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BOUNDS AND APPROXIMATIONS FOR MULTISTAGE
STOCHASTIC PROGRAMS∗

FRANCESCA MAGGIONI† AND GEORG CH. PFLUG‡

Abstract. