
Università di Bergamo

Doctoral Thesis

Hints from the crowd

Author:

Paolo Fosci

Supervisor:

Prof. Giuseppe Psaila

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Meccatronica e tecnologie innovative

Department of Engineering

March 2015

http://www.unibg.it
Research Group Web Site URL Here (include http://)
http://www.unibg.it

Declaration of Authorship

I, Paolo Fosci, declare that this thesis titled, ’Hints from the crowd’ and the work

presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been

clearly stated.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed my-

self.

Signed: PaoloFosci

Date: 27th February 2015

i

“von Neumann gave me an interesting idea: that you don’t have to be responsible

for the world that you’re in. So I have developed a very powerful sense of social

irresponsibility as a result of von Neumann’s advice. It’s made me a very happy

man ever since. But it was von Neumann who put the seed in that grew into my

active irresponsibility!”

Richard Feynman - Surely you’re joking, Mr. Feynman! (1985)

“Life is what happens to you while you’re busy making other plans”

John Lennon - Beautiful boy (1980)

UNIVERSITÀ DI BERGAMO

Abstract
Meccatronica e tecnologie innovative

Department of Engineering

Doctor of Philosophy

Hints from the crowd

by Paolo Fosci

Can the crowd be a source of information? Is it possible to receive useful hints from

comments, blogs and product reviews? In the era of Web 2.0, people are allowed to

give their opinion about everything such as movies, hotels, etc.. These reviews are

social knowledge, that can be exploited to suggest possibly interesting items to other

people.

The goal of the Hints From the Crowd (HFC) project is to build a NoSQL database

system for large collections of product reviews; the database is queried by expressing

a natural language sentence; the result is a list of products ranked based on the

relevance of reviews w.r.t. the natural language sentence. The best ranked products

in the result list can be seen as the best hints for the user based on crowd opinions

(the reviews).

The HFC prototype has been developed to be independent of the particular applica-

tion domain of the collected product reviews. Queries are performed by evaluating a

text-based ranking metric for sets of reviews, specifically devised for this system; the

metric evaluates the relevance of product reviews w.r.t. a natural language sentence

(the query).

http://www.unibg.it
Faculty Web Site URL Here (include http://)
http://www.unibg.it

Acknowledgements

My academic career has been like a rollercoaster. During the years, there have been

periods of intense studies, followed by periods of. . . other. John Lennon was saying

life is what happens to you while your busy making other plans. So, in life I had my

long sharing of other.

It was thank to the prof. Giuseppe Psaila if, almost ten years after I got my degree

at Politecnico di Milano, I decided to take the challenge of this PhD. A few years

after graduation, prof. Psaila, who was my co-advisor, was looking for an assistant

for his course of Languages and Compilers in this University, and got in touch with

me to ask me if I can assist him. At that time I was working far away in Rome.

But since the activity was interesting and not too much time consuming, I accepted

with joy his proposal. For years, from march to may, I had to plan weekly transfer

in order to take my lectures. It was tiring, stressful, but most of all, rewarding and

fun! And so I got to know the University of Bergamo, and when I had the chance

to take a sabbatical from work in order to attend this PhD program, well, I didn’t

miss the chance!

I’ve spent three years of studying, researching, working, teaching, doing the cerberus

to the examination tests for students. . . in practice fun! Dealing with Prof. Psaila

has always been interesting and mentally stimulating. And I learn a lot!

So I have just one thing to add: Giuseppe, I stop swearing against LATEX right now!

I wish to dearly thank also prof. Riccardo Riva, who as PhD Co-ordinator was

always helping me, not least in letting me to postpone my PhD final dissertation to

the next year, as I was in trouble in writing this thesis after my returning back to

old work at the formal ending of the PhD. I really hope his health troubles leaves

him in peace. Forza Professore!

iv

A special thank to prof. Stefano Paraboschi who was always available for a speech

or a suggestion, and made me possible to attend the conferences and the summer

schools where I have been during my PhD studies.

I can’t forget all people, friends, in the computer science department:

Simone Mutti, Steven Capelli, Paolo Vavassori, Davide Mora, Eros Magri. Some

of them had also the misfortune to have me as a teacher, and still they helped me

when I was in troubles with servers! C’mon Simone, we’ll finish together, and you,

Steven and Paolo, are the next! Follow Simone’s way, not mine!

And I want also to remember Chiara Pisoni, Pasqualina Potena, Maurizio Toccu,

Mario Arrigoni Neri, prof.ssa Patrizia Scandurra, prof. Angelo Gargantini, prof.

Paolo Salvaneschi, prof. Tullio Caronna (years ago he was my teacher in Chemistry

at Politecnico but luckily for me he can’t remember my exam!), and all the people

working for the university. They all made my staying in department comfortable

and relaxing, especially during lunch or coffee break. Coffee! What a stunning

invention!

And also, I can’t forget Carlos Laorden and Javier Nieves from University of Bilbao,

who came in visit and made my staying in department extra special. Javier, I still

owe you an hangover :-D.

A thought, to my PhD mates. Some of them had already got the PhD, others are

about to finish! Even if our fields of studies were so different, it was interesting to

have a different point of view when we were sharing the same room. And a special

thank to Rosalba Ferrari, who as students representative made and excellent work!

Thanks to Alfredo Cuzzocrea, from University of Calabria, who co-authored with me

and prof. Psaila some papers giving the project an higher resonance.

Surely I have to thank my family. And my friends as well, even if most of the time

they were kidding me saying I was too old to get back to student life! So, after

replying with a polite tie’ !, I thank all them for their support.

A special thank to my friend, colleague, PhD mate (though in another university),

co-author, inspirer, project web-interface designer, and bla bla bla (he hates blas),

Marcello. He enlightens my mind with good taste and. . . knowledge! Knowledge

about everything, beyond the work, beyond the research. . . beyond! . . . and he helped

me! He made the web interface! (But don’t call him the guy of colors !)

Last but not the least, thanks to my friend Mauro for printing the cover of the C:D,

and a special thank to Sveta for helping me to fix bugs with my english. Well, not

only with my english! ;-)

PS.

Abbiamo fatto trenta, facciamo trentuno. . .

I want to thank my former advisor at Politecnico di Milano, prof. Stefano Crespi-

Reghizzi, and my Computer Science teacher at high school, prof. Roberto Bellavita,

because they put the seed in that grew into my active irresponsibility.

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

Contents vii

List of Figures x

List of Tables xii

Abbreviations xiii

Symbols xiv

1 Introduction 1

1.1 The context . 1

1.2 Examples . 4

1.3 Purpose of the project . 15

1.4 Structure of the thesis . 16

2 State of the art 18

2.1 Vector Space Model . 19

2.2 tf-idf model . 22

2.3 Latent Semantic Indexing . 23

2.4 PageRank . 24

2.5 Itemset Mining . 26

vii

Contents viii

2.6 Amazon Recommendation System . 28

Item-to-Item Collaborative Filtering. 29

Scalability. 30

2.7 Youtube Recommendation System . 32

User Activity . 32

Introducing Relevance and Diversity 32

2.8 IMDb Recommendation System . 34

3 Problem definition 41

3.1 Basic idea . 41

3.2 Ranking Model . 43

3.2.1 Termsets . 43

3.2.2 Termset Weight . 44

3.2.3 Query Expansion and Semantic Coefficient 46

Pos-tagging. 46

Stopwords filtering. 47

Term expansion. 47

Query expansion. 49

Expanded Termsets. 49

Semantic coefficient. 51

3.2.4 Product Reviews and Termsets 54

3.2.5 Termset Average Density . 55

3.2.6 Product Ranking Metric . 57

3.3 Model Evolution . 58

3.3.1 DATA 2012 - Ranking model 59

Basic Notions on Itemset Mining 59

Product Reviews and Itemsets 60

Retrieval Model . 62

3.3.2 KES 2012 - Ranking Model 66

Posts and Termsets . 67

Blog Relevance Measure 69

4 Algorithms 73

4.1 Recursive Termset Mining algorithm - RTM 73

4.2 Valid Termset Coverage algorithm - VTC 80

4.3 Minimum Window algorithm . 87

5 Prototype 93

5.1 System Architecture . 93

5.1.1 Back-end . 95

Contents ix

5.1.1.1 Analyzer . 95

5.1.1.2 Loader . 97

5.1.2 Front-end. 97

5.1.2.1 Query engine . 98

5.1.2.2 User interface . 98

5.2 Data Model . 104

5.2.1 Data storing. 106

5.2.2 Run-time data model . 108

6 Performing evaluation 114

6.1 Datasets . 114

6.1.1 Blog Corpus . 115

6.1.2 Epinions . 118

6.1.3 IMDb . 120

6.2 The quest for performance . 123

6.3 Indexing . 129

6.4 Execution . 131

7 Conclusions 135

7.1 Conclusions . 135

7.1.1 Results achieved . 136

7.1.2 Open issues and future work 136

A Part-of-speech (POS) Tagging 139

B Wordnet 141

C Apache Lucene 145

D Named Entity Recognition & Linked Data 148

E Testing queries 153

Bibliography 156

List of Figures

1.1 Booking - Map feature . 4

1.2 Booking - Price listing . 5

1.3 Booking - Website listing . 5

1.4 Booking- Travelers score listing . 6

1.5 Booking. - User reviews . 7

1.6 Venere - Map feature . 8

1.7 Venere - Listing choices . 8

1.8 Venere - Reviews . 9

1.9 Epinions - Product listing . 10

1.10 Epinions - Why are these stores listed? 11

1.11 Epinions - Product comparison . 12

1.12 Epinions - Product reviews . 12

1.13 IMDb - The Imitation game card . 14

2.1 Documents Vector representation . 20

2.2 Itemset Hasse diagram . 28

2.3 Amazon Recommendation System example 1 29

2.4 Amazon Recommendation System example 2 30

2.5 Amazon Recommendation System Architecture 31

2.6 Youtube recommendation system example 33

2.7 IDMb recommendations . 35

2.8 IDMb recommended listings . 35

2.9 IDMb Box Office listing . 36

2.10 IDMb Top250 listing . 37

2.11 IDMb Bottom 100 listing . 38

2.12 IDMb search box . 39

2.13 IDMb advanced search . 40

3.1 Termset weight example . 46

3.2 Term semantic coefficient trends . 53

3.3 DATA 2012 - Itemset weight . 64

x

List of Figures xi

4.1 Termset mining order . 75

4.2 Recursive Termset Mining (RTM) algorithm 76

4.3 Termset mining dynamics . 79

4.4 Hasse diagram of valid termsets . 80

4.5 Query coverage graph . 81

4.6 Expansion set Vs Reverse Expansion Set 81

4.7 Non-valid termset graph . 82

4.8 Valid termset graph . 83

4.9 Valid coverages and semantic coefficient 83

4.10 Valid Termset Coverage (VTC) algorithm 85

4.11 Sequence representation of reviews 88

4.12 Minimum window algorithm. Head dynamics 89

4.13 Minimum window algorithm. Tail dynamics 89

4.14 Minimum Window algorithm . 90

4.15 Minimum Windows execution report 92

5.1 Architecture . 94

5.2 HFC web interface. Salutation . 100

5.3 HFC web interface. Search box . 101

5.4 HFC web interface. Result listing . 103

5.5 HFC Database Logical Schema . 104

5.6 HFC Database Conceptual Schema 105

5.7 SearchEngine class diagram . 109

5.8 Product class diagram . 110

5.9 Termset class diagram . 111

5.10 Term class diagram . 112

5.11 Review class diagram . 113

6.1 XML File structure . 118

6.2 IMDb XML File structure . 121

6.3 Occurrences file zip format . 126

6.4 HFC performance trend . 128

B.1 Wordnet browser application . 144

D.1 Web of Linked data in 2011 . 150

D.2 Web of Linked data in 2014 . 151

List of Tables

2.1 IMDb examples . 38

3.1 Term semantic coefficient . 52

3.2 Termset semantic coefficient . 54

6.1 Blog Corpus summary data . 117

6.2 Epinions dataset summary . 119

6.3 IMDb Dataset . 121

6.4 Datasets comparison . 122

6.5 Indexing History . 124

6.6 Pos-tagging vs No pos-tagging. Indexing time 130

6.7 Pos-tagging vs No pos-tagging. Query execution 131

6.8 Performance comparison between HFC version 1.3, 1.4, 1.5 132

6.9 Performance % variation between HFC versions 133

xii

Abbreviations

APRV Adaptive Product Relevance Value

BRV Blog Relevance Value

HFC Hint From the Crowd

LSI Latent Semantic Indexing

PRM Product Ranking Metric

PRV Product Relevance Value

RTM Recursive Termeset Mining (algorithm)

SVM Space Vector Model

SW StopWords

TF-IDF Term Frequency - Inverse Document Frequency

VTC Valid Termeset Coverage (algorithm)

xiii

Symbols

ad termset average density

d termset density

D∗q set of termsets derived from q∗

Dq set of termsets derived from q

ES term expansion set

ET termset expansion set

p product

q query

q∗ expanded query / term-base

r review

R set of reviews

RD set of relevant termsets

RES term reverse expansion set

sc semantic coefficient

t generic term

T termset

t∗ expanded term

T ∗ expanded termset

wq termset weight according to a query

xiv

To the research of Light. . .

xv

Chapter 1

Introduction

1.1 The context

A common Web 2.0 user experience is to look for a specific product or service by

means of specialized websites.

A very common situation is looking for a hotel room: the Internet is plenty of

websites like Booking1, Venere2 or others that allow the user to search for a hotel

in the desired period of the year and location, and as a result they return back the

user a list of possible solutions. Usually it is also possible to filter the list of results

according to predetermined parameters like the range of price per night of the room,

or the number of stars of the hotel (e.g. Venere). More advanced websites (e.g.

Booking) also allow hotel filtering according to the presence of certain facilities like

wifi-connection, air conditioning system or fitness centers just to name a few.

But what if the user is arriving very tired on a Saturday late night and desires to

sleep without being disturbed by rowdy people in the streets because there are clubs

and bars very close to the hotel? or because the very next morning he/she’s hearing

1http://www.booking.com
2http://www.venere.com

1

http://www.booking.com
http://www.venere.com

Chapter 1. Introduction 2

the bells from the near cathedral?

And what if the user is going abroad with his/her family and he/she desperately

needs waiters that speak his/her language? or needs a room with painted shiny stars

on the ceiling since otherwise his/her kids are not sleeping?

Nowadays all booking websites allow users to rate (usually with a number from 0

up to 10, or a certain number of stars) their staying in a hotel and write down a

review about their experience. So, when a user is looking for a hotel, can also read

comments made by other people about their experience in order to make his/her

choice. The only problem is that it could be a long and annoying task.

Another common situation in Web 2.0 is searching for a product to buy like a camera

or a car. Again the Internet is plenty of websites for sales like eBay3 or Amazon4,

which are probably the most famous at the moment.

In this case the user can ask for a certain product and the website search-engine

answers back with a list of results that can be sorted by the price of the product or

the distance of the seller. Often it is also possible to filter out products on the base

of predetermined features that strongly depend on the kind of product the user is

searching (e.g. the size for a dress, or the number of megapixels for a camera).

Again, also in this situation users are allowed to comment their experience. Usually

comments are mostly related about the reliability of the seller, but also can report

impression about the product that has been purchased.

So if a buyer wants to know if the fancy webcam that he/she wants to buy is easy to

install, or wants to know if the instruction manual of the microwave oven he/she is

interested into has a section in his/her language, he/she has the chance to retrieve

the information by reading other people comments.

As final example let’s consider the Internet Movie Database (IMDb).

3http://www.ebay.com
4http://www.amazon.com

http://www.ebay.com
http://www.amazon.com

Chapter 1. Introduction 3

IMDb is database with a website interface5 that hosts cards related to every movie

produced worldwide since 1880 (”Sallie Gardner at a Gallop”6 which was actually

produced before the Lumière brothers patented their first cinèmatographe in 1894)

until present days. Every card holds a variety of information about the director,

the genre, the movie plot, the production year, the cast that played in the movie,

and in general whoever worked in the movie, just to name a few of the information

that is possible to get from the IMDb. In addition, IMDb let (registered) users to

review the movies they have seen, and hence even this information is available from

a movie card.

IMDb also holds cards about people working in the movie system (mostly actors

and directors) with their biography, the list of the movies in which they worked and

other more or less interesting information.

All this information is linked together so it is possible for a user to browse the site:

for instance from the card of the movie ”The Godfather”7 it is possible to reach the

card of the director, that is Francis Ford Coppola8, and then get the list of all the

movies that Coppola has directed, and from this list reaching the card of the movie

”Apocalypse Now”9 where finally a user can discover that the actor Harrison Ford10

played in this movie (yes, Harrison Ford was also in ”Apocalypse Now”!).

In order to find out information, IMDb provides the user a search engine to directly

access the card of the movie or the actor or director the user is interested into. The

search engine can also be queried by setting a wide variety of parameters, in order

to find out a sophisticated list of objects (movies or actors) like the list of all the

movies played in French language and shot in Africa between 1980 and 1995, just to

make an example.

But what if the user wants to know something about the history of ancient Greece

5http://www.imdb.com
6http://www.imdb.com/title/tt2221420
7http://www.imdb.com/title/tt0068646
8http://www.imdb.com/name/nm0000338
9http://www.imdb.com/title/tt0078788

10http://www.imdb.com/name/nm0000148

http://www.imdb.com
http://www.imdb.com/title/tt2221420
http://www.imdb.com/title/tt0068646
http://www.imdb.com/name/nm0000338
http://www.imdb.com/title/tt0078788
http://www.imdb.com/name/nm0000148

Chapter 1. Introduction 4

and the Persian Wars? And what if the user needs a movie with funny, great, word

jokes in simple English in order to make it easy for his/her children to learn the

language? Surely, the user can read reviews made by other people where probably

the information he/she needs can reside. But there are movies like The Matrix 11

with more than 3000 reviews. And there are also so many movies. . .

1.2 Examples

Here are showed some examples taken from the Internet of the situations described

in Section 1.1.

Figure 1.1: Booking.com - Map choosing hotel feature

The following screenshots, taken from the Booking.com website, will illustrate the

typical user experience when dealing with the choose of a hotel. Figure 1.1 shows

the map-feature to allow the user to pick a hotel from a map. Of course the website

11http://www.imdb.com/title/tt0133093/reviews

http://www.imdb.com/title/tt0133093/reviews

Chapter 1. Introduction 5

allows also the user to have a list of hotels, according to various parameters (such

as FreeWiFi, or price-range-per-night) and ordered by price as shown in Figure 1.2.

Figure 1.2: Booking.com - Hotel listing by price

The website has its own automatic recommending system in order to suggest the

user which could be, according to its internal score, nice hotel solutions, as shown

in Figure1.3.

Figure 1.3: Booking.com - Hotel listing by website score

Chapter 1. Introduction 6

Hotels can also be order by reviewers’s ratings, that can be an index built upon the

average number of stars given very synthetically by the travelers, or a more com-

plex index built upon various parameters as shown in Figure1.4. It’s interesting to

notice that the set of considered reviewers can be filtered according to those groups

of travelers that better fit with the user (e.g. families, solo travelers or couples).

Figure 1.4: Booking.com - Hotel listing by travelers score

When choosing a hotel, the user can look the hotel card to check, by means of a

dashboard and photographs, if the solution is suitable for his/her needs. Another

feature the user can exploit, is reading people’s reviews, that usually are divided

into PROs and CONs. Figure 1.5 considers the case of a hotel with 124 reviews.

As a hotel is frequented, such a number of reviews can represent a normal case.

In the Figure (left side) is also shown the dashboard with the average value of the

parameters (such as cleanliness or comfort to name a few) used to built the travelers

average score.

If the user main goal is to find a hotel far from belfries, since during his/her staying,

on sunday morning, he/she likes to sleep, well, he/she has to read a lot of reviews!

Chapter 1. Introduction 7

Figure 1.5: Booking.com - User reviews per hotel

Venere.com is a website similar to Booking.com. It’s interesting to analyze Venere.com

since it is one of the few examples of an Italian website that had a worldwide success.

Similarly to Booking.com website, also Venere.com has its own map-feature to allow

the user to pick a hotel according to the site location he/she prefer (Figure 1.6).

In this case as well, there is the chance for the user to filter hotels on the base of

various parameters, such as Budget (i.e. price-per-night on Booking), stars, or the

presence of several hotel services like FreeWiFi or Breakfast. The user can have the

list of matching hotel (see Figure 1.7) sorted by price, or according to a synthetic

star rating, or a more refined guest (travelers) rating or even according to web-site

rank (Our Favorites).

Chapter 1. Introduction 8

Figure 1.6: Venere.com - Map feature

Figure 1.7: Venere.com - User listing choices

Chapter 1. Introduction 9

When a hotel seems interesting to the user, he/she can take a look at the hotel card,

where still, can be found a dashboard with quality indexes. And, of course, travelers

reviews!

Venere has a connection with the popular TripAdvisor 12 web site. Hence the source

of reviews can be very wide. Figure 1.8 shows the case of a hotel with a total

amount of 1432 traveler reviews! Reviews are just plain text and are not structured

in PROs and CONs. But if the user goal is always to avoid belfries . . . well, good luck !

Figure 1.8: Venere.com - User reviews

Changing point of view, Epinions.com13 helps people make informed buying deci-

sions. It is a premier consumer reviews platform on the Web and a reliable source

12http://www.tripadvisor.com
13http://www.epinions.com

http://www.tripadvisor.com
http://www.epinions.com

Chapter 1. Introduction 10

for valuable consumer insight, unbiased advice, in-depth product evaluations and per-

sonalized recommendations.14

Epinions.com is connected to eBay.com, but it must not be confused with an e-

commerce website. Epinions.com is a repository of people’s reviews, were registered

users can talk about their experience with a product (or a service). Products are

organized into areas of interest (e.g. Electronics, Computers, Media to name a few).

Every area can recursively be structured, and the user can browse it, into sub-areas

until reaching a quite defined class of homogeneous products. If the user has clear

in mind what he/she is looking for, he/she can also fill a search-box with the desired

product.

Figure 1.9 shows the case when the user is looking for a generic digital camera.

Figure 1.9: Epinions.com product listing

14From Epinions.com About page: http://www.epinions.com/about

http://www.epinions.com/about

Chapter 1. Introduction 11

The criterion by which products are sorted in the listing is explained by Epinions.com

itself in the screenshot in Figure 1.10.

Figure 1.10: Epinions.com - Why are these stores listed?
Epinions.com criterion in sorting product listing

Epinions.com provides the user the chance to pick several (two or more) products

up, and compare them, as shown in Figure 1.11, in order to let the user to have

deep awareness about what to buy, as it is in Epinons.com’s scope. The set of

parameters (product features) used for the comparison is product-depending. The

set can include mega-pixel resolution and display dimensions for a digital camera,

whereas for a car it is important to know the fuel consumption per km and the

number of seats for passengers.

Once the user picks from the listing a well defined product, he/she can see the prod-

uct card, where in addition to all product features, the user can find reviews given

by other peoples. As shown in Figure 1.12, reviews includes a synthetic evaluation

with a certain number of stars, PROs and CONs, and a brief summary written in

natural language.

In this case as well, if the user is looking for a digital camera with a fancy design

for left-handed people, he/she has to read reviews.

Chapter 1. Introduction 12

Figure 1.11: Epinions.com - product comparison

Figure 1.12: Epinions.com product reviews

Chapter 1. Introduction 13

To conclude this overview, Figure 1.13 shows the typical card for a movie on the

IMDb web site. The IMDb case has been already analyzed in Section 1.1, and will

be resumed later. Here is shown the card of a 2014 movie (The imitation game),

about Alan Turing ’s life, that has been aired in theaters less than one month ago (by

the time when this thesis has been written). The movie card holds a wide variety

of different information, such as movie plot, director, stars (in this case with the

meaning of main actors), the complete cast list, and so on. Further more, photos

and videos related to the movie are available for user consumption, and there is also

a small list of similar movies, besides a set of other interesting information. All these

information is linked together to allow the user to browse them.

In the particular case of this Alan Turing related movie, it’s interesting to notice

that since its release, the movie has been rated by 133.217 users, got 353 specialized

magazine’s critics, and has been already reviewed by 367 IMDb registered users.

If cinema is a passion, people’s reviews can be sometimes an interesting reading.

Sometimes.

Chapter 1. Introduction 14

Figure 1.13: IMDb.com - The Imitation game card

Chapter 1. Introduction 15

1.3 Purpose of the project

Situations described in Section 1.1, and carefully analyzed in Section 1.2 are quite

common user experiences in everybody’s life. Often a person is looking for some-

thing, a product or a service, and his/her needs go beyond the usual criterion given

by an automatic search engine in a specialized website. Often the answer to a very

specific user requests resides in other people comments and reviews. In the real

world this would be the case of asking an opinion or a hint to someone else, a friend

or an acquaintance. But, while in the real world the issue might be the small number

of people to ask an opinion and also their probable lack of a complete knowledge

related to the request, in the Internet the issue is the opposite: there’s an overload

of information that makes quite impossible for a user to get the information he/she

needs unless reading a few comments randomly, since reading all comments is a

really severe task for a human being.

The purpose of this thesis is to present a search engine that starting from a generic

user request expressed in natural language, like could be English or Italian or Rus-

sian, read all the other people comments and reviews in order to find out those

products or services whose comments are closer to the user request.

An important aspect to consider is that a user request can express a wide variety of

meanings that are included into, or close to, the original request. As an example,

consider how close are the concepts represented by an old oak and a green ancient

tree. So, an important task of the search engine is not only discovering in the other

user comments the original meaning of the request, but also the discovery of all the

similar meanings or part of them.

Talking about search engines might be quite improper, as the concept can be eas-

ily misconfused with the classic concept of general purpose web-search-engine like

Google, Yahoo or Bing are.

Chapter 1. Introduction 16

A closer concept is the well-known concept of recommendation system. But in this

case as well, the combination might be improper, since usually a recommendation

system works automatically on the base of a predetermined criterion.

What would be better to say, is that the preconized system is something in between

a general purpose search engine, since for the user it works according to the same

way, and a versatile product recommendation system, as this is its real scope.

The basic idea underlying the system is related to the classic concept in information

retrieval of frequent itemset extraction, and from this starting point a ranking model

has been developed together with a technology that in a few words allows to read

all the comments and then rank the products found in an acceptable execution time

for the user.

Since the task behind the search engine is the same as asking hints to people, and

considering that on the Internet the people to whom ask a hint can be really great,

a crowd, the project has been called Hints From the Crowd (HFC).

1.4 Structure of the thesis

The rest of this thesis is structured as follow:

Chapter 2 describes the state of the art in information retrieval showing the main

technologies that influenced the HFC system and analyze also a few examples of real

recommending system in well known sites on the Internet. Chapter 3 introduces the

retrieval model that stands at the base of the HFC system, and gives also a glance

to the historical reasons that justify model design choices. Chapter 4 shows the most

significant algorithms used in order to grant HFC system acceptable performance.

