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Abstract	

In industrial hot rolling processes, contact conditions are strongly influenced by local thermal 

effects occurring at the interface between tool and workpiece. Indeed, the presence of high 

temperatures influences the material properties and, hence, the contact conditions. Thus, thermal 

conditions in the contact zone shall be accurately predicted in order to characterize the contact 

mechanical behavior. 

In the present doctoral dissertation, a comprehensive experimental and modelling 

methodology is developed, by investigating heat exchange phenomena under hot rolling 

conditions. Dedicated experimental activities are first designed and carried out on an innovative 

high-temperature ring-on-ring tribometer in an industrial setting. Then, thermal fluxes under 

high contact pressures and temperature differences are quantitatively assessed through a 

numerical procedure of inverse analysis, apt to estimate the heat transfer parameters based on 

measurements and on an effective mathematical modelling of the underlying physical 

phenomena. 

Specifically, the thesis develops a mathematical treatment of the heat transfer equation for 

a cylindrical geometry representing conditions occurring at the tribometer scale and derives 

consistent analytical and numerical solutions. These set a convenient modelling reference for 

the purposes of inverse analysis, based on experimental data obtained by ring-on-ring tribometer 

tests, which ultimately provide quantitative estimates of the physical parameters, useful for an 

accurate description of industrial production processes. 
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Extended	summary	

During hot deformation processes, tool surfaces experience severe frictional stresses and 

thermal fluxes. The present doctoral dissertation aims at developing a quantitative description of 

such phenomena, through an integrated experimental and modelling approach based on inverse 

analysis. 

Dedicated experimental activities devoted to assess friction behavior under hot rolling 

conditions show that classical Coulomb’s friction law may not represent the best description of 

interfacial phenomena. Indeed, during hot rolling, plastic deformation processes arise. Once the 

material undergoes plastic deformation, a linear proportionality relation between friction shear 

stress and contact pressure no longer holds. Therefore, a constant friction coefficient cannot 

fully explain the actual frictional stress trend. Since material properties are temperature 

dependent, and so is yield stress, a thorough thermal condition analysis must be performed, in 

order to characterize in detail the contact mechanical behavior. Heat fluxes to which the tool is 

subject to during hot processes depend on heat conduction, which in turn is a function of the 

surface state, the application of lubricants or the presence of surface oxides, as well as on 

specific contact conditions and temperature differences with the workpiece. 

To assess quantitatively thermal fluxes under high contact pressures and temperature 

differences, a characterization procedure based on inverse analysis has been developed, to 

evaluate heat fluxes from sample surface temperature evolutions measured in specific 

tribological tests, performed with an innovative high temperature ring-on-ring tribometer 

implemented in an industrial setting. Indeed, conditions typical of real industrial production 

processes can be idealized in experimental setups that reproduce, as closer as possible, the hot 
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working conditions, such as in high-temperature ring-on-ring tribometer testing. Such 

experimental device and attached systematic experimental procedures and investigations allow 

for gathering conspicuous data, as truly representative of industrial hot rolling conditions. Long-

run tests have been carried out under pure rolling (no relative sliding and no consequent 

frictional effects) whereby the surface temperature evolution due to the rotating contacts has 

been measured by a pyrometer. 

Inverse analysis has required first the assembly of a robust mathematical model of the 

tribological test under target. A two-dimensional time-dependent analytical solution has been 

developed for the temperature distribution calculation in an infinite (solid and hollow) cylinder 

subjected to a thermal flux over a narrow surface arc segment. The solution relies on basics and 

research advances from the pertinent literature but develops a full, integrated approach that 

takes and analyses the process in subsequent steps, with different levels of complexity. The 

produced outcomes appear rather innovative, by themselves, in the specific scientific field and 

in the research theme under target. The analytical solution is consistently compared to Finite 

Element Method (FEM) modelling of the same ideal process, with comparisons in terms of 

effective representation and, most of all, of computational cost, which should be reduced to a 

minimum, given the target of the subsequent iterative inverse analysis. This solution has been 

then adapted to mimic the specific testing configuration conditions and further simplified to 

reduce the computational effort. 

Given the availability of comprehensive sets of material data and robust modelling of the 

physical processes, inverse analysis arises as an effective, fundamental tool, in order to 

determine the values of the physical parameters that are truly representative of the exchange 

phenomena that are involved in hot rolling. Thus, the target here is that of identifying the values 

of the model parameters, based on data from experimental tests, specifically from ring-on-ring 

tribometer tests. Hence, an algorithm of inverse analysis has been implemented to evaluate heat 

fluxes and relevant modelling parameters, through the minimization of the discrepancies 

between measured experimental results and analytical numerical simulation outcomes. The 
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developed methodology allows to effectively estimate the heat fluxes between contact surfaces 

under operating conditions similar to those occurring in hot deformation industrial processes 

such as hot rolling. 

In conclusion, in this dissertation a robust approach has been proposed to accurately 

quantify the characteristic parameters of heat flow occurring between tool and workpiece in a 

ring-on-ring tribometer, apt to reproduce hot working conditions typical of industrial hot rolling 

processes. In the current literature these parameters can be recorded as either very accurate but 

based on laboratory measurements taken under conditions that are really far away from 

industrial ones, or very rough, since they are depending on coarse measurements taken under 

industrial conditions. The proposed methodology aims at bridging this considerable gap. Since 

the detected frictional behavior under plant conditions appears to be effectively conditioned by 

local temperature variations in the contact zone, the work presented here appears as a decisive, 

fundamental step, in the quantitative characterization of contact phenomena in hot deformation 

processes, and in the detailed understanding of the mechanical contact conditions under hot 

rolling, with relevance in industrial contexts. 
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Chapter	1. Introduction	

The present work concerns a tribological investigation on the contact phenomena that arise in 

industrial hot working processes of steel production, with specific reference to hot rolling 

processes. The industrial need of parameters that control industrial production processes have 

stimulated several researches aimed at characterizing the most important phenomena, among 

which there appear the phenomena of energy transfer by contact, both mechanical and thermal. 

Starting from existing studies, new experimental and numerical methodologies have been 

developed here ,in order to reach accurate estimates of the parameters which describe such 

phenomena. 

1.1. General	framework	of	the	present	research	

Nowadays, the knowledge of the parameters that control industrial production processes 

represents really a key factor for the companies’ competitiveness. Indeed, only through this 

achievement it is possible to manage and, above all, to optimize the whole production cycle. 

However, the complexity of an industrial process and the absence of reliable data make the 

identification of these parameters particularly difficult to be realized in real industrial settings.  

The present research focuses on the characterization of crucial parameters typical of hot 

deformation processes, in particular of hot rolling, in the production of seamless pipes. During a 

hot process, temperature is above the metal recrystallization temperature. In this way, during the 

processing, deformed grains recrystallize, thus maintaining an isotropic microstructure and 

preventing the metal from undergoing work hardening. A clear advantage of hot working is that 

the material keeps soft and ductile, which means that the workpiece can be formed at lower 
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forces and larger deformations than in cold working. However, this requires a large amount of 

energy to heat the material and the dimensions tolerance and surface finishing may end-up 

poorer than for cold working operations. Moreover, the working tools are subjected to strong 

thermal and mechanical stresses, which entail severe tool wear.  

Instead, rolling is basically a metal forming process in which the metal stock is passed 

through one or more pairs of rotating (in opposite directions) cylinders, named rolls, to reduce 

the thickness and to make it uniform. Then, hot rolling is such a metal working process when it 

occurs at high temperature, where metal is soft and ductile. Hot rolling is a very important metal 

working condition used mainly for flat productions, as for metal sheets. However, hot rolled 

products can also be shaped as rods, wires, pipes or various profiles, such as beams and rails.  

Although modern rolling plants are endowed with sophisticated measuring systems that 

allow to monitoring various aspects of the hot rolling process, the accuracy of the available data 

may not be entirely acceptable, from the point view of either phenomenological investigations 

or, in some cases, of industrial process control. This is due to the fact that industrial 

environments are affected by severe conditions in terms of ambient temperature, 

electromagnetic noise, etc., which do not allow to achieve reliable signals. 

The present doctoral dissertation arises in such an industrial context and develops an 

innovative integrated methodology, based on ad-hoc laboratory measurements that allow both to 

analyze contact phenomena occurring during hot rolling and to achieve more accurate industrial 

parameter estimates, by a qualitative and quantitative description of the involved physical 

processes. To avoid data uncertainty given by rough and approximate industrial measurements, 

an innovative laboratory equipment apt to replicate in a controlled environment real working 

conditions has been designed and built in an industrial setting. Such experimental facility allows 

to investigate with great accuracy the contact conditions occurring between tool and workpiece 

during hot rolling. Hence, the focus of this thesis is on the characterization of the energy 

exchange, both mechanical and thermal, between tool and workpiece during a hot rolling 
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process, by means of an integrated experimental and analytical/numerical modelling approach, 

relying also on techniques of inverse analysis devoted to parameter identification.  

The experimental activities have been carried-out in this new laboratory facility. This is, 

basically, a ring-on-ring tribometer capable to replicate, in a controlled setting, typical industrial 

contact conditions in terms of contact pressure and rolling speed (with potential relative sliding). 

Moreover, the tribometer is equipped with an induction heating system, for each ring-sample, to 

replicate and control temperatures that can be observed in the industrial plant.  

Instead, the modelling approach consists of an analytical/numerical description of the 

experimental set-up, complemented by an inverse analysis procedure that allows to identify the 

unknown parameters governing the involved physical processes, specifically the various energy 

exchange phenomena. 

1.2. Specific	tribology	context	under	target	

The present dissertation context concerns a tribological investigation on the technical conditions 

that arise in industrial production processes of steel materials and components, with specific 

reference to hot rolling processes. Thereby, the understanding of physical phenomena and 

material behavior at the interface between working tool and workpiece material displays several 

significant implications in the industrial context, specifically in terms of effectiveness of the 

production process, maintaining costs and quality of the final product. This leads to a rising 

quest of analyzing such processes on a technical-scientific way, which opens-up true research 

scenarios in the present dedicated literature. In this thesis, the main phenomena under target are 

the characterization of friction and of heat transfer that occur for conditions typical of industrial 

production processes such as hot rolling of seamless steel pipes. 

In hot rolling industrial processes, many contact phenomena of a different nature take 

place between tool and workpiece. These phenomena overlap and their global outcome can be 

detected through the measurement of friction behavior. By simply computing the ratio between 
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the tangential friction force and the normal force exchanged by two bodies, under different 

contact conditions, it is possible to analyze the effect of a few key process parameters on the 

contact mechanical behavior. 

The present innovative experimental results that are achieved in the body of this work 

show the inadequacy of the so-called classical “Coulomb-Amonton’s law of friction” to 

describe the contact mechanical properties by a constant friction coefficient, evaluated as the 

ratio above. The transition phase from Coulomb’s law (effective at low normal loads) to the 

constant friction stress model (effective at high normal loads) was detected experimentally 

under hot rolling conditions of steel. Apparently, this is the first experimental confirmation in 

such a context. The experimental investigation develops a methodology apt to define a 

comprehensive friction law, and also to highlight some key variables, which can modify the 

mechanical interaction of the two bodies, such as sliding speed, surface oxidation, etc. Among 

these, the most important one is with no doubts temperature. In fact, temperature strongly 

influences the mechanical properties of the materials under contact and also promotes various 

chemical processes (such as surface oxidation, deterioration of any lubricants, etc.), thus 

resulting in wide changes of the mechanical response of the contact. 

Therefore, a full understanding of the phenomena that occur at the workpiece/tool interface 

cannot disregard a complete analysis of the thermal fields and of the heat flows between tool 

and workpiece. For this reason, most of the present original research project focusses on the 

implementation of an integrated experimental and modelling approach devoted to characterize 

temperature and heat flow distributions during tribological tests representing true plant 

conditions. A dedicated experimental activity has been carried-out and a mathematical 

description of the ring-on-ring tribological test has been developed, by solving analytically the 

heat conduction equation in cylindrical coordinates. 

In particular, this last modelization approach has led to a new two-dimensional time-

dependent analytical solution which allows to compute the temperature distribution in an 

infinite cylinder subjected to a thermal flux over a narrow surface arc segment, with a 
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considerably lower computational time than for other solving approaches, for instance by the 

use of the Finite Element Method (FEM). The solution relies on basics and research advances 

from the pertinent literature but develops a full, integrated approach that takes and analyses the 

process in subsequent steps, with different levels of complexity, producing in the end outcomes 

that appear rather innovative, by themselves, in the specific scientific field. Subsequently, by 

integrating the experimental results with the analytical solution through an inverse analysis 

algorithm, heat fluxes have been characterized with higher accuracy than that currently 

available in the literature, with appropriate quantitative identification of key physical process 

parameters. 

1.3. State	 of	 the	 art	 of	 the	 present	 research	 and	

statement	of	purpose	

The increasingly widespread adoption of numerical models for industrial process description 

and simulation, optimization and control has pushed to achieve an increasing modelling detail, 

with consequent quest of characterization of reliable and accurate process parameters. Basically, 

in the present research work focus is made, among others, on two of these important parameters: 

the Coefficient of Friction (CoF) and the Heat Transfer Coefficient (htc). 

Regarding the CoF and attached friction law, it has been noted above that Coulomb’s 

law [27] cannot explain exhaustively the mechanical interaction between tool and workpiece 

during full hot rolling processes. However, despite that other more appropriate friction laws 

could be used in hot deformation process modelling (among these the law of 

Wanheim and Bay [97]), there are no reliable databases supplying real-valued parameters for 

such laws. This is due to the very nature of the friction phenomenon itself that is strongly 

influenced by many factors, some of which become quite difficult to be controlled in practice, 

especially at high temperatures. For this reason, while it may be feasible to identify a suitable 

friction law, it actually looks quite challenging to attribute to its various parameters correct 
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numerical values. In fact, they should be measured under conditions that run as closer as 

possible to those which actually occur during industrial hot rolling processes. 

Similar arguments could be outlined for the determination of the htc. It may be straight-

forward to introduce a mathematical law of the phenomenon, but it is actually harder to identify 

the law’s characteristic parameters. However, given the great scientific and industrial interest on 

this topic, several evaluations of this parameter may be found in the literature [63]. Nevertheless, 

these estimates may be misleading due to the conditions in which they have been determined. In 

fact, in the available literature, there appear either evaluations that are very accurate but not very 

representative of industrial process conditions [66], or estimates based on rough industrial 

measurements [84], much less accurate and, especially, not easily applicable to different plant 

conditions, because of their specificity of the contact conditions in which they were determined. 

In the present thesis, experimental activities aimed at assigning suitable values to the CoF 

in hot rolling conditions have shown that the contact mechanical behavior is strongly influenced 

by the thermal fields. By investigating the mechanical interaction between tool and workpiece, 

it has been found that the description of the mechanical behavior requires a full knowledge of 

the various heat flows. Hence, it is necessary to characterize the parameter describing this 

phenomenon, namely the htc. To determine with sufficient accuracy such a coefficient, a 

devoted integrated experimental and numerical methodology has been developed. By defining a 

methodology that would allow to replicate in the laboratory typical plant conditions, accurate 

estimates of the phenomena that occur in extreme industrial conditions can be achieved, by 

filling the gap that is currently detectable in the present literature. 
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1.4. Doctoral	thesis	structure	

The present doctoral dissertation is organized as briefly reported below, with specific reference 

to the scientific and technical content of each chapter. 

First of all, in Chapter 2, the state of the art concerning both mechanical and thermal 

contact phenomena is introduced. Starting from a brief historical point of view, the two aspects 

will be investigated in the industrial field of relevance, with particular attention to highlight the 

hot working conditions. 

In Chapter 3, after introducing the innovative laboratory equipment (ring-on-ring 

tribometer), the experimental results concerning the friction coefficient behavior are presented 

under few rolling parameter variations. The CoF dependency on some most influential process 

parameters is investigated and, among these, the temperature effect is analyzed in much detail. 

So, in the same chapter, in light of the previous results, an experimental methodology is 

introduced to investigate thermal flows occurring at the interface. 

These heat flows could be assessed quantitatively only by a parallel analytical/numerical 

analysis based on an mathematical description of the idealized tribometer thermal problem. The 

essential mathematical model is identified in the analytical solution of the heat conduction 

equation in cylindrical coordinates. So, an original analytical solution of the idealized 

experimental test is developed in Chapter 4. It is shown how the obtained solution computes the 

temperature distribution in much less computational time than that necessary for other 

approaches, like e.g. by FEM simulations, with, at the same time, no loss of accuracy. After 

introducing the idealized solution, further model developments are illustrated. So, radiation 

contributions, which are very important at high temperatures, convective cooling estimation, 

internal boundary condition approximation, etc. are considered and added to the mathematical 

model. These improvements are necessary to make the model, from one side, less idealized and 

as close as possible to the real configuration and, on the other side, to make it much competitive 

as possible, from the point of view of required computational time. This is due to the fact that 
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the analytical solution is then going to make reference for the objective function evaluation of 

the inverse analysis procedure to be implemented and run next. 

Before illustrating the algorithm implemented for the heat flow identification, some 

essential concepts of the adopted inverse analysis procedure are introduced in Chapter 5, 

together with some basic notions behind the inverse analysis application to the present thermal 

problem. Then, the implemented optimization method is briefly described in terms of theoretical 

aspects of the chosen algorithm and of practical implementation in the computational 

environment. 

Finally, in Chapter 6 results obtained by applying the algorithm of inverse analysis relying 

on the experimental results are presented, in terms of calibration of the htc. The capability to 

estimate radiation, convective and internal heat fluxes allows to keep the htc characterization 

detached from other phenomena, so as to achieve a clear value of this parameter. Moreover, 

particular attention is paid to the contact area estimation, for which a dedicated FEM model has 

been developed. Thanks to this model, the dependency on the contact pressure is investigated. 

Chapter 7 summarizes all the work done and presented in this doctoral dissertation, 

focusing on methodological innovations introduced in both experimental and 

analytical/numerical approaches. The results obtained so far pave the way for further 

developments in various fields. So, in the end, some possible advances, endorsed by this work, 

are also outlined. 

Lastly, in Appendix A the industrial context in which this work has been developed is 

presented. In Appendix B some fundamental aspects on the theory of heat conduction in solids 

are reported, in order to allow for a full understanding of the analytical solution developed in 

Chapter 4. With the same aim, in Appendix C the separation of variable method is presented. 

Finally, some basic properties of the Bessel functions, used extensively in the analytical solution, 

are presented as well in Appendix D. 
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Chapter	2. Fundamentals	 on	 key	 physical	

processes	 in	 thermo-tribological	

phenomena	

The phenomena at the surfaces under tribological contact include the transfer of energy as the 

result of the actions of normal and shearing forces and of temperature differences. Effects of 

mechanical energy exchanges are described by means of dedicated friction models; instead, 

thermal energy exchanges are depicted by heat flows governed by specific parameters. In this 

chapter, historical approaches to these two energy transfer phenomena are briefly discussed. 

2.1. Friction	modelling:	an	introduction	

The term “Tribology” was suggested in 1966 by Peter Jost in his milestone report [55] as a 

codified name to designate research and engineering applications related to describe phenomena 

of contact, friction and wear. The word is derived from the Greek word tribos meaning rubbing. 

So the literal translation would be “the science of rubbing”.  

The Jost Report [55] gave some economic considerations about tribology investigations. In 

1966, it estimated an annual cost of £515 million that insufficient understanding or 

inappropriate applications of tribological principles may cause. In 1978, Czichos [28] assessed 

that nearly 30% of the energy generated in the industrialized world is consumed by friction and 

then the losses constitute a significant portion of the gross national product. Similarly, in 1982, 

Rabinowicz [77] evaluated that up to 6% of the gross national product was lost because of 

friction and wear. Further details of various cost estimates are available in Rabinowicz [78]. 
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One may conclude that investments in research, concerning the fundamental mechanisms 

of tribology, may result in very good returns. Hence, the purpose of research in tribology is 

understandably the minimization and elimination of losses resulting from friction and wear at all 

levels of technology where the rubbing of surfaces is involved. Research in tribology leads to 

greater plant efficiency, better performance, fewer breakdowns, and significant savings. 

2.1.1. Brief	history	of	the	physics	of	friction	

Apart from the reference name, tribology is actually an ancient discipline. Tribological 

phenomena accompany the progress of humanity since its beginning: for instance, tribology is 

implied in the creation of fire through frictional heating; it is involved in the discovery of the 

wheel and plays a crucial role in the use of fluids to reduce frictional effects. However, the 

rational developments of this branch of knowledge took basically place starting from the 

contributions of Leonardo da Vinci during the Renaissance [76]. 

In his Codex-Madrid I, Leonardo da Vinci describes the ball-bearing, which he invented, 

and the composition of a low-friction alloy, as well as his experimental examinations of friction 

and wear phenomena. He was the first scientist and engineer who persistently and quantitatively 

attemped to formulate the laws of friction. He arrived at the main conclusion that can be 

summarized as two fundamental Laws of Friction [31]: 

 The frictional force is proportional to the normal force, or load. 

 The frictional force is independent of the contact surface area. 

Leonardo da Vinci was the first to introduce the term Coefficient of Friction (CoF) and to 

experimentally determine it to a value of 1 4⁄ . 

These results were nearly forgotten at the time and only around 200 years later, were 

rediscovered in 1699 by the French physicist Guillaume Amontons [4]. The stated 

proportionality of the frictional force to the normal force is, therefore, known after as 

“Amontons’ Law of Friction”.  
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Leonard Euler occupied himself too with friction, from both the mathematical and 

experimental points of view [32]. He introduced the differentiation between static frictional 

forces and kinematic frictional forces and solved the problem of rope friction, probably the first 

contact problem to be analytically solved in history. He was the first to lay down the 

foundations of the mathematical way of dealing with the law of dry friction and, in this way, he 

promoted further developments. Moreover, he introduced the symbol m to indicate the CoF as 

the ratio between frictional and normal forces. Euler worked with the idea that friction 

originates from the interlocking between small triangular irregularities and that the CoF is equal 

to the slope of these irregularities. This understanding survived, in different variations, for a 

hundred years and it is also adopted nowadays as the so-called “Tomlinson Model”, in 

connection with friction at the atomic scale.  

An outstanding and still relevant contribution to the examination of dry friction was 

achieved by French engineer Charles Augustin Coulomb. In fact, the law of dry friction actually 

carries on his name. Coulomb confirmed Amontons’ results and established that, to a first order 

approximation, sliding friction is independent of the sliding speed. He undertook a very exact 

quantitative examination of dry friction lubrication, sliding speed, resting time for static friction, 

atmospheric humidity, and temperature. Only since the appearance of his book [27] the 

differentiation between kinematic and static friction could be quantitatively substantiated and 

established. Coulomb used the same idea of the origin of friction as that of Euler, but added 

another contribution to friction: adhesion. Furthermore, Coulomb established deviations from 

the known simple law of friction; for example, he found out that the static force grows with the 

amount of time along which the object has remained stationary. His book contained practically 

everything that originated the original branches of tribology. 

Examinations of rolling friction have not played a prominent role in history as that of 

sliding friction, probably because rolling friction is much smaller in magnitude than sliding 

friction and, therefore, less annoying. The first ideas on the nature of rolling friction for rolling 
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on plastically deformable bodies, of which the most important elements are still considered to 

be correct, came from Robert Hooke [51]. Nevertheless, Osborne Reynolds [79] was the first to 

experimentally examine the details of the events happening in the contact area during rolling 

contact and established that on a driven wheel, there are always areas in which the two bodies 

are in no-slip contact and areas where slip takes place. It was the first attempt to put tribological 

contact under a magnifying glass and at the same time the end of the strict differentiation 

between static friction and kinematic friction. Reynolds accounted for the energy loss during 

rolling with the existence of partial sliding. A quantitative theory could later be achieved by 

Carter [20] in 1926 only after the foundations of contact mechanics were laid by Hertz, as 

discussed next. 

Above all others, classical contact mechanics is associated with the name of 

Heinrich Hertz [48]. In 1882, Hertz solved the problem of contact between two elastic bodies 

with curved surfaces. Even today, this classical result forms a basis for contact mechanics. It 

took almost a century until Johnson, Kendall, and Roberts found a similar solution for adhesive 

contact ([54], JKR-Theory). This may come from the general observation that solid bodies do 

not adhere to each another. Only after the development of micro-technology, did engineers run 

into the problem of adhesion.  

An advance in the understanding of contact mechanics, as well as of dry friction, in the 

middle of the twentieth century is bound to two further names: Bowden and Tabor [16]. They 

were the first researchers to advise on the importance of the roughness of the surfaces of the 

bodies in contact. Because of this roughness, the real contact area between the two bodies is 

typically orders of magnitude smaller than that of the apparent contact area. This understanding 

abruptly changed the direction of many tribological examinations and again brought about 

Coulomb’s old idea of adhesion being a possible mechanism of friction. In 1950, Bowden and 

Tabor proposed a concept which suggested that the origin of sliding friction between clean, 

metallic surfaces is explained through the formation and shearing of cold weld junctions. 

According to this understanding, the CoF is approximately equal to the ratio of critical shear 
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stress to hardness and must be around 1/6 in isotropic, plastic materials. For many non-

lubricated metallic pairings (e.g. steel with steel, steel with bronze, steel with iron, etc.), the 

CoF actually does take a value in the order of � ≃ 0.17 . 

The works of Bowden and Tabor triggered an entirely new line of theory of contact 

mechanics regarding rough surfaces. As a pioneering work on this subject, mention should be 

made to the works of Archard [5], who concluded that the contact area between rough elastic 

surfaces is approximately proportional to the normal force. Further important contributions were 

made by Greenwood and Williamson [42], Bush et al.[18], and Persson et al. [73]. The main 

result of these examinations was that the real contact areas of rough surfaces are approximately 

proportional to the normal force, while the conditions in individual micro-contacts (pressure, 

size of micro-contacts) depend only weakly on the normal force. 

Contact mechanics definitely forms the foundations of today’s understanding of frictional 

phenomena. In history, frictional phenomena were earlier and more fundamentally examined in 

comparison to pure contact mechanical aspects. 

2.1.2. Friction	modelling	in	hot	working	

The usual choice of friction coefficient modelling leads to the Coulomb-Amontons’ law 

� = �/�, which expresses the CoF as the ratio between the interfacial shear stress � and the 

contact pressure, or interfacial pressure �. However, sometimes this CoF may not be the best 

description of interfacial phenomena (Lenard [62]). For example, in hot metal working, the 

normal pressure � may increase significantly beyond the material flow strength. The interfacial 

shear stress � may also increase but it cannot rise above the metal’s yield strength in pure shear; 

this imbalance leads to unrepresentative ratios. The problem may be overcome instead by the 

use of Tresca’s friction factor m. The friction factor m is defined as the ratio of the interfacial 

shear stress to the metal flow strength � in pure shear, � = �/�. Nevertheless, Coulomb’s CoF 

is widely used and is also often adopted in the mathematical modeling. Neither the Coulomb-

Amontons’ model nor the constant friction model are fully comprehensive. Therefore, in the 
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literature, several approaches were proposed to bridge the gap between these two models. For 

instance, to model friction in metal working, Nadai [68] proposed a viscous slipping friction 

proportional to the relative slip velocity; instead, Orowan [70] dived the contact areas into two 

zones and used a different friction model in each of them: in one, sticking occurs (constant 

friction model); in the other, dry slipping occurs (Coulomb law) and so on. 

