) to achieve a given accuracy is at least

2.5 times lower than the one required by SSPRK (5,4). Furthermore the performance of the DG-TIAS(4,6) scheme

has been evaluated for several perturbed grids, demonstrating the robustness and the excellent dissipative properties

of the method. Ongoing work is devoted to the implementation of variable time step TIAS schemes.
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