Chapter 5 presents the architecture of the HFC system and the data model used.

Chapter 6 describes the datasets used for testing and discuss the performance of the

Chapter 1. Introduction 17

HFC system. Finally Chapter 7 summarizes the objectives achieved by the HFC

system,

The appendices briefly show the main external tools or libraries used in the project.

Specifically: Appendix A is related to the pos-tagger of the Stanford Natural Lan-

guage Processing Group; Appendix B describes Wordnet, an ontology used to ex-

pands the meaning of words in a user request; Appendix C presents Apache Lucene

that is a library for information retrieval based on the Space Vector Model used at

the beginning of the project as a benchmark to compare results during early tests;

Appendix D is about Entity Recognition & Linked data that represent the next evo-

lutive step of this project; and finally Appendix E enlists the queries used for the

main tests.

Chapter 2

State of the art

Before describing the object of this work, it is necessary to have a glance about the

state of the art about the mostly used technologies concerning information retrieval.

This Chapter will present a quick overview about the methodologies that mostly

influenced this work. In particular will be treated:

• Vector Space Model

• tf-idf model

• Latent Semantic Indexing

• PageRank algorithm

• Itemset mining

• Amazon Recommendation System

• Youtube Recommendation System

• IMDb Recommendation System

Vector Space Model, tf-idf model and Latent Semantic Indexing are related to the

initial issues when addressing the task of designing a search engine dealing with nat-

ural language analysis. PageRank is Google’s base algorithm, and it is not possible

18

Chapter 2. State of the art 19

not talking about it here, mostly to explain why this algorithm can’t be applied

for HFC ’s goal. Itemset Mining is a technique widely used in recommendation sys-

tems and stands at base of the HFC project. Amazon and Youtube recommendation

systems are just examples of real and successful applications of the techniques un-

derlying the concept of itemset, and implicitly they reveal what they don’t perform

by showing what they do perform1. From the comparison between Google, on one

side, and the recommendation systems cited before, on the other side, emerges that

the HFC project stands in the middle of the two approaches as it effectively acts

like a search engine, but its technology is more similar to a recommendation system.

IMDb case study yet is an another recommendation system, but still it is interesting

to investigate as it represents the source of the main application-data of the HFC

project.

2.1 Vector Space Model

Vector Space Model2 (VSM) is a very classic and wide used model in information

retrieval. VSM is the base of a large variety of applications and indexing tools such

as Apache Lucene (see Appendix C).

In VSM documents and queries are represented as vectors.

dj = (w1,j, w2,j, . . . , wt,j) (2.1)

q = (w1,q, w2,q, . . . , wt,q) (2.2)

Each dimension corresponds to a separate term. If a term occurs in the document,

its value in the vector is non-zero. Several different ways of computing these values,

1As a reminder, the goal of the HFC project is to search and rank products on the base of
people’s comments after a query expressed by a user in natural language.

2main source: Wikipedia

Chapter 2. State of the art 20

also known as (term) weights, have been developed. One of the best known schemes

is tf-idf weighting.

The definition of term depends on the application. Typically terms are single words,

keywords, or longer phrases. If the words are chosen to be the terms, the dimension-

ality of the vector is the number of words in the vocabulary (the number of distinct

words occurring in the corpus).

Vector operations can be used to compare documents with queries.

Figure 2.1: Documents and query represented as vectors
source: Wikipedia

Relevance rankings of documents in a keyword search can be calculated, using the

assumptions of document similarities theory, by comparing the deviation of angles

between each document vector and the original query vector where the query is

represented as the same kind of vector as the documents (see Figure 2.1). In practice,

Chapter 2. State of the art 21

it is easier to calculate the cosine of the angle between the vectors, instead of the

angle itself:

cos θ =
d2 · q
‖d2‖ ‖q‖

(2.3)

where d2 · q is the intersection (i.e. the dot product) of the document d2 and the

query (q in the figure) vectors, ‖d2‖ is the norm of vector d2, and ‖q‖ is the norm

of vector q. The norm of a vector is calculated as such:

‖q‖ =

√√√√ n∑
i=1

q2i (2.4)

As all vectors under consideration by this model are element wise nonnegative, a

cosine value of zero means that the query and document vector are orthogonal and

have no match (i.e. the query term does not exist in the document being considered).

The main known limitations of VSM are:

• long documents are poorly represented because they have poor similarity values

(a small scalar product and a large dimensionality).

• semantic sensitivity ; documents with similar context but different term vocab-

ulary won’t be associated, resulting in a false negative match.

• the order in which the terms appear in the document is lost in the vector space

representation.

Many of these difficulties can, however, be overcome by the integration of various

tools and lexical databases such as WordNet (see Appendix A).

Chapter 2. State of the art 22

2.2 tf-idf model

As stated in Section 2.1, several different ways of computing (term) weights for the

Vector Space Model have been developed. The most immediate is the Boolean Model

where for each term in a document vector a 1 value indicates the presence of the

term in the document, while instead a 0 value indicates the absence of the term

in the document. A more advanced model is the Frequency model, where for each

term in a document vector is reported the number of occurrences of the term in the

document.

Both of these models suffer from the problem of how important is a term to a

document in a collection or corpus.

Tf-idf 3, acronym for term frequency-inverse document frequency, is a numerical

statistic that reflects how important a word is to a document in a collection or

corpus. Tf-idf is the product of two statistics, term frequency (tf) and inverse

document frequency (idf). Various ways for determining the exact values of both

statistics exist. In the case of the term frequency tf(t, d), the simplest choice is

to use the raw frequency of a term in a document, i.e. the number of times that

term t occurs in document d. The inverse document frequency (idf) is a measure

of whether the term is common or rare across all documents. Idf is obtained by

dividing the total number of documents by the number of documents containing the

term, and then taking the logarithm of that quotient.

idf(t,D) = log
N

|{d ∈ D : t ∈ d}|
(2.5)

where N is the total number of documents in the corpus and |{d ∈ D : t ∈ d}| is the

number of documents where the term t appears (i.e., tf(t, d) 6= 0). If the term is not

in the corpus, this will lead to a division-by-zero. It is therefore common to adjust

3main source: Wikipedia

Chapter 2. State of the art 23

the formula to 1 + |{d ∈ D : t ∈ d}|. Mathematically the base of the log function

does not matter and constitutes a constant multiplicative factor towards the overall

result. Then tf-idf is calculated as

tf − idf(t, d,D) = tf(t, d)× idf(t,D) (2.6)

A high weight in tf−idf is reached by a high term frequency (in the given document)

and a low document frequency of the term in the whole collection of documents; the

weights hence tend to filter out common terms. Since the ratio inside the idf ’s log

function is always greater than or equal to 1, the value of idf (and tf − idf) is

greater than or equal to 0. As a term appears in more documents, the ratio inside

the logarithm approaches 1, bringing the idf and tf − idf closer to 0.

2.3 Latent Semantic Indexing

Retrieval methods suffer from two well known language related problems called

synonymy and polysemy4.

Synonymy describes that a object can be referred in many ways, i.e., people use

different words to search for the same object. An example of this are the words car

and automobile.

Polysemy is the problem of words having more than one specific meaning. An

example of this is the word jaguar which could mean a well known car type or

an animal. Latent Semantic Indexing (LSI) offers a dampening of synonymy. By

using a Singular Value Decomposition (SVD) on a term by document matrix of term

frequency. The dimension of the transformed space is reduced by selection of the

highest singular values, where the most of the variance of the original space is. By

4source:
http: // cogsys. imm. dtu. dk/ thor/ projects/ multimedia/ textmining/ node10. html

http://cogsys.imm.dtu.dk/thor/projects/multimedia/textmining/node10.html

Chapter 2. State of the art 24

using SVD the major associative patterns are extracted from the document space

and the small patterns are ignored. The query terms can also transform into this

subspace, and can lie close to documents where the terms does not appear. The

advantage of LSI is that it is fully automatic and does not use language expertise

and the positive side effect is that the length of the document vector becomes much

shorter. Empirical studies of LSI have been good. LSI has also been examined

analytically. By comparing LSI to multidimensional scaling it has been shown that

LSI preserves the document space optimally when using the inner product similarity

function. The same article implies that this applies also to other similarity measures.

By using Bayesian regression model it is shown that by removing the small singular

values, statistically dubious information are being removed and also specification

errors are reduced.

2.4 PageRank

When addressing the task of developing a search engine the natural comparison is

with Google. Sergej Brin and Larry Page introduced Google in their 1998 famous

article The anatomy of a large-scale hypertextual web search engine ([7]) where they

described the PageRank algorithm that stands at the base of Google:

We assume page A has pages T1. . .Tn which point to it (i.e., are

citations). The parameter d is a damping factor which can be set between

0 and 1. We usually set d to 0.85. There are more details about d in the

next section. Also C(A) is defined as the number of links going out of

Chapter 2. State of the art 25

page A. The PageRank of a page A is given as follows5:

PR(A) = (I − d) + d(
PR(T1)

C(T1)
+ ...+

PR(TI)

C(TI)
) (2.7)

Note that the PageRanks form a probability distribution over Web pages,

so the sum of all Web pages’ PageRanks will be one.

PageRank or PR(A) can be calculated using a simple iterative algorithm,

and corresponds to the principal eigenvector of the normalized link matrix

of the Web.

As claimed by Brin and Page, the basic idea behind PageRank6 is a revised form a

the calculation of the eigenvectors of a matrix, a well known concept wide used in

networks analysis ([9]). The idea can be simplified with the adage:

a page is as much relevant as relevant are the pages that link it.7

PageRank can then be applied to all those scopes where there is a network.

The situations described in Section 1.1 are not presenting then the ideal conditions

to apply a PageRank approach, as from those web-sites it is not possible to infer

any network useful for HFC goal. Nevertheless, in the premises of this thesis was

discussed about the analysis of the natural languages and, as stated in Section 2.1, to

avoid semantic sensitivity issues it is necessary to use lexical databases like Wordnet

where still the influence of PageRank can be felt, as reported by Wikipedia8

5Actually as reported by Wikipedia in https: // en. wikipedia. org/ wiki/ PageRank#

Damping_ factor the correct form of the Formula 2.7 should be:

PR(A) =
(I − d)

N
+ d(

PR(T1)

C(T1)
+ ... +

PR(TI)

C(TI)
)

6PageRank is deeply analyzed by Brin&Page in their following 1999’s article [8]
7The same concept can be adapted to Social Networks like LinkedIn for instance, where the

relevance of a professional profile is as much important as important are the people linked to the
professional profile

8http://en.wikipedia.org/wiki/PageRank

https://en.wikipedia.org/wiki/PageRank #Damping_factor
https://en.wikipedia.org/wiki/PageRank #Damping_factor
http://en.wikipedia.org/wiki/PageRank

Chapter 2. State of the art 26

In lexical semantics it has been used to perform Word Sense Disam-

biguation and to automatically rank WordNet synsets according to how

strongly they possess a given semantic property, such as positivity or neg-

ativity.

A dynamic weighting method similar to PageRank has been used to gen-

erate customized reading lists based on the link structure of Wikipedia.

2.5 Itemset Mining

Frequent Itemset mining is a method developed for market basket analysis. It aims

at finding regularities in the shopping behavior of customers of supermarkets, mail-

order companies, on-line shops etc. More specifically frequent Itemset mining find

sets of products that are frequently bought together 9.

A formal description is the following: let B = {i1, . . . , im} be a set of items. This

set is called the item-base. Items may be products, special equipment items, service

options etc. Any subset I ⊆ B is called an item set. An item set may be any set of

products that can be bought (together).

Let T = (t1, . . . , tn) with ∀k, 1 ≤ k ≤ n : tk ⊆ B be a vector of transactions over B.

This vector is called the transaction database. A transaction database can list, for

example, the sets of products bought by the customers of a supermarket in a given

period of time.

Let I ⊆ B be an itemset (i.e. item set) and T a transaction database over B. A

transaction t ∈ T covers the itemset I or the itemset I is contained in a transaction

t ∈ T ⇐⇒ I ⊆ t.

The set KT (I) = {k ∈ {1, . . . , n}|I ⊆ tk} is called the cover of I w.r.t. T , that is

the index set of transactions in T that contain the itemset I.

9 Main source Christian Borgelt: http://www.borgelt.net/slides/fpm4.pdf

http://www.borgelt.net/slides/fpm4.pdf

Chapter 2. State of the art 27

The value σT (I) = 1
n
|KT (I)| is called the support of I w.r.t. T . In other words the

support σT (I) represents the fraction of transactions in T that contain the itemset

I.

The extraction of all possible itemsets in a transaction database is called Itemset

Mining operation. Itemset mining is a potentially hard problem and brute force

approach in real case applications are not feasible as the number of possible itemsets

grows exponentially with the number of items.

Indeed, given m = |B| the number of items in the item-base B, the number of

all possible itemset is 2m − 1, that is the cardinality of the power set of B minus

the empty set. Notice that given l = |I| with 1 ≤ l ≤ m as the cardinality of an

itemset I, the number of all itemsets of l cardinality is given by the Newton binomial

coefficient (ml).

Another important property of itemsets is ∀I : ∀J ⊇ I : KT (J) ⊆ KT (I), that is the

cover KT (J) of every itemset J contained in an itemset I is a superset of the cover

KT (I). From this property follows the fundamental σT(J) ≥ σT(I) ∀J ⊆ I, that is

the support σT (J) of every itemset J contained in an itemset I is greater than the

support σT (I).

On the base of the previous properties it is possible to partially order and depict

itemsets in a (direct) acyclic graph which is called Hasse diagram. Figure 2.2 shows

the Hasse diagram of a an item-base of five elements {a, b, c, d, e}. Figure 2.2 also

shows the number of itemset for every cardinality l.

In real applications only frequent itemsets are interesting. In other words, given σ

as minimum support, only itemsets with a support σT ≥ σ should be considered.

Under this observation, various efficient algorithms have been proposed for Itemset

Mining. The most famous algorithms are aPriori [10], Eclat [11] and FP-Growth[12].

All algorithms start from the dual consideration that no superset of an infrequent

itemset can be frequent, or all subsets of a frequent itemset are frequent, thus mine

Chapter 2. State of the art 28

Figure 2.2: Hasse diagram related to an item-base of 5 items {a, b, c, d, e}

itemset starting from the smallest trying to build bigger itemset by adding new item,

or trying to find the maximums itemsets and then derive the others as subsets.

2.6 Amazon Recommendation System

Amazon recommendation system is described by its authors Linden, Smith and York

in their article published on IEEE Internet Computing in 2003 [13] and it loosely

depends on the concept of itemset mining.

Chapter 2. State of the art 29

Amazon uses recommendation systems10 to recommend new products to its users.

It wants to serve its users with products it believes the user will be interested in

seeing and then purchasing. Amazon’s method of recommendation is complex, but

it is centered around the products a user views and purchases. They utilize a system

known as item-to-item collaborative filtering.

Figure 2.3: Amazon recommendations based on user profile

Item-to-Item Collaborative Filtering. Amazon’s Item-to-Item Collaborative

Filtering focuses on the items rather than the users. It does not try to match the

user to similar customers. Instead, it matches each of the user’s purchased and rated

items to similar items, and then it merges the similar items (itemset) among them

into one recommendation list unique to the user. In order to determine the match

for a given item with the greatest amount of similarity, the algorithm builds a table

of similar items. It does that by looking for items that customers tend to purchase

together. For example, people would likely buy a bicycle along with a helmet and

10A brief summary can be found on this Princeton page:
http://scenic.princeton.edu/network20q/wiki/index.php?title=Amazon_and_Youtube%

27s_Recommendation_Systems

http://scenic.princeton.edu/network20q/wiki/index.php?title=Amazon_and_Youtube%27s_Recommendation_Systems
http://scenic.princeton.edu/network20q/wiki/index.php?title=Amazon_and_Youtube%27s_Recommendation_Systems

Chapter 2. State of the art 30

padlock. Then, the recommendation system builds a product-to-product matrix by

iterating through all item pairs and computing a similarity metric for every single

pair. There are any number of ways to compute a similarity metric. One common

way is to use the cosine measure method (see 2.1), where each vector corresponds

to an item rather than a customer, and the vector’s M dimensions correspond to

customers have bought that item. This is a very time-intensive operation - the

running time is O(N2 ∗ M) in the worst case, though it’s usually O(N ∗ M) in

practice. This is because most customers don’t have many purchases. With the

similar-items table, the algorithm then searches for items similar to each of the

user’s purchases and ratings, brings those items together, then recommends the

items that are the most popular or have the highest similarity metric. Since the

values are already calculated, not much time is spent in this phase.

Figure 2.4: Amazon recommendations based on the items in the customer’s cart

Scalability. Amazon.com has more than 29 million customers (in 2003 11) and

several million catalog items. This means that there is an absolutely massive amount

of data that must be worked with. Unfortunately, this breaks the back of many

algorithms designed for something far smaller. Indeed, almost all existing algorithms

11 The number of customers raised up to 244 million in 2014 as reported by GeekWire:
http://www.geekwire.com/2014/amazon-adds-30-million-customers-past-year

http://www.geekwire.com/2014/amazon-adds-30-million-customers-past-year

Chapter 2. State of the art 31

were evaluated over small data sets. However, Amazon’s Collaborative Item-To-

Item filtering is very scalable. The key to its scalability and high performance is

that it computes the similarity metric and creates the table of similar items, a very

expensive operation, offline. As a result, the algorithm has to do relatively little

online. It merely looks up similar items for the user’s purchases and ratings using

data it has already created. Unlike traditional collaborative filtering algorithms,

Amazon’s also does well just a very limited amount of user data. It can even product

quality results with just two or three products

Figure 2.5: Amazon Recommendation System Architecture

Just for reader information, with no intention or need to explain it, Figure 2.5 shows

Amazon Recommendation system’s architecture and it is taken from is taken from

Linden (et al.)’s Recommendation System US Patent [14].

Chapter 2. State of the art 32

2.7 Youtube Recommendation System

Youtube recommendation system is described by Davidson et al. in [15].

Youtube utilizes recommendation systems to bring videos to a user that it believes

the user will be interested in. They are designed to increase the numbers of videos

the user will watch, increase the length of time he spends on the site, and maximize

the enjoyment of his Youtube experience.

User Activity In order to obtain personalized recommendations, Youtube’s rec-

ommendation system combines the related videos association rules with the user’s

personal activity on the site. This includes several factors. There are the videos that

were watched - along with a certain threshold, say by a certain date. After all, a

user doesn’t want to count videos watched from 2 years ago if the user has watched

enough videos, most likely. Also, Youtube factors in with emphasis any videos that

were explicitly liked, added to favorites, given a rating, added to a playlist. The

union of these videos is known as the seed set (that still refers to the itemset con-

cept). Then, to compute the candidate recommendations for a seed set, Youtube

expands it along the related videos.

Introducing Relevance and Diversity Limiting factors are utilized as well.

For example, Youtube will only allow a certain number of videos from the same

uploader in the related videos set. Furthermore, Youtube checks certain elements

related to each video and scores and ranks the videos according to these values.

Youtube uses user specificity signals to boost videos that are closely matched with

the user’s unique taste and preferences. The recommendation engine looks at the

user’s watch history, view count, and time of watch for the video in the seed set to

obtain a comprehensive view. Then, of the videos it is able to obtain that are both

Chapter 2. State of the art 33

relevant and in-tune with user preferences, a small number is taken - enough to fill

the related videos section. The signals can be categorized into three groups corre-

sponding to three different stages of ranking: 1) video quality, 2) user specificity and

3) diversification. Then, there are overall video quality signals that suggest that the

user will appreciate the video regardless of his individual tastes. These values in-

clude the view count/popularity, ratings, number of likes and dislikes, commenting,

favoriting, sharing activity, and how long it has been on the site.

Figure 2.6: Example of Youtube recommendation system

Chapter 2. State of the art 34

2.8 IMDb Recommendation System

IDMb has been already introduced in 1.1. Just to complete the site profile, nowadays

IDMb is an Amazon.com subsidiary since 199812 that Amazon use as an advertising

resource for selling DVDs and videotapes.

This section is not intended to discuss IMDb recommendation system in deep: IDMb

briefly describes its recommendation system on its FAQ page on the internet13, and

actually there’s only a little literature on this subject as it is treated as a trade

secret.

IMDb makes personalized recommendations to help you discover movies

and TV shows that you will love.

Where can I find my Watchlist and my ratings?

Find your Watchlist using the Your Watchlist link in the top right of the

nav bar. Find your ratings by using the Your Ratings menu item under

the Community menu in the nav bar.

How does IMDb choose personalized recommendations?

First, we take all of the movies and TV shows that you’ve either rated or

added to your Watchlist. Then, we compare your data to ratings made

by other users. We can then find movies and TV shows that people with

similar tastes to you. For each recommendation, you can see a list of the

movies or TV shows upon which the recommendation was based. You

have either rated these titles highly, or added them to your Watchlist.

12IMDb was launched on the Internet in 1990
13http://www.imdb.com/help/show_leaf?personalrecommendations

http://www.imdb.com/help/show_leaf?personalrecommendations

Chapter 2. State of the art 35

How does IMDb know what I showed interest in?

When you give a movie a positive rating or add a movie to your Watch-

list, we track that as a movie that you are interested in.

Figure 2.7 shows an example of IMDb recommending system.

Figure 2.7: Example of IMDb recommendations

But this is not the only recommendation system provided by the site. In order to

perform its commercial purpose IMDb propose the user a wide set of predetermined

recommended lists, as shown in Figure 2.8, such as Oscar Winners listing, Box Office

listing (Figure 2.9), or Top250 that is a listing of the top rated 250 films of all-time,

based on ratings given by the registered users (Figure 2.10).

Figure 2.8: IDMb recommended listings

Chapter 2. State of the art 36

Figure 2.9: [IDMb Box Office listing

To balance Top250 listing, the user can also have access to a Bottom100 listing,

that is a listing with the worst (according by registered users) movies ever made, as

shown in Figure 2.11.

In general, the concept of Top250 has been widely exploited giving access to the

user to a generic Top250 by genre. as shown in Figure a) in Table 2.1)

IMDb provides also a wide set of browsing options (Figure b) in Table 2.1) in order

to let users to achieve different kind of listing according to their desiderata.

Chapter 2. State of the art 37

Figure 2.10: IDMb Top250 listing

More over there is a search engine by which the user can query the database in

order to find those movies or actors he/she’s looking for. The search engine can be

activated by filling a search-box, as shown in Figure 2.12, to find a specific movie

or a director or an actor/actress. If the user is intended to perform a more refined

search, such as all movies shot in 1960, in Milan, in french language, or all dramas

and biographies rated at least 6.5 (whatever it means) shot by 20th Century Fox,

Chapter 2. State of the art 38

Figure 2.11: IMDb Bottom 100 listing

a) Top movies by genre b) IMDb browsing options

Table 2.1: IMDB listing

Chapter 2. State of the art 39

he/she can use the advanced title search shown in Figure 2.13, where in a guided

mode the user can submit a complex query involving information of different kind.

Figure 2.12: IMDb search box

As seen, there’s a wide variety of recommendation systems and searching modes on

the IMDb web site. What is missing, is the chance for a user to look for movies that

talks about ancient Greece and Persian’s wars, or even to look for a funny movie

with great word jokes in order to make my kids spend a nice afternoon with their

friends. In normal life it would natural asking a hint to a friend or an acquaintance.

On the IMDb web site, or on, generally speaking, the Internet, it would be nice

doing the same, but a text box where a user can insert his/her desiderata, hopefully

in natural language is completely missing.

Chapter 2. State of the art 40

Figure 2.13: Part of IMDb advanced searching options

Chapter 3

Problem definition

This Chapter is to define the scope of this thesis illustrating the idea behind the

design of the HFC system, and presenting the theoretical model developed to retrieve

and rank products from reviews after a user submit a query expressed in natural

language.

The Chapter will introduce first the basic idea behind the HFC ranking model and

the origins where the model come from. Then the HFC ranking model will be

explained in its details. To finish, the intermediate versions of the HFC ranking

model will be briefly shown in order to understand how and why designing choices

were made.

3.1 Basic idea

Section 1.2 reported examples of people needs in every day life. Modern web sites

for sales, or booking, allow people to comment the product or service they get, and

this information can be read by other users in order to make their choice.

41

Chapter 3. Problem definition 42

Era una notte buia e tempestosa. . . during experiments related to a research about

the comparison between (social) network analysis and itemset mining techniques,

both applied to the analysis of a corpus of reviews about movies got from Epin-

ions.com web site1, where the same set of words in a group of reviews were considered

as an itemsets (i.e. a wordset), it has been notice that the biggest itemsets mined

in comments for a specific movie, often describe the movie quite well. The reason

behind this behavior can be explained by the consideration that in reviews, where

people often express a wide range of different concepts about the product, there are

strong ideas about the product that tend to be common between people. It’s very

likely so, that different people tend to use the same set of words when talking about

features that strongly characterize a product. From this point of view, an itemset

can be imagined as a carrier of meaning (and after what is the purpose of words

if not to carry meaning?), and the bigger the itemset the bigger the meaning carried.

Just as an example, comments about a movie like 300 2 can report the following

sentences among the others: a good movie about ancient Greece and the Persian

wars, or an it was interesting the historical part where king Leonidas fights against

the Persians in the Termopilis battle in Greece or even I was quite sad when I saw

the Greek king Leonidas dying in the battle killed by the Persians.

In such sentences the words Greece, battle, Persian are quite common between com-

ments. More over there are words like wars and fights, or dying and killed which

have a very close meaning each other. Some words are quite close together, other

instead are more distant, but in both cases they are present in the same comment,

and these words characterize the movie.

1Epinions.com has been introduced in Chapter 1
2http://www.imdb.com/title/tt0416449

http://www.imdb.com/title/tt0416449

Chapter 3. Problem definition 43

3.2 Ranking Model

The ranking model described in the following has been presented for the first time in

a previous work [3] exposed during the Dexa Conference held in Prague in August

2013. During the conference has been also stated that the query engine of the HFC

system can be assimilated to a NoSQL database system

The model has been also the core of the paper [4] presented during the Medi Con-

ference held in Amantea (Italy) in September 2013, and also the core for the paper

[5] presented during the 3rd International Workshop on Semantic Search over the

Web (SSW 2013) held in Riva del Garda (Italy) on August 2013 in conjunction

with the 39th International Conference on Very Large Databases (VLDB 2013). In

2014 this model has been taken as an inspiration for the paper [6] presented during

the SoCPaR conference held in Tunis in August.

The ranking model described in the following is the key component of the query

engine of the HFC system. The purpose of the HFC system is to retrieve products

and rank them according to a natural language sentence (the query) submitted by a

user. The query engine extracts those products whose reviews are mostly relevant for

the query. Relevance is evaluated by means of a ranking metric; retrieved products

are returned as a list sorted in reverse order of relevance. Hereafter, it will be

described how the ranking metric is defined.