In their works, Wanheim and Bay [95], [96] and [97] introduced a nonlinear continuous 

relationship between frictional and normal stresses. Applying the slip-line method for the 

analysis of plastic deformation of workpiece surface asperities in contact with a smooth tool 

surface, these authors proposed in [96] and [97] a general friction model, confirming that 

Coulomb friction is valid at low normal pressures, whereas the friction stress goes towards a 

constant value at high normal pressures. They proposed the following analytical expression for 

the friction stress: 

�

�
=

�∗

�

� ��⁄

�∗ ��⁄
	 (	2.1	)	

for � ≤ �∗, and 

�

�
=

�∗

�
+ �� −

�∗

�
� �1 − �

��∗ ��⁄ �� ��⁄ �∙�∗ �⁄

(���∗ �⁄ )∙�∗ ��⁄ �	 (	2.2	)	

for � > �∗, where �� is the yield stress, 
�

�
 and 

�

��
 are called the dimensionless friction stress and 

the dimensionless normal pressure, respectively. The limit of proportionality between friction 

stress and normal pressure (�∗, �∗) is defined by [11]: 

�∗

�
= 1 − √1 − �	 (	2.3	)	

and: 

�∗

��
=

1 +
�
2 + ������ � + √1 − ��

√3�1 + √1 − ��
 (	2.4	)	

The reliability of this approach for bulk metal forming was confirmed numerically by Petersen 

et al. [74]. This approach was applied also to model the pressure distribution in plate rolling and 

cross shear plate rolling processes (Christensen, Everfelt and Bay [23], Zhang and Bay [107]). 
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Moreover, there are different formulas available in the literature for the Coulombian CoF 

estimation in hot rolling conditions, which attempt to take into account the operating conditions 

such as temperature or sliding speed. However, these correlations are rather empirical and often 

based on not reliable data. Among available correlations, it is worthwhile to point-out Roberts’s 

formula [80], which provides an increasing relation between CoF and temperature � (in °C): 

� = 2.7 ∙ 10�	� − 0.08	 (	2.5	)	

Geleji’s formula, instead, indicates the opposite trend with respect to the influence of 

temperature [101]: 

� = 1.05 − 0.0005	� − 0.056	�	 (	2.6	)	

where � is the temperature in °F and � is the rolling velocity in m/s. The relation was obtained 

for steel rolls by applying an inverse method matching the measured and calculated roll forces. 

For doubled poured and cast rolls, the formula for the estimation of the CoF is slightly different: 

� = 0.94 − 0.0005	� − 0.056	�	 (	2.7	)	

and it changes again for ground steel rolls: 

� = 0.82 − 0.0005	� − 0.056�	 (	2.8	)	

These relations, indicating a decreasing CoF with increasing temperature, are in accordance 

with the experimental results obtained by Rowe [82]: 

� = 0.84 − 0.0004	�	 (	2.9	)	

Eq. ( 2.9 ) was obtained for temperatures higher than 700 °C. 

A comparison of the CoF obtained using formulas ( 2.5 )-( 2.9 ) indicates that such 

relations may provide large differences for different rolling temperatures and therefore may be 

not completely reliable. 
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2.2. Contact	heat	exchange	phenomena:	

an	introduction	

Contact heat transfer is present at almost every contact between two surfaces. The transfer of 

thermal energy is of equal importance to the transfer of forces and thus it forms a significant 

branch of tribology (Lenard [61]). There is a broad variety of applications that have been 

investigated in the last 50 years or more. 

2.2.1. A	mechanism	of	contact	heat	transfer:		

Thermal	Contact	Conductance	

Thermal contact conductance is the mechanism which is deputed to describe heat conduction 

between solid bodies under thermal contact. The thermal contact conductance coefficient, ℎ�, 

represents a property indicating the thermal conductivity, or the ability to conduct heat, between 

two bodies in contact. 

Looking at the microscopic level, a surface that has undergone certain finishing operations 

is characterized by three properties: roughness, waviness and flatness. Among these, roughness 

is of most importance because it prevents perfect contact between two surfaces. That means that 

contact is only obtained at discrete points, separated by relatively large gaps. This not only 

reduces the actual contact area, but may also largely influence the total heat flow across the 

interface through the gases/fluids filling these gaps. 

As stated by Madhusudana [63], the heat transfer through two bodies in contact may be 

considered to be composed only of three components: 

 conduction though the actual contact spot; 

 conduction through the interstitial medium, such as air; 

 radiation. 

The interfacial gap thickness, generally in the order of 1	��, is too small and heat transfer 

by convection cannot take place. Radiation can be neglected, unless the temperature at the joint 
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is in excess of 300 °C, but it may also be significant if the temperature difference across the 

interface is large. It is often considered that the heat conduction through the actual contact spots 

is the only significant component. However, the area available for the flow through the 

interstitial gaps is frequently 2 to 4 orders of magnitude greater than that of the actual contact 

area [63]. Hence, the heat flow through the gaps cannot be neglected, especially if the solids are 

relatively poor conductors such as for stainless steel, or if the interface medium is a good 

conductor. 

Thermal contact conductance, ℎ, is defined as the ratio of the heat flux (�/�) to the 

additional temperature drop (Δ�) due to the presence of an imperfect joint (Holman [50]): 

ℎ = �/(� ∙ Δ�) (	2.10	)	

In Eq. ( 2.10 ), � is the total heat flow and � is the nominal contact area. 

Some researchers define the thermal contact resistance � that is simply the reciprocal of 

the thermal contact conductance: 

� = 1 ℎ⁄ = (� ∙ Δ�)/� (	2.11	)	

If it is possible to separate the heat flow through the solid spots, ��, from the heat flow 

through the fluid in the gaps ��, such that: 

� = �� + �� 
(	2.12	)	

Then, the solid spot conductance can be defined as: 

ℎ� = ��/(� ∙ Δ�) (	2.13	)	

and the gap fluid conductance as: 

ℎ� = ��/(� ∙ Δ�) 
(	2.14	)	

Then, frorm Eq. ( 2.10 ): 

ℎ = ℎ� + ℎ� 
(	2.15	)	

The heat flow through the solid spots �� is usually determined by conducting the heat 

transfer test under vacuum. �� is determined by conducting the test in the work environment 

and by taking the difference. However, it has been appreciated that the two flows are not 
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independent [63]. In fact, thermal contact conductance is a complicated phenomenon, 

influenced by many factors. Besides surface roughness and interstitial material, as previously 

discussed, the experience shows that thermal contact conductance is related to the apparent 

contact pressure (the real one depends on roughness) and/or to the hardness of the softer 

contacting material (Cooper et al. [26], Wusatowski [102]) and to the surface deformation 

(Williamson and Majumdar [100]). 

An earlier calculation of the actual contact heat transfer was presented by 

Fenech and Rosenhow [33]. The first model considering heat flow through several contact spots 

due to surface roughness was proposed by Cooper et al. [26]. Instead, the first model 

considering elastic and plastic deformation of the surface peaks was proposed by Mikic [66]. 

Since then, numerous authors have developed contact models for specific applications, 

providing a huge amount of even more accurate estimations. However, only a few of them have 

considered high loads and high pressures. Before Fieberg and Kneer [35], validated models 

existed only for contact pressures up to 7 MPa. For this reason, these authors developed a new 

approach based on transient temperature measurements to characterize thermal contact 

conductance under contact pressures up to 70 MPa and temperatures up to 280 °C. Anyway, this 

work has shed light on the non-applicability of these methodologies in the characterization of 

industrial hot working conditions. 

Thermal contact conductance is an important factor in a variety of applications, largely 

because many physical systems contain a mechanical combination of two materials. Some of 

the fields where the contact conductance is of importance are: in industry, in particular for 

nuclear reactor cooling, gas turbine cooling, internal combustion engines, heat exchangers and 

so on; in aeronautical engineering for hypersonic flight vehicles, thermal supervision of space 

vehicles; in electronics, where heat transfer is an area of great importance due the present trend 

toward microminiaturization and consequent increase in power densities (Madhusudana [63]). 
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2.2.2. Heat	transfer	in	hot	working	processes	

In hot deformation processes the thermal history of the workpiece has a profound influence on 

the final properties of the products, see [58]. There appears a strong industrial need for more 

accurate, predictive, computer-based models of these processes. However, these models are 

inadequate due to a coarse and sometime wrong definition of mechanical and thermal boundary 

conditions, namely friction and heat transfer respectively. In particular, heat conduction to the 

work rolls, as well as radiation to the environment, convection to descaling and backwash 

sprays have been considered to be the main modes of heat loss during hot strip rolling. 

The complexity of the interface between tool and workpiece makes measurements very 

difficult. The direct measurement of heat transfer, and often also of friction, is rather impractical, 

for most industrial hot metal-forming operations, and even for many conducted in the laboratory. 

Due to such complications, heat exchange is not usually described through the thermal contact 

conductance that considered only the real fraction exchanged by contact, but by a less refined 

Heat Transfer Coefficient (htc) that includes thermal effects. Then the htc can be defined as: 

ℎ�� = ��/(�� ∙ Δ�) (	2.16	)	

where �� is the total amount of heat transferred by contact, �� the contact area and, finally, Δ� 

is the temperature difference between the two surfaces. Thus, in the absence of detailed insight 

and with a lack of a fundamental understanding of the mechanisms of heat transfer at a moving 

interface, most modelers assume a simpler description, or an average value, of the htc. 

In the past years, several efforts have been made to understand more about heat transfer 

phenomena during hot working processes, and in particular during hot rolling. For example, it 

has been observed that the contacting points between two surfaces serve as paths of lower 

resistance for heat flow, in comparison to adjacent regions where heat transfer occurs by 

conduction through air gaps (Samarasekera [84]). Based on experimental results, 

Devadas et al. [30] concluded that the variation of the htc with thickness reduction, rolling 

speed and lubrication observed through pilot mill tests on stainless steel could be explained on 
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the basis of the influence of these rolling parameters on the actual contact area. As expected, the 

interface heat transfer coefficient increases during rolling, because the real area of contact 

between two surfaces under applied load increases with higher pressure. The influence of other 

factors, such as roll reduction, rolling temperature, roll speed, roll and rolled material and their 

roughness, can be related to their effect on the roll pressure distribution through the roll gap. It 

has been found that the average htc is linearly related to the mean roll pressure (Chen et al. [22]). 

The relationship between htc and mean pressure can be used to determine the magnitude of the 

htc in industrial rolling, from an estimate of the rolling load. According to the estimation, the 

heat losses to the work rolls during rough rolling (i.e., shortly after the stock leaves the 

reheating furnace) can be more than 30%. This shows the significance of accurately 

characterizing the interface htc in the roll bite. 

 
Figure 2.1: Influence of the mean roll pressure on the average heat transfer coefficient 

 during hot rolling [22]. 

However, despite current efforts, the difficulties of making laboratory measurements, 

combined with the complexity of the tool-workpiece interface, result in a wide range of reported 

values of the htc, see e.g. Table 2-1 (Beynon [14]). In recent years, the increase of the available 

computing power has led to the development of numerical models that allow to predict 

temperature and thermal flow of a roll under working conditions. For instance, Guo [36] used a 

semi-analytical method involving Laplace and inverse transforms to pursue the unsteady 
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solution for typical boundary conditions. In order to optimize the geometry of the water spray of 

the cooling system, Saboonchi and Abbaspour [83] proposed a simplified model, by the Finite 

Difference Method (FDM), which computes the three-dimensional temperature field. The 

equation is computed along the circumferential direction with respect to time. Zhang et al. [105] 

proposed the FDM or the Finite Element Method (FEM) to predict the temperature field in the 

roll and the thermal crown, by neglecting the variations along the circumferential direction but 

by taking into account variations along the axis of the roll. Montmitonnet [67] also proposed a 

predictive FEM model of the whole rolling process, by coupling the strip and the roll thermal 

behaviors with iterative methods. 

Reference ���		[�� ���⁄ ] 

Malinowski, Lenard and Davies 
(1984) 

2÷20 

Pietrzyk and Lenard 
(1989) 

5÷50 

Chen, Samarasekera and Hawbolt 
(1993) 

10÷260 

Stevens, Ivens and Harper 
(1971) 

18÷38 

Murata, Morise, Mitsutsuka, Haito, Kumatsu and Shida 
(1984) 

23÷82 

Sellars 
(1985) 

200 

Table 2-1: heat transfer coefficent between roll and rolled material 

 for the hot rolling of steel, from Beynon [14]. 

The availability of complex models for the rolling process simulation provides the 

capability to achieve a more accurate evaluation of the htc by means of inverse analysis. In fact, 

the use of such solutions as objective function in dedicated inverse analysis algorithms allows to 

precisely characterize the htc related to the plant from which experimental data come from. 

Many inverse methods are based on matching the input (measurements) and output of the model 

equations. The least square method and the conjugate gradient method are often used towards 

this purpose. Huang et al. [52] proposed an unsteady-state inverse analysis based on the 

conjugate gradient method, to obtain the heat fluxes in the strip-roll arc of contact, by measuring 
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inside the roll body with a fully embedded local sensor. The iterative method consists in solving 

numerically the direct problem (or objective function) on each iteration, the sensitivity problem 

and the adjoin problem in minimizing the error between the estimated temperatures and the 

measured temperatures. Tseng et al. [91] proposed an inverse FEM assessment. The 

measurements are used to quantify the heat flux in the roll gap. The heat transfer coefficient in 

the spray portion was evaluated through an inverse heat conduction technique. Keanini [57] 

proposed three-dimensional inverse methods to evaluate the heat flux entering the roll, by 

measuring at several different locations. These contributions were based on the FDM or the 

FEM, with matrix forms and least square method. More recently, Chen and Yang [21] proposed 

a 2D steady approach based on the conjugate gradient technique. Since the computation times 

do not allow for a real time evaluation, the time dependence was neglected. Moreover, a recent 

two-dimensional semi-analytical inverse method adapted to rotating cylinders has been 

proposed and applied by Volle et al. [93] and Gradeck et al. [17]. This method is based on 

Fourier and Laplace transforms of the unsteady heat equation; then, the deconvolution is 

performed with a numerical algorithm. Minimization, between the measured and calculated 

temperatures, is performed with least square methods and regularized with classical techniques. 

Very recently Weisz-Patrault et al. [94] published a fully analytical 2D (radial and 

circumferential directions) inverse method, by considering only one thermocouple embedded 

inside the roll, and dealt with the rolling conditions. The method was very fast and relied on the 

2D unsteady heat equation. 

Although these methods allow to achieve more refined parameters, these are still subjected 

to measurement errors typical of the plant and, above all, these approaches do not “guarantee” a 

“general” result. In fact, this kind of parameter characterization is performed on data coming 

from a specific mill, or pilot mill, and so, the results work only for the specific plant from which 

experimental data come from. Moreover, since they use a (pilot) mill instead of a laboratory 

equipment, this does not allow for an influence analysis on most contact parameters. 
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Chapter	3. Experimental	 approach	 at	 the	

tribometer	scale	

An innovative high-temperature ring-on-ring tribometer has been specifically designed and 

assembled in order to analyze thermo-mechanical phenomena occurring during hot processes. 

Thermal and mechanical behavior are analyzed on this device through two dedicated kinds of 

tribological tests. In this section, after a brief explanation of the laboratory equipment, an 

example of the mechanical interaction analysis is provided. This allows, from one side, to 

highlight the device’s capabilities and, on the other side, to introduce the impact of thermal 

phenomena in the surface interactions. Then, the experimental methodology developed to 

analyze the thermal effect occurring at the contact is presented. 

3.1. Ring-on-ring	implemented	laboratory	facilities	

Aiming at evaluating friction coefficient and heat transfer coefficient trends at variable loading 

conditions, experiments were run on a newly-assembled industrial tribometer, designed on 

purpose as a pilot plant towards assessing wear and friction behaviour of tools under real hot 

rolling contact conditions. In particular, high temperature tests were carried-out with a Ring-on-

Ring testing configuration, as schematically illustrated in Figure 3.1. 

A sample, which is simply a ring or a disc, representing the hot material is mounted on an 

axis; instead, samples representing the working tool, as a piercing plug or mandrel, are mounted 

on the other axis. Each axis is driven by a motor in order to achieve a sliding speed from 0 m/s, 

which is equivalent to a pure rolling condition, up to 5 m/s, so as to scan the entire industrial 

range. 
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Figure 3.1: Ring-on-ring configuration for tribological testing at high temperature [88]. 

Samples are put in contact through a pneumatic cylinder able to reach Normal Loads up to 

7 kN. That allows to reach the yield condition in the contact area close to the contact conditions 

occurring during hot deformation processes. To replicate plant conditions as closer as possible, 

the device is equipped with an induction heater for each sample, regulated by a closed loop 

control based on pyrometer measurements, in order to measure and, possibly, to control the 

samples’ thermal cycle. The main induction heaters can heat the sample up to 1200 °C. 

Moreover, in order to reproduce the tools thermal cycle accurately, this machine is equipped 

with a cooling system composed by nozzles able to spray both water and compressed air 

directly on the samples’ surface. 

Friction is measured through signals coming from load cells that constitute also the support 

structure for one of the two samples. These cells measure the loads applied and exchanged 

between the samples in contact. In particular, they measure the applied normal load and the 

tangential one but also verify any misalignment between the samples in contact. 

3.2. Test	design	and	set-up	

The ad-hoc designed tribometer is a versatile apparatus allowing to analyze many different 

phenomena occurring during hot working processes. Each phenomenon requires a specific test 
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design in order to highlight the most relevant factors affecting the phenomenon under target. In 

this work, an experimental method was tailored to assess friction coefficient measurements for 

the case of piercing of hot steel billets by means of plugs in seamless pipe production (presented 

in [88]). The achieved experimental results show that frictional behavior is strongly influenced 

by temperature. So, a second methodology was tailored to assess the thermal condition. In 

particular, this methodology focuses on the characterization of the so-called heat-transfer 

coefficient under high temperature and severe contact pressure conditions (presented in [89]). 

3.2.1. Friction	behavior	in	the	piercing	process	

Manufacturing of seamless pipes through the well-known piercing process (also named 

Mannesmann process) is performed by feeding a steel billet into a piercer, thus generating a 

hollow through the use of piercing plugs (further details about seamless pipes manufacturing 

can be found in Appendix A). During hot piercing, plugs undergo severe thermo-mechanical 

working conditions at the surface, leading to exceed the yield strength, with consequent onset of 

plastic deformation. Under these conditions, plug wear is severe and the tool profile rapidly 

evolves into shapes that can no longer withstand the piercing process, with consequent strong 

reduction of process efficiency and limits in the production. The piercing time required to 

achieve the critical working conditions represents therefore on upper limit, beyond which the 

steel plugs show a reduced service life. 

To identify the most impacting parameters which affect the plug working conditions, 

mechanical energy transfers between plug and pierced material were analyzed in terms of 

frictional behavior. In particular, the case of plugs coated by an oxide layer were considered. 

During hot working, oxide acts as a natural lubricant and also provides a thermal barrier, by 

protecting the substrate from overheating due to both friction work and heat transfer with the 

hot billet. 
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3.2.1.1. Experimental	procedure	

To investigate the piercing condition, a devoted test procedure was setup. Ring-shaped samples 

of 80 mm diameter, which were representing the plug in the piercing process, were cyclically 

put in contact under sliding conditions against a steel ring of 140 mm diameter, induction heated 

to about 1100 °C, representing the steel billet. Aiming at being representative of true industrial 

tribological couplings between piercing plug and hot billet, samples were machined directly 

from steel plugs and, prior of being tested, subjected to oxidation treatments in the same 

industrial furnaces where industrial piercing plugs are truly treated. About the billet material, 

two steels used for seamless pipe production were selected, thus reproducing two typical 

industrial piercing conditions. The rings were machined from bars of carbon steel (0.40%C, 

called C40) on one side and high-alloyed steel (ASTM A335 P91) on the other side. 

Normal load was applied by a pneumatic piston, ranging from 0.5 kN to 3 kN. Rotation 

speeds were tuned in the attempt of get sliding speeds of 0.3 m/s, 0.9 m/s and 2.7 m/s, thus to 

scan possible hot contact conditions during the piercing process. During the time contact with 

the other ring, the temperature of the sample representing the steel rose from room temperature 

up to about 900 °C. Its surface temperature was measured in the middle of the specimen width 

through a pyrometer whose emissivity � was set to a constant value of 0.75. At the end of each 

contact step, which lasts 180 s, the sample representing the plug was water cooled, as it occurs 

in the industrial process. Five working cycles were repeated for each testing condition. 

Experimental friction coefficients were calculated by the ratio between the measured 

frictional force T and the applied normal load �, as recorded along the contact phase:  

���� =
�

�
	 (	3.1	)	

Temperatures of the wearable sample, as well as chemical composition of the counterbody 

and relative sliding speed, were thus taken into account to assess the behaviour of the frictional 

stresses which the plug undergoes during the piercing process. 
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3.2.2. Thermal	phenomena	in	hot	rolling	

A different testing design was needed for the analysis of thermal phenomena occurring during 

hot deformation processes. The methodology developed to investigate heat transfer by contact 

consisted, basically, in a controlled contact between a disc kept at a constant temperature (hot 

disc) and another disc whose temperature is only measured (cold disc). The contact was hold in 

the absence of friction. So, tests were carried out at a zero slide/roll ratio, corresponding to pure 

rolling conditions. During the test, cold disc temperature rises up due to heat transferred by 

contact and to the other thermal contributions, like convection or radiation. Long-runs were 

needed to appreciate significant temperature variations. 

Two discs of carbon steel (0.40% of carbon) were employed. Their dimensions were: 

120 mm diameter and 20 mm wide (hot disc); 50 mm diameter and 34 mm wide (cold disc). All 

specimens presented a surface finishing from smooth lathe machining. Likewise for the contact 

duration, the cold disc dimensions were chosen to achieve an appreciable surface temperature 

increase under the test conditions.  

Essentially, tests were carried out as follows. Initially, the rotating discs were put very 

close (but not in contact) and heated up separately and in the absence of contact, to target 

surface temperatures which were different for the hot disc and for the cold disc, respectively. 

This step duration was enough to let both samples to achieve a steady state condition of 

temperature distribution. Once the steady state temperature was approached, samples were put 

in contact under the normal load and the test was run for 1500 seconds. At this stage, only the 

main induction heater was switched on, to guarantee a constant surface temperature for the hot 

disc during all the contact time, whereas the second induction heater was turned off and the 

surface temperature evolution was recorded for the cold disc. Under these working conditions, 

the temperature profile of the cold disc evolved due to the heat flux at the contact region, the 

radiation from the hot disc, as well as the radiation and convection in air. The induction heater 

was excluded to gain more sensitivity towards these variables (uncontrolled fluctuations in 
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power supply could be as relevant as the heat flux). During the contact step, surface temperature 

evolution due to the rotating contacts was measured at the surface, in the middle of the 

specimen width, using a pyrometer located at 90° from the contact region (Figure 3.2). The 

pyrometer provides a stable data acquisition from 80 °C to 600 °C. The emissivity was set to a 

constant value of 0.75, after comparison with thermocouple measurements. 

 
Figure 3.2: Schematic of the testing configuration and temperature measurement. 

3.3. Experimental	results	

Experimental results from the previous two methodologies are now presented. Results 

concerning friction in the piercing process are briefly discussed to highlight the great influence 

of temperature in the frictional behavior. 

3.3.1. Coefficient	of	Friction	in	the	piercing	process	

The Coefficient of Friction (CoF) has been analyzed from different points of view. In particular, 

the effects of relative sliding speed, temperature of the sample, material coupling, as well as 

normal load were taken into account, to assess the behaviour of the frictional stresses during the 

piercing process. 
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3.3.1.1. Sliding	speed	effect	on	friction		

The effect of the sliding speed was investigated. For this purpose, the friction coefficient 

���� was evaluated at the beginning of the contact phase with the low carbon steel C40 

(run-in condition, i.e. at relatively low temperature) and at the end (steady-state condition, 

i.e. at high temperature) at different counterbody temperatures. 

According to [78], the friction coefficient decreases when relative motion increases 

(Figure 3.3). This means that during piercing the local friction conditions are different, as 

the sliding speed between the plug and the billet material changes along the longitudinal 

and transverse plug profiles. Also, it represents a first indication that Coulombian friction 

law is not able to model the friction behaviour during hot working processes. 

Figure 3.3: Friction coefficient estimates at different sliding speeds and 

at different counterbody temperatures. 

Moreover, moving from the run-in condition to the steady-state condition, a further 

reduction of the friction coefficient is detected, meanwhile a temperature increase is 

observed. In the same way, at a higher counterbody temperature, a lower friction coefficient 

can be observed. So, this drop in friction seems to occur as temperature increases. The 

further analyses described in the next Sections could help to better understand this 

phenomenon. 
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3.3.1.2. Surface	temperature	effect	on	friction	

In Figure 3.4, two examples of friction coefficient trends along the contact time window are 

plotted for the full time history, by distinguishing the contact with the high alloy steel P91 at 

1100 °C and with the low carbon steel C40 at 1100 °C. The lubricant effect of the surface oxide 

was evaluated for 0.9 m/s sliding speed and by imposing the same normal load and the thermal 

cycle. 

 
Figure 3.4: Friction coefficient trend and temperature variation along the 

contact time window occurring on the surface of the plug sample. 

As seen in the previous section, moving from the run-in condition to the steady-state 

condition, a decrease of friction is detected in both cases, at the increasing of the sample surface 

temperature. This decrease appears more evident for the carbon steel and this could be due to 

the fact that at high temperature, low carbon steel is more predisposed to promote chemical 

reactions whose product maybe acting as a lubricant. 

Another hypothesis is that, for temperature increases, mechanical properties of the low 

carbon steel (in particular, yield strength) decrease more quickly than properties of P91. In any 

case, these assumptions must be further investigated. 

0

200

400

600

800

1000

0,0

0,1

0,2

0,3

0,4

0,5

0 30 60 90 120 150 180

T 
[°

C
]

m

Time [s]

Oxide lubrication (P91)

Oxide lubrication (C40)

Surface temperature



 

43 
 

3.3.1.3. Effect	of	material	coupling	on	friction		

For the same plug material, friction coefficients were measured for two counterbody steels: C40 

and P91 at 0.9 m/s sliding speed. 

Moving from C40 to P91 led to an average increase of 11% in the estimate of the 

Coulombian friction coefficient, independently on the normal applied load, as shown in  

Figure 3.5. 

 

Figure 3.5: Measured friction coefficients for two billet materials (C40 vs. P91). 

Looking at the plug sample surface at the end of each test, it is clear that the carbon steel 

appears to be more prone to generate a layer of material transferred to the surface of the plug 

sample. This rapidly oxidizes and continuously grows, until a steady-state condition of material 

loss (by means of wear) and regeneration (by means of oxidation) is stabilized. Figure 3.6 

shows an example of the material transferred from the C40 counterbody to the wearable plug 

sample surface. 

Increasing the normal load, transferred material phenomena are promoted and, increasing 

the number of testing cycles, a continuous layer is formed. However, being the friction 

coefficient scattering within the five working cycles of each test quite narrow for all the testing 

conditions, it is possible to state that friction work is dependent on the presence of an oxide 
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layer, but it is not influenced by the thickness of that layer, since oxide layers keep on growing 

during five testing cycles.  

Hence, the frictional behavior depends on the oxidation rate occurring on the transferred 

material from the counterbody to the plug sample. This behavior can be reasonably different 

using high chromium steel (as in the case of grade P91), instead of very low chromium steel (as 

in the case of grade C40). Obviously, the oxidation process is always facilitated by the high 

temperatures. 

 

Figure 3.6: Transferred material from the 0.40%C steel counterbody to the wearable sample. 

3.3.1.4. Frictional	vs.	normal	force	measurements		

In Section 3.3.1.2, two assumptions were made regarding the friction decrease at the increasing 

of sample surface temperature. One was proven in the previous section. The other was not 

refuted yet. Indeed, the previous test were performed under elastic contact conditions; no results 

under plastic contact conditions were given yet. In order to verify also the second hypothesis, 

other tests were performed, then, applying normal loads such as to induce plastic deformation. 

By assessing the tangential forces versus applied normal load during the steady-state 

regime, friction coefficient values, obtained according to the Coulombian law expressed in 

Eq. ( 3.1 ), were determined for the oxidized plug sample against the carbon steel sample at high 

temperature. 



 

45 
 

Experimental data (Figure 3.7) clearly show that, when the limit of proportionality 

between the frictional force and the normal one is overcome, a decreasing trend of the measured 

friction coefficient versus normal load is observed. In this case, the counterbody samples 

underwent macroscopic surface flow. 

 
Figure 3.7: Measured friction coefficient as a function of normal load. 

The region of smooth transition from the constant friction stress towards linear trend was 

further investigated by comparison with the high chromium steel behavior under the same 

testing condition. Instead of referring to normal load and friction coefficient, tests results were 

treated in terms of stresses, namely contact pressure �  and tangential stress � . These were 

assessed as the ratio between normal load and tangential load, respectively, and the Hertzian 

estimation of the contact area. Data were then normalized to the C40 limit frictional stress �� 

and contact pressure ��, beyond which � and � are no longer proportional. 

Figure 3.8 shows the change of the friction stress � when normal pressure � is increased 

for both C40 and P91 samples. Being carbon steel C40 less resistant than high-alloyed P91 steel, 

the condition of deviation from proportionality between the frictional stress and the contact 

pressure due to the onset of material plastic deformation occurs at a lower value of contact 

pressure for steel C40, and this can be detected clearly. Moreover, it was verified that the 
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Wanheim-Bay model (see Eq. ( 2.1 ) and ( 2.2 )), which takes into account the friction factor �, 

(in this case, � is equal to 0.776) fits well the experimental data (Figure 3.8), confirming that 

the decreasing trend of the experimental friction coefficient, visible in Figure 3.7, is due to the 

onset of plastic deformation during contact. Being the friction factor a property of tribological 

coupling, the friction factor m, as stated in the mathematical model adopted for the experimental 

data elaboration, is strongly affected by the material elasto-plastic transition which, in turn, 

deeply depends on the material temperature, as shown for example in Figure 3.10. Hence, 

temperature could also affect the frictional behaviour, altering the mechanical material 

properties. 

 

Figure 3.8: Frictional behaviour under hot piercing conditions: 

experimental data vs. best fit using the Wanheim-Bay model. 

Finally, it was shown once again that the Coulombian friction law does not appear suitable 

for hot working friction modelling. Indeed, during hot working processes, the material plastic 

condition is generally reached and such condition is strongly influenced by the high 

temperatures typical of these processes. 
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Figure 3.9: Yield stress trend of C40 steel as a function of temperature. 

3.3.1.5. Considerations	on	the	experimental	results	

Results presented in the previous sections show how temperature is able to affect frictional 

behaviour. Indeed, the surface temperature can promote chemical reactions or material surface 

modifications, which can modify significantly the tribological behaviour, as shown in 

Section 3.3.1.2. On the other hand, material properties are strongly influenced by temperature, 

so any change in the surface temperature can lead to notable alterations in the mechanical force 

transfers, namely in friction, as explained in Section 3.3.1.4. Without a deep knowledge of the 

interface thermal conditions, it looks quite impossible to understand which is the predominant 

effect due to the temperature increase.  

Referring to interface thermal conditions, it is important to mention that surface 

temperature is not uniform during the contact between bodies. Indeed, in the contact area 

temperature rises up due to the heat generated by friction and/or to the heat transfer provided by 

the thermal gradient between the two bodies in contact. This temperature increase is very 

intense and also it is a very localized and fast phenomenon. It was studied for the first time by 

Block [15] who introduced, then, the concept of “flash temperature”, namely the sharp 

temperature rise that takes place at the interface between two rubbing solids upon motion. 

Hence, to understand the frictional behaviour detected in any tribological test, it is fundamental 
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to know in detail the thermal phenomena occurring during contact. A comprehensive knowledge 

of the thermal conditions in the contact zone could help to recognize which phenomenon is 

dominating the force exchange. For this purpose, a devoted experimental approach was defined. 

As a first stage of the study, only heat transfer by contact is taken into account (i.e. heat 

generated by friction is not considered). Anyway, the approach could be easily extended to 

analyse also all thermal phenomena occurring during contact. 

3.3.2. Heat	transfer	coefficient	

According to the experimental procedure presented in Section 3.2.2, measurements of the 

surface temperature evolution during the contact step are shown in Figure 3.10, for the 

investigated cases reported in Table 3-1. 

Case 
Initial temperature Initial temperature 

difference 
Normal Load 

Hot disc Cold disc 

1 

400 °C ~ 180 °C ~ 220 °C 

500 N 

2 1000 N 

3 1500 N 

4 2000 N 

5 2500 N 

6 3000 N 

7 

600 °C ~ 290 °C ~ 310 °C 

500 N 

8 1000 N 

9 1500 N 

10 2000 N 

11 2500 N 

12 3000 N 

13 

800 °C ~ 390 °C ~ 410 °C 

500 N 

14 1000 N 

15 1500 N 

16 2000 N 

17 2500 N 

Table 3-1: Test conditions. 

Previous results are summarized in Figure 3.11, where the temperature difference between 

the beginning and the end of the test for the cold disc is plotted as a function of the different test 

conditions. The graph clearly shows how by increasing the normal load, the temperature 
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difference raises. Also, hot disc temperature affects cold disc temperature increase; however, its 

contribution appears to be less impacting at higher temperature. 

 

 

 
Figure 3.10: Experimental temperature increase evolution for different test conditions. 
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Figure 3.11: Experimental temperature increase during the tests 

 for different testing conditions. 

During tests, the environmental conditions reported in Table 3-2 were detected. These data 

are useful to characterize the general thermal condition to which the cold disc is subjected to 

during a test. 

 
Hot disc temperature 

 

400 °C 
 

600 °C 
 

800 °C 

Air temperature 60 °C 
 

70 °C 
 

130 °C 

Room temperature 75 °C 
 

80 °C 
 

145 °C 

Table 3-2: Environmental conditions. 

From the curves in Figure 3.10 and the other information, it is evident that it is not possible 

to extract directly a parameter able to describe the contact thermal behaviour. Indeed, the 

experimental results are affected by different phenomena (for instance heat conduction or heat 

transfer by radiation or convection and so on) whose effects on the temperature increase shall be 

recognized. So, in order to characterize a significant parameter for the heat transfer during 

contact, namely the so-called heat transfer coefficient, a complete inverse analysis procedure 

shall be implemented (see Chapter 5). In turn, this procedure requires a mathematical 

description of the experimental test (see Chapter 4). These two mathematical tools are 

extensively described in the next chapters of the thesis. 

0

20

40

60

80

100

0 1000 2000 3000 4000

Su
rf

a
ce

 t
e

m
p

e
ra

tu
re

 in
cr

e
a

se
 [

°C
]

Normal load [N]

Hot disc temp.: 800 °C

Hot disc temp.: 600 °C

Hot disc temp.: 400 °C



 

51 
 

3.3.2.1. Additional	investigations	

Since the experimental campaign presented above allows to analyse the surface temperature 

under different conditions, but does not provide information about the temperature gradient 

along the radius, additional tests could help in understanding more deeply the thermal 

phenomena which the sample undergoes during contact. In particular, previous tests did not 

examine the heat transfer between sample and its spindle. For this reason, a further simple test 

was performed, in order to detect the magnitude of the heat transfer on the hollow sample. By 

means of the induction heater, the disc was heated under controlled conditions. While the 

sample was heated up, both the disc surface temperature and the spindle temperature were 

measured. As shown in Figure 3.12,  the results of this test point out a similar trend in the 

temperature increase. In details, the temperature difference between outer and inner surface 

appears to be constant all along the test. This means that the heat transfer from the disc to its 

spindle can be considered as a constant heat flow during the test. Moreover, its value could be 

very low due to the fact that the temperature difference between the spindle and the internal 

surface of the disc could be low since the spindle temperature increase appears very similar to 

that of the disc. 

 
Figure 3.12: Experimental surface temperature and shaft temperature.  
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Chapter	4. Analytical	 and	 numerical	

modelling	 of	 heat	 transfer	

phenomena	

The scheduled inverse analysis requires a consistent mathematical description of the phenomena 

occurring in the experimental configuration. In order to achieve solutions by inverse analysis in 

reasonable computational time through effective models, an approximation of a three-

dimensional time-dependent analytical solution for the temperature distribution calculation is 

developed to mimic the specific testing configuration. 

4.1. Statement	of	the	thermal	problem	

Given the testing procedure and the temperature measurement methodology, the present 

mathematical model solved the heat conduction problem in cylindrical coordinates, whereby the 

contact heat flux is evaluated by focusing on the surface temperature variation in the cold disc, 

namely in a hollow cylindrical body. The mathematical solution has to be outlined by taking 

into account the heat transfer due to conduction, convection and radiation (at the present high 

test temperatures the last contribution cannot be neglected). In particular, the external surface 

undergoes concentrated thermal flux due to contact with the hot disc on a narrow surface arc 

segment and radiation from the hot disc, according to the so-called view factor (namely, the 

fraction of the radiation which leaves a surface and strikes another surface), as well as cooling 

in the air by convection and radiation. The internal surface of the cold disk is subjected only to 

heat exchange with the driven spindle by conduction. 
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In order to achieve effective models that allow for solutions by inverse analysis in a 

reasonable computational time, an analytical solution has been specifically developed. The real 

three-dimensional problem can be greatly simplified, based on the assumption that the sample 

can be considered as infinitely long (two-dimensional approximation). So, a two-dimensional 

time-dependent solution for the heat conduction problem applied to a rotating hollow cylinder 

subjected to concentrated heat fluxes is derived here. 

4.2. State	of	the	art	on	the	analytical	modelling	

Many tribological test conditions and industrial applications involve rotating disks subjected to 

concentrated heating and/or convective cooling over their surfaces. The arising temperature 

distribution is targeted for the solution of the associated heat problem. Main reference 

information on the fundamentals of the treatment of heat transfer phenomena is accessible in 

several books, for instance, concerning specifically the developments under target here, in [1], 

[45] and [98]. 

In the literature, it is possible to find two main tackling approaches: the first one provides 

an analytical transient solution for a hollow cylinder heated and cooled uniformly along its 

boundaries (time dependent axis symmetric solution that is not dependent on the angular 

coordinate), see [19], [24] and [45]; the second one derives an analytical quasi steady-state 

solution for a rotating disk heated by a stationary concentrated heat source (time independent 

solution that depends on the angular coordinate), see [3], [8], [29], [37], [38], [39], [46], [59], 

[71], [72] and [104]. 

A general solution for the transient temperature distribution produced in an infinite hollow 

cylinder subjected to convective (non-homogeneous) boundary conditions on both sides can be 

reached by applying and extending the main approach outlined in [45]. This solution is 

comparable to that presented in [19] and confirmed in [24]. Nevertheless, this approach does not 
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allow for predicting the effect of a concentrated heat source, typical of industrial and 

tribological systems. 

During the last decades, the heat distribution in systems with rotating disks and a stationary 

concentrated heat source has been the subject of great scientific interest. Since the earlier 

pioneering works [6] and [53] concerning semi-infinite solids, which often were assumed to be 

adiabatic outside the region heated by a moving heat source, numerous other works have been 

developed. In particular, the effect of surface cooling by convection heat exchange was 

presented, most-likely for the first time, in [29] and it has been further developed in [37] and 

[72]. The same authors provided also an extension of their solution to the hollow cylinder 

geometry in [38] and [39]. These studies have shown that the evolution of the so-called ‘flash 

temperature’ [15], namely the hottest temperature that arises within the contact zone is 

described in terms of principal dimensionless characteristic parameters, i.e. the Peclet and Biot 

numbers. In the last years, in order to analyze the distribution of heat generated by friction, 

analytical solutions of thermal coupling between two solids in contact have been presented in 

further works, namely in [3], [8], [71] and [104]. 

However, all the quoted solutions basically follow a steady-state approach, while on the 

contrary it appears that no one has developed a relevant complete time transient solution for this 

kind of problem. On the other hand, a very simple approach to deal with a problem pertaining to 

a rotating cylinder subjected to a localized heating on its periphery is presented in [37]. In the 

present work, that approach is further developed and systematically extended to arrive at a full 

transient analytical solution of the tribological problem under target. This analytical solution of 

the heat conduction problem in a cylinder allows to simulate the evolution surface temperature 

during a long-run test in a very short time, whereas a FEM solution would require a huge 

amount of time. Hence, the analytical model appears more suitable for its use in an inverse 

analysis algorithm designed to solve iteratively the inverse problem. 
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4.3. Analytical	 solution	 of	 the	 thermal	 contact	

problem	in	rotating	cylinders	

The analytical solution is achieved in two steps. Firstly, the solution for a solid cylinder is 

introduced. Secondly, the previous solution is extended to the case of a hollow cylinder that is 

geometrically closer to the real sample geometry at the tribometer scale. 

4.3.1. Solid	cylinder	

An infinitely long circular solid cylinder of radius �, with constant thermal conductivity � , 

rotating with constant angular velocity � , is exposed to a convection heat transfer, with 

convection heat transfer coefficient ℎ  and ambient fluid temperature 	�� . Moreover, it is 

subjected to a constant concentrated heat flux �� entering the solid on a circular arc with narrow 

opening angle 2�� (Figure 4), where, in principle, no convection takes place (for further details 

about the boundary conditions see Appendix B.3). Thus, the cylinder is heated on its peripheral 

surface by two different heat sources, while there is no internal thermal energy generation. 

qe




j



0

 

Figure 4.1: Rotating solid cylinder under concentrated heat conduction source 

and surrounding convection. 

Heat conduction in the reference angular variable � is considered with all terms, namely by 

accounting also for the direct temperature variation term in time. This gives rise to the following 

differential problem in the unknown temperature field �(�, �, �) (see [45] and Appendix B.2.2): 
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,										0 ≤ � ≤ �,			� ≥ 0,			0 ≤ � ≤ 2�	 (	4.1	)	
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under conditions: 

BC1:	
��
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���
= �
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Hereafter, the following current angular coordinate �  linked to the reference angular 

position � and the angular rotation � is defined: 

� = � + ��	 (	4.2	)	

It incorporates the time dependence of the present steady-state solution. Indeed, given new 

variable �, the derivatives of � with respect to � and � become: 
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Instead, the derivative of � with respect to � remains unchanged. 

Then, heat conduction Eq. ( 4.1 ) in new angular variable � becomes: 
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under conditions: 
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Due to the non-homogeneous boundary condition BC1, the solution of the present problem 

will be given by the superposition of the steady-state solution with a non-homogeneous 

boundary condition ��� (�, �)  and of the transient solution of the associated homogeneous 

problem ��(�, �, �) [45]. Hence: 

�(�, �, �) = ���(�, �) + ��(�, �, �) (	4.6	) 

4.3.1.1. Solution	of	the	steady-state	problem	(non-homogeneous		boundary	

condition)	

The mathematical formulation of the steady-state problem is given as: 
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under conditions: 
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Using the following integral Fourier transform [10, 24]: 

����(�, �) = � ���(�, �)�������
�

��

	 (	4.8	)	

where j is the imaginary unit and � is an integer, given the properties of Fourier transforms and 

by taking into account the periodicity conditions, Eq. ( 4.7 ) becomes: 
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� ���� = 0	 (	4.9	)	

which can be rewritten as: 
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Eq. ( 4.10 ) (or, equivalently, Eq. ( 4.9 )) represents a particular case of the Bessel equation. 

Its solution is a Bessel function of order � with imaginary argument, equivalent to a Kelvin 

function, [1] and [98]. 

By defining: 

�� = � −�
��

�
	 (	4.11	)	

the solution of Eq. ( 4.10 ) is the following: 

����(�, �) = ����(���)	 (	4.12	)	

where �� is a constant and, due to the third boundary condition (BC3), Bessel function of the 

second kind ��(���) is omitted. 

Eq. ( 4.12 ) displays the following derivative (see Appendix D): 
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��(���) − ������(���)�	 (	4.13	)	

Applying the integral Fourier transform to the boundary conditions BC1 of Eq. ( 4.7 ), one 

obtains [10]: 
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�� − � ���|��� − ��������
���� �

� �

��	 (	4.14	)	

As shown in [8] and [36], and commonly done in the literature, to solve this type of 

problem, given the narrow opening of the arc where the conduction heat source takes place, it is 

possible to consider that the convection boundary condition in BC1 can be applied to the entire 

range −� ≤ � ≤ �, namely to all the circumferential border, without this affecting considerably 

the solution. Thus, it is possible to rewrite BC1 as follows: 

�

��
	����(�, �) = −�����|��� + ���	 (	4.15	)	

where: 

��� = � � ���������
�

��

+ � �������
� �

�� �

��	 (	4.16	)	

In order to determine constant �� , Eq. ( 4.12 ) and Eq. ( 4.13 ) should be substituted in 

boundary condition ( 4.15 ): 
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−�����(���) + ��� + ��� = �� �
�

�
��(���) − ������(���)�	 (	4.17	)	

�� ��
�

�
+ �� ��(���) − ������(���)� = ��� + ���	 (	4.18	)	

��

1

�
[(� + ��)��(���) − �������(���)]= ��� + ���	 (	4.19	)	

�� =
����

(� + ��)��(���) − �������(���)
	 (	4.20	)	

Then, Eq. ( 4.12 ) becomes: 

����(�, �) =
����

(� + ��)��(���) − �������(���)
��(���)	 (	4.21	)	

Finally, by applying the Inverse Fourier Transform, it is possible to determine the sought 

quasi steady-state solution [71] and [104]: 

���(�, �) =
1

2�
� ��	�� �

����

(� + ��)��(���) − �������(���)
��(���)�����

�

���

	 (	4.22	)	

where �� = �
1			� = 0
2			� ≠ 0

. 

It is worth mentioning that for � = 0: 

��� = � � ���������
�

��

= 2���� (	4.23	) 

��� = � �������
� �

�� �

�� = 2���� (	4.24	) 

��(�, 0) =
2(���� + ����)

���(���) − ����(���)
��(���) =

2(���� + ����)

�
 

(	4.25	) 

being ϵ� = � −j
��

�
= 0. By applying the Inverse Fourier Transform, it is in fact possible to 

obtain: 

����
(�, �) =

��� +
��

� ��

�
= �� +

��

�

��

�
 (	4.26	) 

which is the solution of the solid cylinder one-dimensional steady-state problem. So, for n=0, 

Eq. ( 4.21 ) provides the solution of a one-dimensional steady-state problem, whereby the 

concentrated heat flux (��) referring to a narrow opening of the arc segment (2��) where the 

conduction heat source takes place, is considered spread over the entire angular range 



 

61 
 

−� ≤ � ≤ �, namely to all the circumferential border, so that the dependence on the angular 

coordinate disappears. 

Finally, the quasi steady-state solution can be rewritten as follows: 

�(�, �) = �� +
��

�

��

�

+
1

�
� 	�� �

����� + ����

(� + ��)��(���) − �������(���)
��(���)�����

�

���

	
(	4.27	)	

4.3.1.2. Solution	of	the	transient	problem	(homogeneous	boundary	condition)	

The mathematical formulation of the transient problem is given as: 

1

�

���

��
+

����

���
+

1

��

����

���
=

�

�

���

��
+

1

�

���

��
	 (	4.28	)	

under conditions: 

IC: ��(� = 0) = ��(�, �) = �(�, �) − ���(�, �)  

BC1: ���

��
�

���
= �

0, −�� ≤ � ≤ ��

−���|���, �� ≤ � ≤ 2� − ��
 

 

BC2: ���

��
�

���
= 0 

 

BC3: ���
�→ �

��(�) 	≠ ± ∞   

BC4 

(periodicity): 

���

��
�

���
=

���

��
�

����
,

0 ≤ � ≤ �

��|��� = ��|���� ,

 
 

By applying a separation of variables in the form: 

��(�, �, �) = �(�, �)�(�)	 (	4.29	)	

Eq. ( 4.28 ) becomes: 

�

�

��	

��
+ �

���

���
+

�

��

���

���
−

��

�

��

��
=

�

�

��

��
	 (	4.30	)	

Such equality can hold only if both hand sides of the equation, one dependent on � and �, 

the other on �, are set equal to the same constant value, said separation constant. Hence, the only 

way to satisfy this equality is to equate each group of functions to an arbitrary quantity −��. 

Eq. ( 4.30 ) leads then to two separate differential equations. The first one is time dependent only: 
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��

��
+ ���� = 0	 (	4.31	)	

and the second one is space dependent only: 

�
��	

��
+ ��

���

���
+

���

���
−

���

�

��

��
+ (��)�� = 0	 (	4.32	)	

under boundary conditions: 

BC1: 
��

��
�

���
= �

0, −�� ≤ � ≤ ��

−���|���, �� ≤ � ≤ 2� − ��
  

BC2: 
��

��
�

���
= 0  

BC3: ���
�→ �

�(�) 	≠ ± ∞   

BC4 

(periodicity): 

���

��
�

���
=

���

��
�

����
,

0 ≤ � ≤ �

��|��� = ��|���� ,

  

Eq. ( 4.31 ) displays the general solution: 

�(�) = �������	 (	4.33	)	

To find a solution of Eq. ( 4.32 ), the following integral Fourier transform can be used: 

��(�, �) = � �(�, �)�������
�

��

	 (	4.34	)	

Given the properties of Fourier transforms and by taking into account the periodicity conditions, 

Eq. ( 4.32 ) becomes: 

�
���

��
+ ��

����

���
− ����− �

����

�
��+ (��)���= 0	 (	4.35	)	

which can be rewritten as: 

�
���

��
+ ��

����

���
+ ���� − �

��

�
� �� − ��� ��= 0	 (	4.36	)	

under boundary conditions: 

BC1: 
���

��
�

���
= −� � ��|���������� =

�

��

− ���(�, �)  

BC2: 
���

��
�

���
= 0  

BC3: ���
�→ �

��(�) 	≠ ± ∞   



 

63 
 

Eq. ( 4.36 ) (or, equivalently, Eq. ( 4.35 )) represents a particular case of the Bessel equation. Its 

solution is a Bessel function of order � with argument characterized by an imaginary quantity. 

By defining: 

� = � �� − �
��

�
	 (	4.37	)	

the solution of Eq. ( 4.36 ) is the following: 

����, �(�, �)� = ����(��)	 (	4.38	)	

where �� is a constant and, due to the third boundary condition (BC3), Bessel function of the 

second kind ��(���) is omitted. 

The application of the Fourier transform allowed to split the problem into n sub-problems, 

each characterized by a specific frequency. Then, the solution of the problem comes from the 

solutions of each sub-problem. This means that for each value of �, there is a unique set of 

eigenvalues ��, 	��, . . . , 	��, due to Bessel function’s oscillatory behavior. So, Eq. ( 4.37 ) can be 

rewritten as: 

��� = � ���
� − �

��

�
	 (	4.39	)	

where index � spans the eigenvalues in the Bessel expansion and index � spans the frequencies 

in the Fourier expansion. 

To solve each sub-problem, a solution procedure might be detected by analyzing the 

simplest case, namely that relating to the null frequency � = 0. In that case, the mathematical 

formulation of the homogeneous problem is given as:  

�����

���
+

1

�

����

��
+ ���

� ��� = 0	 (	4.40	)	

under conditions: 

BC1: ����

��
�

���
+ ����|��� = 0 

BC2: ����

��
�

���
= 0 

BC3: ���
�→ �

���(�, ���) 	≠ ± ∞  
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Eq. ( 4.40 ) represents a Bessel equation of order zero. Its solution is: 

���(�) = ����(��)	 (	4.41	)	

where, due to the third boundary condition, the Bessel function of the second kind of order zero 

(i.e. ��(��)) is omitted. The eigenvalues �� of Eq. ( 4.41 ) can be determined by the following 

trascendental equation, achieved through the boundary conditions (see Appendix D): 

���(���) = ����(���)	 (	4.42	)	

and the general solution is then formed by the summation over all products: 

���(�, 0) = � �����(���)

�

���

	 (	4.43	)	

The case with � > 0 now follows. It is possible to rewrite Eq. ( 4.36 ) as follows: 

�
�

��
��� + ��

��

���
��� + �����

� − �
��

�
� �� − ��� ��� = 0	 (	4.44	)	

with boundary condition: 

�

��
���(�) + �����(�) = 0	 (	4.45	)	

The eigenvalues ���  are the roots of the following equation, with ���  given by 

Eq. ( 4.39 ): 

�
�

�
+ ��� ��(����) = �������(����)	 (	4.46	)	

Then, the general solution is formed by the summation over all boundary value problem 

solutions: 

��(�, �) = � �����(����)

�

���

	 (	4.47	)	

Therefore, each solution of the n sub-problems (��(�, �)) in which the problem has been split has 

been determined. 

To go back to the original variable � , the inverse integral Fourier transform must be 

applied. That allows to get the solution for the radial and angular dependent problem: 

�(�, �) =
1

2�
� �������(�, �)�����

�

���

=
1

2�
� ���� � � �����(��)

�

���

� ����

�

���

	 (	4.48	)	
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where �� = �
1			� = 0
2			� ≠ 0

. 
 