3.2.1 Termsets

In this work, a query q is considered as a set of terms (or briefly, a termset). Thus,

a query containing a number n of terms can be described as:

q = {t1, . . . , tn}

Chapter 3. Problem definition 44

Obviously will be investigated only those queries where n > 1 or, in other words,

those queries q where |q| > 1.

With T is denoted a generic termset that is a subset of q for which applies |T | > 1.

With Dq is denoted the set of termsets T derived from q. The reader should notice

that the cardinality of Dq is:

|Dq| = 2n − (n+ 1) (3.1)

i.e. Dq is the power set of q without the empty set and the n single terms that

compose q.

The notation Tl denotes an l-termset of q, that is a termset composed by l terms,

i.e. |Tl| = l. The notation Dq,l denotes the set of l-termsets Tl. Notice that the

cardinality of Dg,l is:

|Dq,l| =
(
n

l

)
(3.2)

3.2.2 Termset Weight

The concept of weight for a termset will be defined here.

Definition 1: The weight of a l−termset is a function of the length l of the

l−termset and the length of the query q (|q| = n); the weight is denoted as wq(l).

For n = 2, according to Formula 3.1 there is only one 2-termset and its weight by

definition is:

wq(2) = 1 n = 2 (3.3)

Chapter 3. Problem definition 45

For n > 2 instead,

wq(l) = 0.5 l = n (3.4)

wq(l) =
wq(l + 1)(

n
l

)
+ 1

2 < l < n (3.5)

wq(l) =
wq(3)(

n
2

) l = 2 (3.6)

�

The rationale behind Definition 1 is the following. The topmost termset, corre-

sponding to the whole query, is the most important one, as it is carrying the whole

meaning of the termset, and its weight is equal to the overall weight of all the shorter

termsets. The same principle is valid recursively for any generic termset Tl (with

2 < l < n), whose weight is equal to the overall weight of all lower cardinality

termsets (even those that are not subset of Tl). In this way, reducing the size of

termsets, the contribution of each level of cardinality quickly decreases.

Figure 3.1 shows an example of a query containing the words funny, great, hilarious

and jokes. For each admissible termset length l, all available termsets that is possible

to derive from the query-terms are listed, and their number and weight is displayed.

Notice, that the overall weight of all termsets is exactly 1

∑
T∈Dq

wq(|T |) = 1. (3.7)

Chapter 3. Problem definition 46

l number of Tl weight l-termsets (Tl)
4 1 0.5000 {funny, great, hilarious, jokes}
3 4 0.1000 {funny, great, hilarious}

{funny, great, jokes}
{funny, hilarious, jokes}
{great, hilarious, jokes}

2 6 0.0167 {funny, great} {funny, hilarious}
{great, hilarious} {great, jokes}
{funny, jokes} {hilarious, jokes}

Figure 3.1: Termsets for a query containing great, funny, hilarious, jokes and
corresponding weights.

3.2.3 Query Expansion and Semantic Coefficient

Once the concept of termset weight has been defined, lets take a step back, and make

focus on the query. As stated previously, a user must have the chance to submit

his/her query in natural language. This implies a lot of things.

First of all, not all words (i.e. terms) have the same importance. Some words are

full of meaning according to their position in the sentence, while in practice other

words are completely useless (e.g. conjunctions). Moreover, words can be connected

to other words, that are not necessarily in the query, because they all share the same

meaning, or concept.

On the base of these considerations, and others more, a query must be handled thru

several operations before the query-engine can be activated. In the following, these

operations will be shown.

Pos-tagging. Pos-tagging is the operation to mark each word with its logical

role in the sentence. As an example the phrase I hope this thesis is not too long

and boring can be marked as Ipronoun hopeverb thisadverb thesisnoun isverb notnegation

tooadjective longadjective andconjunction boringadjective .

Chapter 3. Problem definition 47

In the HFC system this operation is performed by means of Stanford Parser 3 that

tags (i.e. mark) each word in a user query with an attribute that denotes the word

grammar role (verb, noun, adjective to name a few) in the query more or less in the

way explained in the previous example.

Stopwords filtering. Stopwords are those words that are too common in texts

(such as articles, conjunctions or common verbal forms like is or have). These words

hold a very small semantic meaning, since their popularity is useless to connote the

text, while instead they contribute to create noise. So after pos-tagging operation,

stopwords are discarded from the query.

Stopwords can include also some very context-dependent words such as the word

actor in a movie context, or the word car in an automotive context.

Thus, denoting with SW the set of possible stopwords, in the rest of the thesis the

notation:

q = {t1, . . . , tn}

includes only those terms ti /∈ SW , and, as stated in Section 3.2.1, only those queries

q such that |q| > 1 (actual length without stopwords) will be considered.

Term expansion. Term expansion is the operation to link a word to similar

ones. This operation can be performed according to different approaches:

the expansion can be realized by means of an ontology that, very briefly, thru a

stemming operation can retrieve the root of a word and then associated the word to

all the derived words from the root according to various relationships. This approach

is strongly grammar and vocabulary guided. For example to the word white can be

linked to its plural form whites, to its synonym pale, and also to its hypernym color.

The other main approach, is guided by semantic, and it’s related to the concept of

3See Appendix A

Chapter 3. Problem definition 48

entity recognition and linked data. By means of these concepts, in a sentence con-

taining the sequence of words Paul McCartney, the famous singer can be recognized,

and then it is possible to associate him to The Beatles, John Lennon4 and Liverpool

just to make a short list.

Both this approaches could be used in combination. Unfortunately, by the time this

thesis has been written, only the ontology approach has been implemented in the

HFC system, leaving the linked data approach to a future development.

In the HFC system term expansion is performed by means of WordNet5 ontology.

After pos-tagging, each tagged term ti ∈ q is expanded with all those terms directly

associated to ti based on the grammar tag given by the pos-tagger. The rationale is

the following: especially in English language (that is at the moment the language on

which the research is focused), the same word can assume different roles depending

on its position in a sentence. As an example the word blue can be either an adjec-

tive or a verb or even a noun. Wordnet allows to link words according to various

relationships. While all nouns, verbs and adjectives can have synonyms, only nouns

can have hyponyms6, and only verbs can have troponyms7. There are actually, a

total of 15 possible different relationships, according to Wordnet, between a tagged

term and its expanded words. If the system was left free to take all possible expan-

sions, there would be two kinds of problems: first of all, too many words could be

associated together making the search engine doing too much extra work8; second,

words unrelated with the query could be associated to it creating noise and making

the result of the query engine inaccurate.

4And hopefully not to Yoko Ono :p
5See Appendix B
6Y is a hyponym of X if every Y is a (kind of) X. The reverse relationship is hypernymy. As an

example, oak is a hyponym of tree, and tree is the hypernym of oak.
7the verb Y is a troponym of the verb X if the activity Y is doing X in some manner. As an

example, to chat is a troponym of to talk)
8Performance has been a great issue, and will be discussed in Chapter 6.

Chapter 3. Problem definition 49

Pos-tagging operation is motivated precisely by these issues. By means of pos-

tagging is possible to filter in only those word expansions that can be considered

appropriate for the query.

More formally, t∗i denotes the generic expanded term of ti, and ES(ti) denotes the

expansion set of ti (i.e. the set of all expanded terms for term ti). By definition,

ti ∈ ES(ti) with an identity-term relation link, thus

|ES(ti)| ≥ 1

Notice that, given a generic expanded term t∗, it can happen that t∗ can stand at

the same time in both the expansion set of two (or even more) different terms, that

is, t∗ ∈ ES(ti) and t∗ ∈ ES(tj), with i 6= j. In other words, it’s not possible to

stand a priori that ES(ti)∩ES(tj) = ∅ with i 6= j. As an example, the term colour

can be an hypernym expansion for both terms red and black.

Query expansion. From the concept of expanded term can be easily derived the

concept of expanded query as a set of expanded terms. Formally, an expanded query

q∗ is given by a combination of (t∗1, . . . , t
∗
n) where q∗ =

⋃
t∗i , where t∗i ∈ ES(ti) and

1 ≤ i ≤ n.

Since an expanded term can reside in different expansion sets, an expanded term t∗

can be included more than once in q∗. In other words, it happens that |q∗| ≤ |q|.

Those expanded queries q∗ for which hold |q∗| = |q| are considered valid.

Notice that the original query q is a particular q∗ itself, and it is valid by definition.

Expanded Termsets. The previous considerations about a query q and its ex-

pansions q∗, can be applied to each termset T . Thus, given a termset T = {t1, . . . , tl},

Chapter 3. Problem definition 50

T ∗ denotes an expanded termset derived from9 T , and given by a combination of ex-

panded terms (t∗1, . . . , t
∗
l) for which T ∗ =

⋃
t∗i , where t∗i ∈ ES(ti) and 1 ≤ i ≤ l.

Still holds the relation |T ∗| ≤ |T | and the following definition:

Definition 2: T ∗ is valid ⇐⇒ |T ∗| = |T |.

�

Similarly, ET (T) denotes the expansion set of termset T (i.e. the set of all possible

expanded termset T ∗ that can be derived from T). The cardinality of ET(T) is

|ET (T)| =
∏
t∈T

|ES(t)| (3.8)

that is the number of all possible combinations of the expanded terms of those terms

that compose T . Notice that T itself is part of ET (T), that is T ∈ ET (T).

In Definition 2 the validity of a termset has been addressed thru a path that, starting

from a termset T , generates expanded terms and then wonder if a candidate termset

T ∗ is valid or not. The implementation of HFC system taught that it is better to

consider the reverse situation: starting from a candidate termset T ∗, finding out

the query terms that generate the expanded terms that compose T ∗ and finally

controlling if T ∗ is valid.

Since has been stated that an expanded term t∗ can be derived by different query

terms ti and tj, that is, it can happen ES(ti) ∩ES(tj) 6= ∅, it is useful to introduce

the concept of reverse expansion set RES(t∗), that returns the subset of query terms

t that can generate t∗. Still, it is easy to recognize that is not possible to stand a

priori that RES(t∗i) ∩RES(t∗j) = ∅ with i 6= j.

Considering a termset T ∗ = {t∗1, . . . , t∗l }, it is possible to get a set QT (T ∗) of termset

T combining terms picked up from all reverse expansion sets RES(t∗j) of expanded

9A similar locution is: . . . generated thru term expansion by . . .

Chapter 3. Problem definition 51

terms t∗k ∈ T ∗. In a formal way, given T ∗ = {t∗1, . . . , t∗l }, then T =
⋃
ti where

t∗i ∈ RES(t∗i) and 1 ≤ i ≤ l and holds the relation |T | ≤ |T ∗|.

From this point of view, the problem to validate a termset T ∗ becomes the problem

to find at least one termset T ∈ QT (T ∗) for which |T | = |T ∗|10.

Finally, D∗q , denotes the set of all valid expanded termsets that are included in q

and all its valid expansions q∗. By definition Dq ⊆ D∗q .

Semantic coefficient. After having introduced the concepts of expanded termset

T ∗ and expansion set of termset ET (T), it’s necessary introducing the concept of

semantic coefficient. The idea of semantic coefficient derives from the naive consid-

eration that a termset T is a carrier of meaning. and every expanded termset T ∗ is

a carrier of a similar meaning, even if it’s not properly the same11. From the this

point of view, the expansion set of a termset ET (T) can be seen has a whole meaning

container, where its meaning is given by the contribution of every expanded termset

T ∗. As the original termset T ∈ ET (T) is natural to think that T contribution must

be more relevant than the others T ∗.

In a formal way semantic coefficient is defined as follow:

starting from a single term t, each expanded term t∗ ∈ ES(t) has a semantic coeffi-

cient sct(t
∗), with 0 < sct(t

∗) ≤ 1, that depends on the cardinality of ES(t).

Definition 3: For each t∗ ∈ ES(t)

sct(t) = 0.5 +
0.5

|ES(t)|
(3.9)

sct(t
∗) =

0.5

|ES(t)|
(3.10)

�
10Later on, in Section 4.2, there will be a further explanation.
11As an example, the meaning of big tree or huge tree is very close to big oak.

Chapter 3. Problem definition 52

The rationale of semantic coefficient, is the following. A term describes a whole

meaning that is mostly expressed by the term t itself, but receives a small contri-

bution from expanded terms t∗: the greater the number of expansions, the smaller

the semantic contribution of a single expanded term12. Notice that according the

previous Definition:

∑
t∗∈ES(t)

sct(t
∗) = 1 (3.11)

Table 3.1 shows how sct varies with ES(t) cardinality. The Table consider both the

value of semantic coefficient for the original term t and for all its expanded terms t∗.

|ES(t)| sct(t
∗) (t∗ = t) sct(t

∗) (t∗ 6= t)

1 1.0000 —
2 0.7500 0.2500
3 0.6667 0.1667
4 0.6250 0.1250
5 0.6000 0.1000

10 0.5500 0.0500
20 0.5250 0.0250

Table 3.1: Term semantic coefficient w.r.t. the cardinality |ES(t)|.

Figure 3.2 shows the trends of semantic coefficient sct(t) and sct(t) according to

|ES(t)| variation13. From the graphic can be observed that 1 ≤ sct(t) < 0 and

0.25 ≤ sct(t
∗) ≤ 0.

From the term semantic coefficient descends the concept of termset semantic coef-

ficient, as the semantic relevance of a generic termset T ∗14 that derives from the

single term semantic coefficient of he particular combination of expanded term t∗i

12Criterion of expansion inflation.
13Excessive values of |ES(t)| are only hypothetical. In 99% |ES(t)| of case is supposed to be less

than 10 (|ES(t)| < 10)
14Remember that even a termset T can be considered as a special expanded termset T ∗.

Chapter 3. Problem definition 53

Figure 3.2: Term semantic coefficient trends

that compose T ∗. Hence, scT (T ∗) denotes the semantic coefficient for an expanded

termset T ∗ derived from T . scT (T ∗) is defined as follow:

Definition 4: Given an expanded termset T ∗ = {t∗1 . . . t∗l } derived for a termset

T = {t1 . . . tl}, it is

scT (T ∗) =
∏

t∗i∈T ∗
l

scti(t
∗
i) (3.12)

�

That is, scT (T ∗) is given by the product of all sct(t
∗) of the terms t∗ that compose

a termset T ∗. In this way, a termset that contains only original terms gives the

highest semantic contribution, while augmenting the number of expanded terms in

the termset, the semantic contribution decreases.

Table 3.2 gives an example of termset semantic coefficient according to the structure

Chapter 3. Problem definition 54

of its composition. In the example, it is considered a 2-termset T = {t1, t2}. Term t1

has two expansions, so that |ES(t1)| = 3, and term t2 has three expansions, so that

|ES(t2)| = 4. The number of possible combination for T ∗ = {t∗1, t∗2} is 12. In the

table is considered all the possible structure to compose a termset T ∗ according to a

term is used in its original form, or in an expanded form. For each kind of structure

is reported the number of T ∗ that satisfied it, and their semantic coefficient.

T ∗ (structure) #T ∗ sct(T
∗)

{t1, t2} 1 0.4167
{t1, t∗2} 3 0.0833
{t∗1, t2} 2 0.1041
{t∗1, t∗2} 6 0.0208

Table 3.2: Termset semantic coefficient
for a generic 2-termset {t∗1, t∗2} where |ES(t1)| = 3 and |ES(t2)| = 4

.

Notice that, according to Definition 4

∑
T ∗∈ET (T)

scT (T ∗) = 1 (3.13)

3.2.4 Product Reviews and Termsets

Consider now a product p (i.e. a movie, a camera, a hotel room) and its reviews in

a web site as it has been addressed in Chapter 1.

The set of reviews of a product p is denoted by R(p) = {r1, . . . , rk}. Each review

ri is a text, or in other words, a sequence of term occurrences ri =< t1, . . . , ts >,

where terms can be repeated more than one time.

ST (ri) denotes the set of terms appearing in a review ri ∈ R(p), while ST (R(p))

denotes the set of terms appearing in all reviews for product p.

Thus, it is ST (R(p)) =
⋃
ST (ri), ∀ri ∈ R(p).

Chapter 3. Problem definition 55

Now, consider again the query q and the set Dq of all termsets T derived from q.

Definition 5: A termset T is said relevant for product p if ∃ri|T ⊆ ST (ri). �

The set of relevant termsets T for product p is denoted as RDp,q.

In an analogous way, remembering that D∗q is the set of all expanded termsets T ∗

derived directly or by means of termset expansion from q.

Definition 6: A termset T ∗ is said relevant for product p if ∃ri|T ∗ ⊆ ST (ri). �

The set of relevant expanded termsets T ∗ for product p is denoted as RD∗p,q.

Notice that RDp,q ⊆ Dq, and also RD∗p,q ⊆ D∗q .

3.2.5 Termset Average Density

Very briefly, given a set of objects, in Information Retrieval the parameter support

is defined as the fraction of objects, e.g. documents, that contain a determined item,

e.g. word (see Section 2.5).

The situation addressed in this thesis is similar. In a preliminary work [1], it has

been assumed that every termset occurrence in product reviews contributes to the

support of the termset with the same weight, i.e. 1, since the support, by definition,

is the number of reviews containing the termset on the total amount of reviews. In

a formal way, given RT (p) as the subset of R(p) (i.e. RT (p) ⊆ R(p)) of those reviews

containing termset T , support of termset T , denoted as σp(T), is defined as:

σp(T) =
|RT (p)|
R(p)

(3.14)

After some tests, it has become evident that this assumption was not adequate, since

every review containing the termset was considered in the same way, that is, every

review had the same weight.

Chapter 3. Problem definition 56

Instead, given a termset T , terms ti ∈ T can be very dense or very sparse in the

single review. Under this consideration it can be easily guessed that a review in

which the occurrences of terms ti are dense is more relevant for the query than a

review where occurrences are sparse. Thus, it has been introduced the concept of

Termset Density, that is the density of terms ti ∈ T in a single review15.

Definition 7: Consider a product p, a review r ∈ R(p), and a termset T . The

Termset Review Density dr(T) is defined as:

dr(T) =
|T |

minWinr(T)
(3.15)

where minWinr(T) is the size of the minimal window in review r that includes all

the terms ti ∈ T .

�

Notice thus, for Termset Review Density, it holds that 0 < d(Tl, r) ≤ 1.

The next step is to define a Termset Average Density for a generic termset T w.r.t.

a product p.

Definition 8: Consider a product p and its set of reviews R(p). Consider also a

termset T and the set RT (p) of reviews containing T . The Termset Average Density

for product p, denoted as adp(T), is defined as:

adp(T) =
∑

r∈RT (p)

dr(T)

|R(p)|
(3.16)

�

The Termset Average Density is analogous to termset support, with the difference

that the contribution to support of each review is not 1 anymore, but its density

15In this moment, there’s no need to distinguish between termset T and expanded termset T ∗

Chapter 3. Problem definition 57

dr(T)16.

Notice that adp(T) ≤ sp(T) ≤ 1.

Termset Average Density becomes equal to support when density of each review

containing the termset T is 1, that is, each review contains the terms ti ∈ T all

together in a window with no extra terms in between.

3.2.6 Product Ranking Metric

Once every piece of the ranking model, termset weight, semantic coefficient and

average density has been defined is finally possible to define the Product Ranking

Metric PRM, by which it is possible to rank products on the base of its reviews

after a user query q.

Definition 9: Consider a query q, the set of termsets17 D∗q derived from q, the

weights wq(|T ∗|) and the semantic coefficients scq(T
∗) for each termset T ∗ ∈ D∗q .

Consider also a product p, the set of reviews R(p) and the set of relevant termsets

RD∗p,q that can be actually extracted from R(p). Given, for each T ∗ ∈ RD∗p,q, the

average termset density adp(T
∗), the Product Ranking Metric for product p is defined

as

PRMq(p) =
∑

T ∗∈RD∗
p,q

(wq(|T ∗|)× adp(T ∗)× scq(T ∗)) (3.17)

�

The rationale of the above definition is the following. For each termset T ∗ derived

from the query q and actually relevant in the reviews, its contribution to the overall

16Indeed Formula 3.14 can be written in different way as sp(T) =
∑

r∈RT (p)
1

|R(p)|
17From now on, when there is no need to distinguish from a termset T , directly derived from

q, and a termset T ∗, derived by termset expansion, the adjective expanded will be omitted not to
burden the text.

Chapter 3. Problem definition 58

ranking value is given by its weight wq(|T ∗|) (that depends solely on its size) mul-

tiplied by its semantic coefficient scq(T
∗) (that depends solely on its structure) and

by its average density adp,q(T
∗) (that depends solely on its impact in reviews).

The system of weights and semantic coefficients has been designed to obtain a

PRM q(p) = 1 for an ideal set of reviews for product p, where each review contains

every expanded termset T ∗ that can be derived from q with a density dr(T
∗) = 1,

and every expanded termset T ∗ is valid.

In other words, PRM q(p) = 1 can be obtained when a user asks for something that

every reviewer said in the same way of the user.

3.3 Model Evolution

Once the evaluation model has been described it can be interesting to understand

its genesis.

In Section 3.1 it has been told that the first inspiration came from the comparison

between social network analysis and itemset mining techniques. Under this boost, a

primarily idea of ranking model started to grow, even if not in the definitive form as

it has been exposed in Section 3.2. Starting from the first draft, the ranking model

has been refined more and more times till reaching its final form. Each main step of

this model evolution has been the subject for a conference paper. Not every paper

presented has been accepted to the conference due to several motivation. Sometimes

the rejection was caused due to an actual weakness of the specific model presented

that didn’t while the worth to be investigated anymore.

In the followings will be introduced the ranking models (only the ranking model,

as the papers were more comprehensive) presented in two different accepted paper

exposed in as many conferences.

Chapter 3. Problem definition 59

3.3.1 DATA 2012 - Ranking model

The following is the first version of the ranking model of HFC system that has been

exposed in a preliminary work [1] presented during the Data Conference held in

Rome in July 2012.

The text is copied verbatim so it may happen that the notation is different from the

one exposed before in Section 3.2.

Notation apart, the main differences are concerning the weighting system, the com-

plete absence of the concept of semantic coefficient, and the usage of termset support

instead of average density.

Not the least, two different ranking metric called PRV and APRV are introduced.

Our approach to product retrieval is based on the widely exploited no-

tion of itemset mining. Originally [10], itemset mining is the basic and

computationally difficult step for association rule mining. Here, we are

not interested in association rule mining, but only in itemset mining for

analyzing sets of words that frequently occur together in reviews. In this

Paragraph, we first present the basic notions of itemset mining. Then,

we adapt the concept to our context.

Basic Notions on Itemset Mining

The notion of itemset mining was introduced as a fundamental part of the

process for mining association rules [10, 16]. In a transaction database

Z = {z1, . . . , zn}, a transaction z is a set of items z = {i1, . . . , ik} sold

together in transaction z.

A k−itemset I = {i1, . . . , ik} is a set of k items. The support of

I, denoted as s(I) is the frequency with which the itemset occurs in the

transaction database, i.e., s(I) = |Z(I)|
|Z| (where Z(I) ⊆ Z is the set of

Chapter 3. Problem definition 60

transactions z ∈ Z such that z∩I = I, i.e., the transactions that contain

itemset I).

Given a minimum support threshold s, an itemset I is said large if

its support is no less than the threshold s, i.e., s(I) ≥ s.

The problem known as itemset mining is the problem of extracting

large itemsets from the transaction database Z, provided that a minimum

threshold for itemset support is defined.

Notice that this problem has been widely and extensively studied in the

last two decades. As far as the main results about efficient algorithms

are concerned, we just cite the fundamental paper [10], in which the

Apriori algorithm was defined, that has enabled itemset mining on large

databases.

Product Reviews and Itemsets

Consider now a product p (a movie, a camera, etc.) and a set of reviews

R(p) = {r1, . . . , rk}, where each review is a text, i.e., a sequence of term

occurrences ri =< t1, . . . , ts >.

A set of reviews for a product p can be seen as a transaction database,

where each review ri ∈ R(p) can be seen as a transaction, and terms tj

corresponds to items. Given a minimum threshold for support, a large

k−itemset I = {t1, . . . , tk} summarizes a relevant number of reviews in

R(p). Consequently, R(p) can be represented (and summarized) by means

of the set of large itemsets IS(R(p)) extracted from within reviews, and

composed of terms in reviews.

Moving from the general idea described above, we now define the way

to decline the concept for our context.

Definition 10: Consider the set of terms T (R(p)) = {t} appearing in

reviews r ∈ R(p) and the set SW of stopwords. Consider also a minimum

Chapter 3. Problem definition 61

support threshold for single terms st ∈ (0, 1).

The set T (R(p)) ⊆ T (R(p)) is the set of Relevant Terms, such that

∀t ∈ T (R(p)), it is s(t) ≥ st, s(t)× |R(p)| ≥ 3 and t 6∈ SW .

�

In other words, we consider relevant a term if it is not a stopword and

it is reasonably frequent in the reviews. Notice that the set SW of stop-

words is prior knowledge for our approach.

Notice that condition s(t)× |R(p)| ≥ 3 discards terms that are present

in less than 3 reviews, even though their support is greater than st; in

fact, terms that appear in only one single review are sporadic and not

sufficiently mediated by the community to characterize the product (typ-

ical situation with a small number of reviews for a product).

Definition 11: Consider the set T (R(p)) of relevant words, and a min-

imum support threshold for compound itemsets sc.

A k−itemset I with length k ≥ 2 is said relevant if I ∩ T (R(p)) = I and

s(I) ≥ sc.

The set of relevant itemsets for product reviews R(p) is denoted as

IS(R(p)).

�

In other words, we focus on itemsets composed only of relevant words

whose support is greater than a minimum support threshold sc that is

possibly different w.r.t. the minimum support threshold st used for de-

termining relevant terms.

The reason why we consider two different minimum support thresh-

olds for single terms and compound itemsets is the following. Terms

Chapter 3. Problem definition 62

must be relevant alone, thus they must be sufficiently representative of

community opinions. But compound itemsets may be rarer than single

terms in reviews, so a different minimum support threshold for compound

itemsets is considered.18

Therefore, we can state that given two minimum support thresholds

st and sc for, respectively, single terms and compound itemsets, a set

R(p) of product reviews for a product p is summarized by the set of sin-

gle relevant terms T (R(p)) an by the set of relevant compound itemsets

IS(R(p)).

Retrieval Model

The key element of our proposal is the Retrieval Model, since it is used

to rank products in order to let most significant products to emerge, i.e.,

the products whose reviews better match the query terms.

Consider a query q = {t1, . . . , tn} containing a number of terms

n ≥ 1. The query q itself is a n−itemset.

With Il(q) we denote a l−itemset composed by l terms in q (it is

1 ≤ l ≤ n). We denote with Dq the set of all itemsets that can be obtained

with terms in q, and with Dq(l) the subset of itemsets of length l; notice

that cardinality of Dq(l) is |Dq(l)| =
(
n
l

)
and notice that |D| = 2n − 1,

i.e., D is the power set of q without the empty itemset.

In order to define a rank for a product based on its reviews, we define

the concept of weight for an itemset.

18In principle, we could think about different minimum thresholds for compound k−itemsets
that somehow depend on itemset length k. We will consider this aspect in our future work.

Chapter 3. Problem definition 63

Definition 12: The weight of a l−itemset is denoted as wq(l). The

weight of the single n−itemset q is, by definition, wq(n) = 1, while is

wq(l) =
wq(l + 1)(

n
l

) for 1 ≤ l < n.

�

The rationale behind Definition 12 is the following. The topmost itemset,

corresponding to the whole query, is the most important one, and it gives

the full contribution to rank the product. In contrast, lower levels must

contribute a little, but not as much as the topmost itemset; in particular,

each non-topmost level contributes as one of the itemset in the upper

level.

Notice, that this way, the overall weight of itemsets of level (n − 1)

is 1, exactly as the single topmost itemset; reducing the size of itemsets,

the contribution of each level quickly decreases.

Example 1: To illustrate, consider the following example query over a

movie reviews collection: great funny hilarious jokes. Based on the pre-

vious definitions, the weights for itemsets are determined. In particular,

the 4-itemset that coincides with the whole query is assigned weight 1.

For each of the four 3-itemsets, the assigned weight is

wq(3) =
wq(4)(

4
3

) =
1

4
= 0.2500.

Chapter 3. Problem definition 64

weight l itemsets

1 1.0000 4 {funny,great,hilarious,jokes}
4 0.2500 3 {funny,great,hilarious} {funny,great,jokes}

{funny,hilarious, jokes} {great,hilarious, jokes}
6 0.0417 2 {funny,great} {funny,hilarious} {funny,jokes}

{great,hilarious} {great,jokes} {hilarious, jokes}
4 0.0104 1 {funny} {great} {hilarious} {jokes}

Figure 3.3: Itemsets levels for query great funny hilarious jokes
and corresponding weights.

For each 2-itemset, the weight is

wq(2) =
wq(3)(

4
2

) =
0.2500

6
= 0.0417

the weight at this level dramatically decreases, so that the presence of

only two terms together in the review gives a very little contribution to

the overall product ranking.

Finally, 1-itemsets are assigned with weight

wq(1) =
wq(2)(

4
1

) =
0.0417

4
= 0.0104

. Notice that even though single terms are less than 2-itemsets, their

contribution to the overall ranking is very low, in order to compensate

the possible very high supports of single terms.

Figure 3.3 graphically illustrates the itemsets levels.

�

We are now ready to define the Product Relevance Value (PRV).

Definition 13: Consider a product p, the set of reviews R(p) and the

set of relevant terms and compound itemsets F (p) = T (R(p)) ∪ IS(p)

Chapter 3. Problem definition 65

that it is possible to extract from R(p). Consider now a query q and the

set of itemsets Dq included in q.

If we denote with Dq(p) = F (p) ∩Dq the set of itemsets included in

q that can be actually extracted from within reviews of product p, the

Product Relevance Value (PRV) for product p is defined as

PRVq(p) =
∑

I∈Dq(p)

(wq(|I|)× s(I)) (3.18)

�

The rationale of the above definition is the following. For each itemset

included in the query q and actually relevant in the reviews, its contri-

bution to the overall relevance value is its support value multiplied by its

weight. Notice that the longer the matched itemset, the stronger its con-

tribution; the shorter the matched itemset, the smaller its contribution.

However, the definition of PRV does not take the number of reviews

for each product into account. For this reason, we introduce the Adap-

tive Product Relevance Value (APRV).

Definition 14: Consider a product p, the set of reviews R(p), the query

q and the Product Relevance Value PRV q(p). The Adaptive Product

Relevance Value APRV is defined as

APRVq(p) = PRVq(p)× log10(|R(p)|) (3.19)

�

The rationale behind this variation of the relevance measure is that the

same itemset I with a given support s(I) is more effective in summarizing

Chapter 3. Problem definition 66

a product with a large number of reviews than a product with a very small

number of reviews. The logarithm allows us to avoid that products with

very large sets of reviews excessively dominate the other ones.

Consequently, based on this concepts, the goal of the retrieval task

is to provide a ranked list of products, based either on the Product Rel-

evance Value or on the Adaptive Product Relevance Value.

The ranking model was applied to a small dataset of movie reviews downloaded from

Epinions.com web site (the dataset is described later on in Section 6.1.2). After the

presentation at the conference, the audience raised remarks regarding the smallness

of the dataset to make the attempt relevant as there were no benchmark to compare

the results, and regarding also the ranking model asking how much it was different

from a Vector Space Model application (see Section 2.1).

3.3.2 KES 2012 - Ranking Model

This version of the ranking model of HFC system has been exposed in a previous

paper [2] presented during the KES Conference held in San Sebastian (Spain) in

September 2012.

As in the model illustrated in the section before, the text is copied verbatim so it

may happen that the notation is different from the one exposed in Section 3.2.

Notation apart, the main differences are concerning the evolution of the weighting

system, but still is not the same adopted in Section 3.2; again, the complete absence

of the concept of semantic coefficient; the introduction of average density instead of

termset support, but its usage is slightly different.

The ranking model has been applied to a dataset of people’s blogs. Each blog was

composed by several posts. So in this case the word blog is used instead of product,

Chapter 3. Problem definition 67

and similarly, the word post is used for review.

Not the least, the ranking metric is called BRV.

We now present the Retrieval Model. We got inspiration by the

concept of itemset mining [10], adapted to our context, using the concept

of Termset in place of Itemset.

Posts and Termsets

Consider now a blog b and a set of posts P (b) = {p1, . . . , pk}, where each

post is a text, i.e., a sequence of term occurrences pi =< t1, . . . , ts >.

A termset I is a set of terms I = {t1, . . . , tk}. The support of a

termset I w.r.t. blog b is the number of posts pi ∈ P (b) in which I occurs

(I ⊆ pi) on the total number of posts, i.e.,

s(I, b) = |{pi ∈ P (b)|I ⊆ pi}|/|P (b)|

A single term t is the simplest form of termset, i.e., I = {t}. Given

a minimum threshold for support s, a large k−termset I = {t1, . . . , tk}

summarizes a relevant number of posts in P (b). Consequently, P (b) can

be represented (and summarized) by means of the set of large termsets

IS(P (b)) extracted from within posts, and composed of terms in posts.

Moving from the general idea above described, we now define the way

we decline the concept for our context.

Definition 15: Consider the set of terms T (P (b)) = {tj} appearing in

posts p ∈ P (b) and the set SW of stopwords. Consider also a minimum

support threshold s ∈ (0, 1).

The set T (P (b)) ⊆ T (P (b)) is the set of Relevant Terms, such that

Chapter 3. Problem definition 68

∀t ∈ T (P (b)), it is s(t, b) ≥ s, s(t, b)× |P (b)| ≥ 3 and t 6∈ SW .

�

In other words, we consider relevant a term if it is not a stopword and

is reasonably frequent in the posts. Notice that the set SW of stopwords

is prior knowledge for our approach.

Also notice that condition s(t, b) × |P (b)| ≥ 3 discards terms that are

present in less than 3 posts, even though their support is greater than s;

in fact, terms that appear in only one single post are sporadic and not

sufficiently mediated by the community to characterize the blog (typical

situation with a small number of posts for a blog).

Definition 16: Consider the set T (P (b)) of relevant words, and the

minimum support threshold s.

A k−termset I with length k ≥ 2 is said relevant if I ∩T (P (b)) = I and

s(I, b) ≥ s. The set of relevant termsets for blog posts P (b) is denoted

as IS(P (b)).

With F (P (b)) = T (P (b)) ∪ IS(b), we consider the full set of compound

termsets IS(P (b)) extended with the set T (P (b)) of relevant words that

are actually 1-termsets (i.e. termset composed by a single term).

�

In other words, we focus on termsets composed only of relevant terms

whose support is greater than a minimum support threshold s.19

19 In principle, it could be possible to consider two different minimum support thresholds for
single terms and compound termsets, based on the following reason. Terms must be relevant alone,
thus they must be sufficiently representative of community opinions. But compound termsets may
be rarer than single terms in posts, so a different and possibly lower minimum support threshold
for compound termsets might be considered.

Chapter 3. Problem definition 69

Therefore, we can state that given a minimum support threshold s

for termsets, a set P (b) of posts for a blog b is summarized by the set of

relevant termsets F (P (b)).

Blog Relevance Measure

Consider a query q = {t1, . . . , tn} containing a number of terms n ≥ 1.

The query q itself is a n−termset.

With Il(q) we denote a l−termset composed by l terms in q (it is

1 ≤ l ≤ n). With Dq , we denote the set of all termsets that can be

obtained with terms in q, and with Dq(l) the subset of termsets of length

l; notice that the cardinality of Dq(l) is |Dq(l)| =
(
n
l

)
and notice that

|Dq| = 2n − 1, i.e., Dq is the power set of q without the empty termset.

In order to define a rank for a blog based on its posts, we define the

concept of weight for a termset.

Definition 17: The weight of a l−termset is denoted as wq(l). The

weight of the single n−termset q is, by definition, wq(n) = 0.5, while for

1 < l < n it is wq(l) = wq(l+1)

(n
l)+1

and for l = 1 it is wq(1) = wq(2)

(n
1)

.

�

The rationale behind Definition 17 is the following. The topmost termset,

corresponding to the whole query, is the most important one, and its

weight is equal to the overall weight of all the shorter termsets. The

same principle is valid for any generic termset Il (with 1 < l < n),

whose weight is equal to the overall weight of all lower levels termsets

(even those that are not subset of Il). In this way, reducing the size of

termsets, the contribution of each level quickly decreases.

Chapter 3. Problem definition 70

Notice, that the overall weight of all termsets is exactly 1.

Example 2: To illustrate, consider the following example query over

a collection of blogs: best music Saturday party. Based on the previous

definitions, the weights for termsets are determined. In particular, for

the unique 4-termset, that coincides with the whole query, the assigned

weight is 0.5. For each of the four 3-termsets, the assigned weight is

wq(3) =
wq(4)(
4
3

)
+ 1

=
0.5

4 + 1
= 0.1

For each of the six 2-termset, the weight is

wq(2) =
wq(3)(
4
2

)
+ 1

=
0.1

6 + 1
= 0.0143

the weight at this level dramatically decreases, so that the presence of

only two terms together in the post gives a very little contribution to the

overall blog ranking.

Finally, the four 1-termsets are assigned with weight

wq(1) =
wq(2)(

4
1

) =
0.0143

4
= 0.0036

. Notice that even though single terms are less than 2-termsets, their

contribution to the overall ranking is very low, in order to compensate

the possible very high supports of single terms.

�

Definition 18: Consider a blog b, a post p ∈ P (b), and a termset I

composed by |I| terms. The Termset Post Density d(I, p) is defined as

d(I, p) =
|I|

minWin(I, p)
(3.20)

Chapter 3. Problem definition 71

where minWin(I, p) is the size of the minimal window in post p that

includes all the terms in termset I.

�

Notice that for Termset Post Density, it holds that 0 < d(I, p) ≤ 1. Also

notice that, by definition, Termset Post Density for a 1−termset I1 is

always d(I1, p) = 1.

We define also the concept of relevance for a termset.

Definition 19: Consider a blog b, its set of posts P (b) and a query q

(|q| ≥ 1). With PI(b) we call the subset of P (b) of those posts containing

termset I. The Relevance of a termset I for a blog b is denoted as relb(I)

and is defined as follows:

relb(I) = |q|(|I|−|q|) ×
∑

p∈P (b) d(I, p)

|P (b)|
(3.21)

Relevance is a specific termset feature that summarizes the importance

of a termset w.r.t. to a set of posts.

�

The reader can easily guess that the longer the termset, the more sparse

the occurrences of the termset in reviews. So, there is the risk that the

relevance value of significant termsets, i.e, the long ones, becomes too

low w.r.t. the relevance value of short termsets, that are more likely to

be dense in posts. For this reason, we inserted the term |q|(|I|−|q|), in

order to boost long termsets and compensate the above discussed effect.

We are now ready to define the Blog Relevance Value (BRV).

Chapter 3. Problem definition 72

Definition 20: Consider a blog b, the set of posts P (b) and the set of

relevant termsets F (P (b)) that is possible to extract from P (b). Consider

now a query q and the set of termsets Dq included in q.

If we denote with Dq(b) = F (P (b))∩Dq the set of termsets included in

q that can be actually extracted from posts of blog b, the Blog Relevance

Value for blog b is defined as

BRVq(b) = log10(|P (b)|)×
∑

I∈Dq(b)

(wq(|I|)× relb(I)) (3.22)

�

The rationale of the above definition is the following. For each termset I

included in the query q and actually relevant in the posts (i.e., with sup-

port greater than or equal to the minimum threshold s), its contribution

to the overall relevance value is given by its weight wq(|I|) (that depends

on its length) multiplied by its relevance measure relb(I).

The log10(|P (b)|) factor is a boosting factor to rank better those blogs

with a larger number of posts, among the ones with the same Dq(b) set

of termset, in case also relb values are the same. The logarithm allows

us to avoid that blogs with very large sets of posts excessively dominate

the other ones.

As stated before, this version of the ranking model was applied to a blog dataset,

described later on in Section 6.1.1. After the presentation at the conference, the

audience was wondering how it was possible to verify the quality of the results

unless to read every single blog, since, except for a few rough blog attributes, it

was not possible to distinguish a blog from another. From considerations emerged

afterwards, raised the idea of semantic coefficient.

Chapter 4

Algorithms

The research for reaching the best performance has been the main challenge of the

project, and the quest for performance will be the center of a long dissertation in

Chapter 6. In order to achieve the best performance, all components of the HFC

system had to be designed optimally. Particular attention has been given to the

implementation of the most exploited algorithms.

This Chapter will be addressed to describe the three most exploited algorithms:

• Recursive termset mining

• Termset valid query-coverage

• Termset minimum window

4.1 Recursive Termset Mining algorithm - RTM

In Chapter 3 has been shown that termsets are the key elements to determine

the ranking value PRV of a product according to a user query. As explained in

73

Chapter 4. Algorithms 74

Chapter 3, termsets are mined starting from the occurrences, in product reviews,

of the searching terms derived from the analysis of the query. The searching terms

constitute the so-called term-base, a set that is composed by the terms that are in the

query1, and also by those terms that derive from the query thru the term-expansion

operation performed by means of Wordnet as explained in Section 3.2.3.

Once the term-base has been determined, all occurrences of terms2 are retrieved

from the storage system3, and kept in central memory.

In central memory, for each product, there is an instance of the term-base. Linked

to each term of the term-base, there is the list of reviews4 in which occurrences has

been retrieved5.

From this starting point, for each product for which were retrieved terms occurrences,

the algorithm for Recursive Termsets Mining (RTM in the following) is activated.

The RTM algorithm is a recursive algorithm that take inspiration from the FP-

Growth algorithm [12], already mentioned in Section 2.5.

In a few words, for each product review, the strategy of the RTM algorithm is to

consider the term-base {t1, . . . , tn} as a sequence < t1, . . . , tn > ordered according to

a given criterion6. Thus, a k -termset T is denoted by an ordered list < t̄1, . . . , t̄k >
7

of k terms taken from the term-base. In order to find every (k+1)-termset that share

the same k terms, the algorithm tries to enrich the k -termset with those terms in

the term-base that follow the k̄-th term (of the k -termset) according to the sorting

criterion. As soon as a (k+1)-termset is mined, the algorithm immediately uses

1Stopwords are not included.
2From now on, the word term will be used to point out only terms in term-base.
3 Every architecture detail is afterwards demanded to and Chapter 5.
4Actually it is only the review ID.
5Linked to each review (ID), there is the list of position of term the occurrences retrieved. For

RTM algorithm this information is not useful.
6The specific criterion does not matter. It’s important there’s an sorting criterion so that can

be stated that ti < tj ∀i < j, that is, the term ti precedes the term tj when i < j.
7Be aware that t̄i 6= ti, but as terms t̄i in termset T are taken from the term-base, the ordering

property t̄i < t̄j ∀i < j is still valid.

Chapter 4. Algorithms 75

the (k+1)-termset in order to recursively mine (k+2)-termsets. The recursion stops

after the attempt to enrich the k -termset with the n-th term of the term-base.

Figure 4.1: Termset mining order for a term-base < a, b, c, d, e >.
Numbers over termsets show the mining order.

Arrows indicate algorithm recursive calls.

Since terms have a sorting order, it should be clear that a (k+1)-termset can be

derived only from the sole k -termset that represents a prefix for it. The reader

should notice also that a k -termset containing the last (n-th) term of the term-base

cannot be further enriched. Figure 4.1 shows the dependency relationship between

k -termsets and (k+1)-termsets. The Figure 4.1 also shows all the possible recursive

calls and the mining order in the case that every possible termset can be mined.

For RTM algorithm a termset is a list of terms < t1, . . . , tn > that is linked to the

list of product reviews in which the termset can be retrieved. So, when the algorithm

tries to enrich a k -termset with a (k+1)-th term, controls that there is at least a

Chapter 4. Algorithms 76

review in which the candidate (k+1)-termset can be retrieved. After that, the k+1 -

termset must be valid according to Definition 2 of Chapter 3.

In this way, the RTM algorithm found all valid termset in reviews of a product p.

The RTM algorithm is shown in Figure 4.2.

a. termBase: listOf〈Term〉
b. termsetSet: setOf〈Termset〉
c. termsetSet = RTMalgorithm (termBase, ∅, 0)

1. function RTMalgorithm (termBase: listOf〈Term〉, kt: Termset, start)
: setOf〈Termset〉

begin
2. t: Termset // candidate (k+1)-termset
3. tSet: setOf〈Termset〉 = ∅
4. for [i=start; i < ‖termBase‖; i++] do
5. if [cover(kt)

⋂
cover(termBase(i)) 6= ∅] then

6. t = kt
⋃
termBase(i)

7. if [validCoverage (t)] then
8. tSet = tSet

⋃
t

9. tSet = tSet
⋃

RTMalgorithm (termBase, t, i+ 1)
endIf

endIf
endFor

10. return tSet
end

Figure 4.2: Recursive Termsets Mining algorithm

In details:

• Line a represents the term-base. It is given after query analysis and term

expansion by Wordnet.

• Line b defines the variable set where the mined termsets are kept.

• Line c shows the first activation of RTM algorithm.

Chapter 4. Algorithms 77

• Function RTMalgorithm receives the term-base (parameter termBase), a k -

termset (parameter kt) as base to mine (k+1)-termsets, the index8 (parameter

start) of the first term in the term-base useful to enrich the k -termset. The

function returns the set of all termsets mined from the kt termset in input pa-

rameters. The reader should notice that the first activation of the algorithm

performed in Line b reports as parameters the term-base as result of the ex-

pansion by Wordnet, an empty termset9, and the index of the first term in the

term-base from which start the mining.

• Two local variable are defined. Variable t at Line 2 represents the candidate

(k+1)-termset. Variable tSet at Line 3 represent the local set where termsets

recursively derived from kt are kept.

• The for loop at Line 4 is responsible for the generation of all (k+1)-termsets

that can be derived from the k -termset kt. In detail, the for loop scans the

term-base from the term following the k-th term in kt, denoted by the index

start, till the end of the the term-base, since these are the only terms of the

term-base that are able to enrich the termset kt.

• Inside the for loop, the if statement at Line 5 checks if a new (k+1)-termset

can be mined. The mining condition is that the (k+1)-termset has a support,

that is, there is a non-empty intersection between the cover 10 of the termset kt

and the cover of the current term taken from the term-base given by the for

loop. The function cover returns, indeed, the cover of termset or single term,

that is the index sets of reviews in which can be retrieved the termset or the

term. A non-empty intersection between the two cover functions means there

8It is used the Java convention by which indexes start from 0.
9The RTM algorithm consider empty-termset and 1-termset as actual termsets. Improperly,

since by definition a termset has at least two elements. After the algorithm has finish its execution
these improper termsets are filtered out.

10The concept of cover has been introduced in Section 2.5, and in a few words, is the list of
reviews that contain a term or a termset.

Chapter 4. Algorithms 78

is at least one review of the current product that contains the new (k+1)-

termset: when this case is verified a new (k+1)-termset is build and assigned

to the variable t in Line 6.

• The if statement at Line 7 deals with the issue about valid termsets explained

in Definition 2 of Chapter 3. The function validCoverage is a boolean function

that indicates if a termset is valid or not. The operation of the function

validCoverage11 is explained in the next Section 4.2 since there is a special

algorithm in this case as well.

When the termset t is valid the function validCoverage returns a true value,

and thus in Line 8 the termset t is inserted into the local set tSet of termsets

mined. After this operation, in Line 9, the local set tSet is update with all

the termsets that can be mined from t by means of a recursive call of function

RTMalgorithm. The parameters for function RTMalgorithm are the term-base

termBase, the current (k+1)-termset t just mined, and the index of the term

in the term-base following the term that allow to mine the current termset t.

If the current term in the term-base is already the last one, the next recursive

call terminates since the condition to enter in the for loop at Line 4 is not

valid anymore.

• Finally, Line 10 returns overall set of termsets generated from the termset kt.

This algorithm works completely in main memory and, exploiting the order showed

in Figure 4.1, is really fast12 as treats only those termsets that could be effectively

mined, and discards in advance all those termsets that cannot be surely mined as de-

rived from a discarded termset (because it has no support or because it is not-valid).

Figure 4.3 shows a possible execution of the algorithm over a term-base composed

11Please, be aware that the word coverage deals with termset validity and has a different context
respect to the word cover, that deals with the list of reviews that hold a terms or termset.

12 Details about execution time performance and the number of termset mined will be shown in
Chapter 6

Chapter 4. Algorithms 79

by 5 elements < a, b, c, d, e >. The Figure shows the mining order of valid termsets,

and blue arrows shows the actual algorithm recursive calls performed.

Figure 4.3: Termset mining dynamics for a term-base < a, b, c, d, e >.
Numbers over termsets show the mining order. Mined termsets has a white back-
ground and only blue arrows indicate algorithm effective recursive calls performed.

Figure 4.4 shows the equivalent Hasse Diagram13 of the example in Figure 4.3. All

non-mined termsets are highlighted with a dark layer.

Notice that, if a termset t1 is not mined, every termset t2 for which t1 ⊂ t2 cannot

be mined as well. In other words, every subset of mined termset is a mined termset

and, dually, no superset of a non-mined termset is a mined termset!

13Already seen without decoration in Figure 2.2 in Chapter 2. In the Hasse Diagram, termsets
are considered as actual sets. The connection link between two different termset t1 and t2 exists if
it is t1 ⊂ t2.

Chapter 4. Algorithms 80

Figure 4.4: Hasse diagram showing valid termsets.
Notice that every subset of a mined termset is a mined termset (e.g. termset ade),

or, dually, no superset of a discarded termset can be mined (e.g. termset ac).

4.2 Valid Termset Coverage algorithm - VTC

In Section 3.2.3 were introduced the concepts of valid termset and termset semantic

coefficient. In particular, was told that the HFC system consider only valid termset

and that the termset semantic coefficient depends of its composing structure.

In the previous Section 4.1, talking about the RTM algorithm, it has been stated

that there is the need to have a performing algorithm to evaluate valid termsets.

Figures 4.5, Figures 4.6, Figure 4.7 and Figure 4.8 briefly summarize the situation.

Chapter 4. Algorithms 81

Figure 4.5: Graphic representation of query expansion.
Black links show identity-term links.

Figure 4.5 shows a query q and its set of terms {t1, . . . t5}, and the term-base of

expanded terms derived from q and its set of (expanded) terms {et1, . . . et12}. A

link between a generic couple (ti, etj) denotes an expansion from query term ti to

expanded term etj. The black color of the link denotes an identity-term link, that

is, the query term ti and expanded term etj are the same term (ti = etj).

Figure 4.6: Expansion set Vs Reverse Expansion Set

Figure 4.6.a) focuses on a query term t and its expansion set ES(t) as a subset of

Chapter 4. Algorithms 82

the term-base. Figure 4.6.b) focuses on an expanded term et in the term-base and

its reverse expansion set RES(et) as a subset of query terms tk that generate et.

Figure 4.7: Non-valid termset graph.
Termset {et1, et2, et3, et4} has no valid coverage over the query.

Figure 4.7 shows a non-valid termset example.

The candidate termset T ∗ is {et1, et2, et3, et4} and the red links highlight the subset

of query terms that can generate T ∗. Continuous-line red links represent a specific

non-valid coverage T = {t1, t2, t3} of T ∗ over the query since |T | < |T ∗|, while red

dashed line links are discarded (for this specific coverage). As expanded terms et1

and et2 can only be derived from the sole query term t1, it becomes evident that

there is no possible valid coverage T in order to get |T | = |T ∗|.

On the other side, Figure 4.8 shows an example of valid termset.

The candidate termset T ∗ is {et1, et3, et4, et8} and the blue links highlight the subset

of query terms that can generate T ∗. Blue continuous line links represent a specific

valid coverage T = {t1, t2, t3, t4} of T ∗ over the query since |T | = |T ∗|, while blue

dashed line links are discarded (for this specific coverage).

Analyzing the graph in Figure 4.8, it can be noticed that exchanging links (et3, t2)

and (et4, t3), with, respectively links (et3, t3) and (et4, t2), there is another valid

coverage of termset T ∗ over the query. This affects the calculus of the semantic

Chapter 4. Algorithms 83

Figure 4.8: Valid termset graph.
Termset {et1, et3, et4, et8} has at least one valid coverage over the query.

coefficient scT (T ∗)14. Figure 4.9 illustrates the situation showing the two different

coverages. In detail, coverage b) uses a more valuable identity-term link15 (the black

link) that coverage a) does not use. Thus, for this reason, the difference of semantic

coefficient between coverage a) and coverage b).

Figure 4.9: Valid coverages and semantic coefficient.
Coverage in b) uses the identity-term link (et3, t3) that is not used for coverage

a), and this change the semantic coefficient.

14See Definition 4 in Chapter 3.
15According to the definition of term semantic coefficient in Definition 3 of Chapter 3 identity-

term links worth more than a simple expansion link.

Chapter 4. Algorithms 84

The case analyzed in Figure 4.9, shows that verifying the validity of a candidate

termset T ∗, is not sufficient. Since the mission of the HFC system is, somehow, to

research the meaning of the user query if product reviews, it would be natural to

consider a termset at its highest level of significance. Thus, once has been verified

that a termset is valid, it is necessary to further investigate in order to find out that

termset coverage that brings the highest semantic coefficient. To reach this goal,

every possible possible coverage must be verified.

With these premises, it is necessary to have an efficient algorithm to find out all

valid coverages for a termset and calculate the semantic coefficient for each coverage

found.

In order to achieve this goal, a recursive algorithm, named Valid Termset Coverage

(VTC), has been developed. The VTC algorithm is shown in Figure 4.10.

In a few words, the algorithm start to built coverages adding recursively terms

from reverse expansions sets of expanded terms (et) that compose the termset.