Next, the complete solution is obtained by multiplying the solution independent on time 

with the one dependent on time, hence: 

��(�, �, �) =
1

2�
� ���� � � �����(��)

�

���

����������
���

�

���

	 (	4.49	)	

where: 

��� = ������	 (	4.50	)	

To determine the ��� values, the initial condition must be applied. However, given the 

non-homogeneity of the boundary conditions, the steady-state solution ���(�, �)  must be 

subtracted from the initial condition �(�, �), namely: 

��(�, �) = �(�, �) − ���(�, �)	 (	4.51	)	

So, by applying the initial condition ��(�, �) to the found complete solution, it follows that (see 

Appendix C): 

��(�, �) =
1

2�
� ���� � � �����(��)

�

���

� ����

�

���

	 (	4.52	)	

The previous formula can be considered as a Fourier series, so, for the properties of Fourier 

series, the unknown coefficients ��� can be evaluated as: 

1

2�
� ��������� =

1

2�
�� � � �����(��)

�

���

�
�

��

	 (	4.53	)	

For the property of Fourier-Bessel series, multiplying both sides by ∫ ���(��)
�

�
��, the previous 

formula can be further reduced to: 

� �� ���������
�

��

� ���(��)��
�

�

= � �� � � �����(��)

�

���

� ���(��)
�

�

��	 (	4.54	)	

� �� ���������
�

��

� ���(��)��
�

�

= ����� �� ���(��)���
�

�

�	 (	4.55	)	

��� =
∫ �∫ ���������

�

��
����(��)��

�

�

���∫ ���(��)���
�

�
�

	 (	4.56	)	

Using the Bessel function integral properties, the denominator can be evaluated as: 
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��(���) =
��

2
[��(����)� − ����(����)����(����)]

=
��

2
[��(����)� + ����(����)�]	

(	4.57	)	

Instead, the integral at the numerator can be evaluated numerically, as: 

� �� ��(�, �)�������
�

��

� ���(��)��
�

�

= � �� ��(�, �) − ���(�, �)��������
�

��

� ���(��)��
�

�

= � �� �(�, �)�������
�

��

�

�

− � ���(�, �)�������
�

��

� ���(��)��	

(	4.58	)	

being: 

����(�, �) = � ���(�, �)�������
�

��

	 (	4.59	)	

Eq. ( 4.58 ) can be rewritten as: 

� ��� �(�, �)�������
�

��

� − ����(�, �)� ���(��)��
�

�

	 (	4.60	)	

For the particular case �(�, �) = �� = const or �(�, �) = ��(�) , the integral at the 

numerator becomes, for � = 0: 

� �� �(�, �)�������
�

��

− ����(�, 0)� ���(��)��
�

�

= � �2���(�) − ����(�, 0)����(��)��
�

�

	

(	4.61	)	

��� =
∫ �2���(�) − ����(�, 0)����(��)��

�

�

��[��(����)� + ��(����)�]
	 (	4.62	)	

Otherwise, for � > 0: 

� ��(�)�������
�

��

= ��(�) � ������� =
�

��

0	 (	4.63	)	

being �����  a periodic function such as ∫ ������� =
�

��
0. 

Remembering that ����(�, �) = ����(���), so: 

� ����(�, �)���(��)��
�

�

= �� � ��(���)���(����)���
�

�

	 (	4.64	)	
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thus: 

��� =
2�� ∫ ��(���)���(����)���

�

�

��(��[��(����)� + ����(����)�])
	 (	4.65	)	

The problem exact solution is given, hence, by the following equation: 

�(�, �, �) = ���(�, �) + ��(�, �, �)

=
1

2�
� ��	�� �

����

(� + ��)��(���) − �������(���)
��(���)�����

�

���

+
1

2�
� ���� � � �����(��)

�

���

����������
���

�

���

	

(	4.66	)	

4.3.2. Hollow	cylinder	

Considering a long hollow cylinder of external radius �� and internal radius ��, rotating with 

constant angular velocity � , the angular dependence of the temperature distribution is 

investigated, as done earlier for the solid cylinder. Although most of most crucial steps have 

been already exposed for that case, the derivation is repeated here and adopted, in all steps, for 

the ease of the reader. 

At � = ��, the external boundary is exposed to a convection heat transfer, with convection 

heat transfer coefficient ℎ� and ambient fluid temperature	��,� ; at � = �� , it is exposed to a 

different convection heat transfer, with convection heat transfer coefficient ℎ� and ambient fluid 

temperature	��,�. Moreover, the cylinder is subjected to an external constant heat flux source 

concentrated on a circular arc with narrow opening angle 2�� (Figure 4.2). Thus, at � = ��  the 

cylinder is heated on its peripheral surface by two different heat sources. 

qe



j



0


e


i

 
Figure 4.2: Rotating hollow cylinder under external heat conduction source 

and surrounding external and internal convection. 
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Then, the heat conduction problem for a hollow cylinder in the current angular coordinate 

� = � + �� takes the following form (see Appendix B): 

1

�

��

��
+

���

���
+

1

��

���

���
=

�

�

��

��
+

1

�

��

��
 (	4.67	) 

under conditions: 

IC: �(� = 0) = �(�, �)  

BC1: ��

��
�

���
= �

�� = ��/�, −�� ≤ � ≤ ��

−����|����
− ��,��, �� ≤ � ≤ −��

 
 

BC2: ��

��
�

���
= −����|����

− ��,�� 
 

BC3 

(periodicity): 

��

��
�

���
=

��

��
�

����
,

�� ≤ � ≤ ��

�|��� = �|���� ,

 
 

Due to non-homogeneous boundary conditions BC1 and BC2, the solution of the present 

problem will be given by the superposition of the steady-state solution with non-homogeneous 

boundary condition ��� (�, �)  and of the transient solution of the associated homogeneous 

problem ��(�, �, �) [45]. Hence: 

�(�, �, �) = ���(�, �) + ��(�, �, �) (	4.68	) 

4.3.2.1. Solution	 of	 the	 steady-state	 problem	 (non-homogeneous	 boundary	

condition)	

From Eq. ( 4.67 ), being ��� = �(�, �) the unknown temperature distribution, the mathematical 

formulation of the problem becomes: 

�����

���
+

1

�

����

��
+

1

��

�����

���
=

�

�

����

��
	 (	4.69	)	

under conditions: 

BC1: 
����

��
�

����

= �
�� = ��/�, −�� ≤ � ≤ ��

−������|����
− ��,��, �� ≤ � ≤ 2� − ��

  

BC2: 
����

��
�

����

= −������|����
− ��,��  
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BC3 

(periodicity): 

����

��
�

� ��
=

����

��
�

����
,

�� ≤ � ≤ ��

���|� �� = ���|���� ,

									  

Notice again that in Eq. ( 4.69 ) the dependence on the time variable �  is incorporated 

through the current rotating angle �. So, in this treatment, the problem is considered in a quasi 

steady-state formulation, in apparent variables r and �. 

Using the following integral Fourier transform: 

����(�, �) = � ���(�, �)�������
�

��

	 (	4.70	)	

and taking into account the periodicity conditions, Eq. ( 4.69 ) becomes: 

��
������

���
+ �

�����

��
+ �−�

��

�
�� − ��� ���� = 0	 (	4.71	)	

Eq. ( 4.71 ) represents a particular case of the Bessel equation. By defining: 

�� = � −�
��

�
	 (	4.72	)	

the solution of Eq. ( 4.71 ) is the following: 

����(�, �) = ����(���) + ����(���)	 (	4.73	)	

Eq. ( 4.73 ) has the following radial derivative [1] (see also Appendix D): 

�

��
	����(�, �) = ��

�

��
��(���) + ��

�

��
��(���)

= �� �
�

�
��(���) − ������(���)�

+ �� �
�

�
��(���) − ������(���)�	

(	4.74	)	

By applying the integral Fourier transform to boundary condition BC1 of Eq. ( 4.69 ), one 

obtains: 

�

��
	����(��, �) = � �������

� �

�� �

�� − � ����������(��, �) − ��,��
���� �

� �

��	 (	4.75	)	

As done previously, the convection boundary condition in BC1 is applied to the entire range 

−� ≤ � ≤ �, namely to all the external circumferential border, without affecting considerably 

the solution, if the concentrated heat flux acts on an arc with narrow opening. Thus, it is 

possible to rewrite BC1 as follows: 
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�

��
	����(��, �) = −������(��, �) + ���,�	 (	4.76	)	

where 

���,� = �� � ��,��������
�

��

+ � �������

� �

�� �

��	 (	4.77	)	

Similarly, by applying the integral Fourier transform to boundary conditions BC2 of 

Eq. ( 4.69 ), one obtains:  

�

��
	����(��, �) = − � ����������(��, �) − ��,��

�

��

�� = −������(��, �) + ���,�	 (	4.78	)	

where 

���,� = �� � ��,��������
�

��

	 (	4.79	)	

In order to determine constants ��  and �� , BC1 and BC2 are rewritten in light of 

Eq. ( 4.73 ) and Eq. ( 4.74 ). Then, it follows that: 

�� �
�

��
��(����) − ������(����)� + �� �

�

��
��(����) − ������(����)� =

= −�������(����) + ����(����)� + ���,�	
(	4.80	)	

�� �
�

��
��(����) − ������(����)� + �� �

�

��
��(����) − ������(����)� =

= −�������(����) + ����(����)� + ���,�	
(	4.81	)	

These can be rewritten as: 

����(����, ��) + ����(����, ��) = ���,�	 (	4.82	)	

����(����, ��) + ����(����, ��) = ���,�	 (	4.83	)	

where: 

��(���, �) = �
�

�
+ �� ��(���) − ������(���)	 (	4.84	)	

��(���, �) = �
�

�
+ �� ��(���) − ������(���)	 (	4.85	)	

From straight-forward mathematical manipulations of Eq. ( 4.82 ) and Eq. ( 4.83 ), constants 

�� and �� can be solved as: 

�� =
����

��(����, ��) − ����
��(����, ��)

��(����, ��)��(����, ��) − ��(����, ��)��(����, ��)
	 (	4.86	)	

�� =
����

��(����, ��) − ����
��(����, ��)

��(����, ��)��(����, ��) − ��(����, ��)��(����, ��)
	 (	4.87	)	
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Therefore, Eq. ( 4.73 ) becomes: 

����(�, �) = ����(���) + ����(����)

=
����

��(����, ��) − ����
��(����, ��)

��(����, ��)��(����, ��) − ��(����, ��)��(����, ��)
��(���)

+
����

��(����, ��) − ����
��(����, ��)

��(����, ��)��(����, ��) − ��(����, ��)��(����, ��)
��(���)	

(	4.88	)	

Finally, by applying the Inverse Fourier Transform, it is possible to determine the sought 

quasi steady-state solution in the following discrete representation: 

����(�, �) =
1

2�
� ��	�����(�, �)	�����

�

���

=
1

2�
� ��	��������(���) + ����(����)�	�����

�

���

	

(	4.89	)	

where �� = �
1			� = 0
2			� ≠ 0

.	
	

Since for � = 0 

��(0, �) = �
0

�
+ �� ��(0) − 0����(0) = � ∙ (−∞ ) − 0 ∙ (−∞ )	 (	4.90	)	

is undetermined, the solution in this case will be achieved by solving Eq. ( 4.71 ) for � = 0 

������

���
+

1

�

�����

��
= 0	 (	4.91	)	

under the following boundary conditions: 

�

��
	����(��, 0) + ������(��, 0) = ���,�	 (	4.92	)	

�

��
	����(��, 0) + ������(��, 0) = ���,�	 (	4.93	)	

Basically, the problem to be solved is an ODE, and its solution takes the following form [19]: 

����(�, 0) = ���� � + ��	 (	4.94	)	

By imposing the boundary conditions, the solution becomes: 

��=
��������,��� − ���,����

����(1 + ������	��) − ����(1 + �� ����	��)
	 (	4.95	)	

�� =
�����,�(1 + ������	��) − �����,�(1 + ������	��)

����(1 + ������	��) − ����(1 + ������	��)
	

(	4.96	)	

Hence: 
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��(�, 0) =
��������,��� − ���,����

����(1 + ������	��) − ����(1 + ������	��)
�� �

+
�����,�(1 + ������	��) − �����,�(1 + ������	��)

����(1 + ������	��) − ����(1 + ������	��)
	

(	4.97	)	

Appling the Inverse Fourier Transform and remembering that for � = 0: 

���,� = 2�����,� + 2����	 (	4.98	)	

���,� = 2�����,�	 (	4.99	)	

The quasi steady-state solution in a discrete representation can be rewritten as follows: 

���(�, �) =
1

2�
� 	���������(�, �)	�����

�

���

= � �� � + � +
1

�
� 	��������(���) + ����(����)�	�����

�

���

	

(	4.100	)	

where �� = �
1			� = 0
2			� ≠ 0

 and: 

� =
��

2�
	�� =

������ ������,� +
��

� ��� − ����,��

����(1 + ������	��) − ����(1 + ������	��)
 (	4.101	)	

� =
��

2�
	�� =

������,�(1 + ������	��) − �� �����,� +
��

� ��� (1 + ������	��)

����(1 + ������	��) − ����(1 + ������	��)
 (	4.102	)	

4.3.2.2. Solution	of	the	transient	problem	(homogeneous	boundary	condition)	

The mathematical formulation of the transient problem is given as: 

1

�

���

��
+

����

���
+

1

��

����

���
=

�

�

���

��
+

1

�

���

��
	 (	4.103	)	

under conditions: 

IC: ��(� = 0) = ��(�, �) = �(�, �) − ���(�, �)  

BC1: ���

��
�

���
= �

0, −�� ≤ � ≤ ��

−���|����
, �� ≤ � ≤ 2� − ��

 
 

BC2: ���

��
�

���
= −���|����

 
 

BC4 

(periodicity): 

���

��
�

���
=

���

��
�

����
,

�� ≤ � ≤ ��

��|��� = ��|���� ,

 
 

By applying a separation of variables in the form: 
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��(�, �, �) = �(�, �)�(�)	 (	4.104	)	

Eq. ( 4.104 ) becomes: 

�

�

��	

��
+ �

���

���
+

�

��

���

���
−

��

�

��

��
=

�

�

��

��
	 (	4.105	)	

As stated earlier, the only way to satisfy this equality is to equate each group of functions to an 

arbitrary separation constant −��. Eq. ( 4.105 ) leads then to two separate differential equations. 

The first one is time dependent only: 

��

��
+ ���� = 0	 (	4.106	)	

 and the second one is space dependent only: 

�
��	

��
+ ��

���

���
+

���

���
−

���

�

��

��
+ (��)�� = 0	 (	4.107	)	

under boundary conditions: 

BC1: 
��

��
�

���
= �

0, −�� ≤ � ≤ ��

−���|����
, �� ≤ � ≤ 2� − ��

  

BC2: 
��

��
�

���
= −���|����

  

BC3: ���
�→ �

�(�) 	≠ ± ∞   

BC4 

(periodicity): 

���

��
�

���
=

���

��
�

����
,

�� ≤ � ≤ ��

��|��� = ��|���� ,

  

Eq. ( 4.106 ) displays the general solution: 

�(�) = �������	 (	4.108	)	

To find a solution of Eq. ( 4.107 ), the following integral Fourier transform can be used: 

��(�, �) = � �(�, �)�������
�

��

	 (	4.109	)	

Given the properties of Fourier transforms and by taking into account the periodicity 

conditions, Eq. ( 4.107 ) becomes: 

�
���

��
+ ��

����

���
+ ���� − �

��

�
� �� − ��� ��= 0	 (	4.110	)	

under boundary conditions: 
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BC1: 
���

��
�

���
= −�� � ��|����

������� =
�

��

− ����(��, �)  

BC2: 
���

��
�

���
= −�� � ��|����

������� =
�

��

− ����(��, �)  

BC3: ���
�→ �

��(�) 	≠ ± ∞   

Eq. ( 4.110 ) represents a particular case of the Bessel equation. Its solution is a Bessel function 

of order � with argument characterized by an imaginary quantity. By defining: 

� = � �� − �
��

�
	 (	4.111	)	

the solution of Eq. ( 4.110 ) is the following: 

����, �(�, �)� = ����(��) + ����(��)	 (	4.112	)	

where �� and ��  are constants. 

The application of the Fourier transform allowed to split the problem into n subproblems, 

each one characterized by a specific frequency. Then, the solution of the problem comes from 

the solutions of each subproblem. This means that for each value of �, there is a unique set of 

eigenvalues ��, 	��, . . . , 	��, due to Bessel function’s oscillatory behavior. So, Eq. ( 4.111 ) can 

be rewritten as: 

��� = � ���
� − �

��

�
	 (	4.113	)	

where index � spans the eigenvalues in the Bessel expansion and index � spans the frequencies 

in the Fourier expansion. 

To solve each subproblem, a solution procedure might be detected by analyzing the 

simplest case, namely that relating to the null frequency � = 0. In that case, the mathematical 

formulation of the homogeneous problem is given as:  

�����

���
+

1

�

����

��
+ ���

� ��� = 0	 (	4.114	)	

under conditions: 

BC1: ����

��
�

����

+ �����|����
= 0 

BC2: ����

��
�

����

+ �����|����
= 0 
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Eq. ( 4.114 ) represents a Bessel equation of order zero. Its solution is: 

���(�) = ����(��) + ����(��)	 (	4.115	)	

where ��  and ��	are known unless for a proportionality factor. In light of Bessel function 

derivative rules (see Appendix D) and substituting Eq. ( 4.115 ) into the boundary conditions, 

one obtains the following 2 × 2 homogeneous system of equations in the unknowns �� and ��: 

�
��� ���

��� ���
� �

��

��
� = �

����(���) − ���(���) ����(���) − ���(���)

����(���) − ���(���) ����(���) − ���(���)
� �

��

��
�

= �
0
0

� 
(	4.116	) 

By the singularity of the 2 × 2  matrix in Eq. ( 4.116 ), the eigenvalues ��  of solution 

representation ( 4.115 ) may be obtained for non-trivial solutions �� ≠ 0, �� ≠ 0 as: 

�����(���) − ���(���)������(���) − ���(���)�

− �����(���) − ���(���)������(���) − ���(���)� = 0 
(	4.117	)	

which generates eigenvalues ��, with � = 1, 2, 3, … . 

Thus, the sought solution �(���) becomes a function also of the eigenvalues �� . To 

determine its expression, it is possible to proceed as follows. From Eq. ( 4.116 ), when 

Eq. ( 4.117 ) holds, the solution in terms of the ratio ��/�� can be obtained as: 

��

��
= −

����(����) − ����(����)

����(����) − ����(����)
= −

����(����) − ����(����)

����(����) − ����(����)

= −
���+���

���+���
	

(	4.118	)	

from which it is possible to rewrite the solution �(���) in the following form [64]: 

�(���) = [���+���]��(���) − [���+���]��(���) =																

= [����(���) − ���(���) + ����(���) − ���(���)]��(���)

− [����(���) − ���(���) + ����(���) − ���(���)]��(���) 

( 4.119 ) 

���(�, 0) = � �����(���) + �����(���)

�

���

	 (	4.120	)	

The case with � > 0 now follows. It is possible to rewrite Eq. ( 4.110 ) as follows: 

�
�

��
��� + ��

��

���
��� + �����

� − �
��

�
� �� − ��� ��� = 0	 (	4.121	)	

or: 
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�
�

��
��� + ��

��

���
��� + ����

��� − ������ = 0	 (	4.122	)	

with boundary conditions: 

�

��
���(��) + �����(��) = 0	 (	4.123	)	

�

��
���(��) + �����(��) = 0	

(	4.124	)	

The eigenvalues ��� are the roots of the following equation, with ��� given by Eq. ( 4.113 ): 

�����(���) − �����(���)������(���) − �����(���)�

− �����(���) − �����(���)������(���) − �����(���)� = 0 
(	4.125	)	

Then, the general solution is formed by the summation over all boundary value problem 

solutions: 

��(�, �) = � �����(����) + �����(����)

�

���

	 (	4.126	)	

Therefore, each solution of the � subproblems (��(�, �)) in which the problem was split has 

been determined. 

To go back to the original variable � , the inverse integral Fourier transform must be 

applied. That allows to get the solution for the radial and angular dependent problem: 

�(�, �) =
1

2�
� �������(�, �)�����

�

���

=
1

2�
� �� � ���[�����(����) + �����(����)]�����

�

���

�

���

	

(	4.127	)	

where �� = �
1			� = 0
2			� ≠ 0

. 
 

Next, the complete solution is obtained by multiplying the solution independent on time 

with the one dependent on time, hence: 

��(�, �, �) =
1

2�
� �� � ������(����)��������������

��

�

���

�

���

	 (	4.128	)	

where: 

���(����) = �����(����) + �����(����)	 (	4.129	)	
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To determine the ���  values, the initial condition must be applied (see Appendix C). 

However, since the boundary conditions are non-homogeneous, the steady-state solution 

���(�, �) must be subtracted from the initial condition �(�, �), namely: 

��(�, �) = �(�, �) − ���(�, �)	 (	4.130	)	

So, by applying the initial condition ��(�, �) to the found complete solution, it follows that: 

��(�, �) =
1

2�
� �� � ������(����)��������

�

���

�

���

	 (	4.131	)	

The previous formula can be considered as a Fourier series, so, for the properties of Fourier 

series, the unknown coefficients ��� can be evaluated as: 

1

2�
� ��������� =

1

2�
� ������(����)��������

�

���

�

��

	 (	4.132	)	

For the properties of Fourier-Bessel series, multiplying both sides by ∫ ����(����)
��

��
��, the 

previous formula can be further reduced to: 

� �� ���������
�

��

� ����(����)��
��

��

= � � � ������(����)��������

�

���

� ����(����)
��

��

��	

(	4.133	)	

� �� ���������
�

��

� ����(����)��
��

��

= ��� �� ��������(����)��
�

��
��

��

�	 (	4.134	)	

��� =
∫ �∫ ���������

�

��
�����(����)��

��

��

∫ ��������(����)��
�

��
��

��

	 (	4.135	)	

The integral at the numerator can be evaluated numerically, as: 

� �� ��(�, �)�������
�

��

� ����(����)��
��

��

= � �� ��(�, �) − ���(�, �)��������
�

��

� ����(����)��
��

��

= � �� �(�, �)�������
�

��

��

��

− � ���(�, �)�������
�

��

� ����(����)��	

(	4.136	)	
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Being: 

����(�, �) = � ���(�, �)�������
�

��

	 (	4.137	)	

Eq. ( 4.137 ) can be rewritten as: 

� ��� �(�, �)�������
�

��

� − ����(�, �)� ����(����)��
��

��

	 (	4.138	)	

For the particular case �(�, �) = �� = �����  or �(�, �) = ��(�) , the integral at the 

numerator becomes for � = 0: 

� ��� �(�, �)�������
�

��

� − ����(�, �)� ����(���)��
��

��

= � �2���(�) − ����(�, 0)�����(���)��
��

��

	
(	4.139	)	

��� =
∫ �2���(�) − ��(�, 0)�����(���)��

��

��

∫ �����(���)�
�

��
��

��

	 (	4.140	)	

Otherwise, for � > 0: 

� ��(�)�������
�

��

= ��(�) � ������� =
�

��

0	 (	4.141	)	

being �����  a periodic function such as ∫ ������� =
�

��
0. Thus: 

��� =
∫ ���(�, 0)�����(���)��

��

��

∫ ��������(����)��
�

��
��

��

	 (	4.142	)	

The problem exact solution is given, hence, by the following equation: 

�(�, �, �) = ���(�, �) + ��(�, �, �)

= � �� � + � +
1

�
� 	��������(���) + ����(����)�	�����

�

���

+
1

2�
� �� � ������(����)��������������

��

�

���

�

���

	

(	4.143	)	
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4.4. Approximate	analytical	solution	

Even though the achieved solutions of the heat conduction problem are exact (except for 

approximations by truncation), they cannot be used effectively for the following inverse 

analysis. This mainly because the computational time required by both Eqs. ( 4.66 ) and ( 4.143 ) 

is excessive for any iterative inverse analysis algorithm. Secondly, this solution was attained for 

an idealized problem under conditions a bit far from real ones. For these reasons, the solution is 

first approximated to assure a tolerable computational time. Then, it is adapted to mimic the real 

testing conditions. 

4.4.1. Analytical	 model	 approximation	 for	 the	 ring-on-ring	

tribometer	context	

As done before, the solution is approximated first for the case of a solid cylinder and, then, the 

approximation is extended to the hollow cylinder case. 

4.4.1.1. Solid	cylinder	

In a ring-on-ring tribometer test, it is worth mentioning that the contact zone between the rings, 

namely the opening arc where the conduction heat transfer takes place, is very narrow and the 

flash temperature effect arising in such a contact zone is very localized. Therefore, the steady-

state solution with � = 0  given by Eq. ( 4.26 ) could be considered as representative of the 

mean value of the temperature along the circumferential border of the rings: 

���(�)|��� ≈
1

2�

����� + ����

(� + ��)��(���) − �������(���)
��(���) =

��� +
��

� ��

�

= �� +
��

�

��

�
	

(	4.144	)	

Such assumption allows to simplify the solution of the problem. In fact, if the steady-state 

solution is dependent only on the radius of the cylinder, the initial condition to be applied to the 

homogeneous associated problem becomes: 

��(�) = ��(�) − ���(�)|���	 (	4.145	)	
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and the constants: 

��� =
∫ �∫ ���������

�

��
����(��)��

�

�

���∫ ���(��)���
�

�
�

	 (	4.146	)	

could be determined by the formulas below. For � = 0: 

� �� ��(�)�����
�

��

− ���(�)|������ ���(��)��
�

�

= � 2�(��(�) − ���(�)|���)���(��)��
�

�

	

(	4.147	)	

��� =
∫ 2�(��(�) − ���(�)|���)���(��)��

�

�

��[��(����)� + ��(����)�]
	 (	4.148	)	

and for � > 0: 

� ��(�)�������
�

��

= ��(�) � �������
�

��

= 0	 (	4.149	)	

� ���(�)�������
�

��

= ���(�) � �������
�

��

= 0	
(	4.150	)	

being �����  a periodic function such as ∫ ������� =
�

��
0. 

One obtains: 

� �� ��(�)�������
�

��

− ���(�)|���� ���(��)��
�

�

= 0	
(	4.151	)	

and, finally: 

��� =
∫ �∫ ���������

�

��
����(��)��

�

�

���∫ ���(��)���
�

�
�

= 0	
(	4.152	)	

The complete solution is hence composed by the quasi steady-state solution and the 

transient solution for a steady-state condition uniformly distributed along the border: 

�(�, �, �) = ���(�, �) + ��(�, �, �)

=
1

2�
� ���������(����)�����

�

���

+ � ������(��)�����
����

�

���

	
(	4.153	)	

This is rewritable as: 

�(�, �, �) = �� +
��

�

��

�
	 (	4.154	)	
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+
1

�
� �� �

������
+ ���

������

[(���� + ���)��(����) − ��������(����)]
��(����)�����

�

���

+ � �
2[��(�) − ���(�)|���]

�
� ��(��)

��[��(����)� + ��(����)�]
��(��)������

���

�

���

	

A comparison between exact Eq. ( 4.66 ) and approximate Eq. ( 4.154 ) solutions can be 

appreciated in Figure 4.3 and Table 4-1. The picture shows a very good agreement between the 

two solutions, and the table indicates that the required time is three orders of magnitude lower 

for the approximate solution. This simplification allows for a considerable saving in 

computational time. 