Starting from an empty set as a coverage, the algorithm consider an expanded term

eti ∈ termset, and pick from RES(eti) a term t up. If t raises coverage cardinality

(i.e. t /∈ coverage) it is added to the coverage and a recursive call tries to enrich the

coverage considering a different term etj ∈ termset. When the recursive call returns,

a new term t ∈ RES(eti) is tried to enrich the starting coverage, until all terms in

RES(eti) have been used. When a valid coverage has been found, its semantic

coefficient is calculated, and the termset is being marked as valid. The algorithm

continues running until all possible coverages has been explored. If the termset is

valid, the highest semantic coefficient calculated is assigned to the termset.

In details the VTC algorithm in Figure 4.10 works this way:

• Line a The VTC algorithm is activated by the RTC algorithm at Line 7 of

Figure 4.2, thru a validCoverage function, to verify if the termset given as

parameter is valid.

Chapter 4. Algorithms 85

a. function validCoverage (termset: Termset) : boolean,
b. t.isV alid = false
c. t.sc = 0 // Semantic Coefficient
d. recursiveEvalution (t, ∅, 0, 1)
e. return t.isV alid

end

1. function recursiveEvaluation (termset: Termset, coverage: setOf〈Term〉,
i, sc) : void

2. eti, t : Term
3. if [index < |termset|] then
4. eti = termset.getTerm(i)
5. for each [t ∈ RES(eti)]
6. if [t /∈ coverage] then
7. newCoverage = coverage

⋃
t

8. newSc = sc ∗ getSc(t, et))
9. validCoverage (termset, newCoverage, i+ 1, newSc)

endIf
endFor

10. else
11. termset.isV alid = true
12. t.sc = max(t.sc, sc)

endIf
end

Figure 4.10: Valid Termset Coverage algorithm

To make the notation quick, the Termset data-type is treated similarly to

a Java object, with one attribute for semantic coefficient (sc), one boolean

attribute for termset validity (isV alid), and representing the termset as a

listOf〈Term〉.

• Line b sets the termset as non-valid.

• Line c sets the termset semantic coefficient to 0.

Chapter 4. Algorithms 86

• Line d activates the recursive VTC algorithm.

Initial parameters are the termset to be validate, an empty-set as initial cover-

age, the index of the first term et ∈ termset to be used to enrich the coverage16,

and 1 as starting intermediate value of semantic coefficient17

• Line e. returns if the given termset is valid or not.

• Function recursiveEvalutation at Line 1 performs the VTC algorithm.

Parameters are the termset to be validated, a starting coverage as a set of

terms, the index i of the term eti to use for enriching the coverage, the current

intermediate semantic value sc to be updated. The function has no return

value as information is stored directly into the termset object.

• Two local variables have been declared in Line 2 : eti is the current term of

the termset; t a generic query term that is t ∈ RES(eti) effectively used to

enrich the coverage.

• Line 3 performs the validity test. When the condition is false all terms et ∈

termset has been used to enrich the coverage, that is, |coverage| = |termset|

and so the termset is valid, semantic coefficient can be calculated, and the

recursion returns back.

When the condition is true it means there are still et ∈ termset to use to

enrich the coverage.

• Line 4 retrieves the current eti from termset.

• The for loop at line 5 is responsible to use every term t ∈ RES(eti) try to

enrich the coverage.

16Termset is treated as list, and indexes follow Java convention starting from 0.
17Term’s semantic coefficients sci are always 0 < sci ≤ 1, and termset semantic coefficient is give

by the product of all sci ∈ termset, so 1 as starting value is invariant.

Chapter 4. Algorithms 87

• Test at Line 6 verifies if the current term t can effectively enrich the coverage.

If the test is false, no further exploration with current coverage and t is

necessary and the recursion takes a step back. If the test is true a further

recursion call will be performed.

• Line 7 builds a new coverage for the recursion by adding t to the current

coverage.

• Line 8 updates intermediate semantic coefficient by means a two-variables

function that performs formula described in Definition 3 in Chapter 3. The

value is assigned to a new variable for the recursion.

• A new recursion call is performed at Line 9. Parameters are the termset to

be validated, the new intermediate coverage (newCoverage), the index of the

following term eti+1 ∈ termset, and the new intermediate value of the semantic

coefficient (newSc).

• In case the termset is valid, as a valid coverage has been found, at Lines 11 and

12 the termset boolean attribute isValid is set to true, the semantic coefficient

attribute sc is assigned with the highest value between the current sc and the

semantic coefficient of the new coverage found, and the recursion takes a step

back.

4.3 Minimum Window algorithm

Once a valid termset T is mined, in order to calculate its average density ad(T),

according to the ranking model exposed in Section 3.2, it is necessary to get for each

review r that holds T (T ⊂ r) the minimum window size that contains T 18.

18Considering formula 3.15 in Chapter 3, formula 3.16 can be written in an equivalent way as:

adp(T) = |T |
|R(p)|

∑
r

1

minWinr(T)
.

Chapter 4. Algorithms 88

This operation is not particularly complex, but it is likely to be that must be per-

formed a remarkable number of times as it is needed for each review, of every valid

termset mined, in every product!

Thus, the algorithm must be quite performing.

The strategy, for every termset T , is to build a representation of each review r as a

sequence of couples (term, position) where term is a ti ∈ T , and position is the index

position of a specific occurrence of ti inside r19. The sequence is sorted according to

the position values. Figure 4.11 shows the sequence representation of a review r for

a termset T = {t1, t2, t3, t4, t5}.

Figure 4.11: Sequence representation of reviews

The algorithm uses two index-pointers to mark a window in the review. At start,

both pointers point the same starting couple (term, position) of the sequence review.

Then, the pointers apply an accordion dynamics: on the beginning the first pointer

(head), moves ahead in order to find the first termset containing window, that is

the a window that contain at least one occurrence per term ti ∈ T 20. To verify

if the current window contains at least one occurrence for each ti ∈ T , a map

〈term, counter〉 is used. The map is a set of couples that associates every term ti

with an occurrence counter. When the head moves a step ahead and finds a new

occurrence of term ti, the related counter is increased. If no counter is zero, then the

current window contains the termset T . Figure 4.12 shows the dynamics of the head

until it finds a termset containing window, and the relative instance of the map.

19Occurrence’s position is calculated considering every term in the review, not only the terms
ti ∈ T .

20As T is a mined valid termset, by construction, there is at least one window that contains all
terms of the termset for sure.

Chapter 4. Algorithms 89

Figure 4.12: Minimum window algorithm. Head dynamics

When a termset containing window has been found, the second pointer (tail) moves

ahead. For every step the tail goes ahead, a term ti occurrence is left out of the

window, and its counter is decreased. Every time size of termset containing window

change, it is verified if the current window is the minimum. The tail goes ahead until

one of the counters in the map becomes zero: this means the current window does

not contain the termset anymore. At this point the tail stops, and head moves ahead

until it finds a new termset containing window. Figure 4.13 shows the dynamics of

the tail until it makes the window small not to contain the termset, and the relative

instance of the counters map.

Figure 4.13: Minimum window algorithm. Tail dynamics

The algorithm stops when the head reaches the end of the review sequence and the

tail makes the window small not to contain the termset anymore.

The Minimum Window algorithm is shown in Figure 4.14.

Chapter 4. Algorithms 90

a. function minWindowSize(T : Termset, r : seqOf〈term, position〉) : integer
begin

1. winSize =∞
2. head = 0
3. tail = 0
4. map : Map〈term, counter〉 = initMap(T, 0)
5. repeat
6. head++
7. updateMap (map)
8. while fullWindow(map) begin
9. curWinSize = r.get(head).position− r.get(tail).position
10. winSize =min(winSize, curWinSize)
11. updateMap (map)
12. tail++

end
13. until head = |review|
14. return winSize

end

Figure 4.14: Minimum Window algorithm

In details:

• Minimum Window algorithm is performed by Function minWindowSize at

Line a. Parameters are a termset T and a review r ∈ cover(T)21 The function

returns the size of the minimum window in r that contains T .

• The function initializes its internal variables in Lines 1, 2, 3, 4 : winSize holds

the current value of the minimum window size; head and tail are the two

pointers that mark the window. They start from the beginning of the review

sequence; map is a set of couples (term, counter), and ∀ti ∈ T the related

occurrence counter is initialized to zero.

• The accordion dynamics start at Line 5 with a repeat. . . until loop.

21See Section 4.1 and Section 2.5. Just as a reminder, cover(T) is the set of reviews that contains
T .

Chapter 4. Algorithms 91

• head moves one step ahead at Line 6, and the map is updated at Line 7, in-

creasing the occurrence counter related to term ti reached by the head pointer.

• If the current window contains the termset, it is verified whether the minimum

size has been achieved and tail moves ahead. The function fullWindow is a

boolean function given, and simply controls that every occurrence counter in

the map, given as parameter, is non-zero. At Line 8, if fullWindow returns

true, it means a termset containing window has been found and the while

loop is executed.

• Inside the while loop, at Line 9 the current termset containing windows size

is calculated as the difference between the position of the term pointed by head

minus the position of the term pointed by tail. At Line 10 is verified if the

current window is minimal. Finally, before tail moves one step ahead at Line

12, the map is updated at Line 11, decreasing the occurrence counter related

to term ti that the tail pointer is about to leave out the window.

• The algorithm stops when head reaches the end of the review at Line 13.

• At Line 14, the function returns the size of the minimal window that contains

the termset T .

In Figure 4.15 is reported the execution of the algorithm over the example showed

before. The table reports all windows containing the example termset. For each

window is reported the position of the first term in the review pointed by the tail

pointer, the position of the last term pointed by the head pointer, and the size of

the window. Finally, the minimum window is indicated.

A consideration before closing the subject. In the shown example, the minimum

windows size for termset T = {t1, t2, t3, t4, t5} in review r, is 21. Since |T | = 5,

termset density dr(T) ≈ 0.24. It is likely to be that review r is not very significant

for termset T , indeed, even taking a quick look at review r representation in Figures

Chapter 4. Algorithms 92

4.11 and following, the reader should have notices how sparse are terms ti ∈ T inside

of r.

Figure 4.15: Minimum Windows execution report.
The minimum window size of termset T in the example is 21

Chapter 5

Prototype

After the description of the theoretical model of the HFC system presented in Chap-

ter 3, this Chapter is about the architecture that implements the HFC search engine,

and the data model that allows the HFC system to operate.

The HFC system is implemented in Java language. The specific programming lan-

guage is not fundamental, C++ or whatever advanced programming language would

fit the need. This reminder is only to justify any future reference to the Java lan-

guage.

5.1 System Architecture

As stated in Section 3.2, when citing the paper Hints from the Crowd: A Novel

NoSQL Database ([3]), the HFC system is a NoSQL database system that deals

with collections of product reviews, that can be queried by expressing a natural

language sentence.

93

Chapter 5. Prototype 94

The HFC system is composed by several components, each one devoted to perform a

specific task as shown in Figure 5.1. In particular, there’s a distinction between the

back-end and the front-end : the former is responsible for off-line data preprocessing,

in order to make data ready for query engine; the latter is the actual on-line query

engine with a user interface built over, in order to let users querying the HFC

system.

Figure 5.1: Architecture of the HFC System

Chapter 5. Prototype 95

In between the back-end and the front-end, there is the storage system that resides

partly on a relational database, and partly on the file system. The reason for this

design choice will be deeply discussed in Section 5.2.

The graphic convention in Figure 5.1, is to represent source data and intermediate

results by means of ovals shapes, and to represent components that handle data with

rectangles shapes.

In the following the back-end and the front-end will be analyzed.

5.1.1 Back-end

This side of the HFC system is responsible to make data source ready for the search

engine. For HFC system, various data sources have been tested. Data sources will

be discussed in Section 6.1, so for now it is only interesting to know that in their

original form, product reviews reside as files1 on the file system. In this form, data

sources are quite useless.

The back-end is thus responsible for collecting, analyzing and indexing data from

product reviews stored as files, creating, and uploading in the Storage box, the data-

structure that the HFC search engine uses to perform user queries.

The key components in the back-end are the Analyzer and the Loader.

5.1.1.1 Analyzer

This component is responsible for analyzing product reviews, stored as files on the

file system. For each product there is one file that is a collection of its reviews.

The Analyzer read each file, identifying words (terms) and their grammar category

(noun, verb, adjective or adverb).

1One XML file for each product.

Chapter 5. Prototype 96

The Analyzer is essentially a parser, developed with JavaCC2, that read each product

file and identifies sentences and then single words (terms) occurrences. Sentence

identification is important as sentence is the input parameter for the Stanford NLP

Parser 3 that is used as a library in order to perform the pos-tagging operation. Once

the sentence has been pos-tagged, stopwords are discarded. The remaining tagged

words are indexed with a product local index, and their occurrences are stored in a

list for each word (from now on, term). For every term, each occurrence is a couple

(reviewNumber, position).

The output of the Analyzer is a intermediate file as the result of the serialization of

the data analyzed. The output file is ready to be taken by the loader to upload the

data into the storage.

It is important to underline that the Analyzer task is product independent, in the

meaning that since the Analyzer is using a different indexing system for each product,

the analysis of a specific product file has no effect on the analysis of another product

file.

Since the pos-tagging operation performed by the Stanford NLP Parser is a heavy

time consuming task, the Analyzer is much more slower than the following Loader

component4.

As a consequence of the just mentioned considerations, since there is no need to

analyze product files sequentially, the Analyzer task has been parallelized5.

2JavaCC is a parser generator similar to Antlr (both descend from YACC), that, taken in input
a high level description of a computer language, returns the parser java code of the input language.
https://javacc.java.net

3From the Stanford NLP Group: http://nlp.stanford.edu/index.shtml
4Performance will be discussed in Chapter 6.
5Briefly anticipating the performance discussion, since the machine used for the test had a CPU

with eight different cores, it have been used eight different independent computer processes to
analyze product files.

https://javacc.java.net
http://nlp.stanford.edu/index.shtml

Chapter 5. Prototype 97

5.1.1.2 Loader

The goal of this component is to load Analyzer output files into the data structures

on which the search engine will perform user queries.

Each serialized file coming from the Analyzer is analyzed separately from the others,

and has it’s on internal terms index. So the main issue related to the Loader is to

re-map terms internal index into the global index.

The Loader works this way. First inserts a new product into the storage, and gets

back a unique global index for the product. Then for each term found it controls if it

is already in the storage or not. If the term is in the storage, the Loader substitutes

the internal term index with the index given by the storage. If the term is not in the

storage, the Loader generates a new global unique index for the term, and upload

the term in the storage.

Once the index issue has solved for a specific term, the Loader provides to upload

term occurrences in the storage, enriching term occurrence data with product index

and term index. A detailed description of Data Model is demanded to Section 5.2.

The last consideration about the Loader, is that it is not mandatory it uploads data

from files in a unique execution. Loader can be stopped, and then executed again

in order to update the storage with new data.

5.1.2 Front-end.

From the architectural point of view, the key component of the front-end is the

Query Engine: it exploits the preliminary work performed by back-end components,

and works on data structures in order to answer to user queries. The User Interface

component has been developed to give end users the capability to exploit the system.

Chapter 5. Prototype 98

5.1.2.1 Query engine

The Query Engine is the component that realizes the ranking model described in

Chapter 3.

The Query engine receives a user query expressed in natural language from the

User Interface component and returns back a listing of products as the result the

performing of the submitted query.

In order to perform a query, the Query Engine, firstly tokenizes the query. The

tokenized query is sent to the Stanford NLP Parser that provides to pos-tag the

query. After pos-tagging, the Query Engine throws away stopwords from the query,

and the provides to expands query terms by means of the Wordnet ontology, in

order to get the so-called termbase of terms to research. Once the termbase has been

defined, the Query Engine starts to upload all occurrences of terms in the termbase.

With term occurrences uploaded the Query Engine can determined on the beginning

which are the products that satisfy the query. Then for each product, the Query

Engine, starts to build all termsets available according to the query terms and their

occurrences, using the algorithm described in Section 4.1. Once all termsets for

product have been built, they are used to calculate product PRM score according

to the ranking model described in Section 3.2. When all products retrieved by the

query have a PRM score, they are sorted in descendant PRM score order.

The final product listing is send back to the User Interface component to be shown

to the user.

5.1.2.2 User interface

HFC search engine is meant to be used by users like a common general purpose

search engine. When Google faced the market, it came out with a white page, a

search box and Google’s logo. That’s it! Still nowadays, except for occasionally

Chapter 5. Prototype 99

doodles6, Google’s page is simple like that! There is no need for something else to

let the user enjoy a search engine.

HFC search engine follows same policy and it can be launched from command line.

The user insert his/her query from the prompt. In return he/she will have a short

list of products (usually not more than ten or twenty) with a few information ac-

companying.

Anyway, a simple command line interface like this, is maybe too poor, to tempt

people in using the HFC search engine. One of the main issues of the project is that

it is very hard to find a critic mass of people willing to test the HFC search engine.

Moreover, there is the issue to verify somehow quality of the results of the HFC

search engine. Unfortunately this is not the common case of Information Retrieval,

where usually there is a ground truth7 given, and there is the need to verify quality

he/she just need to compare results against the ground truth.

For HFC case, quality of results strongly depends on the feeling the user receive from

the listing he/she gets. And feelings are personal! Different people feels different

things. In other words, there is no a priori optimal result. The answer of a search

engine must satisfy the user need, presenting him/her a short list of results. Statistics

demonstrate that rarely users scroll beyond the first ten or twenty results. And in

this short list there must be both what the user expect to find, and also what the

user does not expect to find but well answer to his/her need (good unexpected).

In order to attract more people, and have also the chance to make different tests

in order to verify HFC search engine’s quality of answers, a web-interface has been

developed8.

In Figure 5.2 it is possible to see the starting salutation page of the HFC search

engine web-interface. Here the project is presented to potential users declaring its

6http://www.google.com/doodles
7http://en.wikipedia.org/wiki/Ground_truth
8The web-interface has been designed by Marcello Di Stefano

http://www.google.com/doodles
http://en.wikipedia.org/wiki/Ground_truth

Chapter 5. Prototype 100

scope, and the goal of the research. It is also described the dataset9 on which the

HFC has been implemented.

Figure 5.2: HFC web interface. Salutation

In order to use the web interface, users must be registered. Registration is needed

in anticipation of future user profiling, in order to understand if the search engine

better respond to specific user profiles. Data required for registration are nothing

strictly personal, just a nickname, age, sex, approximate location and job, but ac-

tually only nickname is mandatory. It is asked also an email address, but it is not

mandatory as well, and it is only to communicate with potential interested users if

there is the request to perform new tests.

Figure 5.3 shows the HFC searching page from which the user can query the system.

Similarly to Google web page, it is quite simple and essential.

As stated before, web interface is meant to be used to perform different tests in

order to verify the quality of the HFC answers. Several tests has been designed,

9It is the IMDb dataset described in Section 6.1.3.

Chapter 5. Prototype 101

Figure 5.3: HFC web interface. Search box

and a couple of them have been implemented as well. However, after the initial

tests, this part of the project at the moment in which this thesis has been written,

has been abandoned for now and postponed to future developments, as there have

been the need to solve severe performance problems when the HFC system as been

performed on a very large dataset. Performance problems have been solved, and

will be discussed in Section 6.4.

Anyway, some early test has been performed and Figure 5.4 shows an example of

HFC search engine listing answer. In this case, the web interface presents the user

two different listings, one is the HFC search engine, and the other is the answer of a

different search engine (that can be either an old version of HFC search engine itself,

or the answer of a different indexing system such as Lucene10), and it is required to

the user to rate the two listing according to which one better fits his/her query. If

the user wants to leave a comment, he/she can do it. The two listing are positioned

randomly, in the meaning that the user can’t know in advance if the answer of HFC

search engine is Listing A or Listing B, as position change after every query.

10See Appendix C.

Chapter 5. Prototype 102

Products11 in the listings are accompanied by a brief summary. If the user desires

to know more about a specific product, he/she can select one and recall a complete

info box about it. The example shows this situation (that’s why there is a light gray

transparent layer screen that made the picture a little bit opaque).

Other tests has been designed. One for example, consisted in giving the user an

unsorted set of the first ten (or twenty) products coming from the HFC search

engine answer to the user query. In this case, the user would have required to order

the set of products according to his/her ideas, so that to compare the user sorting

with the sorting given by the PRM score.

This, and other tests, unfortunately are only drafts, and are demanded to future

development.

11Movies, in the example.

Chapter 5. Prototype 103

Figure 5.4: HFC web interface. Result listing
The transparent light gray screen in front of the result listing is activated by the

user to highlight movie mini cards (the dark gray box).

Chapter 5. Prototype 104

5.2 Data Model

Figure 5.5 shows the logical schema of the HFC data-structure inside the storage

box described in the system architecture.

Figure 5.5: Logical schema of the relational database.

Somehow it is a rather simple schema, composed by only three tables: a table for

products ; a table for terms ; a table for term occurences in products that links the

previous tables.

Figure 5.6 shows the equivalent conceptual schema of the data-structure.

In detail the three tables are:

• Table Products describes each single product, and its schema is context-

dependent, in the sense that the attributes are defined based on the application

domain. For example, if the context is related to motion pictures, it is likely

to find attributes concerning movies, such as title, director, cast, year, genre,

and so on; if the context is related to automotive, it is likely to find attributes

concerning cars, such as constructor, brand, model, engine, fuel system, num-

ber of seats and so on.

Chapter 5. Prototype 105

Indendently to specific product’s attribute, each product in the table has a

unique key identifier attribute id.

Figure 5.6: Conceptual schema of the relational database.

• Table Terms is the key table, that describes each single tagged word managed

by the system. Attributes products, reviews and occurrences are just to

quickly summarize data and count the number of products and the number of

reviews in which a tagged term occurs, and the total number of occurrences,

respectively. Notice that, while attribute taggedword denotes a unique ele-

ment in the table, since a simple word can be associated to more than one

grammar category (i.e. word book can be either a noun or a verb), it can

appear several times in the table.

Each term in the table has a unique key identifier attribute id.

• Table Occurrences describes all occurrences of tagged terms in product re-

views. The table is linked to Products table by means of attribute productId

Chapter 5. Prototype 106

and to Terms table by means of attribute termId. Then, attribute reviewId

is actually the identifier of the review that holds the term occurrence in the

product linked by the previous attributes. The attribute position finally in-

dicates the position of the occurrence in the review. Occurrences have an id

attribute but actually is quite useless. It has been designed only for designing

coherence.

5.2.1 Data storing.

The data structure described in the previous Section is merely conceptual. It can be

implemented on whatever traditional database management systems (DBMS).

On earlier HFC system versions, when tests were made on medium-small datasets,

data structure was completely implemented on Postgres database. The only trick

in data uploading phase, is to remember to deactivate insert query autocommit12.

With this trick, uploading is quite fast, especially compared to analyzing phase13.

When the HFC search engine, has been executed on a very large dataset, it had

been clear this solution was not good enough. Details will be discussed in Chapter

6, but anticipating a little bit the subject, the problem was the very large size of the

Occurrences table. Even with optimized database indexes, the access time to data

was too slow to get answers from the search engine in an user acceptable time. So

it had to be implemented a different solution.

Since there are few tables in the conceptual schema, and since links between tables

are quite simple, table Occurrences has been moved on the file system, splitted in

12During the first test, autocommit was active and uploading the first small testing dataset
took. . . this thesis would never have not been written.

13Approsimatively ten or more times faster. Exact uploading time has not profiled during early
tests, and anyway they are not significative because the small size of earlier datasets.

Chapter 5. Prototype 107

several files. That’s why before has been stated that storage resides partly on a

relational database, and partly on the file system.

Occurrences are stored according to a reverse index policy. For each term has been

created an occurrences file having as file name the id of the term. Since terms are

likely to be more than hundreds of thousands14, this can create troubles with the

file system as a single folder cannot hold a too large number of files, and anyway

it would have been not easy to handle, occurrences files are grouped into groups of

1000 files. For each group there is a single folder, and the folder name is given by

the integer part of the division of term id by 1000. So, just to better explain, folder

0 holds files with an id between 0 and 999, folder 1 holds files with an id between

1000 and 1999, and a generic folder k holds files with an id between 1000*k and

1000*k+999.

Each occurrences file has a simplified version of the structure of table Occurrences :

as termId is in the file name, and since occurrence id is useless, occurrences file

holds just a triple (productId, reviewId, position) for each occurrence. How this

information is actually coded inside the file will be discussed in Chapter 6, since

there have been several different solution in order to improve performance.

Another consequence related to improving performance, is that table Products and

table Terms, during the whole search engine exection time, must be uploaded and

reside into central memory. Data upload happen during search engine initial setup

phase (see Section 5.2.2). As a consequence, even table Products and table Terms

have no need to reside on DBMS, but could be stored on the file system with any

kind of file structure suitable for the need (e.g. XML). Actually, at the moment

table Products and table Terms do still reside on Postgres database, but it is only

not to write extra programming code, since the file solution for this case do not

bring any substantial advantage.

14On larger dataset used, there were actually more than one million of different terms!

Chapter 5. Prototype 108

To conclude, from the above considerations, it should be evident that, to perform a

user query, the HFC sarch engine do not execute any single sql code. That’s why

can be properly defined as a NOSQL database.

5.2.2 Run-time data model

In the following will be shown the run-time data model, i.e. the data model used

by the HFC search engine during its execution. It is just a quick overview of the

main java classes used. For each java class, will be shown a simplified conceptual

class-diagram with the main attributes. The real case is much more complex, but

since complexity is related only to technical details, they have been omitted.

In the following class-diagrams there is a large use of the Hashtable objects since this

kind of data structure guarantee the best performance in terms of execution time,

even if they need a large amount of central memory. But central memory usage

has not been a problem! Not nowadays. Java Hashtables allow to access directly

an element by its unique key, and quickly return also the set of elements and also

the set of keys as list objects (i.e. Enumeration). For the scope of HFC project

Hashtables are mandatory!

Figure 5.7, shows the class diagram of the Search Engine. When the Search Engine

is being instantiated, during its setup, all products and terms in the data base are

uploaded in central memory to improve performance15.

• Attribute productTable is an hashtable that holds all products in the database.

The key to access a product is its unique id number.

15In Chapter 6 will be described the biggest data set used. It has more than 100, 000 products
and generates more than 1, 000, 000 distinct terms, and there have been no problems in keeping all
this information in central memory during execution.

Chapter 5. Prototype 109

Figure 5.7: SearchEngine class diagram

• Attribute termIdTable is an hashtable that holds all terms in the database.

The key to access a term is its unique id number.

• Attribute termIdBackTable is an hashtable that holds all terms-id in the

database with a reverse index access. It is needed to get terms-id from the

text after a user query.

• Attribute info is a generic container of everything, including execution-time

profiling attributes.

• Attribute queryString holds the query inserted by the user a text in natural

language.

• Attribute query is the set of query terms before the expansion, represented as

an hashtable with term-ids as keys.

• Attribute termBase is the set of expanded query terms (termbase) to search

after the expansion, represented as an hashtable with term-ids as keys. Terms

in the termBase are those terms on which termsets are built.

Chapter 5. Prototype 110

• Attribute queryResult is the list of products retrieved by the Search Engine

after a user query and sorted according to their PRM score.

Figure 5.8: Product class diagram

Figure 5.8, shows the class diagram of a generic product. As stated before, products

are upload to main memory all products and terms in the data base are uploaded

in central memory to improve performance. Some attributes inside the object are

static, in the meaning they never change during all search engine execution time.

Other attributes depend instead on the specific user query, and they are discarded

by the garbage collector after the answer of the search engine.

• Attribute id is the unique index identifier of a specific product given from the

database.

• Attribute nReview is just a counter for the number of user reviews for the

product.

• Attribute info is just a collection of context depending information about the

product, e.g. brand and model for a car, or name, location and stars for a

hotel, or title, director, cast, genre for a movie.

Chapter 5. Prototype 111

• Attribute score is the PRM score the product gets after performing a user

query.

• Attribute termsets it’s the set of termsets mined after performing a user query,

and by which can be calculated PRM score. After this operation termsets are

discarded by the garbage collector.

Figure 5.9: Termset class diagram

Figure 5.9, shows the class diagram for a generic termset. Termsets are kept into

products, and stated before, they are discarded by the garbage collector after a user

query has been answered.

• Attribute size denotes the length of the termset.

• Attribute density reports the average density of the termsets

• Attribute sc reports the semantic coefficient associated to the termset.

• Attribute score reports the contribute of the the termset to the global PRM

score.

• Attribute terms it’s an hashtable with terms that compose the termset.

Chapter 5. Prototype 112

• Attribute cover returns the cover of the termset, that is the list of reviews in

which the termset is found. For termsets it’s necessary to have only the id

numbers of reviews.

• Attribute coverage describes the coverage of the termset over the user query

terms. As a reminder, in order to be valid, the number of elements in the

coverage must be equal to the size of the termset16

Figure 5.10: Term class diagram

Figure 5.10, shows the class diagram for a generic term. Term objects are used for

describing both the query and the termbase and the generic termset and the termset

coverage. Thus, some attributes are likely to be used in a context than in another.

When attribute is not used is left empty.

• Attribute id is the unique index identifier of a specific term given from the

database.

• Attribute term is the term simple text.

• Attribute tag represent the grammar role of the term inside to of a sentence

(e.g. noun).

16See Section 3.2.3

Chapter 5. Prototype 113

• Attribute taggedTerm is the combination of both the attributes term and tag

put together in the form term/tag.

• Attribute sc reports the semantic coefficient associated to the term.

• Attribute nExpansions reports the number of expansions available for a query

term.

• Attribute cover return the list of reviews that hold the term. When the term

is part of a termset review objects are filled with term-occurrences. After

the search engine performs a query, termsets to rank products are discarded

by garbage collector, and so are the terms (and the reviews) associated to

termsets.

Figure 5.11: Review class diagram

Figure 5.11, shows the class diagram for a generic review. Reviews are discarded

with termsets and terms by garbage collector after search engine performs a user

query.

• Attribute id is the order number for a review in a specific product.

• Attribute occurrences contains all occurrences in the review of the object

(Term) that holds the review. This is the main memory consuming attribute.

It must be discarded by garbage collector after usage!

Chapter 6

Performing evaluation

This Chapter illustrates the performance of the HFC search engine.

On the beginning will be described the datasets used to test the HFC search engine,

and will be explained which dataset has been chosen for the final evaluation test

and why. Then, will be presented the indexing process of the dataset used and will

be presented the results obtained with different indexing policies. Finally, will be

showed the performance of the HFC search engine over the indexed dataset.

6.1 Datasets

The challenge to find out a substantial and significant dataset has been one of first

main issues of the project.

Since the first conferences where earlier version of HFC has been presented, one

of the main questions from the audience was ”how big is the dataset?” in order

to understand if the performance could be interesting applied in a substantial real

business case.

114

Chapter 6. Performing evaluation 115

The other recurrent question was ”how significant is the dataset?” in order to un-

derstand if the results given by the system correctly match with the user query.

This paragraph presents 3 different datasets on which the HFC system has been

tested. The first dataset to be presented is a corpus of 14,928 blogs containing

a total of 671,760 posts. Then, the next dataset is a collection of 9701 reviews

about 324 movies downloaded from Epinions website. The last dataset is a collec-

tion 2,207,678 reviews about 109,221 movies downloaded from the IMDb website

described in Section 1.1.

6.1.1 Blog Corpus

The Blog Corpus has been the first substantial dataset big enough (more than 800

MBytes of text) to make significant performing tests, and it was the dataset used

for tests in the paper [2] presented at the KES conference held in San Sebastian

(Spain) in September 2012, and whose ranking model is described in Section 3.3.2.

The dataset, is presented as first, as actually it was downloaded, because another

research, before the HFC project started, and its file structure was re-used for the

following datasets.

The Blog Corpus has been downloaded from the webpage of Professor Moshe Koppel1

hosted in the Bar-Ilan University (Israel) website. In [17] Professor Koppel et al.

analyze how age and gender of bloggers affect blogs. As reported by Professor

Koppel2:

The Blog Authorship Corpus consists of the collected posts of 19,320

bloggers gathered from blogger.com in August 2004. The corpus incor-

porates a total of 681,288 posts and over 140 million words - or approx-

imately 35 posts and 7250 words per person.

1http://u.cs.biu.ac.il/~koppel/
2http://u.cs.biu.ac.il/~koppel/BlogCorpus.htm

http://u.cs.biu.ac.il/~koppel/
http://u.cs.biu.ac.il/~koppel/BlogCorpus.htm

Chapter 6. Performing evaluation 116

Each blog is presented as a separate file, the name of which indicates a

blogger ID and the blogger’s self-provided gender, age, industry and as-

trological sign. (All are labeled for gender and age but for many, industry

and/or sign is marked as unknown).

All bloggers included in the corpus fall into one of three age groups:

• 8240 ”10s” blogs (ages 13-17)

• 8086 ”20s” blogs(ages 23-27)

• 2994 ”30s” blogs (ages 33-47)

For each age group there are an equal number of male and female blog-

gers. Each blog in the corpus includes at least 200 occurrences of common

English words. All formatting has been stripped with two exceptions. In-

dividual posts within a single blogger are separated by the date of the

following post and links within a post are denoted by the label urllink.

The corpus may be freely used for non-commercial research purposes.

Table 6.1 reports briefly the main data concerning the Blog Corpus.

Actually, of the 19,320 bloggers cited by Professor Koppel, only 14,928 has been

taken into account during the evaluation test of the HFC system, since only those

blogs with a number of posts greater than or equal to 5 has been considered, since,

at that time, the ranking model was too much affected by the support issue as dis-

cussed while introducing termset density in Section 3.2.5.

Hence, the number of the indexed reviews has been 671,760 (that means an average

of 45 reviews per blog). The number of single distinct terms indexed was 932,435

for a total of 13,576,243 occurrences. The reason for such a large number of distinct

terms was due to two main causes: the first cause was that the analyzing parser,

Chapter 6. Performing evaluation 117

Products (Blogs) Text Size Reviews
14,928 800 Mb 671,760

Reviews per Product
Min Max Average

5 4,421 45

Distinct Stopwords Distinct terms Term occurrences
∼ 600 932,435 13,576,243

Table 6.1: Blog Corpus summary data

except for stopwords, does not filter out colloquial exclamations like aaahhh or ahhhh

that are massively present in people written text. Moreover natural language is often

full of colloquial jargon like terms nite or nit instead of the more correct form night.

And to conclude the parser does not fix typos so the term noght is distinguished

from the term night.

The second cause is that during the indexing phase terms are not stemmed so terms

like night and nights are considered as two different distinct terms. Moreover, the

HFC considers not the mere simple term, but its tagged form as result of the analysis

performed by the Stanford Pos-Tagger, so actually the term run can be considered

for example as a nouns runnoun or as a verb runverb
3 depending on the context and

the role of the term run in the sentence in which it is placed.

Each blog is an XML file with a simple structure as shown in Figure 6.1 where each

file is a simple sequence of couples of tags date and post that respectively holds

information about the date when the blogger wrote the post and the text of the

post.

The main issue concerning the Blog Corpus was that it was too much hard to control

the quality of the HFC search engine answer: since the results of the search engine is

a ranked list of blogs where the only structured information is gender, age, industry

and astrological sign of the blogger, in order to understand if a blog better match a

3 Instead of the strings verb, adjective, noun, adverb the HFC systems uses numeric codes

Chapter 6. Performing evaluation 118

〈Blog〉
〈date〉 [date of the 1st post] 〈/date〉
〈post〉 [text of the 1st post] 〈/post〉

...
...

〈date〉 [date of the nth post] 〈/date〉
〈post〉 [text of the nth post] 〈/post〉

〈/Blog〉

Figure 6.1: Structure of XML files

query like what is the best music for a Saturday night home party? it was necessary,

in most of the cases, to read a good share of posts as the structured information

mentioned before can only give a slight indication of the goodness of the result.

So the Blog Corpus satisfied well the question ”how big is the dataset?” but it was

too weak to satisfy the other question ”how significant is the dataset?”.

Anyway, as stated before, the file structure described in Figure 6.1 is important

as the parser described in Section 5.1.1.1 has been designed in order to process

XML-files of this type. So, when afterwards the dataset has been changed, it is has

been managed in order to have the same file structure so to re-use the same parser

component with no modification.

6.1.2 Epinions

Epinions4 is a web site where people can leave their review about a wide variety

of products. The site is structured in areas like Electronics, Health & Beauty or

Computers. Each area is divided into families of homogeneous products, where

products can be selected by various criterion as by specific product, or by brand,

or by range of price just to name a few. Each single product can be reviewed by

registered users (in Section 1.2 there are some example of Epinions web site).

4http://www.epinions.com

http://www.epinions.com

Chapter 6. Performing evaluation 119

In order to test the HFC search engine the attention has been focus on Movies.

Movies like any other product can be reviewed by people and have the apparent

advantage that usually, at least for box-office-top movies, that are likely to be wide

known, it can be easy to have a previous idea so to answer the question ”how

significant is the dataset?”, so in a case where the user query is like what is a

romantic movies about married life problems? is quite easy to understand at first

glance that a movie like When Harry met Sally5 is likely to be better ranked than

a movie like A clockwork orange6, with a small need to read reviews.

Thus, a web-crawler has been specifically developed in order to grab movie reviews

from Epinions. The output of the web-crawler has been an XML-file for each movie

with the same XML-structure described in Figure 6.1 for the Blog Corpus case (Sec-

tion 6.1.1), where each date tag has been used just to hold the id -number of the

review, and each post tag has been used to hold the text of the review. Table 6.2

reports briefly the main data related the movies-review downloaded from Epinions.

Products Text Size Reviews
324 33 Mb 9,701

Reviews per Product
Min Max Average

5 509 30

Distinct Stopwords Distinct terms Term occurrences
∼ 600 72,802 709,845

Table 6.2: Epinions dataset summary

The Epinions dataset has been the first dataset on which the HFC search engine

has been tested, and it was the dataset used for tests in the paper [1] presented at

the first DATA conference held in Roma in July 2012. The ranking model at that

time was too immature and suffered of all issue described in Section 3.3.1.

5http://www.imdb.com/title/tt0098635
6http://www.imdb.com/title/tt0066921

http://www.imdb.com/title/tt0098635
http://www.imdb.com/title/tt0066921

Chapter 6. Performing evaluation 120

Anyway, a it was raised also a remark related to the smallness of the dataset. Indeed

as Table 6.2 shows, the dataset is composed by only 324 movie of various genre, with

a minimum of 5 reviews as the ranking model suffered for the same support issue

discussed before.

6.1.3 IMDb

After the first two conferences, it was clear there was the need to get a large, sub-

stantial, significant dataset. The choice fell on the IMDb as the database available

on the Internet was definitely large, and full of extra useful information, and also

because the movie context was already known after Epinions dataset.

IMDb has been already described in Section 1.1.

To grab data from the IMDb web site has been used web crawler similar to the one

used for Epinions site, but specifically designed for the IMDb web site.

Once the web crawler had been launched, it took about six days to download more

than 2 millions reviews about more than 100, 000 movies. Downloading time has

been recorded for each movie, but the information is little significant as depends

too much on the net bandwidth available at downloading moment, and the traffic

directed to the IMDb servers.

A summary of the IMDb dataset is reported in Table 6.3.

The XML file structure has been changed according to the schema described in

Figure 6.2: tags’s names and main structure remained the same as for the other

datasets, but there is the addition of a report tag at the beginning of the XML file.

In the report tag are stored, as in a property file (i.e. a couple property:value;

for each raw), a set of information about the movie to provide to the user thru the

HFC web interface described in Section 5.1.2.2. This information are: movie title;

Chapter 6. Performing evaluation 121

Products Text Size Reviews
109,221 > 3 Gb 2,207,678

Reviews per Product
Min Max Average

1 4,876 20

Distinct Stopwords Distinct terms Term occurrences
∼ 600 1,151,893 216,345,522

Stopwords occurrences
> 300M

Table 6.3: IMDb Dataset main data

IMDb code; IMDb web-page URL, title type7, director, casting stars, releasing year,

genre, plot, country, language and also downloading time (in milli seconds). All this

information is then uploaded into the storage system.

〈Blog〉
〈report〉 [movie information (title, etc)] 〈/report〉

〈date〉 [1st review] 〈/date〉
〈post〉 [text of the 1st review] 〈/post〉

...
...

〈date〉 [nth review] 〈/date〉
〈post〉 [text of the nth review] 〈/post〉

〈/Blog〉

Figure 6.2: Structure of IMDb XML files

When the IMDb dataset has been downloaded, the support issue that affects the

Epinions and Blog Corpus datasets was solved by the new ranking model described

in Section 3.2, so there have been no lower limit concerning the number of reviews.

Thus, there have been both downloaded, movie, tv-movies, tv-series and mini-series

from 1894 (”Miss Jerry”8, which actually has 1 review) to all titles produced until

31st of December 2012.

7There have been downloaded movie, tv-movies, tv-series and mini-series
8http://www.imdb.com/title/tt0000009

http://www.imdb.com/title/tt0000009

Chapter 6. Performing evaluation 122

In Table 6.4 is reported a comparison between the three datasets used.

Blog Corpus Epinions IMDb

Products 14,928 324 109,221
Text Size 800 Mb 33 Mb > 3 Gb
Reviews 671,760 9,701 2,207,678

Min #reviews 5 5 1
Max #reviews 4,421 509 4,876

Average #reviews 45 30 20
Distinct Stopwords 600 600 600

Distinct terms 932,435 72,802 1,151,893
Term occurrences 13,576,243 709,845 216,345,522

Table 6.4: Comparison between datasets

From the table is soon evident that Epinions dataset is the smallest by far. Instead,

at a first glance there is not such great difference in size between IMDb and Blog

Corpus datasets. IMDb dataset has about 4 times the text size with respect to the

Blog Corpus dataset. And even the number of the single terms identified are only

about 20% more.

So, when the IMDb dataset has been downloaded and then indexed by the HFC back-

end system, it was likely to suppose that HFC search engine performance would have

been changed something in between +20% and +400% because the biggest size of

the dataset. When the HFC search engine has been performed against the Blog

Corpus dataset, there have been no issue at all concerning performance, indeed no

performance data were recorded as apparently little meaningful. Thus, before the

first time the HFC search engine had to be performed against the IMDb dataset,

performance aroused no concern.

Then, the first test was made. And after more than 30 minutes, the HFC search

engine had still to answer, and so was forced to quit. The system had been checked

and double checked, and then the test was repeated. And still, happened the same

again.

Houston, we’ve got a problem!

Chapter 6. Performing evaluation 123

6.2 The quest for performance

As stated at the end of the previous Section, when the HFC search engine had been

tested for the first time on the whole IMDb dataset achieved such bad performance

in query execution time that made the project almost to be abandoned. The IMDb

dataset was considerably larger than the Blog Corpus dataset, but not so larger to

justify such decay of performance. Not the difference in size itself!

What made the performance decay so bad was the very large number of occurrences

in IMDb dataset. Table 6.4 shows that IMDb dataset had more than 216 millions

occurrences to be indexed, that is about more than 16 times the number of occur-

rences found in Blog Corpus dataset.

At the time of this test, the HFC data model, described in Section 5.2, was com-

pletely implemented on a Postgres database. The very large number of occurrence

in the IMDb dataset put in crisis the internal indexes of the Postgres database, and

made the performance so poor.

The project was about to be abandoned, unless finding an alternative to the database.

The alternative was given by Google. It is widely known that Google does not use

database to index its data: all information are stored in files. This fact was taken

as inspiration to design the reverse index file solution to index terms occurrences,

described in Section 5.2.1.

As soon as the new occurrences indexing method as been implemented, performance

suddenly improved. But not as much as desired. The reverse index file method had

to be further improved. Thus, there have been several improvements of the occur-

rences indexing method.

Table 6.5 reports the historical trend of performance as changing the occurrences

indexing method.

Chapter 6. Performing evaluation 124

All experiments, except the last, have been run on a PC with two Intel Xeon Quad-

core 2.0GHz/L3-4MB processors, 12GB RAM, four 1-Tbyte disks and Linux oper-

ating system. In the last experiment, disks were substituted with one 256GBSSD

storage system.

All experiments, except the first, have been made by measuring the average ex-

ecution time of the HFC search engine on a set of 25 queries (see Appendix E).

HFC Occurrences Query Average
Version Indexing Method Execution Time

1.0 Database > 30 minute
1.1 File Reverse Index (FRI) - Text 12 seconds
1.2 FRI - Binary 5.1 seconds
1.3 FRI - Binary zip 2501 millisec
1.4 Ver. 1.3 + Multi thread (5) 1995 millisec
1.5 Ver. 1.4 on SSD 1211 millisec

Table 6.5: Indexing History

Table 6.5 reports for each experiments the version of the HFC search engine used,

the occurrences indexing method used, and the average time in executing the set of

testing queries.

The versions of the HFC search engine are the followings:

• Version 1.0

It is the initial version HFC search engine, where terms occurrences were

stored completely on the Postgres database. Tests have not been completed

as execution time was not acceptable.

• Version 1.1

This is the first version in which term occurrences have been stored on the file

system as discussed in Section 5.2.1.

Chapter 6. Performing evaluation 125

Each file of term occurrences is a text file and have term id as filename. Each

file contains one term occurrence, as a text, per raw. Each term occurrence

is a triple (productId, reviewId, position), where comma character separates

each value. Each value uses the minimum number of characters required to

represent the value.

Since the movies in the IMDb dataset9 are more than 100, 000 and the highest

number of reviews per movie is about 4, 500, and considering reasonable a

maximum review length of 10, 000 terms, each occurrence needs an average

of 14-15 characters, considering also separators and end of line characters.

Since occurrences in the IMDb dataset are more than 200 millions, the global

size of all term occurrences files was over 3Gb (that becomes more than 5Gb

considering the large number of i-node of the Unix system in order to manage

the large number of generated files.)

Using this occurrence indexing method, the average execution time dropped

drastically around 12 seconds. It was still too long to be acceptable by the

average user, that expects an answer in less than 1 second, but it pointed out

that this way deserved to be deeply investigated.

• Version 1.2

After version 1.1, the HFC search engine started to be profiled in order to

understand where performance could be further improved10. The result was

that occurrences loading was still to much time consuming both because the

loading itself and the text conversion into number operation.

So, it has been decided to try to use a binary representation of the occurrences,

that should require less space to represent an occurrence and, also, avoid to

perform the conversion operation.

Thus, each textual occurrences file, has been converted into a binary file with

9See Figure 6.4
10Unfortunately, profiling information until version 1.3 are lost.

Chapter 6. Performing evaluation 126

fixed pattern. Each occurrence triple (productId, reviewId, position) is repre-

sented by a 8 byte pattern: 4 bytes for productId ; 2 bytes for reviewId ; 2 bytes

for position. No separator have been used.

With this occurrence coding method, the global size of all term occurrences

files decreased around to 1.7 Gb (more or less 3.5 Gb on the file system).

More important was the performance improvement around 5 seconds.

• Version 1.3

Version 1.2 has been a good development step, but still it was not optimal.

Thus, the following version contemplated a compression of binary data. In-

stead of having a fixes binary format, it has been designed a zip format. The

basic idea is that very common terms, are likely to be present in products, but

most of all in single review, a considerably large number of times. Thus, since

in occurrences files, occurrences of the same product, and the same review

are sequential, there is a remarkable redundancy of the same productId and

reviewId information. The idea, thus, is to collect this information in order to

write (and then read) it only one time.

Figure 6.3: Occurrences file zip format

The binary zipped occurrences file format is showed in Figure 6.3. In a few

words, exploiting sequentiality of occurrences, an occurrences file, is divided

into blocks. Each block starts with a 4 bytes productId and groups occurrences

of the same product. Blocks are separated by a product separation byte.

Chapter 6. Performing evaluation 127

Blocks are internally divided into chunks. Each chunk starts with a 2 bytes

reviewId and groups a list of 2 bytes occurrences position in the same review.

Chunks are separated by a review separation byte.

This improvement makes HFC performance quite interesting: the average

execution time on the testing queries decreased around to 2.5 seconds. Still to

much, but not far from goal.

• Version 1.4

From profiling, emerges that in Version 1.3, about 80% of execution time

was still spent on occurrences loading. Thus, the next development test tried

to exploit CPU cores, by replicating term occurrences loading phase into 5

different threads11.

To allow the search engine to perform this task, the file system of occurrences

files has been horizontally split into 5 five similar but smaller file systems,

where each of one includes 1
5

of every occurrences files. The split divided

products into 5 different groups, and has been made in order to balance the

weight of each mini file system.

Results show a further improvement, as the average execution time on the

testing queries decreased to less than 2 seconds. Not the goal yet. But quite

close.

Unfortunately, multi threads split the loading task into smaller tasks, but as

all threads were sharing the same memory bus, the improvement has not been

as good as it was expected.

• Version 1.5

At the end of the PhD, there have been the chance for a short period of time, to

substitute the old mechanical rotating hard-drive of the server machine, with a

11Actually, as the machine server has 8 different cores, it could have been used 8 different threads,
but as the server machine was shared with other users, it would have been better not to saturate
it. It was important to demonstrate that this multi-thread approach could improve performance,
not the performance itself.

Chapter 6. Performing evaluation 128

more modern and performing SSD storage. Articles and specialized magazines

report that SSDs are 10 up to 100 times faster than traditional HDDs, so a

test of Version 1.4 upon the the same server machine empowered with SSD

storage has been tried.

Anticipating for a little while the content of Table 6.8, it become evident that

the new machine configuration brings a substantial improvement. Average

execution time decreased around to 1.2 seconds, that is very close to goal of

achieving the answer in less than 1 second !

Figure 6.4 graphically reports on an histogram, the average execution time trend as

varying the HFC version.

Figure 6.4: HFC performance trend

After this long excursus, a consideration must be done. Until now the HFC has been

always performed against the whole IMDb dataset. But in this context, and much

more in a different application contexts, such as could be an application toward the

hotel booking issue, users probably don’t want or need a research of products on the

whole dataset, but they have a little idea how to select a priori some of the products

Chapter 6. Performing evaluation 129

they want. As an example, a traveler don’t need to have the complete world-wide

list of the hotels far from belfries so he/she can sleep at morning, but only those

hotel in Prague where he/she is going to spend a weekend in April 2015. And maybe

he/she wants only hotels with a free wi-fi connection!

In other words, in most of the cases it should be considered a smaller piece of

the dataset. The selection of products usually depends on the classical structured

features that traditional databases are very good exploiting. The database problem

is only how to sort results in an order the user can appreciate.

A combination of the HFC system with traditional databases could perfectly fit

both the needs: 1. improving HFC performance; 2. giving traditional databases a

sorting system closer to users desiderata.

6.3 Indexing

Once has been clear the quest for performance of the HFC search engine, it is in-

teresting having a look at time taken for the whole indexing process.

As described in Section 5.1.1, the indexing process is performed by the back-end.

The back-end is composed by two main component: 1. the Analyzer that is respon-

sible to retrieve term occurrences from the source data (1.1 parsing), and then to

pos-tag the terms retrieved (1.2 pos-tagging); 2. the Loader that, is responsible to

load toward the traditional database information about products and terms (2.1 Db

loader) and then also to create reverse index occurrences files (2.2 File writing).

Table 6.6 reports the aggregate time taken by all this tasks. Time is expressed in

hours.

Chapter 6. Performing evaluation 130

Since has been state more than once, that pos-tagging is very hard time consuming

task, a comparison was made between indexing the IMDb dataset having the pos-

tagger active, and indexing the same dataset with the pos-tagger turned off.

Turning off the pos-tagger means do not call the Stanford Parser and just assigning

to each term found the same grammatical label.

Pos-Tagger active inactive Diff %

Distinct tagged terms 1,151,827 776,852 48.27%
Occurrences 216,345,522 216,345,522 0.00%

p1 Analyzer = p1.1+ p1.2 2,226.80 h 3.82 h +58193.19%
p1.1 Parsing Time 2.11 h 2.42 h -12.81%
p1.2 Pos-tagging Time 2,224.69 h 1.40 h +158806.43%
p2 Loader = p2.1+p2.2 56.05 h 51.76 h +8.29%
p2.1 Db loader 48.32 h 45.49 h +6.22%
p2.2 File writer 7.73 h 6.27 h +23.29%

T Total Time (T=p1+p2) 2,282.85 h 55.58 h +4007.32%

Table 6.6: Pos-tagging vs No pos-tagging. Indexing time

Comparing the two cases is evident that in both case the total number of occurrences

should not change. What change is the number of distinct term. When the the pos-

tagger is turned on, the number of distinct termset raises almost of 50%. This would

have been easily predictable.

What is impressive the quantity of time taken by pos-tagger!

When the pos-tagger is turned off it takes only 36.6% of the Analyzer time, but

when the pos-tagger is active it takes instead more than 99.9%

When the pos-tagger is turned off the Analyzer share of back-end time is only 6.9%,

but when the pos-tagger is active it take instead than 97.3%.

That’s why the Analyzer has to be duplicated into as much as possible processes!

Without Analyzer process duplication the whole back-end indexing time would have

been taken more than 92 days! More than 3 months ! Duplicating the Analyzer in 8

distinct processes this time has been reduced to only 15 days! Two weeks!

Chapter 6. Performing evaluation 131

Table 6.7 shows how turning off the pos-tagger affects the HFC search engine in

terms of performance.

Pos Tagging active inactive Diff %

Total time 1,995 ms 3,480 ms +74.47%
Movies 2,067 2,994 +44.85%
Average Terms in termbase 21 41 +95.23%
Occurrences Retrieved 107,200 226,994 +111.75%
Termsets analyzed 5,414 13,795 +154.80%

Table 6.7: Pos-tagging vs No pos-tagging. Query execution

The version of HFC search engine used is the 1.4. The set of queries submitted is

always the same listed in Appendix E. It is evident that turning off the pos-tagger

raise the average execution time, since the number of terms in termbase is signifi-

cantly higher, and so the number of occurrences loaded.