 

 

Time required for 1 s of test simulation 

Exact solution Approximate solution 

4.55 s 0.05 s 

Table 4-1: Comparison between required computational times. 

 

 
Figure 4.3: Comparison between exact solution and approximate solution. 
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4.4.1.2. Hollow	cylinder	

As done for the solid cylinder problem, due to the non-homogeneous boundary conditions BC1 

and BC2, the solution of the present problem can be obtained by superposition of the steady-

state solution with non-homogeneous boundary condition ���(�, �) and of the transient solution 

of the associated homogeneous problem ��(�, �, �) [45].  

Since also in this case the contact zone is very narrow and differences between the flash 

temperature and the temperature of the external circumferential border are expected to be low, 

the same approximation introduced for the solid cylinder problem can be applied. This 

approximation allows to compute the temperature evolution simply by superimposing the quasi 

steady-state solution of the nonhomogeneous problem, to the transient solution of the 

(previously found) one-dimensional homogeneous problem, without significant loss of accuracy. 

Hence, the complete solution in simplified form can be represented as: 

�(�, �, �) = ���(�, �) + ��(�, �, �)

= � �� � + � +
1

�
� 	��������(���) + ����(���)�	�����

�

���

+
1

2�
� ���[�����(���) + �����(���)]�����

��

�

���

	

(	4.155	)	

4.4.2. Analytical	solution	implementation	

The analytical solution can be easily implemented through an appropriate environment for 

numerical computing. Indeed, typical numerical software allow to treat Bessel functions both 

with real arguments and with imaginary ones. For this work, the MATLAB environment was 

chosen for its reliability and flexibility and an original solution implementation was developed 

within it. 

Even though the numerical implementation does not require a complex algorithm, quite a 

few troubles had to be solved. The main trouble consisted of finding the eigenvalues ��. These 

eigenvalues are the positive roots of the Bessel solution that satisfied the boundary conditions, 

namely a trascendental equation. However, the Bessel solution is an oscillating function because 
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is a composition of Bessel functions, which look roughly like oscillating sine or cosine 

functions that decay proportionally to 1 √��⁄ . Hence, once the first and the second roots were 

found, the other ones can be easily found by taking advantage of the solution oscillations, 

although their roots are not generally periodic, except asymptotically for a large ��. The first 

two roots can be found iteratively by means of the algorithms for minimization already 

available in the MATLAB environment. 

Another trouble was due to the presence of two infinite sums in the analytical solution. 

Obviously, a series truncation is needed for the numerical implementation. For this reason, 

Eq. ( 4.154 ) becomes: 

�(�, �, �) = ���(�, �) + ��(�, �, �)

= � �� � + � +
1

�
� 	��������(���) + ����(����)�	�����

����

���

+
1

2�
� ���[�����(���) + �����(���)]�����

��

����

���

	

(	4.156	)	

Analysing the solution behavior at different truncation levels, for the first summation it 

was found that at least 200 elements are needed in order to reach a sufficiently smooth solution 

(Figure 4.4). 

 
Figure 4.4: Quasi steady-state solution at different truncation levels. 
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Looking at Figure 4.5, it appears that for more than 200 elements only small improvements can 

be reached against the much more computational time required. This is confirmed by the fact 

that flash temperature estimation is only 1 °C more accurate moving from 200 elements to 300 

elements. 

 
Figure 4.5: Detail of the flash temperature zone computed by the quasi steady-state solution 

 at different truncation levels. 

Instead, for the second summation, only three elements are sufficient. Plots in Figure 4.6 

clearly show how, as the number of boundary value problem solutions considered in the 

summation increases, the truncation error decreases and the solution provides a better 

representation of the initial condition to be imposed. This is due to the present solving method, 

which uses the initial conditions to obtain generalized Fourier coefficients of the eigenfunction 

expansion (see Appendix C). However, by increasing the number of elements, very small 

improvement in the initial condition (less than 1 °C), but no improvement in the temperature 

evolution is detectable. Indeed, after the first seconds, solutions are completely overlapped. 

Contact Angle 
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Figure 4.6: Transient solution at different truncation levels. 

4.5. Numerical	 FEM	 solution	 and	 validation	 of	 the	

modelling	approach	

Analytical results were compared to the results coming from a Finite Element Method (FEM) 

solution, to verify the correctness and reliability of the derived solution. Moreover, the required 

computational time was detected, to evaluate the efficiency of the analytical solution. 

4.5.1. FEM	model	implementation	and	simulations	

A FEM model apt to solve the same heat transfer problem was developed within ABAQUS. A 

2D model composed of a hollow disc whose geometrical dimensions are reported in Table 4-2, 

meshed with 7000 finite elements with 8 nodes was built to solve the same transient heat 

transfer problem. Material properties were considered constant along the simulation and equal 

to those of the analytical model. FEM model parameters are collected in Table 4-2. In the same 

way, initial and boundary conditions are the same as those applied to the analytical model. 

Internal and external convective boundary conditions were applied along all the circumferential 

border. Furthermore, a concentrated rotating heat flux was applied on the external arc segment. 
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This last boundary condition, which represents the heat exchanged by contact, has required a 

subroutine “DFLUX” implementation.  

FEM model parameters 

Geometry Material 
Initial 

Conditions 
External b.c. Internal b c. 

�� = �. ��	� � = 45	 � (°�	�)⁄  �� = 75	°�. �� = 500	°� �� = 50	°� 

�� = �. ���	� � = 7800	 �� ��⁄  
 

ℎ� = 1000	 � (°�	��)⁄  ℎ� = 100	 � (°�	��)⁄  

Contact angle 

�� � = �° 
� = 450	 � (°�	��)⁄

 
�� = 20	�� (��)⁄  

 

Table 4-2: FEM model parameters. 

The ABAQUS solver is able to easily compute the temperature variation. However, it 

requires an appropriate selection of mesh size and time increment. In fact, the solution is strictly 

connected to these two parameters: if they are chosen in an unrefined way, the solution 

underestimates the temperature variation; if they are chosen in a too refined way, the solver 

requires an excessive time to compute the solution. In the present case, the mesh size and the 

time increment were chosen such that to guarantee an error on the temperature evolution of less 

than 1 °C and an error on the flash temperature estimation of less than 10% of the peak value. 

Figure 4.7 shows a detail of the FEM solution. In particular, this picture shows the 

temperature variation in a disk sector where the concentrated heat flux applies on the external 

surface. 

 
Figure 4.7: Detail of the temperature distribution [°C] in the FEM solution. 
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4.5.2. Comparison	of	modelling	approaches	

Before verifying the complete solution, a check on the transient solution (namely the one-

dimensional solution, computed considering 20 eigenvalues: ���� = 20 , many more than 

actually required, see Section 4.4.2) was carried out, just to verify the distributed heat flux 

accuracy, namely the heat contribution due to ℎ� and ℎ�. Comparison can be easily performed 

by simply looking at the external temperature calculated by the two models. Looking at 

Figure 4.8, it is evident that the two solutions match each other. 

 

Figure 4.8: Comparison of FEM solution and analytical one for a one-dimensional problem. 

Once the one-dimensional solution was assessed, the complete solution (namely that of the 

two-dimensional problem) reliability can be analyzed by means of a comparison between the 

external temperature calculated by the FEM model and by the analytical one (computed 

considering five eigenvalues: ���� = 5, and 250 frequencies: ���� = 250). Also in this case, 

the two solutions match very well, as Figure 4.9 shows. However, some little differences can be 

detected (Figure 4.9). Looking at the earliest time instants (Figure 4.10), a small difference in 

the analytical solution with respect to the FEM solution is visible. The analytical model 

overestimation is due to the truncation error introduced by the separation of variables method. 
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Moreover, looking at the flash temperature, it is possible to see that the FEM model computes a 

lower temperature than the analytical one. In this case, a very little underestimation is recorded 

by the FEM solution due to the imposed mesh size and time increment. In any case, the obtained 

analytical solution is capable to represent correctly the heat transfer phenomenon induced by a 

concentrated heat flux. 

  

Figure 4.9: Comparison of FEM solution and approximate analytical one for the 2D problem. 

 

Figure 4.10: Detail of the comparison of FEM solution and 

approximate analytical one for the 2D problem. 
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Lastly, a comparison between the computational time required by the two solutions is 

targeted. From Table 4-3 it is evident that the analytical solution turns-out much faster. 

However, it must be pointed out that the time stated in the table is referred as follows. In the 

case of the FEM solution it represents the time needed to compute the solution for the whole 

model; instead, for the analytical solution, the time reported is referred only to the selected 

computation of the surface temperature. The possibility to select the point in which the solution 

is computed, for the purposes of this work, is another crucial aspect in favoring the analytical 

solution, especially in view of the subsequent inverse analysis under target. 

Time required for 1 s of test simulation 

FEM model Analytical model 

17500 s 0.050 s 

Table 4-3: Comparison between required computational times. 

4.6. Specific	 application	 to	 the	 tribometer	 thermal	

problem	

The real tribometer thermal problem shows a few small, but substantial, differences with respect 

to the theoretical problem, for which an analytical solution was previously achieved. Indeed, an 

analytical solution was achieved for a theoretical problem in which internal and external 

surfaces are subjected to a convective heat transfer and a constant concentrated heat flux on the 

external surface of on infinite rotating cylinder. In reality, taking into account the experimental 

set-up described in Section 3.2.2, only the internal surface is subjected to an unknown heat 

transfer; instead, the external surface is subjected to several heat fluxes, whose contribution 

shall be evaluated in a different way, as explained below. 

In particular, the external surface was considered subjected to heat transfer by 

(Figure 4.11): 
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 Convection with air (��) 

 Radiation with environment (���); 

 Radiation with the hot disc (����); 

 Thermal contact conductance with the hot disc (��). 

  
Figure 4.11: Rotating hollow cylinder under external heat conduction source and 

 surrounding external and internal convection. 

So, boundary conditions are now mathematically expressed by: 

BC1: −�
��

��
�

����

= �
��, −�� ≤ � ≤ ��

�� + ��� + ����, �� ≤ � ≤ 2� − ��
  

BC2: −�
��

��
�

����

= −ℎ��|����
− ��,��  

whereas the initial condition is 

IC: �(� = 0) = �(�)  

4.6.1. External	convective	cooling	estimation	

Heat transfer through a fluid occurs by convection in the presence of bulk fluid motion. In fact, 

a fluid flowing against a body at a different temperature forms a thin slowed-down layer called 

boundary layer. Heat is conducted into this layer, which sweeps away and mixes into the main 

flow. The process of carrying heat away by a moving fluid is called convection [50]. 

�� + ��� + ����	

−��

2
�

�
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Although Newton may not have really written such an expression, to express the overall 

effect of convection Newton’s law of cooling is commonly used: 

�� = ��� = ℎ�(� − ��)	 (	4.157	)	

here ℎ is the film coefficient or heat transfer coefficient and ��  is the temperature of the 

oncoming fluid. Coefficient ℎ is often considered in terms of an average value over the surface 

of heat transfer and not as a local value at a specific point of the surface.  

For heat transfer at a surface within a fluid, the so-called Nusselt number (��) is the ratio 

of convective to conductive heat transfer across (normal to) the boundary, expressed by: 

�� =
�ℎ

�
	 (	4.158	)	

where � is the characteristic length (equal to the diameter for a disc) and �  is the thermal 

conductivity. Through the Nusselt number the heat transfer coefficient can be estimated. 

In the literature, many empirical correlations were proposed to estimate this number under 

different geometrical and thermal conditions. As reported in [50], few correlations are available 

for the considered testing geometry and conditions. Among these, the following ones can be 

used: 

Hilpert: ��� = ����
����/� 

Zukauskas: ��� = ����,���
� ���.�� �

��

���
�

�/�

 

Churchill and Bernstein: ��� = 0.3 +
0.62���/����/�

[1 + (0.4/��)�/�]�/�
�1 + �

��

282000
�

�/�

�

�/�

 

Whitaker: ��� = �0.4���/� + 0.06���/�����/� �
��

��
�

�/�

 

where ��� =
����

�
 is the Nusselt number for cylinders, �� is the Reynolds number, �� is the 

Prandtl number. Under experimental conditions all these correlations lead to an average value 

of ℎ ≅ 10
�

°�	��. 
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4.6.2. Radiative	contribution	

Heat transfer due to an electromagnetic radiation that propagated as a result of a temperature 

difference is called thermal radiation.  

It was shown that an ideal thermal radiator, namely a “blackbody”, will emit energy at a 

rate proportional to the fourth power of the absolute temperature � of the body and directly 

proportional to its surface area �. Thus, [50]: 

�� = ����	 (	4.159	)	

where � is a proportionality constant and is called the Stefan-Boltzmann constant with the value 

of 5.678 ∙ 10�� �

����. Eq. ( 4.159 ) is called the Stefan-Boltzmann law of thermal radiation, and 

applies only to blackbodies. Hence, the radiation heat exchange between two blackbodies’ 

surfaces will be proportional to the difference in absolute temperature to the fourth power. 

To take into account a non-ideal thermal radiator, namely a “gray-body”, another factor, 

called emissivity �, shall be introduced into Eq. ( 4.159 ). This parameter relates the radiation of 

a “gray” surface to that of an ideal black surface. Moreover, it must take into account the fact 

that not all the radiation leaving one surface will reach the other surface, since electromagnetic 

radiation travels in straight lines and some will be lost in the surroundings. So, a geometric view 

factor (��) shall be introduced as well into Eq. ( 4.159 ). Radiant heat exchanged between two 

gray-bodies is then represented as: 

�� = �����(�� − ��
�)	 (	4.160	)	

In this case, the view factor �� accounts for the fraction of radiation energy leaving the body at 

temperature ��  and reaching the considered surface. 

Regarding the radiation with the hot body, this factor is computed according to the solution 

for an infinite parallel cylinder of different radius, as presented in [56]: 

�� =
1

2�
�� + [�� − (� + 1)�]�/� − [�� − (� − 1)�]

�
� 																														

+ (� − 1) ����� �
�

�
−

1

�
� − (� + 1) ����� �

�

�
+

1

�
��	

(	4.161	)	

where: 
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� =
��

��
	 (	4.162	)	

� =
�

��
 (	4.163	)	

� = 1 + � + � (	4.164	)	

and �� is the external radius of the hot disk and � is the distance between the two discs. Hence, 

for the considered problem geometry, in this work the view factor was taken equal to 0.26. The 

emissivity �  was set to a constant value of 0.75, after comparison with thermocouple 

measurements. Moreover, since the Stefan-Boltzmann law is clearly non-linear, the radiation 

law was linearized by introducing an equivalent convective coefficient ℎ�  and an equivalent 

radiation temperature ��
∗, as suggested in [60], so that: 

���� = ���ℎ�
∗(� − ��

∗)	 (	4.165	)	

In the considered cases, being the temperature range [����, ����] of the cold disc known while 

the hot disc temperature is constant during the contact step (see Section 3.3.2), it is possible to 

achieve a good estimation of the heat transfer by radiation. So, the equivalent coefficient and 

radiation temperature was defined by minimizing the discrepancy between the heat flux 

computed by means of the Stefan-Boltzmann law and the heat flux computed by a linearized 

radiation law, as shown in Figure 4.12. Mathematically, the problem can be written as: 

[ℎ�
∗, ��

∗]= ���[��� − ����
∗ ]����

����

= ���[��(�� − ���
�) − ℎ�

∗(� − ��
∗)]����

����	
(	4.166	)	

where	���	is	the	hot	disk	temperature.	

 
Figure 4.12: Stefan-Boltzmann law vs. linearized radiation law in the cold disc temperature range. 
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Radiation with the environment (���) was treated in the same way. In this case, �� can be 

considered equal to 1 since the whole external surface transfers heat by radiation with the 

environment. 

4.6.3. Heat transfer by contact 	

As	 stated	 in	 Section	2.2.2.,	 the use of a global Heat Transfer Coefficient (htc), that includes all 

thermal effects (namely thermal contact and gap conductance), appears to be a common practice 

in the modelling of industrial processes of hot metal forming. Since the aim of the present 

doctoral dissertation is to investigate heat exchange phenomena under hot rolling conditions, 

such kind of approach looks reasonable. 

An exact mathematical approach for the contact heat transfer phenomenon would lead to 

solve the heat conduction problem under the following boundary condition: 

BC1: ��

��
�

����

= �
ℎ��	(� − ���), −�� ≤ � ≤ ��

… , �� ≤ � ≤ 2� − ��

																			
																						 

 

The solution of this kind of boundary value problem involves the resolution of an integral 

equation of the Fredholm type, of the second kind [37]. Even though a solution in close form 

can be achieved, this is not convenient from the point of view of required computational time. 

Indeed, it is more suitable to solve the heat conduction problem by applying the following 

boundary condition: 

BC1: ��

��
�

����

= �
�� −�� ≤ � ≤ ��

… �� ≤ � ≤ 2� − ��

																			
																						 

 

where �� is the heat flux at the contact arc, computed as follows: 

�� = ℎ��	(�� − ���)	 (	4.167	)	

where �� and ℎ�� are considered respectively as the mean surface temperature along the contact 

arc and the constant heat transfer coefficient. Basically, for the calculation of ��, the punctual 

temperature � will not be taken into account, but an estimation of its mean value along the 

contact arc �� will be considered. This approach allows to apply the previously found analytical 

solution directly to the present tribometer thermal problem. 
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In Eq. ( 4.169 ),	��  is approximated by superimposing a two-dimensional quasi steady-state 

solution for the angular temperature variation due to the concentrated heat flux and a one-

dimensional solution, which evaluates the instantaneous evolution of the average surface 

temperature, as defined in Eq. ( 4.155 ). However, the surface temperature in the contact area is 

strongly influenced by the contact heat flux, which in turns depends on the surface temperature 

through Eq. ( 4.167 ). Anyway, the surface average temperature does not show a significant 

difference between a sample rotation and the following one, so �� can be estimated with good 

approximation by considering as �� the value that one computes at the previous rotation. Then, 

starting from the known initial condition, the heat flux by contact must be continuously 

upgraded, rotation after rotation. 

4.6.4. Contact	angle	

Contact area plays a determinant role for an exact htc characterization. The contact arc segment 

of opening 2�� could be estimated through the Hertz theory, without taking into account any 

plastic material behavior. However, this leads to underestimating its value, especially for large 

loads, when plasticity may significantly affect the contact area. In order to identify the heat 

transfer coefficient without getting into coarse errors, a more accurate contact area estimation is 

needed. For this reason, a thermo-mechanical FEM model was implemented to assess the 

contact area, by considering the plastic behavior of both sample materials (see Section 6.2). 

Nevertheless, since �� is usually extremely small (less than 1°), the estimation of the htc, 

and its relative heat flux ��	 by means of temperature measurements far from the contact zone, 

where the effect of the flash temperature is negligible, is almost entirely unaffected by any error 

in the determination of ��. The quasi steady-state solution for the temperature distribution along 

the disc circumference confirmed the validity of this basic assumption (Figure 4.13). 
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Figure 4.13: Example of calculated surface temperature along the cold disc circumference. 

4.7. Flash	temperature	calculation	

In order to reduce the required computational time to achieve the solution through the analytical 

model, another consideration shall be made regarding the computation of the flash 

temperature [15]. Taking advantage of the previously developed FEM model, it is easy to note 

how the flash temperature is actually insensitive to the heat transfer at the internal surface, as 

shown in Figure 4.14. Simply, by changing the order of magnitude of the internal heat transfer 

coefficient ℎ�  namely by changing the order of magnitude of the resulting heat flux 

 �� = ℎ�(� − ��), it is easy to see that no changes appear for the computed flash temperature. 

This is due to the fact that the flash temperature phenomenon is very localized at the area and at 

the time in which thermal contact takes place (hence its name). 

Thus, the model does not need to take into account the internal heat transfer for the calculation 

of the flash temperature and the internal heat transfer coefficient could be considered equal to 0. 

However, this does not allow to reach conspicuous savings in computational time. A better 

strategy is to consider a solid cylinder, instead of a hollow one, just for the flash temperature 

calculation. That means that the approximate solution presented in Eq. ( 4.155 ) can be further 

simplified by substituting the flash temperature solution for a hollow cylinder, namely the first 

summation term, with the solution achieved for a solid cylinder. So, the solution becomes: 
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�(�, �, �) = � �� � + � +
1

�
� 	��������(���)�	�����																														

�

���

+
1

2�
� ������(���)�����

��

�

���

	

(	4.168	)	

In this flash temperature solution only a constant appears and it can be easily computed through 

Eq. ( 4.20 ), instead of the two complex constants of the hollow cylinder solution computable 

through Eqs. ( 4.86 ) and ( 4.87 ). This approximation allows to save more than 90% of the 

computational time required by the flash temperature solution, without appreciable loss of 

accuracy, as shown in Figure 4.15. 

 
Figure 4.14: Flash temperature variation at different orders of magnitude of internal heat transfer. 

 
Figure 4.15: Comparison between hollow and solid flash temperature solution. 
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4.8. Model	 adaptation	 to	 the	 experimental	

conditions	

Since a test starts when a constant external surface temperature, namely an initial steady-state 

condition, is achieved on the cold disc (see Section 3.2.2), the test mathematical description 

shall take this aspect into account. Hence, an initial temperature field shall be evaluated first and, 

then, applied to the test analytical model to assess the coefficients ��� of the one-dimensional 

transient solution, namely the second summation of  Eq. ( 4.168 ). 

The initial temperature field ��(�) was evaluated, basically, as a solution of a steady-state 

problem. In particular, the initial condition shall be assessed solving a one-dimensional steady-

state heat conduction problem applied to a hollow cylinder where the external surface is kept at 

a constant temperature (��) and the internal surface is subjected to an internal heat flux (��). 

Indeed, as explained in Section 3.2.2, tests start when sample has reached a steady-state 

condition, namely a thermal equilibrium. That implies that the target value of the external 

surface has been achieved and the other heat transfers, such as convective and radiative cooling 

and above all heat transfer with the spindle (��), have been stabilized to a constant value. As 

explained in Section 3.3.2.1, heat flux with the spindle can be considered constant for all test 

lenght; so, heat flux during tests is basically the same which affects the initial condition. 

However, this condition is unknown and can be evaluated only by means of an inverse analysis 

procedure of which it constitutes an unknown factor. Thus, through the inverse analysis it will 

be determined not only the heat transfer between sample and its spindle during the test, but also 

the initial temperature field.  

The initial condition problem is mathematically expressed by: 

�
���	

��
+ ��

����

���
= 0	 (	4.169	)	

under boundary conditions: 
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BC1: ��|����
= ��  

BC2: −�
���

��
�

����

= ��  

The solution of ODE ( 4.169 ) takes the following form [9]: 

��(�) = �� �� � + ��	 (	4.170	)	

By imposing the first boundary condition, it follows that: 

�� = − ��

��

�
	 (	4.171	)	

and by applying the second boundary condition: 

�� = �� + ��

��

�
�� ��	 (	4.172	)	

Thus, the initial condition for the tribometer model is: 

�(�, � = 0) = ��(�) = �� + ��

��

�
(�� �� − �� �)	 (	4.173	)	

which shall be applied to the problem stated in Section 4.6. 
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Chapter	5. Inverse	 analysis	 procedure:	

theory	and	implementation	

The implemented inverse analysis procedure may be referred to belonging to a particular class 

of inverse problems named Inverse Heat Transfer Problems (IHTP). IHTP are based on 

temperature or heat flux measurements for the estimation of unknown quantities appearing in 

the analysis of physical problems in thermal engineering. Therefore, while in the classical direct 

heat conduction problem the causes (boundary conditions, material thermal properties, etc.) are 

given and the effects (temperature field) is determined, the inverse problem involves the 

estimation of the causes above from the knowledge of the effects experienced in the observation 

of the heat transfer problem. 

5.1. Inverse	Heat	Transfer	Problem	

In the last decades, the interest in the theory and application of Inverse Heat Transfer Problems 

has grown significantly. Nowadays, they are encountered in several branches of science and 

engineering related to thermal problems. Mechanical, nuclear, aerospace and chemical 

engineers, but also mathematicians and statisticians are often involved in the analysis of such 

problems. In situations in which well-established classical methods for the property estimation 

cannot provide a suitable degree of accuracy or may become inapplicable, IHTP techniques can 

be adopted. 

The main goal of the direct thermal problem is the estimation of the temperature field 

�(�, �)  within a solid, when all characteristics (i.e., boundary conditions and attached 

parameters, initial condition, thermo-physical properties of the medium and energy generation 
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terms, if any) are specified. On the other hand, the objective of the inverse thermal problem is to 

estimate one or more of such unknown characteristics, from the knowledge of the measured 

temperature (the effect) at some specified location of the solid. Summarizing, in the direct 

problem the causes are given, the effect is determined; in the inverse problem, the effect is 

recorded, the causes are estimated. 

Difficulties associated with the solution of IHTP were recognized. In fact, from a 

mathematical point of view, IHTPs belong to a class called Ill-posed problems ([2], [12], [13], 

[44], [90]), whereas standard heat transfer direct problems are Well-posed. The concept of a 

well-posed problem, originally introduced by Hadamard [44], requires that its solution should 

satisfy the following three conditions: 

 The solution must exist; 

 The solution must be unique; 

 The solution must be stable under small changes of the input data. 

The existence of a solution for an inverse heat transfer problem may be assured by a 

physical reasoning. For example, if there is a change in the values of the measured temperature 

in a transient problem, there exists a characteristic, as a boundary heat flux, to be estimated. On 

the other hand, the uniqueness of the solution of inverse problems can be mathematically proven 

only for some special cases [2], [13]. Also, above all, the inverse problem is very sensitive to 

random errors in the measured input data; thus, requiring special techniques for its solution, in 

order to satisfy the stability condition, namely the third condition above. 

The temperature measurements provided by the sensors are incomplete in several aspects. 

First, these measurements are taken at discrete locations. Usually, there is only a finite number 

of sensors, sometimes only one. Hence, the spatial variation of the temperature is quite 

incompletely known. Moreover, the measurements obtained from any sensor are available only 

at discrete times, rather than continuously. So, since the accuracy of the solution obtained by an 

inverse analysis is affected by errors involved in the temperature measurements, it is instructive 
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to present the eight standard assumptions proposed by Beck [12],[13], regarding the statistical 

description of such errors. They are the following: 

 Errors are additive, that is: 

��� = �� + ��	 (	5.1	)	

where ���, is the measured temperature, ��, is the actual temperature and �� is the random 

error. 

 Temperature errors �� have a zero mean, namely: 

�(��) = 0	 (	5.2	)	

where �(��) is the expected value operator. Errors are then said to be unbiased. 

 Errors have constant variance, that is: 

��
� = �{[��� − �(���)]�} = �� = �����	 (	5.3	)	

which means that the variance of ��� is independent of the measurements. 

 Errors associated to different measurements are uncorrelated. Two measurement errors �
�
 

and �� , where � ≠ �, are uncorrelated if the covariance of �� and ��  is zero, namely: 

������, ��� = ����� − ��������� − ������� = 0	 (	5.4	)	

This is the case if errors 	�� and ��  have no effect or relationship to each other. 