6.4 Execution

Finally it is time to analyze the execution time performance of the HFC search

engine. Table 6.8 shows a comparison between performance of Version 1.3, Version

1.4 and Version 1.5.

For each version is reported the average execution time of the queries listed in

Appendix E.

The average execution time is given by the sum of the average execution time of the

various tasks that the search engine must perform in order to implement the ranking

model and to respond to a query. These tasks are:

Chapter 6. Performing evaluation 132

1. Query expansion.

It’s the initial task after a user submit a query. The query is tokenized, pos-

tagged by the Stanford Parser, and then expanded by Wordnet in order to get

the termbase of terms to search.

2. Thread generation.

It’s the task the generate the different threads in order to quickly upload

term’s occurrences. Actually, Version 1.3 used, that should be the mono-

thread version, is in real a version 1.4 with only 1 thread generated.

HFC Version 1.3 1.4 1.5

Average Time (T)
T=1+2+3+4+5 2,501.12 ms 1,992.61 ms 1,211.17 ms

1 Query Expansion 286.44 ms 284.36 ms 285.21 ms
11.45% 14.27% 23.55%

2 Thread generation 0.40 ms 1.88 ms 1.79 ms
0.02% 0.09% 0.15%

3 Thread execution ≤ o3.1+o3.2 2,199.64 ms 1,691.59 ms 909.45 ms
87.95% 84.89% 75.09%

3.1 Occurrences Loading 1,962.52 ms 1,639.84 ms 839.84 ms
78.47% 82.30% 69.34%

3.2 Ranking 237.12 ms 75.12 ms 76.21 ms
9.48% 3.77% 6.29%

4 Thread merging 1.64 ms 1.80 ms 1.78 ms
0.07% 0.09% 0.15%

5 Sorting 13.00 ms 12.98 ms 12.94 ms
0.52% 0.65% 1.07%

Table 6.8: Performance comparison between HFC version 1.3, 1.4, 1.5

3. Thread execution.

It’s the task the perform the occurrences loading (subtask 3.1), and then

termset mining and scoring (subtask 3.2). Notice that the average execu-

tion time of this task, it is not the sum of the two subtasks that compose it,

Chapter 6. Performing evaluation 133

but holds the inequality expressed in Table 6.8, because the average time of

the main task is given by the the slowest thread, that could not a priori being

the slowest in both its subtasks.

4. Thread merging.

When all threads complete their task, sub results must be merged in order to

get a unique sorting.

5. Sorting.

When all tasks have been performed, each product has a PRM score and is in

an unsorted list. This task is responsible to sort the list according a descending

PRM score.

The Table 6.8, shows average time for each task, and under the % share contribution

of each task to the final execution time.

From the analysis of data, it is evident how much in version 1.3 and 1.4 the oc-

currences loading affects the final result. This influence decrease considerably in

Version 1.5 but it is still around 70%. It is likely to be that the only way to defi-

nitely cut off occurrences loading time is to distribute the HFC search engine into

several machine server.

HFC version comparison 1.3 vs 1.4 1.4 vs 1.5

Average Time (T)
T = o1 + o2 + o3 + o4 + o5 -20.33% -39.22%

o1 Query Expansion -0.73% +0.30%
o2 Thread generation +370.00% -4.79%
o3 Thread execution ≤ o3.1+o3.2 -23.10% -46.24%
o3.1 Occurrences Loading -16.44% -48.79%
o3.2 Ranking -68.32% +1.45%
o4 Thread merging +9.76% -1.11%
o5 Sorting -0.15% -0.31%

Table 6.9: Performance % variation between HFC versions

Chapter 6. Performing evaluation 134

To conclude, The Table 6.9 shows the percentage variation, task-per-task, when pass-

ing from Version 1.3 to Version 1.4, and from Version 1.4 to Version 1.5.

The passage between 1.3 and 1.4 highlights that multi-threading affects better the

Ranking task, instead of Occurrences loading task. This because each thread share

the same single memory bus, and so the improvement is modest. Thread generation

raising must not impress, as it’s global weight is very modest, and then it is only

due to reply the same simple operation (i.e. creating a thread) 5 times. Same talk

for thread merging task. The other parameters change according to small statistical

fluctuations.

The passage between 1.3 and 1.4 highlights instead an important cut off off Oc-

currences loading time, while instead Ranking task changes according to a small

statistical fluctuation. The other task does the same. This is because the introduc-

tion of the SSD storage does not affect the computing power of the server machine,

but only its speed in reading data from the mass storage!

Chapter 7

Conclusions

7.1 Conclusions

Working on this project has been challenging and stimulating.

It is nice to think that everything has started by the consideration made over a single

a termset that simply summarize the comments of a movie. And it was exciting to

see the ranking model evolving in time, and then to see the first results of the work

done. Most of all, it was thrilling to see the quest for performance evolving toward

a success.

However the project has not concluded yet. There is still some work to to further

improve performance, and most of all to verify the quality of the answers of the

query engine.

In the following are summarized the main results achieved and the open issues and

future works.

135

Chapter 7. Conclusions 136

7.1.1 Results achieved

After a hard job, overcoming all the issues presented in this thesis, the HFC project

achieved a certain number of different goals:

• Ranking model

The ranking model designed to rank products exploiting itemset mining tech-

niques represents a new approach in Information Retrieval, that must be in-

vestigated more deeply.

• New approach in developing recommendation system

Developing a recommendation system based of user expressed desiderata, and

not upon an automatic user profiling, as it happens at the moment in most of

the commercial web sites, could open new market possibilities.

• File reverse index approach

It has demonstrated the lack of performance of traditional database, whose

management system prevents them to quickly retrieve large amounts of data.

The reverse index approach based of a set of file instead demonstrates to

perfectly meet this lack of performance.

• Approach feasibility

Performance are still not optimal, but decreasing execution time from the

initial more than 30 minutes to around one second, and having further im-

provements, demonstrates that this approach is feasible and deserves to be

investigated more in the future.

7.1.2 Open issues and future work

Although the goals achieved, there are a set of open issues and future development

that should be implemented in order to finalize the scope of the project.

Chapter 7. Conclusions 137

• Improving performance

Although the quest for performance demonstrate the feasibility of this ap-

proach, performance should be further improved. It is likely to be that the

investigation direction is toward using different machine since using a multi

thread process to load occurrences cannot permit to substantially improve

performance since all threads must share the same memory bus.

• Extension to Entity Recognition and Linked Data

Expanding user queries only on system based on ontologies (Wordnet) seems

being not perfectly fit for the scope of the project. From a certain point of

view, the scope of the project is to intercept user desiderata and try to find it

on people’s review. Thus, if the user is talking asking for a good movie about

the Enigma machine, it is likely to be that a movie about Alan Turing could

fit the scope. Entity recognition is the operation that allows the search engine

to recognize Enigma Machine, while Linked Data is the approach the allows

to associate it to Alan Turing.

Extending the HFC in order to expands user query in this way as well, seems

to be an attempt that should be tried. Appendix D addresses this topic.

• Design quality evaluation methods

Whatever is next improvement or development, it cannot prescind to find

proper ways to verify quality of the answer of the HFC search engine. Ground

truth based methods do not seems to be the appropriate approach. The better

approach should be the market! But this would be having the ability to involve

lots and lots of people to use the system. Seems to be more a marketing strategy

than a software issue.

• Combining HFC with a traditional database

At first glance could be reductive, but the ranking model should be applied to

extends a order by clause of sql language.

Chapter 7. Conclusions 138

Traditional database management system are very good in quickly retrieving

structured data. On the other side the HFC manifested some time performance

issues, because it has been applied to the whole IMDb dataset! But users

usually have already a slight idea of what they are looking for. When they

ask for a movie about World War II probably they tend to discard comedies.

Or when they ask for an hotel in Barcelona far away from belfries and with

Russian speaking staff, the are implicitly selecting hotels in Barcelona and not

in Madrid, for instance, or in wherever other city in the world.

If it would be possible to combine the HFC search engine with a traditional

database, the latter, by selecting objects, would have the task to reduce the

size of the dataset. Then with a reduced dataset to analyze for the HFC search

engine could be much faster, and sorts the objects selected by the database

according to the user desiderata.

Some how, it would be desirable having sql code like this:

SELECT Movie

WHERE

Year > 1958 AND

Year < 1972 AND

(Genre=”thriller” OR Genre=”comedy”)

ORDER BY ”I would like to know more about Greece

and Persian wars in ancient times”

Appendix A

Part-of-speech (POS) Tagging

In corpus linguistics, part-of-speech tagging (POS tagging or POST), also called

grammatical tagging or word-category disambiguation, is the process of marking up

a word in a text (corpus) as corresponding to a particular part of speech, based on

both its definition, as well as its context, i.e. relationship with adjacent and related

words in a phrase, sentence, or paragraph1.

Computational linguistics, using algorithms which associate discrete terms, as well

as hidden parts of speech, in accordance with a set of descriptive tags. POS-tagging

algorithms fall into two distinctive groups: rule-based and stochastic.

In the mid 1980s, researchers in Europe began to use Hidden Markov models2

(HMMs) to disambiguate parts of speech. HMMs involve counting cases, and mak-

ing a table of the probabilities of certain sequences. For example, after an article

such as the, perhaps the next word is a noun 40% of the time, an adjective 40%,

and a number 20%. Knowing this, a program can decide that can in the can is far

1The main source of this Appendix is Wikipedia:
http://en.wikipedia.org/wiki/Part-of-speech_tagging

2http://en.wikipedia.org/wiki/Hidden_Markov_model

139

http://en.wikipedia.org/wiki/Part-of-speech_tagging
http://en.wikipedia.org/wiki/Hidden_Markov_model

Appendix A. Part-of-speech (POS) Tagging 140

more likely to be a noun than a verb or a modal. The same method can of course

be used to benefit from knowledge about following words.

More advanced higher order HMMs learn the probabilities not only of pairs, but

triples or even larger sequences. So, for example, after a noun followed by a verb,

the next item may be very likely a preposition, article, or noun, but much less likely

another verb.

When several ambiguous words occur together, the possibilities multiply. However,

it is easy to enumerate every combination and to assign a relative probability to

each one, by multiplying together the probabilities of each choice in turn. The

combination with highest probability is then chosen. The European group developed

CLAWS 3, a tagging program that did exactly this, and achieved accuracy in the 93-

95% range.

In 1987, Steven DeRose in [18] and Ken Church in [19], independently developed

dynamic programming algorithms to solve the same problem in vastly less time.

Their methods were similar to the Viterbi algorithm known for some time in other

fields. DeRose used a table of pairs, while Church used a table of triples and a

method of estimating the values for triples that were rare. Both methods achieved

accuracy over 95

Some current major algorithms for part-of-speech tagging include the Viterbi algo-

rithm, Brill Tagger, Constraint Grammar, and the Baum-Welch algorithm (also

known as the forward-backward algorithm). Hidden Markov model and visible

Markov model taggers can both be implemented using the Viterbi algorithm.

Many machine learning methods have also been applied to the problem of POS tag-

ging. Methods such as SVM, Maximum entropy classifier, Perceptron, and Nearest-

neighbor have all been tried, and most can achieve accuracy above 95%.

3http://ucrel.lancs.ac.uk/claws/

http://ucrel.lancs.ac.uk/claws/

Appendix B

Wordnet

Wordnet has been widely exploit by the HFC search engine.

A deep description of Wordnet is taken from Wordnet site1 itself:

About WordNet

WordNet R© is a large lexical database of English. Nouns, verbs, adjec-

tives and adverbs are grouped into sets of cognitive synonyms (synsets),

each expressing a distinct concept. Synsets are interlinked by means

of conceptual-semantic and lexical relations. The resulting network of

meaningfully related words and concepts can be navigated with the

browser. WordNet is also freely and publicly available for download.

WordNet ’s structure makes it a useful tool for computational linguistics

and natural language processing.

WordNet superficially resembles a thesaurus, in that it groups words

together based on their meanings. However, there are some important

distinctions. First, WordNet interlinks not just word forms - strings of

letters - but specific senses of words. As a result, words that are found

1urlhttp://wordnet.princeton.edu/

141

Appendix B. Wordnet 142

in close proximity to one another in the network are semantically disam-

biguated. Second, WordNet labels the semantic relations among words,

whereas the groupings of words in a thesaurus does not follow any ex-

plicit pattern other than meaning similarity.

Structure

The main relation among words in WordNet is synonymy, as between

the words shut and close or car and automobile. Synonyms -words

that denote the same concept and are interchangeable in many contexts-

are grouped into unordered sets (synsets). Each of WordNet’s 117, 000

synsets is linked to other synsets by means of a small number of concep-

tual relations. Additionally, a synset contains a brief definition (gloss)

and, in most cases, one or more short sentences illustrating the use of

the synset members. Word forms with several distinct meanings are rep-

resented in as many distinct synsets. Thus, each form-meaning pair in

WordNet is unique.

Relations

The most frequently encoded relation among synsets is the super-subordinate

relation (also called hyperonymy, hyponymy or ISA relation). It links

more general synsets like (furniture, piece of furniture) to increasingly

specific ones like (bed) and (bunkbed). Thus, WordNet states that the

category furniture includes bed, which in turn includes bunkbed; con-

versely, concepts like bed and bunkbed make up the category furniture.

All noun hierarchies ultimately go up the root node entity. Hyponymy

relation is transitive: if an armchair is a kind of chair, and if a chair

is a kind of furniture, then an armchair is a kind of furniture. Word-

Net distinguishes among Types (common nouns) and Instances (specific

Appendix B. Wordnet 143

persons, countries and geographic entities). Thus, armchair is a type of

chair, Barack Obama is an instance of a president. Instances are always

leaf (terminal) nodes in their hierarchies.

Meronymy, the part-whole relation holds between synsets like (chair)

and (back, backrest), (seat) and (leg). Parts are inherited from their

superordinates: if a chair has legs, then an armchair has legs as well.

Parts are not inherited upward as they may be characteristic only of

specific kinds of things rather than the class as a whole: chairs and kinds

of chairs have legs, but not all kinds of furniture have legs.

Verb synsets are arranged into hierarchies as well; verbs towards the

bottom of the trees (troponyms) express increasingly specific manners

characterizing an event, as in (communicate)-(talk)-(whisper). The spe-

cific manner expressed depends on the semantic field; volume (as in the

example above) is just one dimension along which verbs can be elabo-

rated. Others are speed (move-jog-run) or intensity of emotion (like-love-

idolize). Verbs describing events that necessarily and unidirectionally

entail one another are linked: (buy)-(pay), (succeed)-(try), (show)-(see),

etc.

Adjectives are organized in terms of antonymy. Pairs of direct antonyms

like wet-dry and young-old reflect the strong semantic contract of their

members. Each of these polar adjectives in turn is linked to a number of

semantically similar ones: dry is linked to parched, arid, dessicated and

bone-dry and wet to soggy, waterlogged, etc. Semantically similar adjec-

tives are indirect antonyms of the contral member of the opposite pole.

Relational adjectives (pertainyms) point to the nouns they are derived

from (criminal-crime). There are only few adverbs in WordNet (hardly,

mostly, really, etc.) as the majority of English adverbs are straightfor-

wardly derived from adjectives via morphological affixation (surprisingly,

Appendix B. Wordnet 144

strangely, etc.)

Cross-POS relations

The majority of the WordNet ’s relations connect words from the same

part of speech (POS). Thus, WordNet really consists of four sub-nets,

one each for nouns, verbs, adjectives and adverbs, with few cross-POS

pointers. Cross-POS relations include the morphosemantic links that

hold among semantically similar words sharing a stem with the same

meaning: observe (verb), observant (adjective) observation, observatory

(nouns). In many of the noun-verb pairs the semantic role of the noun

with respect to the verb has been specified: (sleeper, sleeping car) is

the LOCATION for (sleep) and (painter)is the AGENT of (paint), while

(painting, picture) is its RESULT.

Wordnet has also a browser client application in order to allow users to use it stan-

dalone. In Figure B.1 an example screenshot.

Figure B.1: Wordnet browser application

Appendix C

Apache Lucene

Lucene is a useful library to perform text indexing and searching tasks.

It was been used to index the Epinions dataset and perform queries on it, in order

to make a quality comparison with HFC answers.

But a question made the research stop: who guarantee that Lucene indexing is

effective?

From Wikipedia1

Apache Lucene is a free/open source information retrieval software li-

brary, originally created in Java by Doug Cutting. It is supported by the

Apache Software Foundation and is released under the Apache Software

License.

While suitable for any application which requires full text indexing and

searching capability, Lucene has been widely recognized for its utility

in the implementation of Internet search engines and local, single-site

searching.

1http://en.wikipedia.org/wiki/Lucene

145

http://en.wikipedia.org/wiki/Lucene

Appendix C. Apache Lucene 146

At the core of Lucene’s logical architecture is the idea of a document

containing fields of text. This flexibility allows Lucene’s API to be in-

dependent of the file format. Text from PDFs, HTML, Microsoft Word,

and OpenDocument documents, as well as many others (except images),

can all be indexed as long as their textual information can be extracted

From Lucene Tutorial2

Basic Concepts

Lucene is a full-text search library in Java which makes it easy to add

search functionality to an application or website.

It does so by adding content to a full-text index. It then allows you

to perform queries on this index, returning results ranked by either the

relevance to the query or sorted by an arbitrary field such as a document’s

last modified date.

The content you add to Lucene can be from various sources, like a

SQL/NoSQL database, a file system, or even from websites.

Searching and Indexing Lucene is able to achieve fast search responses

because, instead of searching the text directly, it searches an index in-

stead. This would be the equivalent of retrieving pages in a book related

to a keyword by searching the index at the back of a book, as opposed

to searching the words in each page of the book.

This type of index is called an inverted index, because it inverts a page-

centric data structure (page-¿words) to a keyword-centric data structure

(word-¿pages).

2http://www.lucenetutorial.com/basic-concepts.html

http://www.lucenetutorial.com/basic-concepts.html

Appendix C. Apache Lucene 147

Documents

In Lucene, a Document is the unit of search and index.

An index consists of one or more Documents.

Indexing involves adding Documents to an IndexWriter, and searching

involves retrieving Documents from an index via an IndexSearcher.

A Lucene Document doesn’t necessarily have to be a document in the

common English usage of the word. For example, if you’re creating a

Lucene index of a database table of users, then each user would be rep-

resented in the index as a Lucene Document.

Fields

A Document consists of one or more Fields. A Field is simply a name-

value pair. For example, a Field commonly found in applications is title.

In the case of a title Field, the field name is title and the value is the

title of that content item.

Indexing in Lucene thus involves creating Documents comprising of one

or more Fields, and adding these Documents to an IndexWriter.

Searching

Searching requires an index to have already been built. It involves cre-

ating a Query (usually via a QueryParser) and handing this Query to an

IndexSearcher, which returns a list of Hits.

Queries

Lucene has its own mini-language for performing searches.

The Lucene query language allows the user to specify which field(s) to

search on, which fields to give more weight to (boosting), the ability to

perform boolean queries (AND, OR, NOT) and other functionality.

Appendix D

Named Entity Recognition &

Linked Data

Named-entity recognition (NER) (also known as entity identification, entity chunking

and entity extraction) is a subtask of information extraction that seeks to locate and

classify elements in text into pre-defined categories such as the names of persons,

organizations, cities, geographic features, locations, expressions of times, quantities,

monetary values, percentages, etc.

NER systems have been created that use linguistic grammar-based techniques as

well as statistical models. Hand-crafted grammar-based systems typically obtain

better precision, but at the cost of lower recall and months of work by experienced

computational linguists. Statistical NER systems typically require a large amount of

manually annotated training data. Semi supervised approaches have been suggested

to avoid part of the annotation effort.

Research indicates that even state-of-the-art NER systems are brittle, meaning that

NER systems developed for one domain do not typically perform well on other

domains.

148

Appendix D. Named Entity Recognition & Linked Data 149

In natural language processing, entity linking, named entity disambiguation or named

entity normalization (NEN) is the task of determining the identity of entities men-

tioned in text. It is distinct from named entity recognition (NER) in that it identifies

not the occurrence of names (and a limited classification of those), but their refer-

ence.

Entity linking needs a knowledge base of entities to which names can be linked. A

popular choice for entity linking on open domain text is Wikipedia, and when that

is used, the process may be called wikification.

Any entity linking algorithm must battle the inherent ambiguity that even names

have. Various approaches to tackle this problem have been tried. In the seminal

approach of Milne and Witten ([20]), supervised learning is employed using the

anchor texts of Wikipedia itself as the training data. The training data also can be

collected by an automatic approach based on unambiguous synonyms.

Entity linking has been suggested as a way to automate the construction of a Se-

mantic Web. It has been used to improve the performance of information retrieval

systems.

The Semantic Web is a collaborative movement led by international standards body

the World Wide Web Consortium (W3C), directed by Tim Berners-Lee1 The stan-

dard promotes common data formats on the World Wide Web. By encouraging the

inclusion of semantic content in web pages, the Semantic Web aims at converting

the current web, dominated by unstructured and semi-structured documents into a

web of data. The Semantic Web stack builds on the W3C’s Resource Description

Framework (RDF).

1http://en.wikipedia.org/wiki/Tim_Berners-Lee

http://en.wikipedia.org/wiki/Tim_Berners-Lee

Appendix D. Named Entity Recognition & Linked Data 150

Berners-Lee et al. in [21] and [22] call the resulting network of Linked Data the

Giant Global Graph in contrast to the HTML-based World Wide Web.

In Figure D.1 and D.2 is shown Linked Data evolution graph from 2011 to 2014,

Figure D.1: Web of Linked data in September 2011

Tim Berners-Lee posits that if the past was document sharing, the future is data

sharing. His answer to the question of how provides three points of instruction.

1. a URL should point to the data.

2. anyone accessing the URL should get data back.

3. relationships in the data should point to additional URLs with data

A complete description description of Linked Data is given from the Semantic Web

page on W3C website2:

2http://www.w3.org/standards/semanticweb/data

http://www.w3.org/standards/semanticweb/data

Appendix D. Named Entity Recognition & Linked Data 151

Figure D.2: Web of Linked data in August 2014

What is Linked Data?

The Semantic Web is a Web of Data - of dates and titles and part num-

bers and chemical properties and any other data one might conceive

of. The collection of Semantic Web technologies (RDF, OWL, SKOS,

SPARQL, etc.) provides an environment where application can query

that data, draw inferences using vocabularies, etc. However, to make

the Web of Data a reality, it is important to have the huge amount of

data on the Web available in a standard format, reachable and manage-

able by Semantic Web tools. Furthermore, not only does the Semantic

Web need access to data, but relationships among data should be made

available, too, to create a Web of Data (as opposed to a sheer collection

Appendix D. Named Entity Recognition & Linked Data 152

of datasets). This collection of interrelated datasets on the Web can

also be referred to as Linked Data. To achieve and create Linked Data,

technologies should be available for a common format (RDF), to make

either conversion or on-the-fly access to existing databases (relational,

XML, HTML, etc). It is also important to be able to setup query end-

points to access that data more conveniently. W3C provides a palette of

technologies (RDF, GRDDL, POWDER, RDFa, the upcoming R2RML,

RIF, SPARQL) to get access to the data.

What is Linked Data Used For?

Linked Data lies at the heart of what Semantic Web is all about: large

scale integration of, and reasoning on, data on the Web. Almost all

applications listed in, say collection of Semantic Web Case Studies and

Use Cases are essentially based on the accessibility of, and integration of

Linked Data at various level of complexities.

Examples

A typical case of a large Linked Dataset is DBPedia, which, essentially,

makes the content of Wikipedia available in RDF. The importance of

DBPedia is not only that it includes Wikipedia data, but also that it

incorporates links to other datasets on the Web, e.g., to Geonames. By

providing those extra links (in terms of RDF triples) applications may ex-

ploit the extra (and possibly more precise) knowledge from other datasets

when developing an application; by virtue of integrating facts from sev-

eral datasets, the application may provide a much better user experience.

Appendix E

Testing queries

Here are listed the set of queries used during the tests with the IMDb large dataset.

It is a set of twenty-five different sentences in natural language (english). Some are

just movie titles, others recalls actors. Some sentences are taken directly from movie

reviews, others are citation of famous movie quotes.

In bold font, searching terms are highlighted. The rest of the text is considered

stopwords, and so discarded. Notice that some strictly contextual terms are consid-

ered as stopwords. In this IMDb-movie context words actor, film, movie and their

declinations are stopwords.

1. Great funny hilarious jokes1

2. Eddie Murphy2’s Raw 3

3. I want to know more about the history of ancient Greece and the Persian

wars

1During test with termset extraction, this has the first termset noticed to well describe a movie:
Eddie Murphy’s Raw.

2http://www.imdb.com/name/nm0000552
3(1987) http://www.imdb.com/title/tt0092948

153

http://www.imdb.com/name/nm0000552
http://www.imdb.com/title/tt0092948

Appendix E. Testing queries 154

4. I want to know about the history of Greece and Persian wars with Sparta

and Athens

5. I want a movie with great funny hilarious jokes

6. A nice drama for the afternoon

7. Saturday night pajama party

8. I have a dinner with my girlfriend and I want to see a romantic movie

9. My kids are too quiet and i need to thrill them

10. My granny is getting sad and I want to make her laugh

11. The joke was sad but the landscapes were gorgeous

12. Better not to say, but this jokes was not so good and funny

13. I want a movie with fast cars and adrenaline

14. When Harry met Sally4

15. The Lord of the rings5

16. All quiet on western front6

17. The Sting7 with Paul Newman8 and Robert Redford9

18. Butch Cassidy and the Sundance Kid 10 with Paul Newman and Robert

Redford11

4(1989) http://www.imdb.com/title/tt0098635
5(2001) http://www.imdb.com/title/tt0120737
6From the novel of Nobel prize awarded Erich Maria Remarque

(1930) http://www.imdb.com/title/tt0020629
7(1974) http://www.imdb.com/title/tt0070735
8http://www.imdb.com/name/nm0000056
9http://www.imdb.com/name/nm0000602

10(1969) http://www.imdb.com/title/tt0064115
11Robert Redford named his famous Sundance Film Festival after his character in this movie

http://www.imdb.com/title/tt0098635
http://www.imdb.com/title/tt0120737
http://www.imdb.com/title/tt0020629
http://www.imdb.com/title/tt0070735
http://www.imdb.com/name/nm0000056
http://www.imdb.com/name/nm0000602
http://www.imdb.com/title/tt0064115

Appendix E. Testing queries 155

19. My favorite French heartthrob Sami Frey is well-cast as a cruise ship

tour guide12

20. Observations of the award show: some of the winners had to walk a great

distance13

21. I would like to know something about Prussia

22. Attack ships on fire off the shoulder of Orion14

23. All those moments will be lost in time like tears in rain15

24. A neo-realistic italian movie with actress Sophia Loren16

25. What are sword and sandal films?

26. Any question?17 ;-)

12From a movie review
13From a movie review
14Part of Roy Batty final speech of in Blade Runner.