 Measurement errors have a normal (Gaussian) distribution. By taking into consideration the 

second, third and fourth assumptions above, the probability distribution function of �
�
 is 

given by: 

�(��) =
1

�√2�
�

�
�
�

�
��
�

�
�

	
(	5.5	)	

 Statistical parameters describing �
�
, such as �, are known. 

 The only variables that contain random errors are the measured temperatures. The 

measurement times, measurement positions, dimensions of the heated body, and all other 

quantities appearing in the formulation of the inverse problem are supposed to be 

accurately known. 
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 There is no prior information regarding the quantities to be estimated, which could be 

either parameters or functions. If such information exists, it can be utilized to obtain 

improved estimates. 

All eight assumptions above rarely apply to actual experiments. For example, if the 

magnitudes of the measurement errors are quite unequal, the standard deviations σ� are likely to 

be different. However, such assumptions are assumed to be valid throughout this work. This 

allow to verify the applicability of the inverse method, as well as of the stability of the inverse 

problem solution with respect to measurement errors. Moreover, as stated in [69], if the inverse 

heat transfer problem involves the estimation of only few unknown parameters, the use of 

ordinary least squares is allowed, since the solution is stable. Instead, if the inverse problem 

involves the estimation of a large number of parameters, excursions and oscillations of the 

solution may occur. The attempts to obtain the maximum amount of information from the 

experimental data imply small time steps of the experimental data acquisition, in order to 

maximize the included information. However, instabilities in the solution are frequently 

introduced by the use of small time steps [13] (notice that the condition of small time steps has 

the opposite effect in inverse problems than that that it has in the numerical solution of the 

direct problems). Hence, stability problems often can be corrected by choosing suitable time 

steps. 

Generally, inverse problems are solved by minimizing an objective function with, in some 

cases, a stabilization technique used in the estimation procedure. If all eight statistical 

assumptions stated above hold, or can be assumed to be valid, the objective function �, that 

provides the minimum variance estimates is the ordinary least squares sum [12] (i.e., the sum of 

the squared residuals) defined as: 

� = (�� − �)�(�� − �)	 (	5.6	)	

where �� and � are the vectors containing the measured and estimated temperatures respectively, 

and superscript T indicates transpose. The estimated temperatures are obtained from the solution 

of the direct problem with estimates for the unknown quantities. In particular, when the 
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transient readings ���  taken at times �� , � = 1, … , �  of a single sensor are used in the inverse 

analysis, the transpose vector of the residuals, (�� − �)�, is given by: 

(�� − �)� = (��� − ��, ��� − ��, … , ��� − ��)	 (	5.7	)	

and the least squares norm, Eq. ( 5.7 ), can be written as: 

� = (�� − �)�(�� − �) = �(��� − ��)�

�

���

	
(	5.8	)	

Referring to the present work, the use of the ordinary least squares norm given in Eq. ( 5.8 ) 

can be considered to be stable for different reasons. Among those, the considered IHTP involves 

the estimation of only two unknown parameters and this estimation was based on temperature 

measurements coming from long-run tests (1500 s), in order to maximize the available 

information and to minimize the impact of measurement errors. For the signal acquisition, a 

suitable time step (1 s) was chosen to avoid instabilities in the solution both of the inverse and 

of the direct problem. Moreover, signals were filtered using a moving average filter so as to 

reduce the influence given by signal scattering and to provide a smoother curve to the inverse 

analysis algorithm. This simplifies the comparison between the experimental curve with the 

theoretical one and restricts the local minima generation due to the signal noise. 

5.2. Minimization	algorithm	

In the present thesis, the objective of the inverse analysis is the characterization of the boundary 

conditions applied to the analytical solution of the heat conduction problem in an infinite hollow 

cylinder. The optimum solution has been achieved through a minimization process, based on a 

least squares evaluation, of the mismatch between measured and computed temperatures. 

Different approaches are available in the literature; although the most commonly used is the 

Levenberg-Marquard method [69], the Trust-Region algorithm [87] has been chosen in order to 

achieve the solution in a quite limited number of iterations. This is due to the fact that this 

method employs linear algebra operations that do not require to store and/or to operate on full 

matrices. Moreover, Trust Region Methods are able to follow the negative curvature of the 
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objective function, whereas Levenberg-Marquardt algorithms seem unable to do so [92]. Thus, 

the latter approach could be much slower than the chosen one. In this paragraph, only a brief 

description of the applied optimization algorithm will be provided, referring to [10]. 

5.2.1. Quadratic	models	and	Newton	step	

An effective method for the function minimization is based on the properties of a quadratic 

function �(�), such as: 

�(�) =
1

2
���� + ��� + �	

(	5.9	)	

where � is a constant n×n matrix, � a constant n-vector and � a constant scalar. The gradient 

and the Hessian of �(�) are: 

��(�) = �� + �	 (	5.10	)	

���(�) = �	 (	5.11	)	

If � is non-singular, then the function in Eq. ( 5.9 ) displays a unique stationary point, 

which is found by solving the linear equations: 

�� = −�	 (	5.12	)	

The solution will lead to a minimum if the Hessian matrix � is positive definite. On the 

other hand, it will lead to a maximum if � is negative definite or to a saddle point if � is 

indefinite. 

These ideas can be applied also to a non-quadratic function �(�). Supposing �� to be an 

estimate of the minimum of �(�) and knowing �� = ∇�(��), �� = ∇��(��), � and ∇� can be 

approximated by truncated Taylor series: 

�(�� + �) ≃ �(�) =
1

2
����� + ���� + �(��)	

(	5.13	)	

and 

��(�� + �) ≃ ��(�) = ��� + ��	 (	5.14	)	

Therefore, if �� is positive-definite, a first-order estimate of the search direction,� from �� to 

the minimum of � is: 
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� = −��
����	 (	5.15	)	

This leads to the following solving algorithm: 

 choose �� as an initial estimate of the minimum of �(�); 

 repeat iteratively (for � = 0,1,2, . ..) until	‖∇�(����)‖ is sufficiently small as follows: 

o compute �� = ∇�(��) and �� = ∇��(��); 

o if �� is positive definite, then obtain �
�
 by solving ( 5.15 ), otherwise set �

�
= −�

�
; 

o find the step �  so that �(�� + �	��) − �(��) ≤ ��	��
���  and  

|�(�� + �	��) − �(��) − �	��
���|≥ �|�	��

���| with 0 < � < 0.5  (second and 

third Wolfe conditions); 

o Set ��+1 = �� + ��
�
 and restart. 

The vector �� given by ( 5.15 ) is called the Newton correction and is based on regarding � as a 

local quadratic model of �. Under favorable conditions, namely when the Hessian (��) of F is 

positive definite, the Newton algorithm can be very efficient. If �� is not positive definite, then 

the quadratic model displays a maximum or a saddle point rather than a minimum and then the 

Newton correction may become unsuitable. In this case, an alternative search direction is 

needed; as that provided for instance by the steepest descent method. 

5.2.2. Trust-region	reflective	methods	

The basic idea is to approximate �(��) with a simpler function �(��) , which reasonably 

reflects the behavior of function �(��) in a neighborhood ℛ around the point ��, which can be 

referred to as trust region. The trust region ℛ is the set of all points such that: 

ℛ = {� ∈ ℝ�|‖� − ��‖� ≤ ��}	 (	5.16	)	

where ��  is called trust-region radius and ‖∙‖�  is an iteration-dependent norm [25]. A model 

function �(��)	 is “trusted” only in the region where it provides a reasonable approximation. If 

an adequate model of the objective function is found within the trust region, then the region is 

expanded; conversely, if the approximation is poor, then the region is contracted. The fit is 
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evaluated by comparing the ratio of expected improvement from the model approximation with 

the actual improvement observed in the objective function.  

Trust region methods are in some sense dual to line search methods: trust region methods 

first choose a step size (the size of the trust region) and then a step direction while line search 

methods first choose a step direction and then a step size. 

Referring to Section 5.2.1, if �� is not positive definite, a downhill search direction, can be 

achieved by solving: 

(�� + ��)�� = ��	 (	5.17	)	

for a “suitably large” value of positive scalar �. This is because the eigenvalues of �� + �� 

exceed those of ��  by �  and hence, when �  is big enough, �� + ��  may become positive 

definite. 

Using a search direction given by Eq. ( 5.17 ) might seem as arbitrary as the matrix 

modification approaches outlined above. However, it turns out that Eq. ( 5.17 ) gives �� as a 

solution of a subproblem in the form: 

��������			�(�) =
1

2
����� + ���� ���	‖�‖� ≤ ��	

(	5.18	)	

In other words, �� + �
�

 minimizes a quadratic approximation of F subjected to an upper bound 

on the size of the move away from 	��. 

The problem in Eq. ( 5.18 ) has always a solution even when �� is not positive definite. 

This is because it simply amounts to finding the smallest value of �(�) within a hyperspherical 

region around ��. Hence Eq. ( 5.18 ) provides a reasonable way of choosing a search direction 

when the Newton correction is not appropriate. Problem ( 5.18 ) is the basis for a class of 

minimization techniques known as trust-region methods, fully described in [25]. Most of the 

considered methods work by choosing a promising search direction first and then by 

determining a step size by a line search. Trust-region methods reverse this approach and decide 

on a suitable step size before calculating a direction to take. 
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Suppose, for instance, that there is a reason to trust that a local quadratic model of F will be 

reasonably accurate within a distance ‖��‖ from the current iterate ��. A new point ��+1 =

�� + �
�
 could then be obtained by solving Eq. ( 5.18 ), whether �� is positive definite or not. 

The trust-region radius, ��, can be adjusted from iteration to iteration. It is increased if the 

actual change �(����) − �(��) agrees well with the predicted change in the quadratic model. 

Conversely, it is decreased if the actual and predicted changes are too inconsistent. Ultimately, 

the value of �� becomes large enough for the subproblem in Eq. ( 5.18 ), to allow full Newton 

steps to be taken and hence to achieve quadratic convergence. One disadvantage of the trust-

region approach is that Eq. ( 5.18 ) can be difficult and expensive to be solved accurately on 

each iteration. The relationship between the trust region radius ��  and the value of �  in 

Eq. ( 5.17 ) is highly nonlinear and this makes uneasy to obtain �� to solve Eq. ( 5.18 ) via a 

single solution of Eq. ( 5.17 ). 

Therefore, most implementations make use of an approximate solution of Eq. ( 5.17 ), 

which can be sought in the following way. Defining: 

� = ���	 (	5.19	)	

Eq. ( 5.17 ) is equivalent to: 

(� + ��)� = −��	 (	5.20	)	

If � is sufficiently large that the matrix �� is small as compared to � and this expansion can be 

used: 

(� + ��)�� = � − ���� + ���� + �(��)	 (	5.21	)	

to obtain an approximate solution as: 

� = −��� − ���� + ����	 (	5.22	)	

where �
�

= � and �
�

= �
�
 for � = 1,2, …  

A suitable value for � can be found by a trial-and-error process. For a sequence of values 

��, … , ��  with 0 < �� < �� < ⋯ < �� < ����
��

, Eq. ( 5.22 ) can be used to obtain ��, … , �� 

as candidate directions (without any cost of matrix factorization). Then, the curvature of the 

objective function along each direction �� can be evaluated as: 
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�� =
��

����

��
���

	
(	5.23	)	

If possible, a search direction �� leading to the most negative value of �� should be taken 

into account. Otherwise, the one with the smallest positive value must be chosen. In either case, 

quite a large step is expected to be taken, which may cause the search to move rapidly away 

from the non-convex region, to one where � becomes positive definite. 

The way chosen by the MATLAB solver for avoiding the cost of solving Eq. ( 5.18 ) is to 

reduce the trust-region subproblem to a 2-D subspace S. Once the subspace S has been 

computed, the amount of work necessary to solve Eq. ( 5.18 ) is low, even if full 

eigenvalue/eigenvector information is needed (since in the subspace, the problem is only two-

dimensional). The dominant work has now shifted to the determination of the subspace. The 

two-dimensional subspace S is determined with the aid of a preconditioned conjugate gradient 

process. The solver defines S as the linear space spanned by �� and ��, where �� is in the 

direction of the gradient ��, and �� is either an approximate Newton direction, i.e. a solution of: 

−�� = ����	 (	5.24	)	

or a direction of negative curvature, �, such that: 

����� < 0	 (	5.25	)	

In other words, the negative gradient −�� could be combined with the Newton direction �� 

(even if this is uphill) [10]. This would mean seeking a new point ��+1 = �� − �
1
�

�
+ �

2
�

�
 

that gives the least value of F in the plane �� − ��, subject to a restriction on stepsize. Better 

still, for the non-positive definite case, would be to determine a direction of negative curvature, 

�, the minimum of F in a plane defined by −��	and a negative curvature [106]. 

5.3. Algorithm	implementation	

The inverse analysis algorithm was developed starting from the procedure presented by 

Arizzi and Rizzi in [7]. The algorithm makes use of two sources of information: target 

experimental recorded results and numerical data that, depending on a number of modelling 
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parameters to be identified (here the following two parameters: internal heat flux and heat 

transfer coefficient), arise from analytical simulations of the test. The discrepancy among target 

experimental data and computed data is minimized, towards the identification of the heat fluxes 

allowing for most effective calibration. Such discrepancy minimization is measured in terms of 

an appropriate objective function, which quantifies, through an appropriate scalar measure, the 

difference between target and predicted data. 

To allow confrontation among the various curves, the input/output information is 

compared on appropriate snapshots, representing a discrete number of temperature 

measurements assessed at specific test times. As explained in Section 5.1, to avoid instability of 

the solution, a suitable time step has been selected as 1 s. This and the test duration legitimate 

the use of the ordinary least square problem and, hence, the use of the trust region method for 

the solution of the inverse problem. 

5.3.1. Objective	function	

The assumed objective function corresponds to a discrete non-negative, non-dimensional 

ordinary least-square discrepancy measure defined as follows: 

�(�) = � �
��� − ��(�)

�����
�

��

���

	
(	5.26	)	

where � is the vector of unknown optimization variables, namely the unknown heat fluxes, and 

the maximum measured temperature �����. 

5.3.2. Outline	of	the	computational	algorithm		

Once the objective function has been defined, the solution of the inverse problem, devoted to 

the best identification of the model parameters, is re-conducted to the determination of an 

absolute minimum of the objective function, within a selected range of optimization variables �, 

by locating the corresponding optimum values of the material parameters. 



 

112 
 

A numerical algorithm is put in place within MATLAB, by taking as optimisation function 

the lsqnonlin function from the Optimization Toolbox [65]. A flow chart of the implemented 

algorithm is sketched in Figure 5.1. This is an adaptation to the present framework of an 

extensive implementation referring to the determination of material parameters in elasto-plastic 

indentation [7]. The lsqnonlin function in MATLAB requires as entries: the evaluation of the 

objective function; a start point �� from which the search of the absolute minimum departs; 

lower and upper bounds for the optimisation variables. Then, it proceeds to an iterative search 

towards the absolute minimum, by varying the optimisation variables (here internal heat flux 

and heat transfer coefficient), evaluating through them the objective function and its jacobian J, 

at each iteration and checking convergence/stopping criteria, as reported below. 

 

Figure 5.1: Inverse analysis algorithm. 

The evaluation of the objective function is made by calculating ω(x) by comparing target 

experimental data ���, to simulated data from the analytical model function ��, for each value of 

optimisation variables �. The objective function can then be evaluated only after the activation 

of a function, which provides the solution of the direct problem, by producing the solution ��, 
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for the unknown variables � of the inverse problem. The objective function assesses only �(�); 

the jacobian J is calculated by finite difference approximations. When the lsqnonlin function is 

called, this automatically passes the start point ��  to the objective function, towards the 

evaluation of �(��) ; this, in turn, passes ��  to the analytical solution function, for the 

evaluation of ��(��)  and recalls target data ��� . Afterwards, lsqnonlin calls the objective 

function two more times, by giving in input no longer the start point, but rather two points in its 

vicinity. The value of the objective function at these points is used to evaluate the jacobian 

J	�(��). The same is repeated for each subsequent value of optimization parameters �, in each 

iteration. 

Then, the minimisation function checks convergence and stopping criteria, according to the 

following three main conditions: 

 tolerance on objective function: �(��) < Δ�,  with Δ� = 10��; 

 tolerance on gradient norm:  ‖∇�(��)‖ < Δ�, with Δ� = 10�; 

 tolerance on parameter norm:  ‖�� − ����‖ < Δ� , with Δ� = 10��. 

where � = 0,1, …  is the iteration counter. 

The criterion tests if the least square sum is sufficiently small, which is expected to be in 

the neighbourhood of the solution of the problem. Similarly, the second criterion checks if the 

norm of the gradient of �(��) is sufficiently small, since it is expected to vanish at the point 

where �(��) is minimum. The last criterion results from the fact that changes in the vector of 

parameters are very small when the method is converging. The use of a stopping criterion based 

on small changes of the least squares norm �(��) could be used, but with extreme caution. It 

may happen that the method stalls for a few iterations and then starts advancing faster to the 

minimum [69]. 

If none of the above control conditions is satisfied, function lsqnonlin proceeds to the 

definition of a new set of the unknown variables �, through the Trust Region-Reflective method. 
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Iterations go on until when one convergence condition is satisfied. Then, the optimum solution 

of the inverse problem is considered to have been achieved. 
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Chapter	6. Quantitative	 assessment	 of	 the	

heat	transfer	coefficient	

Mathematical tools developed in the previous two chapters are applied to the experimental 

results presented in Section 3.3.2, in order to characterize experimentally the heat transfer 

coefficient htc. The unknown coefficient is determined by means of the temperature increment 

on the cold disc, recorded during the contact step with a hot disc kept at a constant temperature, 

as explained in Section 3.2.2. 

6.1. Inverse	analysis	aim	

The inverse analysis procedure presented in previous Chapter 5 is based on an approximation of 

the heat conduction solution applied to an infinite hollow cylinder, as firstly discussed in 

Chapter 4. In turn, the analytical solution considered a considerable number of parameters 

which define both the material properties and the boundary conditions. Thermo-physical 

properties of the material were estimated through a commercial software [85] that allows to 

characterize the material properties as a function of temperature with good reliability. Regarding 

the boundary conditions, some of them can be defined through empirical correlations from the 

literature (see Section 4.6.1), others can be approximated from their theoretical 

phenomenological law (see Section 4.6.2), but the heat fluxes transfer by contact must be 

determined only through the previously-defined inverse analysis algorithm. Cold disc is 

subjected to two different heat transfers by contact: the first is on the external surface and it is 

caused by the contact with the hot disc, the second is on the internal surface, due to the contact 

by the sample’s driveshaft. This last parameter is completely unknown and it is strictly 
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connected to  the geometry of the contact between the sample and its shaft. For this reason, the 

internal flux �� was taken as an inverse analysis variable, in the same way as for the htc. 

6.2. Contact	area	estimation	

Contact area plays a determinant role for an exact htc characterization. Indeed, to be able to 

accurately define the htc value, the thermal flow transferred by contact must be related to the 

temperature difference between the two bodies in contact and, above all, to the contact area. If 

the temperature difference can be estimated quite easily through experimental measures and 

numerical prediction, the contact area estimation looks more complex to be estimated, despite 

that the contact problem geometry is rather simple. Even though several experimental 

approaches are available, they are not applicable in the present work due to the presence of high 

temperature. Hence, a theoretical approach was chosen. However, the solution of the 

mechanical contact problem is still complex. 

The presence of high temperatures and high normal loads do not allow to use the Hertz 

model [48], which considered only a linear elastic behaviour of the materials in contact. Indeed, 

in the considered cases, owing to high temperature, the first yield stress comes down quickly 

and, then, the plastic condition can be easily reached under the normal load applied during the 

test. For this reason, a FEM model able to consider all the thermo-mechanical phenomena was 

implemented. 

6.2.1. Contact	FEM	model	

Aim of the modelling was not that of simulating exactly all the contact phenomena that take 

place during the test, but that of reaching a good approximation of the real contact area 

extension. For this reason, some appropriate assumptions were made. Firstly, cylinders were 

considered infinitely long as in the Hertz solution; secondly, the rotation effects were not 

included in the model, since only the pure rotation condition was considered in experimental 
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activities; lastly, the thermal effects were considered in terms of average temperature over the 

external surfaces in contact (no flash temperature effect was taken into account). So, to evaluate 

the contact geometrical characteristics, a static bi-dimensional thermo-mechanical model was 

implemented. 

The FEM model was developed with ABAQUS and it was composed by two elements that 

simplify the real problem geometry, whose characteristics are collected in Table 6-1. Indeed, the 

model was not constituted by two rings representing the cross-section of two infinite cylinders 

but only by two ring sections of these cylinders, as shown in Figure 6.1. The hot disc was 

discretized in about 5100 finite elements, mainly with 4 nodes, whereas the cold disc was 

mashed in 4800 finite elements, as displayed in Figure 6.1. Mesh size in the contact zone was 

chosen to achieve a refined enough contact arc estimation. In particular, it was found that mesh 

size of 5 mm looked suitable for that purpose, see Figure 6.2. 

Problem geometry 

Hot disc Cold disc 

��= 0.06 � ��= 0.025 � 

��= 0.015 � ��= 0.012 � 

Table 6-1: Geometric characteristics of the problem. 

All thermo-mechanical material proprieties were considered dependent on the material 

temperature and they were defined through a commercial software [85]. The contact phenomena 

simulation occurs in two different steps: the first is merely thermal; instead, the second is 

thermo-mechanical. Firstly, only thermal boundary conditions were applied to the two elements. 

Thermal boundary conditions consider a constant temperature (from experimental results) on 

the external surfaces and a constant flux (estimated) in the inner surfaces. When temperatures 

had reached a steady state condition, the two rings were put in contact and the normal load was 

increased up to the scheduled value for the test condition. When the normal load had arrived at 

its maximum value, the contact pressure and contact arc were recorded and put in the inverse 

analysis procedure. Different levels of temperatures and normal load were investigated, 

according to the experimental activities (see Table 3-1).  
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Figure 6.1: Contact problem discretization. 

 
Figure 6.2: Detail of the discretization in the contact zone. 

This model simplifies the real contact condition. However, it can be considered as a valid 

way to achieve a first but realistic estimation of the real contact area. 

6.2.2. FEM	results	

FEM results clearly show how different is the mechanical response when the material reaches 

high temperatures. For the cases in which the hot disc temperature is 400 °C and 600 °C, Figure 

6.3 shows an increase of the mean contact pressure, when the normal load increases, and the 

contact pressure value is similar in both cases. For the 800 °C cases, the contact pressure is 

markedly low and its relationship with the normal load is not so evident. 
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Figure 6.3: Mean contact pressure for different normal loads under different thermal conditions. 

This is due to the achievement of a localized plastic condition, as shown in Figure 6.4. 

Interestingly, the plastic strain occurs on the hot disc where, due to the high temperature, the 

first yield strength is drastically lowered. So, even though stresses are lower in the hot disc, as 

shown in Figure 6.5, the lower yield stress is able to promote plastic deformation in the hot disc, 

determining such low values of contact pressure. 

 
Figure 6.4: Effective plastic strain in the contact zone. 

The maximum pressure trends shown in Figure 6.6 confirm the previous considerations. 

Indeed, the maximum contact pressure is still lower for the 800 °C cases. Additionally, the 
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maximum pressure trends show that, for the highest normal loads, even in the case of 600 °C 

plastic deformation was reached. Even though the mean contact pressure is about the same for 

all 400 °C and 600 °C cases, the lower maximum pressure detectable at the highest normal load 

denotes the attainment of an initial plastic deformation also in these cases. 

 
Figure 6.5: von Mises stress in in the contact zone (Pa). 

In terms of contact angle, Figure 6.7 shows approximately the same value for both the 

400 °C and 600 °C cases. Instead, when temperature rises up to 800 °C, the contact angle 

becomes such greater than for the previous cases, due to the occurring of localized plastic 

deformations. 

 
Figure 6.6: Maximum contact pressure for different normal loads under different thermal conditions. 
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Notice that outcomes for hot disc temperature 800 °C are always distinct from those at the 

other two temperatures of 400 °C and 600 °C due to a different material behavior. This is an 

interesting results of the present investigation and clearly states the role of high temperature in 

hot deformation processes. 

 
Figure 6.7: Semi-contact angle for different normal loads under different thermal conditions. 

6.3. Inverse	analysis	results	

All the experimental results presented in Section 3.3.2 were analyzed through the inverse 

analysis algorithm, in order to characterize the htc under different contact conditions. 

Due to inability of the minimization algorithm to recognize the global minimum (see 

Section 5.2), four different inverse analyses were run for each experimental result, starting from 

four different start points. When all the analyses converge into the same minimum point, the 

found minimum can be considered as a global minimum for the inverse problem, i.e. a correct 

solution. Two different levels were chosen for each of the two unknown parameters as for the 

start point. The combination of these values supplies the four different start points positioned at 

the extremities of the parameter space taken into account. Initially, 0.2	� � (°�	��)⁄  and 

20	� � (°�	��)⁄  for htc, whereas 0	�  and 25	�  were chosen for �� . However, inverse 

analysis results display a very low value for the estimated internal heat flow, as suggested in 
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Section 3.3.2.1 and as shown by results in Figure 6.8 - Figure 6.10 related to the cases 3, 9 and 

15 (see Table 3-1) which were chosen as examples. 

Normal Load: 1500 N 

  
a) b) 

Figure 6.8: Inverse analysis results for Case 3: 

a) comparison between temperatures; b) convergence curves. 

  
a) b) 

Figure 6.9: Inverse analysis results for Case 9: 

a) comparison between temperatures; b) convergence curves. 

  
a) b) 

Figure 6.10: Inverse analysis results for Case 15: 

a) comparison between temperatures; b) convergence curves. 
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For this reason, the ��  value was sought in a reduced field nearby the 0 value. The 

maximum value of the internal flow was fixed, then, at 0.25	�. This allows to achieve a more 

refined ��  estimation and, above all, it allows to check the 	��  influence on the htc 

characterization.  

The inverse analysis algorithm relies on the contact area estimation presented in the 

previous sections, so the reliability of the inverse analysis results is strongly influenced by the 

reliability of the FEM solution. In any case, the aim of these activities is not that of supplying an 

exact value for the htc, but to show the applicability and the potentiality of the developed 

methodology for the htc evaluation. Nevertheless, for the reasons stated in the previous sections, 

the approximations introduced in the models are indeed small enough to be able to consider the 

obtained results as good approximations of the exact values. 

6.3.1. Heat	transfer	coefficient	

In this section, inverse analysis results are presented as gathered according to hot disc 

temperature. So, referring to the experimental campaign presented in Section 3.3.2, three 

clusters of results are introduced, for hot disc temperature of 400 °C, 600 °C and 800 °C. 

6.3.1.1. Hot	disc	temperature	of	400	°C	

The inverse analysis results referring to the 400 °C cases are summarized in Table 6-2. For the 

first six cases presented in Table 3-1, equivalent to the cases presented in Table 6-2, the 

comparison between the experimental results and the inverse analysis solution are shown 

respectively in Figure 6.11a - Figure 6.16a. Instead, the four convergence curves starting from 

the extremities of the bi-dimensional parameter space are shown for each single case in  

Figure 6.11b - Figure 6.16b. 

The comparisons between experimental and measured temperatures highlight the capability 

of the analytical solution to replicate the experimental temperature increase. However, the 

model cannot interpret perfectly the experimental data, due to the introduced approximations; in 
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particular, this holds true for the radiative heat fluxes estimation. This behavior tends to be more 

evident when the temperature increase of the cold disc becomes important. Results show how, 

in general, the implemented algorithm is able to identify a solution which can be considered as 

the global minimum of the inverse problem. Referring to the results, the found minima show a 

dependency for the htc on the normal load; instead, the algorithm found values for the �� nearby 

0 in almost all cases. In case 3 and 4, different minima were found (equivalent to different 

values of ��) and this is probably caused by experimental data noise, as better discussed below. 

Anyway, no significant variation for the htc characterization is detectable in the results. 
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500 1 

1 200 0,0025 6823 0,0005 5,17E-02 

2 20000 0,0025 6834 0,0063 5,20E-02 

3 200 0,2500 6828 0,0031 5,18E-02 

4 20000 0,2500 6895 0,0397 5,35E-02 

1000 2 

1 200 0,0025 10033 0,0001 9,87E-02 

2 20000 0,0025 10193 0,1008 1,04E-01 

3 200 0,2500 10033 0,0000 9,87E-02 

4 20000 0,2500 10033 0,0000 9,87E-02 

1500 3 

1 200 0,0025 9671 0,0002 5,31E-02 

2 20000 0,0025 9836 0,1103 5,64E-02 

3 200 0,2500 9712 0,0275 5,39E-02 

4 20000 0,2500 9671 0,0000 5,31E-02 

2000 4 

1 200 0,0025 11995 0,0011 4,75E-02 

2 20000 0,0025 12242 0,1737 4,69E-02 

3 200 0,2500 12264 0,1885 4,69E-02 

4 20000 0,2500 12352 0,2500 4,69E-02 

2500 5 

1 200 0,0025 15315 0,0002 3,22E-01 

2 20000 0,0025 15316 0,0000 3,22E-01 

3 200 0,2500 15346 0,0190 3,23E-01 

4 20000 0,2500 15316 0,0002 3,22E-01 

3000 6 

1 200 0,0025 15430 0,0003 2,14E-01 

2 20000 0,0025 15489 0,0370 2,15E-01 

3 200 0,2500 15434 0,0013 2,14E-01 

4 20000 0,2500 15432 0,0001 2,14E-01 

Table 6-2: Inverse analysis results for 400 °C of hot disc temperature.
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Hot disc temperature: 400 °C 

a) b) 

Figure 6.11: Inverse analysis results for Case 1: 

 a) comparison between temperatures; b) convergence curves. 

a) b) 

Figure 6.12: Inverse analysis results for Case 2: 

 a) comparison between temperatures; b) convergence curves. 

 
a) b) 

Figure 6.13: Inverse analysis results for Case 3: 

 a) comparison between temperatures; b) convergence curves. 
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Hot disc temperature: 400 °C 

a) b) 

Figure 6.14: Inverse analysis results for Case 4: 

 a) comparison between temperatures; b) convergence curves. 

a) b) 

Figure 6.15: Inverse analysis results for Case 5: 

 a) comparison between temperatures; b) convergence curves. 

a) b) 

Figure 6.16: Inverse analysis results for Case 6: 

a) comparison between temperatures; b) convergence curves. 
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6.3.1.2. Hot	disc	temperature	of	600	°C	

The inverse analysis results referring to 600 °C cases are summarized in Table 6-3. For these 

cases, the comparison between the experimental results and the inverse analysis solution are 

shown respectively in Figure 6.17a - Figure 6.22a. Instead, the four convergence curves starting 

from the extremities of the bi-dimensional parameter space are shown for each case in Figure 

6.17b - Figure 6.22b. 

Considerations made for the previous cluster are valid also for the present test conditions. 
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500 7 

1 200 0,0025 7809 0,0008 3,31E-02 

2 20000 0,0025 7815 0,0062 3,31E-02 

3 200 0,2500 7902 0,0787 3,42E-02 

4 20000 0,2500 8107 0,2500 3,70E-02 

1000 8 

1 200 0,0025 8318 0,0009 3,49E-02 

2 20000 0,0025 8439 0,1348 3,72E-02 

3 200 0,2500 8401 0,0930 3,65E-02 

4 20000 0,2500 8544 0,2500 3,94E-02 

1500 9 

1 200 0,0025 11925 0,0003 8,14E-02 

2 20000 0,0025 11926 0,0002 8,14E-02 

3 200 0,2500 11952 0,0290 8,22E-02 

4 20000 0,2500 11925 0,0000 8,14E-02 

2000 10 

1 200 0,0025 12245 0,0003 1,25E-01 

2 20000 0,0025 12288 0,0528 1,26E-01 

3 200 0,2500 12274 0,0360 1,26E-01 

4 20000 0,2500 12245 0,0000 1,25E-01 

2500 11 

1 200 0,0025 14007 0,0001 2,80E-02 

2 20000 0,0025 14050 0,0538 2,84E-02 

3 200 0,2500 14019 0,0154 2,81E-02 

4 20000 0,2500 14206 0,2500 3,00E-02 

3000 12 

1 200 0,0025 16028 0,0002 2,75E-01 

2 20000 0,0025 16032 0,0005 2,75E-01 

3 200 0,2500 16030 0,0006 2,75E-01 

4 20000 0,2500 16030 0,0001 2,75E-01 

Table 6-3: Inverse analysis results for 600 °C of hot disc temperature. 

  



 

128 
 

Hot disc temperature: 600 °C 

a) b) 

Figure 6.17: Inverse analysis results for Case 7: 

a) comparison between temperatures; b) convergence curves. 

a) b) 

Figure 6.18: Inverse analysis results for Case 8: 

a) comparison between temperatures; b) convergence curves. 

a) b) 

Figure 6.19: Inverse analysis results for Case 9: 

a) comparison between temperatures; b) convergence curves. 
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Hot disc temperature: 600 °C 

a) b) 

Figure 6.20: Inverse analysis results for Case 10: 

a) comparison between temperatures; b) convergence curves. 

a) b) 

Figure 6.21: Inverse analysis results for Case 11: 

a) comparison between temperatures; b) convergence curves. 

a) b) 

Figure 6.22: Inverse analysis results for Case 12: 

a) comparison between temperatures; b) convergence curves. 
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6.3.1.3. Hot	disc	temperature	of	800	°C	

The inverse analysis results referring to 800 °C cases are summarized in Table 6-4. The 

comparison between experimental results and inverse analysis solution are shown respectively 

in Figure 6.23a - Figure 6.27a. Instead, convergence curves from the extremities of the bi-

dimensional parameter space are shown for each case in Figure 6.23b - Figure 6.27b. 

Considerations made for the first cluster are valid also the present test conditions. 
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500 13 

1 200 0,0025 4350 0,0000 3,22E-02 

2 20000 0,0025 4459 0,1781 3,61E-02 

3 200 0,2500 4354 0,0061 3,24E-02 

4 20000 0,2500 4353 0,0002 3,22E-02 

1000 14 

1 200 0,0025 4349 0,0001 1,12E-02 

2 20000 0,0025 4420 0,1858 1,27E-02 

3 200 0,2500 4361 0,0309 1,14E-02 

4 20000 0,2500 4352 0,0002 1,12E-02 

1500 15 

1 200 0,0025 4465 0,0001 4,09E-02 

2 20000 0,0025 4516 0,1759 4,39E-02 

3 200 0,2500 4471 0,0203 4,12E-02 

4 20000 0,2500 4465 0,0000 4,09E-02 

2000 16 

1 200 0,0025 5075 0,0004 4,97E-02 

2 20000 0,0025 5075 0,0010 4,97E-02 

3 200 0,2500 5086 0,0476 5,04E-02 

4 20000 0,2500 5077 0,0099 4,99E-02 

2500 17 

1 200 0,0025 4747 0,0003 3,37E-01 

2 20000 0,0025 4754 0,0325 3,38E-01 

3 200 0,2500 4753 0,0271 3,38E-01 

4 20000 0,2500 4748 0,0000 3,37E-01 

Table 6-4: Inverse analysis results for 800 °C of hot disc temperature. 
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Hot disc temperature: 800 °C 

a) b) 

Figure 6.23: Inverse analysis results for Case 13: 

a) comparison between temperatures; b) convergence curves. 

a) b) 

Figure 6.24: Inverse analysis results for Case 14: 

a) comparison between temperatures; b) convergence curves. 

a) b) 

Figure 6.25: Inverse analysis results for Case 15: 

a) comparison between temperatures; b) convergence curves. 
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Hot disc temperature: 800 °C 

a) b) 

Figure 6.26: Inverse analysis results for Case 16: 

a) comparison between temperatures; b) convergence curves. 

a) b) 

Figure 6.27: Inverse analysis results for Case 17: 

a) comparison between temperatures; b) convergence curves. 

6.3.2. Considerations	on	the	inverse	analysis	results	

The results achieved through the inverse analysis are summarized and plotted in Figure 6.28 and 

Figure 6.29. The first figure shows the htc behavior for the three clusters of results and at 

different normal load, whereas the second one shows the internal flow behavior under the same 

conditions. 

Looking at Figure 6.28, a similar behavior is detectable for the 400 °C and 600 °C clusters 

of results. Instead for the 800 °C cluster, a completely different behavior is visible. Indeed, for 

the first two clusters, a linear dependency of htc on the normal load is rather evident, while htc 
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appears to be constant with respect to the normal load for the third cluster. Moreover, for this 

cluster the htc value is much lower than for the previous cases. This marks another important 

difference for the behaviour at high temperature, as already remarked at the end of previous 

Section 6.2. 

 
Figure 6.28: Summary of inverse analysis results: htc estimation. 

Concerning the internal flow, Figure 6.29 shows how the algorithm computed a very low 

value, generally lower than 0.1 W, in almost all the inverse analysis runs This is an effect of the 

experimental procedure, which considers an initial steady state condition such as to provide a 

thermal equilibrium not only externally at the disc but also between the disc and its spindle, as 

suggested in Section 3.3.2.1. In addition, results showing a higher value of internal flow could 

be due to the noise presence in temperature measurements that can generate local minima 

nearby the global minimum. In any case, the few cases in which that internal flow displays 

“high” value (11 on total of 68 cases) are not sufficient to discredit the general trend shown by 

the other results. Moreover, these local minima are not able to modify the htc characterization; 

indeed, different internal flow estimations can lead only to htc modifications of one order of 

magnitude lower than that of the htc. Figure 6.29 does not show any dependency of internal 

flow on the normal load or on the hot disc temperature was detectable. This seems reasonable; 
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indeed these two parameters act on the external surface and, hence, are not able to modify the 

internal heat transfer. 

 
Figure 6.29: Summary of the inverse analysis results: internal heat flow estimation. 

htc results can be plotted also in terms of resulting heat flow (��), as shown in Figure 6.30. 

The resulting flow was computed considering the FEM estimation of the contact area and of the 

initial temperature difference between the two discs. 

 

Figure 6.30: Contact heat flow. 
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The diagram in Figure 6.30 shows a linear dependency on the normal load for both the 

three hot disc temperatures and this trend appears more evident as the hot disc temperature 

increases. This result is in contradiction with the trend shown in Figure 6.28 in which, for the 

800 °C cluster, the htc appears to be almost constant at a low value, independently on the 

normal load. However, as shown in Figure 6.7, the contact area at 800 °C is greater than for the 

other two cases and it increases strongly with the normal load increase. So, this explains the 

trends shown in Figure 6.30. Nevertheless, heat flows �� plotted in the diagram are computed 

choosing arbitrarily a temperature difference ∆� (indeed �� = ℎ�� ∙ ∆�) and, hence, they lead to 

possible misinterpretation, since they depend on the chosen cold disc temperature. 

It is more interesting to plot the obtained htc as a function of the mean contact pressure, as 

done in the diagram shown in Figure 6.31. Even though the mean contact pressure is only 

evaluated through the FEM model, the achieved solution trend can be considered as a reliable 

representation of the real contact pressure trend. Hence, the resulting regression can be trusted 

despite both contact pressure and htc could be considered only as good approximations of their 

real values.  

 
Figure 6.31: htc vs. mean contact pressure. 

0

2500

5000

7500

10000

12500

15000

17500

20000

0,0E+00 1,0E+08 2,0E+08 3,0E+08 4,0E+08

h
tc

[W
/°

C
 m

^
2

]

Mean Contact Pressure  [Pa]

Hot disc temperature: 400 °C

Hot disc temperature: 600 °C

Hot disc temperature: 800 °C



 

136 
 

The diagram shows quite clearly a linear dependence between the htc and the mean contact 

pressure value. Indeed, both the three clusters of results are located almost along a straight line, 

although they come from different test conditions. The different test conditions promoted 

different contact conditions (in particular: for a hot disc temperature of 400 °C the contact was 

purely elastic, for the temperature of 600 °C was elastoplastic and, finally, for 800 °C the 

contact was basically plastic). However, the resulting htc seems to be strictly connected to the 

absolute value of the contact pressure, as suggested (qualitatively) by Chen in [22]. 

Even though further investigations would be needed, it is already possible to define a linear 

correlation for all the achieved data. Figure 6.32 shows how well a linear correlation would fit 

the inverse analysis results. Indeed, a coefficient of determination value (namely the number 

that indicates how well a model fits experimental data) of �� = 0,965 was found.  

 
Figure 6.32: htc vs. mean contact pressure: linear regression. 
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research mill by Harding [47] (2050	�/(°�	��) at 700 °C and 5100	�/(°�	��)	at 1100 °C) 

and confirmed by Pietrzyk and Lenard [75]. In general, the results presented 

here are in agreement with the conclusions of Lenard [61], according to which 

4000	�/(°�	��) ÷ 20000	�/(°�	��) appears to be the correct magnitude of htc, when hot 

rolling of steel occurs. 

The htc value variability in hot rolling is strictly connected to the complexity of both the 

contact mechanical conditions and the temperatures of the contacting surfaces [61]. Both are 

difficult to be characterized due to the extreme environmental conditions. The present 

methodology allows to overcome most of the complications implied by real plant conditions, 

avoiding to get the typical data dispersion present nowadays in the literature. Hence, the present 

integrated experimental and numerical procedure allows to achieve htc characterizations that 

appear less scattered and more refined; moreover, it allows to relate htc values to the real 

contact conditions, which can be kept under control.  

Since a dependency between htc and contact pressure is detected, it is worth noting that the 

htc achieved shall be considered as a mean value of the real htc. Indeed, in the contact region 

the contact pressure increases from zero to its maximum value and then decreases again to zero. 

Hence, considering the relationship between the htc and the contact pressure to be true, it means 

that the htc shall grow up from zero to its maximum value and then fall to zero again, in the 

same way as for the contact pressure. Since the htc was considered constant over the contact 

area (see Section 4.6.3), its computed values shall be considered as “mean values” and, from 

this point of view, it was properly correlated with the corresponding mean contact pressure. 

Assuming for the htc the same trend detected for the contact pressure along the contact arc, the 

supposed real value for the htc can be easily estimated. As it is shown in Figure 6.33, where the 

maximum htc value is plotted as a function of the corresponding contact pressure, the general 

relationship between these two parameters does not change. 
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Figure 6.33: local htc vs. maximum contact pressure. 

Indeed, values are basically shifted on both axes, but the general trend remains the same, 

as highlighted in Figure 6.34. If this consideration was further verified, it would mean that the 

linear correlation between htc and contact pressure is valid in terms of both spread value and 

localized value. 

 
Figure 6.34: htc vs. maximum contact pressure: linear regression. 
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6.3.3. Further	considerations	

The developed methodology allows not only to achieve a precise characterization of the htc 

under real hot rolling conditions, but also to investigate the phenomenon of heat generated by 

friction and its impact on the contact conditions. Indeed, by simply adding a heat flux to the heat 

transfer by contact it is possible to analyze the friction impact on the surface temperature. At 

this stage, it is not thinkable to investigate frictional heat generation and to partition the 

phenomena. This would require additional devoted experimental activities. However, through 

the previously developed models, a first estimation of the surface temperature increase can be 

made when both contributions are present, in order to evaluate the thermal condition that the 

sample undergoes during a frictional test. So, it would be interesting to investigate the 

contribution of frictional heating with reference to frictional tests under piercing conditions. 

Referring to the test presented in Section 3.3.1.4, the flash temperature can be assessed 

firstly through an estimation of the contact angle and contact pressure via the FEM model (see 

Section 6.2). From the latter parameter, the corresponding htc can be estimated by means of the 

just observed relationship; instead, from the former one, the area where contact heat transfer and 

frictional heat generation take place can be evaluated. Secondly, the surface temperature 

increase can be achieved by means of the analytical solution presented in Chapter 4. This 

solution requires an estimation of the two heat fluxes. The heat flux transferred by contact can 

be evaluated as: 

�� = ℎ��(��� − �)	 (	6.1	)	

where ��� is the hot disc temperature and � is the cold disc temperature. The heat flux 

generated by friction can be assessed through a well-known formula: 

�� = �
���

��
	 (	6.2	)	

where � is the experimental friction coefficient, � the sliding speed, � the applied normal load, 

�� the contact area. As concluded by Francis and Kennedy [34], it is considered that nearly all 

the frictional energy (���) is dissipated as heat, primarily within the top few microns of the 
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contacting bodies. The coefficient � describes how the heat generated is partitioned between 

the two bodies. This coefficient was fixed to a first approximation equal to 0.5. Through these 

fluxes, it is possible to estimate the flash temperature and the contribution of each flux to the 

surface temperature increase. 

Referring to the contact condition characterized by 0,9 m/s of sliding speed and 2500 N of 

normal load, the local temperature increment is plotted in Figure 6.35. In particular, three 

different surface temperature increases are plotted: the blue line represents the temperature 

increase due only to the heat transfer by contact, the magenta line represents the increase owing 

to frictional heat generation, and the green one is the estimation of the superimposition of the 

two contributions. Looking at the diagram, it appears that, probably, a single effect alone is not 

able to promote significant surface variations. Even though friction heat generation represents 

the main contribution, the surface temperature increases significantly up to almost only 100 °C 

when frictional heat is considered together with contact heat. 

  
Figure 6.35: Surface temperature increment estimation for 

tribological test under piercing condition. 

This increase could be high enough to support any localized surface modification. For 

example, looking at Figure 3.9, temperatures higher than 100 °C could determine a considerably 
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lower yield strength and a similar modification could be detected also for the other physical 

properties of the material. In the same way, it is well-known that some chemical reactions, as 

oxidation, are fostered by high temperature. As stated by Lenard [61], the effect of temperature 

on the magnitude of friction in hot working should not be separated from other phenomena. 

Hence, the resulting friction behavior cannot be considered as an independent phenomenon, but, 

actually, it is the result of the summation of effects due to all phenomena (mechanical, chemical, 

thermal, etc.), which take place at the interface of the contacting bodies. So, the characterization 

of the thermal condition is only the first stage to be reached for a full understanding of the 

tribological behavior of the two bodies in contact. 
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Chapter	7. Conclusions	

The present research focused on the characterization of the main energy transfers typical of hot 

working processes, with specific reference to hot rolling in the industrial production of seamless 

pipes. The research was developed within a collaboration with an industrial partner and 

attempted to achieve both academic and industrial research goals. 

Regarding the analysis of the mechanical energy transfer, a non-Coulombian friction 

model was characterized under the hot rolling condition. Experimental results achieved under 

nearly industrial plant conditions highlighted the validity of the Wanheim and Bay law [97] to 

model friction in hot processes. Moreover, experimental activities pointed out some key 

variables which affect the friction behavior. In particular, since high temperatures are able to 

promote chemical processes and/or to influence the material mechanical properties, an analysis 

on the thermal conditions must be performed, in order to deeply understand the different 

phenomena which take place within the contact area. This calls for a throughout investigation 

on heat transfer processes. For this reason, a dedicated experimental campaign was put in place 

to characterize a coefficient apt to describe the heat transferred by contact, namely the heat 

transfer coefficient htc. This kind of coefficient cannot be deduced directly from the 

experimental results, but it requires appropriate mathematical tools that were developed in the 

course of this work. In detail, the htc was determined through an inverse analysis procedure, 

implemented on purpose, which takes advantage of an innovative analytical solution simulating 

the phenomena that appear in the experimental tests at the tribometer scale, within an 

experimental facility that was developed during this research. 

First of all, a new analytical solution was developed to mimic the physical processes 

occurring in the experimental configuration. Starting from the analytical solution of a theoretical 
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problem that sketches the real problem, an approximate effective solution was also achieved. 

The theoretical problem is basically the heat conduction problem applied to a rotating hollow 

cylinder exposed to internal and external convection and subjected to a concentrated heat flux 

on the outer boundary. Starting from the partial solutions of the problem available in the 

literature, a complete solution was ex-novo developed. Then, the solution was further simplified 

and optimized in order to achieve an efficient model without loss of accuracy. Indeed, a crucial 

aim of this activity was that of reaching a heat conduction solution able to solve the problem as 

quickly as possible. In this way, an inverse analysis procedure allows to identify the unknown 

htc in reasonable computational time. The achieved analytical solution has shown, indeed, very 

suitable for this purpose. However, it was necessary to modify it further, to include all thermal 

contributions to which the sample was subjected to. Thus, initial condition, air convective and 

radiation contributions were added to the final model, to replicate real test configuration 

conditions. 

A dedicated inverse analysis algorithm was then implemented to attain a sufficiently 

accurate characterization of the htc. The inverse analysis algorithm integrates the analytical 

solution as the direct problem solution and minimizes the discrepancy between corresponding 

simulations and experimental results, in order to achieve the best solution for the htc for the 

considered problem. As most of Inverse Heat Transfer Problems (IHTPs), the analyzed problem 

shall be considered ill-posed, due to solution sensitivity to measurement errors. Therefore, 

signals were properly processed to avoid troubles related to measurement inaccuracies and, so, 

to bring back the considered IHTP to a common least mean square problem. Hence, a Trust 

region-Reflective algorithm was chosen to solve the resulting inverse problem in the fewest 

steps as possible. 

Finally, the mathematical tools specifically developed were applied to process the 

experimental results obtained at the ring-on-ring tribometer scale. Through the inverse analysis, 

the htc and the internal heat flow between sample and spindle were estimated. The latter was 
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found to be of a small entity, as expected from experimental results. Instead, for the htc some 

interesting original trends were found. In particular, a linear relationship between the htc and the 

mean contact pressure were identified, in agreement with proposals by other authors. 

The results allowed to estimate the flash temperature for the mechanical energy transfer 

tests. The found temperature peak in the contact area was such to condition the frictional 

behavior promoting chemical reactions or localized decreases of mechanical properties. In effect, 

tribology appears as an interdisciplinary subject, which draws from the expertise of several 

academic subjects (among these, the most important are: mechanical engineering, physics, 

chemistry and material science). Hence, in conclusion, for a full understanding of a tribological 

behavior like that analyzed in the present work, a mono-disciplinary approach looks insufficient. 

Indeed, all phenomena (mechanical, thermal, chemical and so on) taking place in the contact 

area shall be truly taken into account, as it has been attempted successfully in the present thesis. 

Through the present work, innovative approaches were advanced to analyze both frictional 

behavior and heat transfer by contact under extreme mechanical and thermal contact conditions 

typical of hot rolling production process of seamless pipe. 

Thanks to a newly designed tribometer and to the developed experimental methodologies, 

it has been possible to analyze, and keep under control, contact conditions typical of the hot 

working plant. Due to the difficulties in replicating industrial conditions and to carry out reliable 

measurements, knowledge in this field is often related to theoretical considerations supported by 

experimental tests performed either in laboratories, but under conditions rather far from those of 

the industrial process, or directly in the plant, but whose experimental results usually involve 

data deeply affected by rough systematic errors, uncertainties, scattering, etc., as typical of 

industrial environments. By replicating the process under controlled laboratory plant conditions, 

it is possible to measure and analyze directly the frictional behavior under these working 

conditions. Moreover, all phenomena interconnected to friction can be investigated, by reaching 

a deeper knowledge on the tribological occurrences that take place in an industrial plant. 
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The present work focused particularly on the thermal condition analysis. Anyway, the 

produced effort represents actually the beginning of a wider research activity aimed at 

characterizing all occurrences that may affect heat transfer phenomena in hot rolling processes. 

Through the developed mathematical tools, it is now possible to analyze in details several 

aspects that have not been considered so far. For instance, material couplings, surface conditions 

and the contact time are all topics that may deserve further examination. Additionally, the 

present integrated experimental and numerical approach shall allow to extend the investigation 

to the thermal effect due to friction. Indeed, the mechanical energy converted into thermal 

energy, the heat partition, etc. can now be assessed together with their effects on the surface 

temperature. Thereafter, the impact of the temperature variation on the contact conditions may 

be explored. Indeed, thermal analyses constitute only an intermediate, but essential, step in the 

investigation of the tribological conditions occurring during hot rolling processes in industrial 

plants.  
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Appendix	A: Seamless	 tube	 manufacturing	

processes	

The advent of rolling mill technology and its development during the first half of the nineteenth 

century involved also the industrial manufacturing of tubes and pipes. Initially, rolled strips of 

sheet were formed into a circular cross section by funnel arrangements or rolls, and then butt or 

lap welded in the same heat (forge welding process). Towards the end of that century, various 

processes became available for the manufacture of seamless tubes and pipes, with production 

volumes rapidly increasing over a relatively short period at time. In spite of the application of 

other welding processes, the ongoing development and further improvement of seamless 

techniques led to welded tubes being almost completely pushed out of the market, with the 

result that seamless tubes and pipes dominated until World War Two. During the subsequent 

period, the results of research into welding technology led to a way back of the welded tube, 

with wide diffusion of numerous tube welding processes. Currently, around one third of the 

steel tube production in the world are accounted for by seamless processes. These are briefly 

described below, for further information on the industrial context of the present research work. 

A.1. Seamless	tube	and	pipe	

Despite many earlier tests, trials and technologies, the invention of the cross roll piercing 

process by the Mannesmann brothers towards the end of the 1880s is regarded as the beginning 

of industrial seamless tube and pipe production. 
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This cross roll concept marked the first departure from the characteristic feature of all the 

rolling processes known until that time, i.e. the fact that the roll axes all lay in the same plane, 

the rolls are rotated in opposite directions and the stock exit speed is approximately equal to the 

roll circumferential speed. In the cross roll piercing process, the roll axes were arranged as 

parallel to the stock axis but at an angle to the stock plane. With the rolls rotating in the same 

direction, therefore, this arrangement produced a helical passage for the stock through the roll 

gap. Moreover, the exit speed was slower by about a power of 10 than the circumferential speed 

of the rolls. 