(1982) http://www.imdb.com/title/tt0083658
15Part of Roy Batty final speech of in Blade Runner.

(1982) http://www.imdb.com/title/tt0083658
16 http://www.imdb.com/name/nm0000047
17See you all at final dissertation. Hope you liked the thesis and presentation will be good.

http://www.imdb.com/title/tt0083658
http://www.imdb.com/title/tt0083658
http://www.imdb.com/name/nm0000047

Bibliography

[1] Paolo Fosci and Giuseppe Psaila. Toward a product search engine based on

user reviews. DATA, pages 223–228, July 2012.

[2] Paolo Fosci and Giuseppe Psaila. Finding the best source of information by

means of a socially-enabled search engine. In KES, pages 1253–1262, 2012.

[3] Paolo Fosci, Giuseppe Psaila, and Marcello Di Stefano. Hints from the crowd:

A novel nosql database. Model and Data Engineering, pages 118–131, 2013.

[4] Paolo Fosci, Giuseppe Psaila, and Marcello Di Stefano. The hints from the

crowd project. In Database and Expert Systems Applications, pages 443–453.

Springer Berlin Heidelberg, 2013.

[5] Alfredo Cuzzocrea, Marcello Di Stefano, Paolo Fosci, and Giuseppe Psaila.

Effectively and efficiently supporting crowd-enabled databases via nosql

paradigms. In Proceedings of the 3rd International Workshop on Seman-

tic Search Over the Web, SS@ ’13, pages 7:1–7:5, New York, NY, USA,

2013. ACM. ISBN 978-1-4503-2483-0. doi: 10.1145/2509908.2509914. URL

http://doi.acm.org/10.1145/2509908.2509914.

[6] Alfredo Cuzzocrea, Marcello Di Stefano, Paolo Fosci, and Giuseppe Psaila. En-

hanced query processing for nosql crowdsourcing systems. In Proceedings of

the 6th IEEE International Conference of Soft Computing and Pattern Recog-

nition (SoCPaR 2014). SoCPaR, 2014.

156

http://doi.acm.org/10.1145/2509908.2509914

Bibliography 157

[7] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual

web search engine. Computer networks and ISDN systems, 30(1):107–117,

1998.

[8] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

pagerank citation ranking: bringing order to the web. Stanford InfoLab, 1999.

[9] Lei Tang and Huan Liu. Community detection and mining in social me-

dia. Synthesis Lectures on Data Mining and Knowledge Discovery, 2(1):1–137,

2010.

[10] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in

large databases. In Proceedings of the 20th VLDB Conference, Santiago, Chile,

September 1994.

[11] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, Wei

Li, et al. New algorithms for fast discovery of association rules. In KDD,

volume 97, pages 283–286, 1997.

[12] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without can-

didate generation. In ACM SIGMOD Record, volume 29, pages 1–12. ACM,

2000.

[13] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommendations:

Item-to-item collaborative filtering. Internet Computing, IEEE, 7(1):76–80,

2003.

[14] Jennifer A Jacobi, Eric A Benson, and Gregory D Linden. Recommendation

system, March 15 2011. US Patent 7,908,183.

[15] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor

Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston,

Bibliography 158

et al. The youtube video recommendation system. In Proceedings of the fourth

ACM conference on Recommender systems, pages 293–296. ACM, 2010.

[16] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance

perspective. IEEE Transactions on Knowledge and Data Engineering, 5(6):

914–925, December 1993.

[17] Jonathan Schler, Moshe Koppel, Shlomo Argamon, and James W Pennebaker.

Effects of age and gender on blogging. In AAAI Spring Symposium: Compu-

tational Approaches to Analyzing Weblogs, pages 199–205, 2006.

[18] Steven J. DeRose. Grammatical category disambiguation by statistical op-

timization. Comput. Linguist., 14(1):31–39, January 1988. ISSN 0891-2017.

URL http://dl.acm.org/citation.cfm?id=49084.49087.

[19] Kenneth Ward Church. A stochastic parts program and noun phrase parser for

unrestricted text. In Proceedings of the Second Conference on Applied Natural

Language Processing, ANLC ’88, pages 136–143, Stroudsburg, PA, USA, 1988.

Association for Computational Linguistics. doi: 10.3115/974235.974260. URL

http://dx.doi.org/10.3115/974235.974260.

[20] David Milne and Ian H. Witten. Learning to link with wikipedia. In Pro-

ceedings of the 17th ACM Conference on Information and Knowledge Man-

agement, CIKM ’08, pages 509–518, New York, NY, USA, 2008. ACM. ISBN

978-1-59593-991-3. doi: 10.1145/1458082.1458150. URL http://doi.acm.

org/10.1145/1458082.1458150.

[21] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Sci-

entific american, 284(5):28–37, 2001.

[22] Nigel Shadbolt, Wendy Hall, and Tim Berners-Lee. The semantic web revis-

ited. Intelligent Systems, IEEE, 21(3):96–101, 2006.

http://dl.acm.org/citation.cfm?id=49084.49087
http://dx.doi.org/10.3115/974235.974260
http://doi.acm.org/10.1145/1458082.1458150
http://doi.acm.org/10.1145/1458082.1458150

Bibliography 159

[23] Christian Borgelt. Efficient implementations of apriori and eclat. In FIMI-

2003 Int. Workshop on Frequent Itemset Mining Implementations, Melbourne,

Florida (USA), November 2003.

[24] G. Bordogna and G. Psaila. Customizable flexible querying for classical rela-

tional databases. J. Galindo (ed.) Handbook of Research on Fuzzy Information

Processing in Databases, 2008.

[25] G. Bordogna, A. Campi, G. Psaila, and S. Ronchi. A language for manipu-

lating clustered web documents results. Proceedings of CIKM08, CA, USA,

November, 2008, 2002.

[26] G. Bordogna and G. Psaila. Soft aggregation in flexible databases querying

based on the vector p-norm. International Journal of Uncertainty, Fuzziness

and Knowledge-based Systems, 17:25–40, 2009.

[27] R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association

rules. In Proceedings of the 22st VLDB Conference, Bombay, India, September

1996.

[28] F. Crestani, M. Dunlop, M. Jones, S. Jones, and S. Mizzaro (eds.). Interna-

tional journal of personal and ubiquitous computing, special issue on interac-

tive mobile information access, results. Proceedings of Springer Verlag, 2006,

2006.

[29] Giuseppe Psaila and Stefano Crespi-Reghizzi. Adding semantics to xml. 1999.

[30] O. Buyukkokten, O. Kaljuvee, H. Garcia-Molina, A. Paepcke, and T. Wingrad.

Efficient web browsing on handheld devices using page and form summariza-

tion. ACM Trans. Inf. Syst, 20(1):82–115, 1999.

[31] Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, and Riccardo Torlone.

Database systems. Mc Graw-Hill, 1999.

Bibliography 160

[32] M. Noirhomme-Fraiture, F. Randolet, and L. Chittaro an G. Custinne. Data

visualizations on small and very small screens. in Proceedings of Applied Sto-

castics Models and Data Analysis, 2005.

[33] G. Buchnan, M. Jones, and G. Marsden. Exploring small screen digital library

access with the greenstone digital library. in Proceedings of the 6th European

Conference on Research and Advanced Technology for Digital Libraries, LNCS

2458, Springer Verlag, pages 583–596, 2003.

[34] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in information

visualization: Using vision to think. Morgan Kaufmann Publishers Inc. San

Francisco, CA, 1999.

[35] H. Chen and S. Dumais. Bringing order to the web: Automatically categorizing

search results. Proceedings of the SIGCHI conference on Human factors in

computing systems, IR-76:145–152, 2000.

[36] W. Chung, H. Chen, and J.F. Jr. Nunamaker. Business intelligence explorer:

a knowledge map framework for discovering business intelligence on the web.

System Sciences, Proceedings of the 36th Annual Hawaii International Con-

ference on System Sciences:10, 2003.

[37] T. Coates, D. Connolly, D. Dack, L. Daigle, R. Denenberg, P. Grosso M. Durst,

S. Hawke, R. Iannella, G. Klyne, L. Masinter, M. Mealling, M. Needleman,

and N. Walsh. Uris, urls, and urns: Clarifications and recommendations 1.0.

Technical report, World Wide Web Consortium, URI Planning Interest Group

W3C/IETF, Proceedings of the 36th Annual Hawaii International Conference

on System Sciences, 2001.

[38] M. A. Hearst and J. O. Pederson. Reexamining the cluster hypothesis: Scat-

ter/gather on retrieval results. Proceedings of the Conference on Research and

Development in Information Retrieval, 1996.

Bibliography 161

[39] N. Kampanya, R. Shen, S. Kim, C. North, and E. A. Fox. Citiviz: A visual

user interface to the citidel system. LNCS, Springer Verlag, 3232:122–133,

2004.

[40] A. V. Leouski and W. B. Croft. An evaluation of techniques for clustering

search results. Technical Report of the Department of Computer Science f

University of Massachusetts at Amherst, IR-76:122–133, 1996.

[41] E. Staley and M. Twidale. Graphical interfaces to support information search.

Technical report, University of Illinois, 2000.

[42] L. Zadeh. Fuzzy sets. Information and control, 8:338–353, 1965.

[43] S. Osinski. An algorithm for clustering of web search results. Master’s the-

sis, Department of Computing Science, Poznan’ University of Technology,

http://project.carrot2.org/publications/osinski-2003-lingo.pdf, 2003.

[44] R. Agrawal and E.L. Wimmers. A framework for expressing and combining

preferences. In Proceedings of ACM SIGMOD 2000 International Conference

on Management of Data, Dallas, pages 297–306, 2000.

[45] R. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated ranking of

database query results. In Proceedings of CIDR 2003 First Biennal Conference

on Innovative Data Systems Research, Asilomar, CA, USA, 2003.

[46] G. Bordogna and G. Pasi. A flexible approach to evaluating soft conditions

with unequal preferences in fuzzy databases. Journal of Intelligent Systems,

22:665–689, 2007.

[47] S. Borzsonyi and D. Kossmann K. Stocker. The skyline operator. In Proceed-

ings of IEEE ICDE 2001 17th International Conference on Data Engineering,

pages 421–430, 2001.

Bibliography 162

[48] P. Bosc and O. Pivert. Sqlf: a relational database language for fuzzy querying.

IEEE Transactions On Fuzzy Systems, 3(1), 1995.

[49] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection queries over re-

lational databases: Mapping strategies and performance evaluation. ACM

Transactions on Database Systems, 27(2):153–187, June 2002.

[50] B. Buckles and F. Petry. A fuzzy model for relational databases. International

Journal of Fuzzy Sets and Systems, 7:213–226, 1982.

[51] J. Chomicki. Preference formulas in relational queries. ACM Transactions on

Database Systems, 28(4):427–466, 2003.

[52] D. Dubois and H. Prade. Using fuzzy sets in flexible querying: why and how

? Andreasen T, Christiansen H, Larsen HL (eds) Flexible query answering

systems, pages 45–60, 1997.

[53] D. Dubois, H. Prade, and C. Testemale. Weighted fuzzy pattern matching.

International Journal of Fuzzy Sets and Systems, 28:313–331, 1988.

[54] J. Galindo, J.M. Medina, and G.M.C. Aranda. Querying fuzzy relational

databases through fuzzy domain calculus. International Journal of Intelligent

Systems, 14:375–411, 1999.

[55] J. Galindo, A. Urrutia, and M. Piattini. Fuzzy Databases, Modeling, Design

and Implementation. Idea Group, USA, 2006.

[56] M. Grabisch, S. A. Orlovski, and R. R. Yager. Fuzzy aggregation of numerical

preferences. R. Slowinski (ed.) Fuzzy Sets in Decision Analysis, Operations

Research and Statistics, pages 31–68, 1998.

[57] T. Ichikawa and M. Hirakawa. ARES: a relational database with the capa-

bility of performing flexible interpretation of queries. IEEE Transactions On

Software Engineering, 12(5):624–634, 1986.

Bibliography 163

[58] J. Kacprzyk and S. Zadrosny. FQUERY for Access: Fuzzy querying for

windows-based DBMS. P. Bosc and J. Kacprzyk (ed.) Fuzziness in database

management systems, 1995.

[59] J. Kacprzyk and S. Zadrosny. Implementation of OWA operators in fuzzy

querying for Microsoft Access. R.R. Yager and J. Kacprzyk (ed.) The ordered

weighted averaging operators: theory and applications, pages 293–306, 1997.

[60] J. Kacprzyk and A. Ziolkowski. Database queries with fuzzy linguistic quan-

tifiers. IEEE Transactions On Systems, Man and Cybernetics, 16:474–479,

1986.

[61] W. Kiessling. Foundation of preferences in databases systems. In Proceedings

of VLDB 2002 28th International Conference on Very Large Databases, Hong

kong, China, 2002.

[62] W. Kiessling and G. Kostler. Preference SQL - design, implementation, expe-

riences. In Proceedings of VLDB 2002 28th International Conference on Very

Large Databases, Hong kong, China, 2002.

[63] M. Lacroix and P. Lavency. Preferences: Putting more knowledge into queries.

In Proceedings of VLDB 1987 13th International Conference on Very Large

Databases, Brighton, GB, pages 217–225, 2002.

[64] H.L. Larsen. Importance weighted OWA aggregation of multicriteria queries.

In Proceedings of NAFIPS 1999 18th International Conference of the North

American Fuzzy Information Processing Society, New York, USA, pages 740–

744, 1999.

[65] A. Motro. VAGUE: A user interface to relational databases that permits vague

queries. ACM Transactions on Information Systems, 6(3):187–214, July 1988.

[66] E.E. Petry. Fuzzy Databases. Kluwer Academic Publisher, USA, 1996.

Bibliography 164

[67] G. Salton. Introduction to Modern Information Retrieval. McGraw-Hill, New

York, USA, 1983.

[68] G. Salton, E. Fox, and H Wu. Extended boolean information retrieval. Com-

munications of the ACM, 26(12):1022–1036, 1983.

[69] V. Tahani. A conceptual framework fro query processing: a step toward very

intelligent database systems. Information Processing and Management, 13:

289–303, 1977.

[70] O. Zamir and O. Etzioni. Grouper: a dynamic clustering interface to web

search results. Proceedings of the 8th International World Wide Web Confer-

ence, 1999.

[71] A. Takaci and S. Skrbic. Comparing priority, weighted and queries with thresh-

old in PFSQL. In Proceedings of SISY 2007 Fifth International Symposium

on Intelligent Systems and Informatics, Subotica, Serbia, pages 77 – 80, 2007.

[72] L. Tineo. Extending rdbms for allowing fuzzy quantified queries. In Proceedings

of DEXA 2000 11th International Conference on Database and Expert Systems

Applications, Greenwich, London, UK, pages 407–416, 2000.

[73] J. Kacprzyk and S. zadrozny. On combining intelligent querying and data

mining using fuzzy logic concepts. In in G. Bordogna, G. Pasi (eds.), Recent

Issues on Fuzzy Databases, pages 67–81. Physica Verlag, 2000.

[74] C. Chen, Q. Wei, and E.E. Kerre. Fuzzy data mining: Discovery of fuzzy

generalized association rules. In in G. Bordogna, G. Pasi (eds.), Recent Issues

on Fuzzy Databases, pages 45–66. Physica Verlag, 2000.

[75] R.Srikant and R.Agrawal. Mining quantitative association rules in large rela-

tional tables. In Proceedings of the ACM-SIGMOD International Conference

on the Management of Data, San Jose, California, May 1996.

Bibliography 165

[76] M. A. W. Houtsma and A. Swami. Set-oriented mining for association rules in

relational databases. In 11th International Conference on Data Engineering,

Taipei, Taiwan, March 6-10 1995.

[77] T. Hong and Y. Lee. An overview of mining fuzzy association rules. H.

Bustince, F. Herrera and J. Montero (eds.), Fuzzy Sets and Their Extensions:

Representation, Aggregation and Models, Studies in Fuzziness and Soft Com-

puting, Volume 220:397–410, 2008.

[78] T. Hong, C. Kuo, and S. Chi. Mining association rules from quantitative dat.

Intelligent Data Analysis, 2(5), 1999.

[79] G. Chen and Q. Wei. Fuzzy association rules and the extended mining algo-

rithms. Information Sciences, 147(1-4), 2002.

[80] D. Dubois, H. Prade, and T. Sudkamp. A discussion ofindices for the evaluation

off uzzy associations in relational databases. In Proceedings of 11th IFSA

World Congress, Istambul, pages 111–118, 2003.

[81] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowl-

edge discovery in databases. AI Magazine, 17:37–54, 1996.

[82] C.M. Kuok, A.W.-C. Fu, and M.H.Wong. Mining fuzzy association rules in

databases. SIGMOD Record, 27 (1):41–46, 1998.

[83] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets

of items in large databases. In Proceedings of SIGMOD-93, the ACM SIGMOD

Int. Conference on Management of Data, pages 207–216, Washington, D.C.,

1993. British Columbia.

[84] T. Sudkamp. Examples, counterexamples, and measuring fuzzy associations.

Fuzzy Sets and Systems, 149:57–71, 2005.

Bibliography 166

[85] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset counting and

implication rules for market basket data. SIGMOD Record, 26 (2):255–264,

1997.

[86] Massimo Marchiori. The quest for correct information on the web: Hyper

search engines. Computer Networks and ISDN Systems, 29(8):1225–1235,

1997.

[87] H. Lee and H.L. Kwang. An extension of association rules using fuzzy sets. In

Proceedings of IFSA-97 World Congress, Prague, Czech Republic, 1997.

[88] W.H. Au and K.C.C. Chan. Mining fuzzy association rules. In Proceedings

of 6th Int. Conf. Information Knowledge Management, Las Vegas, NV, USA,

pages 209–215, 1997.

[89] R.R. Yager D. Rasmussen. Summarysql - a fuzzy tool for data mining. Intel-

ligent Data Analysis, 1 (1-4):49–58, 1997.

[90] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In

Kim et al. [91], pages 168–177. ISBN 1-58113-888-1.

[91] Won Kim, Ron Kohavi, Johannes Gehrke, and William DuMouchel, editors.

Proceedings of the Tenth ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, Seattle, Washington, USA, August 22-25,

2004, 2004. ACM. ISBN 1-58113-888-1.

[92] D Tony Liu and X William Xu. A review of web-based product data manage-

ment systems. Computers in industry, 44(3):251–262, 2001.

[93] Pimwadee Chaovalit and Lina Zhou. Movie review mining: a comparison be-

tween supervised and unsupervised classification approaches. In HICSS DBL

[94]. ISBN 0-7695-2268-8.

Bibliography 167

[94] 38th Hawaii International Conference on System Sciences (HICSS-38 2005),

CD-ROM / Abstracts Proceedings, 3-6 January 2005, Big Island, HI, USA,

2005. IEEE Computer Society. ISBN 0-7695-2268-8.

[95] Kushal Dave, Steve Lawrence, and David M. Pennock. Mining the peanut

gallery: opinion extraction and semantic classification of product reviews. In

WWW, pages 519–528, 2003.

[96] Wonyoung Kim, Joonsuk Ryu, Kyu Il Kim, and Ung-Mo Kim. A method for

opinion mining of product reviews using association rules. In Sohn et al. [97],

pages 270–274. ISBN 978-1-60558-710-3.

[97] Sungwon Sohn, Ling Chen, Soonwook Hwang, Kyungeun Cho, Shigeo Kawata,

Kyhyun Um, Franz I. S. Ko, Kae-Dal Kwack, Jong Hyung Lee, Gang Kou,

Kiyoshi Nakamura, Alvis Cheuk M. Fong, and Patrick C. M. Ma, editors. Pro-

ceedings of the 2nd International Conference on Interaction Sciences: Infor-

mation Technology, Culture and Human 2009, Seoul, Korea, 24-26 November

2009, volume 403 of ACM International Conference Proceeding Series, 2009.

ACM. ISBN 978-1-60558-710-3.

[98] Bing Liu, Minqing Hu, and Junsheng Cheng. Opinion observer: analyzing

and comparing opinions on the web. In Ellis and Hagino [101], pages 342–351.

ISBN 1-59593-046-9.

[99] Li Zhuang, Feng Jing, and Xiaoyan Zhu. Movie review mining and summa-

rization. In Yu et al. [100], pages 43–50. ISBN 1-59593-433-2.

[100] Philip S. Yu, Vassilis J. Tsotras, Edward A. Fox, and Bing Liu, editors. Pro-

ceedings of the 2006 ACM CIKM International Conference on Information

and Knowledge Management, Arlington, Virginia, USA, November 6-11, 2006,

2006. ACM. ISBN 1-59593-433-2.

Bibliography 168

[101] Allan Ellis and Tatsuya Hagino, editors. Proceedings of the 14th international

conference on World Wide Web, WWW 2005, Chiba, Japan, May 10-14, 2005,

2005. ACM. ISBN 1-59593-046-9.

[102] Dongjoo Lee, Ok-Ran Jeong, and Sang goo Lee. Opinion mining of customer

feedback data on the web. In Kim and Choi [103], pages 230–235. ISBN

978-1-59593-993-7.

[103] Won Kim and Hyung-Jin Choi, editors. Proceedings of the 2nd Interna-

tional Conference on Ubiquitous Information Management and Communica-

tion, ICUIMC 2008, Suwon, Korea, January 31 - February 01, 2008, 2008.

ACM. ISBN 978-1-59593-993-7.

[104] Jeff J. Sandvig, Bamshad Mobasher, and Robin D. Burke. Robustness of

collaborative recommendation based on association rule mining. In Konstan

et al. [105], pages 105–112. ISBN 978-1-59593-730-8.

[105] Joseph A. Konstan, John Riedl, and Barry Smyth, editors. Proceedings of the

2007 ACM Conference on Recommender Systems, RecSys 2007, Minneapolis,

MN, USA, October 19-20, 2007, 2007. ACM. ISBN 978-1-59593-730-8.

[106] Minqing Hu and Bing Liu. Mining opinion features in customer reviews. In

McGuinness and Ferguson [107], pages 755–760. ISBN 0-262-51183-5.

[107] Deborah L. McGuinness and George Ferguson, editors. Proceedings of the

Nineteenth National Conference on Artificial Intelligence, Sixteenth Confer-

ence on Innovative Applications of Artificial Intelligence, July 25-29, 2004,

San Jose, California, USA, 2004. AAAI Press / The MIT Press. ISBN 0-262-

51183-5.

[108] Duy Khang Ly, Kazunari Sugiyama, Ziheng Lin, and Min-Yen Kan. Product

review summarization based on facet identification and sentence clustering.

CoRR, abs/1110.1428, 2011.

Bibliography 169

[109] Hecht Robin and Stefan Jablonski. Nosql evaluation: A use case oriented sur-

vey. In CSC-2011 International Conference on Cloud and Service Computing,

Hong Kong, China, pages 336–341, December 2011.

[110] R. Cattell. Scalable sql and nosql data stores. SIGMOD Record, 39 (4):12–27,

2011.

[111] C. Strauch. Nosql databases. http://www.christof-strauch.de/nosqldbs.pdf,

2011.

[112] Tom Gruber. Collective knowledge systems: Where the social web meets the

semantic web. J. Web Sem., 6(1):4–13, 2008.

[113] Jill Freyne, Rosta Farzan, Peter Brusilovsky, Barry Smyth, and Maurice Coyle.

Collecting community wisdom: integrating social search & social naviga-

tion. In Chin et al. [114], pages 52–61. ISBN 1-59593-481-2.

[114] David N. Chin, Michelle X. Zhou, Tessa A. Lau, and Angel R. Puerta, ed-

itors. Proceedings of the 2007 International Conference on Intelligent User

Interfaces, January 28-31, 2007, Honolulu, Hawaii, USA, 2007. ACM. ISBN

1-59593-481-2.

[115] Jonathan Schler, Moshe Koppel, Shlomo Argamon, and James W. Pennebaker.

Effects of age and gender on blogging. In AAAI Spring Symposium: Compu-

tational Approaches to Analyzing Weblogs DBL [116], pages 199–205.

[116] Computational Approaches to Analyzing Weblogs, Papers from the 2006 AAAI

Spring Symposium, Technical Report SS-06-03, Stanford, California, USA,

March 27-29, 2006, 2006. AAAI.

Bibliography 170

[117] Souvik Debnath, Niloy Ganguly, and Pabitra Mitra. Feature weighting in

content based recommendation system using social network analysis. In Pro-

ceedings of the 17th international conference on World Wide Web, pages 1041–

1042. ACM, 2008.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 The context
	1.2 Examples
	1.3 Purpose of the project
	1.4 Structure of the thesis

	2 State of the art
	2.1 Vector Space Model
	2.2 tf-idf model
	2.3 Latent Semantic Indexing
	2.4 PageRank
	2.5 Itemset Mining
	2.6 Amazon Recommendation System
	Item-to-Item Collaborative Filtering.
	Scalability.

	2.7 Youtube Recommendation System
	User Activity
	Introducing Relevance and Diversity

	2.8 IMDb Recommendation System

	3 Problem definition
	3.1 Basic idea
	3.2 Ranking Model
	3.2.1 Termsets
	3.2.2 Termset Weight
	3.2.3 Query Expansion and Semantic Coefficient
	Pos-tagging.
	Stopwords filtering.
	Term expansion.
	Query expansion.
	Expanded Termsets.
	Semantic coefficient.

	3.2.4 Product Reviews and Termsets
	3.2.5 Termset Average Density
	3.2.6 Product Ranking Metric

	3.3 Model Evolution
	3.3.1 DATA 2012 - Ranking model
	Basic Notions on Itemset Mining
	Product Reviews and Itemsets
	Retrieval Model

	3.3.2 KES 2012 - Ranking Model
	Posts and Termsets
	Blog Relevance Measure

	4 Algorithms
	4.1 Recursive Termset Mining algorithm - RTM
	4.2 Valid Termset Coverage algorithm - VTC
	4.3 Minimum Window algorithm

	5 Prototype
	5.1 System Architecture
	5.1.1 Back-end
	5.1.1.1 Analyzer
	5.1.1.2 Loader

	5.1.2 Front-end.
	5.1.2.1 Query engine
	5.1.2.2 User interface

	5.2 Data Model
	5.2.1 Data storing.
	5.2.2 Run-time data model

	6 Performing evaluation
	6.1 Datasets
	6.1.1 Blog Corpus
	6.1.2 Epinions
	6.1.3 IMDb

	6.2 The quest for performance
	6.3 Indexing
	6.4 Execution

	7 Conclusions
	7.1 Conclusions
	7.1.1 Results achieved
	7.1.2 Open issues and future work

	A Part-of-speech (POS) Tagging
	B Wordnet
	C Apache Lucene
	D Named Entity Recognition & Linked Data
	E Testing queries
	Bibliography