By introducing a piercing plug arranged in the roll gap, the solid material could be pierced 

to produce a hollow shell in the rolling heat by the action of the cross rolls. However, it was not 

possible to produce yet tubes of normal wall thicknesses in useable lengths by the cross roll 

piercing process alone. It was only after the introduction and development of a second forming 

stage - the pilger rolling process - again by the Mannesmann brothers, that it became a 

practicable and economical way to manufacture seamless steel tubes. This pioneering 

development encouraged many inventors at the time to submit a number of patent applications, 

in some cases merely to circumvent the proprietary rights of the Mannesmann brothers, but also 

to break completely new ground in the manufacture of seamless tubes. 

Among these, the so-called continuous mandrel rolling mill shall be mentioned. This 

process initially involved several two-high stands arranged in tandem by means of which the 

thin-walled hollow bloom was rolled over a mandrel bar to produce the finished tube. Owing to 

difficult mechanical engineering and driving problems, however, the process was soon confined 

to history. Fifty years later, with the advent of the modern technology to solve, in particular, the 

open-loop and closed-loop control problems, it was reborn as one of the most efficient ever 

invented tube rolling mills. 

Moreover, as a result of the further development of individual forming facilities, new 

processes were also invented, such as the cross roll piercing mill derivatives in the form of the 

Assel and Diescher processes, or the tube extrusion process derived from the Ehrhardt press. 
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A.2. Piercing	process	

The blooms are heated in a rotary hearth furnace to a forming temperature of approximately 

1280 °C. Following high-pressure water jet descaling, the bloom is pierced in the cross roll 

piercing mill to produce a thin-walled hollow shell, which is elongated to between 3 and 4.5 

times its original length, corresponding to a deformation level between 65% and 75%. 

The cross roll piercing mill type (Figure A.1) used in the plug mill is composed by two 

driven work rolls featuring a biconical pass, and their axes, which are likewise arranged parallel 

to the stock, are inclined to the horizontal of between 6° and 12°. The gap between the work 

rolls is extensively closed by a top and a bottom guide shoe. These guide shoes introduced by 

R.C. Stiefel contribute to the elongation process by acting as stationary rolls, so enabling the 

production of a relatively thin-walled hollow bloom. Again, the stock follows a helical line as it 

passes through the roll gap, so enabling the piercing mandrel, acting as an internal tool, to 

displace the material more effectively. 

 
Figure A.1: Schematic representation of a cross roll piercing mill. 

In plug mills employed for the manufacturing of large tube diameters, arranged between 

the barrel-type piercer and the plug stand a second piercing mill of the same design is frequently 

present. This is often described as “elongator”, the purpose of which is, in particular, to extend 

the inside and outside diameters and to further elongate the hollow shell. 

In recent times, however, these two piercing mills have been replaced by heavy-duty plug 

mills, featuring just one cone piercing unit (Figure A.2). Here again, the work rolls feature a 
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biconical design. They are each angled at approximately 30° to the hollow bloom axis and 

inclined at approximately 10° to 12° to the horizontal. The roll gap is closed by means of two 

side discs which are also driven. This arrangement results in higher degrees of elongation, 

increased diameter expansion, and also faster hollow shell exit speeds (up to 1.5 m/s). 

 
Figure A.2: Diagrammatic representation of a cone piercing mill. 

The process of forming the hollow shell into the finished tube is performed in the same 

heat in the downstream plug stand, with processes and equipment that may take various forms. 

Among these, the continuous mandrel rolling process is worthy to be cited. 

A.3. Rolling	process	

The continuous mandrel rolling process came as a result of arranging in tandem several 

graduated rolling passes in a series of rolling stands, to form a rolling line. This mill type 

elongated the hollow shell pierced in the piercing mill over a floating mandrel bar acting as the 

internal tool to produce the finished tube. 

During the early period of development of this process, problems of material flow 

coordination tended to occur between the various stands, with the different rates of roll wear 

arising from stand to stand, further exacerbating the situation. Only with the advent of modern 

driving and control technologies has the continuous mandrel rolling mill been able to develop 

over the last few decades into today's high-performance production process. In the more modern 

mills of this type, the practice has been adopted whereby only one or two hollow shell/tube 

blank sizes are produced in the continuous rolling train, with the downstream stretch-reducing 
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mill finish-rolling them down. The wall thicknesses produced in this process range from 2 to 

25 mm, depending on the outside diameter. 

The starting material used takes the form of round billets, either rolled or cast. These are 

charged into the rotary hearth furnace where they are heated to the rolling temperature. 

Following high-pressure water descaling, the solid billet is pierced to produce a thin-walled 

hollow shell in a Stiefel-type cross roll piercing mill (automatic mill). In this process, the stock 

is elongated to between 2 and 4 times its original length, corresponding to a reduction in the 

cross section of 50% to 75%. Nowadays, driven guide discs (so-called Diescher discs) are 

employed in place of the previously used guide shoes, in order to prevent frictional losses and 

thus to provide a further increase in capacity. 

The hollow shell produced in the cross roll piercer is subsequently rolled out in the 

continuous rolling mill, over a mandrel bar without reheating, to produce a continuous tube. In 

this process, a maximum elongation of 400% is achieved, corresponding to a reduction in the 

cross section of 75%. 

Continuous mandrel rolling mills consist of between 7 and 9 closely arranged in-line 

rolling stands, which are offset by 90° to their adjacent neighbours and inclined at 45° to the 

horizontal. Each stand features its own variable-speed drive motor. The circumferential speeds 

of the rolls are adjusted to one another, in accordance with the target reductions in cross-

sectional area, so as to ensure that there are no appreciable tensile or compression forces acting 

on the stock between the stands. There is a certain clearance between the mandrel bar and the 

pipe material in the region of the flanks of the oval pass formed by the two-high rolls (Figure 

A.3). In the last round pass, this clearance is evenly distributed around the entire circumference, 

in order to enable the tube to be stripped off from the mandrel bar. 



 

160 
 

 
Figure A.3: Roll arrangement of continuous mandrel mill. 

Before the beginning of the rolling operation, the mandrel bar is inserted into the hollow 

shell; then, once it has reached a certain position, the shell/mandrel bar assembly is inserted into 

the continuous mandrel rolling mill. The stock is gripped by the rolls and elongated from stand 

to stand as the ever-smaller roll passes act on the mandrel bar. As the speed with which the 

stock travels through the rolling stands increases, so does that of the mandrel bar. Finally, at a 

point adjacent to the rolling line, the mandrel bar is removed from the tube, cooled and prepared 

for the next rolling operation. 

In more recent times, rolling practice in mills of this type has reverted to the use of 

controlled, i.e. constrained, instead of freely floating mandrel bars. The advantage of this 

process variant lies in the fact that substantially shorter and fewer mandrel bars are required, and 

that the tube is rolled from the bar; owing to positive forming conditions, larger tube outside 

diameters can be produced in tube lengths up to 30 m. This version of the continuous mandrel 

rolling process is also referred to as simply the MPM (Multi-stand Plug Mill) and is becoming 

increasingly popular for new plant investments throughout the world, in place of larger plug 

mills. 
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In the course of this continuous rolling process up to the extraction of the mandrel bar, the 

tube temperature falls to approximately 500 °C. Consequently, it is fed to a reheating furnace 

where it is held for between 10 to 15 minutes, in order to enable it to regain a forming 

temperature of between 950 °C and 980 °C. On exit from the reheating furnace, the tube is 

rolled to its finished dimensions in the downstream stretch-reducing mill, where no internal tool 

is used. This can involve further elongation up to ten times the incoming length, depending on 

the required final dimensions. 

Stretch-reducing mills can contain anything between 24 and 28 stands or more, all 

arranged in a close in-line formation. Nowadays, each stand has its own variable-speed drive 

and is fit with three rolls of the smallest possible diameter. The three rolls together form a pass 

which has been offset and becomes progressively smaller from stand to stand. 

In accordance with the ever increasing tube length and accompanying reduction in the 

outside diameter and wall thickness of the tube, the circumferential speed of the rolls 

continually increases from the inlet to the exit end of the rolling train. Depending on the number 

of installed stands, various diameters of finished tube can be produced by such an arrangement. 

Figure A.4 shows the structure and process sequence encountered in a continuous mandrel 

rolling mill. 

 
Figure A.4: Schematic representation of a production route for seamless pipe. 
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Appendix	B: Heat	transfer:	fundamentals	

This study falls within the wide field of heat conduction, as targeted on the determination of the 

temperature distribution and flow of thermal energy within solid bodies. Some fundamental 

concepts on this topic are presented in this appendix. In particular, the differential equation of 

heat conduction is derived first in a reference orthonormal Cartesian coordinate system, and 

then in a cylindrical coordinate system. Finally, the general boundary conditions and initial 

condition necessary to solve the heat transfer problem are presented. The presentation gathers 

concepts and notations used in the analytical derivations of the various solutions developed 

within the body of the thesis. 

B.1. Heat	flux	

The thermal energy exchanged by the constituent particles from a region with a greater local 

temperature to a region with a lower local temperature is called heat (e.g. [38]). Conduction is a 

specific mode of heat transfer and is linked to the presence of a temperature gradient within the 

system. 

Once the temperature distribution �(�, �) is known within a medium, as a function of space 

position (defined by position vector �) and time (defined by scalar �), heat flow is described by 

the governing equations of heat transfer. The relationship between the so-called heat flux and 

the temperature within a body is defined by Fourier’s law (e.g. [38]). For a homogeneous, 

isotropic solid (i.e. a material in which thermal conductivity properties are independent of the 

spatial direction), Fourier’s law may be written in the following analytical form: 

�(�, �) = −�	��(�, �)	 (	B.1	)	
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where: 

 �(�, �) [W/m2] is the heat flux vector and represents the heat flow per unit time, per unit 

area of each isothermal surface, with positive component in the direction of decreasing 

temperature; 

 �  [W/(m×K)] is the thermal conductivity of the material, that is a positive, scalar 

quantity; 

 ��(�, �) [K/m] is the temperature gradient (� = �/�� being the gradient operator), i.e. 

a vector normal to the isothermal surface � = �����. 

Since the heat flux vector �(�, �) points at the direction of decreasing temperature, the minus 

sign in Eq. ( B.1 ) is included to make the heat flux components as positive quantities where 

temperature gradient components are negative. 

In a reference orthonormal Cartesian coordinate system Eq. ( B.1 ) may be written as: 

�(�, �, �, �) = ��� + ��� + ��� = −�
��

��
� − �

��

��
� − �

��

��
�	 (	B.2	)	

where �, �, �  are the unit vectors along the reference �, �, �  directions, respectively, and 

��, ��, �� are the components of the heat flux vector in the same directions, respectively. The 

singular heat flux components are then given as: 

�� = −�
��

��
,										�� = −�

��

��
,										�� = −�

��

��
	 (	B.3a,b,c	)	

As it is assumed in Eqs. ( B.3a,b,c ) the heat flow rate at a given temperature gradient is 

taken as directly proportional to the thermal conductivity �. There is a wide difference in the 

thermal conductivity of various engineering materials. Typical ranges of the thermal 

conductivity of various material classes are reported in [45]; values of the thermal conductivity 

of typical engineering materials are also reported in [45]. For example, for steel materials, a 

thermal conductivity � = 45	W/(m×K)	 is commonly assumed. 
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B.2. Differential	equation	of	heat	conduction	

The differential equation of heat conduction, often called the heat equation, may be derived by 

imposing the general statement of conservation of energy, based on the first principle of 

thermodynamics. Briefly, the heat equation imposes that the rate of heat entering through the 

bounding surfaces of a control volume V plus the rate of energy generated internally in it 

(indicated with �(�, �)) is equal to the rate of energy stored in it [38], namely: 

− � � ∙ �
�

�� + � �(�, �)
�

�� = � ��
��(�, �)

���

��	 (	B.4	)	

where in the first term (rate of heat entering through the bounding surface of a control 

volume V): 

 the minus sign is included to ensure that the heat flows into the volume element V. 

 S is the surface area of the control volume V; 

 � is the heat flux vector; 

 � is the outward-drawn normal unit vector to the surface element ��. 

In the third term of Eq. ( B.4 ) (rate of energy stored in V) the following quantities have been 

introduced: 

 � is the mass density of the control volume V; 

 � is the constant volume specific heat that is, for an incompressible body, the constant 

pressure specific heat. 

Through the divergence theorem it is possible to convert the flux surface integral into a 

volume integral, as follows: 

− � � ∙ �
�

�� = − � � ∙ �
�

��	 (	B.5	)	

where � ∙ � = 	���	� is the divergence field of the heat flux vector in �. In light of Eq. ( B.5 ), 

Eq. ( B.4 ) may be rewritten as a volume integral in the following form: 

� �−� ∙ �(�, �) + �(�, �) − ��
��(�, �)

��
�

�

�� = �	 (	B.6	)	
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Thus, since this shall hold for any arbitrary control volume V, the field equation of heat 

conduction becomes: 

−� ∙ �(�, �) + �(�, �) − ��
��(�, �)

��
= 0	 (	B.7	)	

Further, by substituting Eq. ( B.1 ) into Eq. ( B.7 ), it is possible to obtain the differential 

equation of heat conduction in the unknown temperature field �(�, �): 

� ∙ �	�	�(�, �) + �(�, �) = ��
��(�, �)

��
	 (	B.8	)	

When the thermal conductivity �  is set constant, Eq. ( B.8 ) may be rewritten in the 

following form: 

���(�, �) +
1

�
�(�, �) =

1

�

��(�, �)

��
							(� = �����)	 (	B.9	)	

where � [m2/s] is the thermal diffusivity defined as: 

� =
�

��
	 (	B.10	)	

and �� = � ∙ � is the Laplacian operator, namely in a Cartesian coordinate system (�, �, z):  

�� =
��

���
+

��

���
+

��

���
	 (	B.11	)	

Then, in the case of a medium with � = �����  and, further, with no internal heat 

generation (�(�, �) = 0) and under steady-state conditions of the temperature variation in time 

(��(�, �)/�� = 0), the heat equation takes the form of a classical Laplace’s equation in the 

unknown temperature field �(�, �): 

���(�, �) = 0	 (	B.12	)	

Hereinafter, heat Eq. ( B.8 ) is presented in a Cartesian and in a cylindrical coordinate 

system, without explicit derivation. Reference is made to [14] for the details. 
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B.2.1. Differential	 equation	 of	 heat	 conduction	 in	 a	 Cartesian	

coordinate	system	

Given Eq. ( B.8 ) and its particular case Eq. ( B.9 ) above, each of the following relations 

provides the heat equation, i.e. the differential equation of heat conduction, in a Cartesian 

coordinate system, for a homogeneous, isotropic solid with heat generation � within the body: 

	
�

��
��

��

��
� +

�

��
��

��

��
� +

�

��
��

��

��
� + � = ��

��

��
	 (	B.13	)	

and, when the thermal conductivity is set constant (� = �����): 

���

���
+

���

���
+

���

���
+

�

�
=

1

�

��

��
	 (	B.14	)	

B.2.2. Differential	 equation	 of	 heat	 conduction	 in	 a	 cylindrical	

coordinate	system	

The heat equation in a cylindrical coordinate system (�, �, �) may be obtained from Eq. ( B.8 ) 

by the following relation, which takes advantage of the representation of the ��� operator in 

cylindrical coordinates: 

1

�

�

��
���

��

��
� +

1

��

�

��
��

��

��
� +

�

��
��

��

��
� + � = ��

��

��
	 (	B.15	)	

and, when the thermal conductivity is set constant (� = �����): 

1

�

�

��
��

��

��
� +

1

��

���

���
+

���

���
+

�

�
=

1

�

��

��
	 (	B.16	)	

B.3. General	 boundary	 conditions	 and	 initial	

condition	for	the	heat	equation	

The 2nd-order differential equation of heat conduction requires two boundary conditions for each 

spatial dimension and one initial condition for the non steady-state problem. The boundary 

conditions specify the temperature or the heat flux at the boundaries of the region, meanwhile 

the initial conditions specify the temperature distribution in the medium at the origin of time, 

namely �(�, � = 0). 
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At a given boundary surface, the boundary conditions can be prescribed by the temperature 

distribution (boundary conditions of the First Type), by the heat flux distribution (boundary 

conditions of the Second Type) or by the heat flux exchange due to convection with an adjacent 

environment at a given temperature (boundary conditions of the Third Type). In the present 

treatment, for the analytical solution of linear heat conduction problems, such three types of 

linear boundary conditions are considered and briefly presented in the following, for later use. 

It is worthwhile to note that a given boundary or initial condition may be classified as 

either homogeneous or non-homogeneous, as discussed below. 

B.3.1. Boundary	 Condition	 of	 the	 First	 Type	

(Prescribed	Temperature)	

This is the situation when the temperature is prescribed at the boundary surface, that is: 

�|�.�. = ��(�, �),							� ∈ �. �.	 (	B.17	)	

where �� is a prescribed temperature distribution described by a function of position on the 

boundary surface and time. Eq. ( B.17 ) is called a boundary condition of the first type. In 

mathematics, boundary conditions of the first type are called Dirichlet boundary conditions. 

The special case of zero temperature at the boundary: 

�|�.�. = 0	 (	B.18	)	

corresponds to a homogeneous boundary condition of the first type. 

B.3.2. Boundary	 Condition	 of	 the	 Second	 Type	

(Prescribed	Heat	Flux)	

This is the situation in which the heat flux in the direction orthogonal to the boundary surface is 

prescribed at the boundary surface, that is: 

��|�.�. = −�
��

��
�

�.�.
= ��(�, �),							� ∈ �. �.	 (	B.19	)	

where ��/�� is the derivative of the temperature along the outward normal to the surface � and 

�� is a prescribed heat flux distribution described by a function of position on the boundary 



 

169 
 

surface and time. Eq. ( B.19 ) is called a boundary condition of the second type. In mathematics, 

boundary conditions of the second type are called Neumann boundary conditions. 

The special case of zero heat flux at the boundary (perfectly insulated or adiabatic): 

��

��
�

�.�.
= 0	 (	B.20	)	

is called a homogeneous boundary condition of the second type and states that there is no 

temperature variation across the boundary surface. 

B.3.3. Boundary	Condition	of	the	Third	Type	(Convection)	

This is the pure convection boundary condition. The heat flux to or from a surface along normal 

direction � by convection heat transfer is described by Newton’s law of cooling as: 

������
= ℎ(� − ��)	 (	B.21	)	

where �� is the reference temperature of the surrounding ambient fluid (e.g. liquid or gas) and 

ℎ is the convection heat transfer coefficient of units W/(m2×K). Eq. ( B.21 ) is not tied to the 

overall coordinate system, since it is locally linked to the outward normal n to the body. 

The boundary condition can be derived by considering the conservation of energy at the 

surface, assumed to be stationary and noting that no energy can be stored at an infinitely thin 

surface. Thus, by writing an energy balance equation at the surface of the body, one obtains: 

����
= −�

��

��
�

�.�.
= ℎ(�|�.�. − ��) = �����

	 (	B.22	)	

For generality, the ambient fluid temperature ��  may be assumed to be a function of 

position and time, yielding: 

−�
��

��
�

�.�.
= ℎ��|�.�. − ��(�, �)�	 (	B.23	)	

Eq. ( B.23 ) is called a boundary condition of the third type. 

The special case of zero for fluid temperature (�� = 0) leads to: 

−�
��

��
�

�.�.
= ℎ	�|�.�. 						��						

ℎ

�
	�|�.�. +�

��

��
�

�.�.
= 0	 (	B.24	)	
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Eq. ( B.24 ) is called a homogeneous boundary condition of the third type, since the 

dependent variable or its derivative now appear in all nonzero terms. This represents convection 

into a fluid medium at zero temperature. Notice that a common practice is to redefine or shift 

the temperature scale such that the fluid temperature can be reset to zero. 

A convection boundary condition is physically different from Type 1 (prescribed 

temperature) or Type 2 (prescribed flux) boundary conditions in that the temperature gradient 

within the solid at the surface is now coupled to the convective flux at the solid–fluid interface. 

Neither the flux nor the temperature are prescribed; rather, a balance between conduction and 

convection is set, with the exact surface temperature and surface heat flux to be determined by 

the combination of convection coefficient, thermal conductivity, and ambient fluid temperature. 

Clearly, the boundary conditions of the first and second type can be obtained from Type 3 

boundary conditions as special cases, if � and ℎ are treated as coefficients. Indeed, Eq. ( B.24 ) 

shows this to be a linear combination of Type 1 and Type 2 boundary conditions, through 

coefficients ℎ and �. 

A few final words are dedicated to these three important boundary conditions. 

Mathematically speaking, convection boundary conditions introduce the greatest complexity; 

however, from a physical point of view they are the simplest to occur in practice, since many 

actual systems are governed by a natural energy balance between conduction and convection; 

hence, no active control is necessary. In contrast, prescribed temperature boundary conditions, 

while mathematically simpler, are actually rather difficult to be set in practice, since they are 

nearly always associated to surface heat flux. Therefore, for a transient problem, a constant 

temperature boundary condition necessitates a controlled, time-dependent surface heat flux to 

maintain the prescribed temperature. This is often difficult to be achieved in real situations. A 

prescribed temperature boundary condition is perhaps best realized when a physical phase 

change (e.g., evaporation/boiling) occurs at the surface. Alternatively, the constant temperature 

boundary condition may be thought of as a limiting case of a convective boundary condition as 
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ℎ → ∞ , yielding �|������� = �� = constant. Boundary conditions of the second type may 

physically correspond to heaters (e.g., thin electric strip heaters) attached to the surface, which 

with low contact resistance and proper control can provide a prescribed heat flux condition. 
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Appendix	C: Separation	of	variables	

Analytical solutions of boundary value problems ruled by linear ordinary differential equations 

are usually obtained by producing first a general solution. The general solution is obtained by 

integration and contains as many independent arbitrary constants as the maximum order of the 

derivatives in the original differential equation. Incorporation of boundary conditions 

subsequently defines the values of such integration constants. 

In contrast, general solutions of linear partial differential equations involve arbitrary 

functions of specific functions. Incorporation of boundary conditions involves the determination 

of functional relationships and is rarely feasible or practical. An alternative solving approach 

could be based instead on determining first a set of particular solutions and then combining then 

so as to satisfy the prescribed boundary conditions. A specific, useful and simple 

implementation of the idea above is known as the method of separation of variables. 

In essence, the method is based on the assumption that, here, if one is looking for a 

solution to a transient, one-dimensional heat conduction problem of the form �(�, �), it is 

possible to express the sought solution by the product: 

�(�, �) = �(�)�(�) (	C.1	)	

where the functions �(�)  and �(�)  are each a function of a single independent variable 

satisfying specific Ordinary Differential Equations (ODEs). One proceeds by first solving the 

associated ODEs, which are then combined in the product form given above. 

Regardless of the space dimensionality of the differential problem, the equation for �(�) is 

always of the first order and appears readily solvable by elementary methods. 

The equation for �(�) is always of the second order and, together with the boundary 

conditions, leads to an eigenvalue problem (proper Sturm-Liouville system). So, by applying the 
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principle of superposition, the required solution for 	�(�) can be formally and very generally 

expressed by the following representation (inversion formula): 

�(�) = � �(��, �)��(��)

�

���

 (	C.2	)	

where the kernel functions �(��, �) are the normalized eigenfunctions of the associated Sturm-Liouville 

system and the sum runs over all the eigenvalues of the system. Moreover, the integral transform ��(��) 

is given by the formula: 

��(��) = � �(��, �′)�(�′)��′ (	C.3	)	

Therefore, once the boundary conditions are translated from �(�, �) to �(�), the resulting 

Sturm-Liouville system is solved, yielding the appropriate eigenfunctions and eigenvalues. 

From these, one then determines the kernel functions �(��, �)  and the integral transform 

��(��). The inversion formula is used next to obtain function �(�). Finally, the desired solution 

�(�, �) is achieved by substituting the obtained expression in the assumed product form. 

To summarize, the practical steps to derive the solution are [45]: 

 Decompose �(�, �) into products of functions of one variable. 

 Decompose the PDE into a set of ODEs. 

 Identify boundary conditions and the corresponding Sturm-Liouville problems. 

 Solve the Sturm-Liouville problems and obtain the corresponding eigenvalues. 

 Apply the principle of superposition to obtain the eigenfunction expansion for a general 

solution. 

 Impose the initial conditions to obtain generalized Fourier coefficients of the 

eigenfunction expansion. 
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Appendix	D: Bessel	Functions	

A wide treatment on Bessel equations, Bessel functions and their properties is provided e.g. 

in [1] or [98], and references quoted therein. For the present use, some of such properties are 

resumed below. 

Both ��(�)  and ��(�)  Bessel functions display on oscillatory behaviour, which is 

characteristic of all orthogonal functions. Moreover, the following relations hold for Bessel 

functions of the first kind with zero argument: 

��(0) = 1 (	D.1	) 

��(0) = 0					���					� ≠ 0	 (	D.2	) 

A second important feature concerns the behaviour of Bessel functions of the second kind 

as the argument approaches zero, namely: 

��(� → 0) → −∞ 					���					� ≥ 0	 (	D.3	) 

Typical representations of Bessel functions of the first and second kind are provided below in 

Figure D.1 and in Figure D.2. 

 

Figure D.1: Bessel functions of the first kind and 0,1,2 order. 
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Figure D.2: Bessel functions of the second kind and 0,1,2 order. 

It is also useful to list here the first-order derivatives of the Bessel functions ��(�) and 

��(�), as well as of the Bessel functions ��(��) and ��(��): 

�

��
[	��(�)]= 	 −��(�)	 (	D.4	) 

�

��
[	��(��)]= 	 −���(��) (	D.5	) 

�

��
[	��(�)]= 	 −��(�) (	D.6	) 

�

��
[	��(��)]= 	 −���(��) (	D.7	) 

and 

�

��
[	��(�)]=

�

�
	��(�) − 	����(�)	 (	D.8	) 

�

��
[	��(��)]=

�

�
	��(��) − 	�����(��) (	D.9	) 

�

��
[	��(�)]=

�

�
	��(�) −	 ����(�) (	D.10	) 

�

��
[	��(��)]=

�

�
	��(��) −	 �����(��) (	D.11	) 

It is possible to note that Eqs. ( D.4 )-( D.7 ) follow directly from Eqs. ( D.8 )-( D.11 ) as 

particular cases, for � = 0. 

It is also useful to annotate the Bessel function integration properties:  
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� ������(��)�� =
1

�
��	��(��) (	D.12	) 

� ������(��)�� = −
1

���
	��(��) (	D.13	) 

� ������(��)�� =
1

�
��	��(��) (	D.14	) 

� ������(��)�� = −
1

���
	��(��) (	D.15	) 

and the indefinite integral of the square Bessel functions:  

� ����
�(��)�� =

1

2
��[��

�(��) − ����(��)����(��)]

=
1

2
�� ��′�

�(��) − �1 −
��

����
� ��

�(��)� 
(	D.16	) 

where ��(��) is any Bessel function of the first or second kind of order � . Prime notation 

designates differentiation with respect to the entire argument. 


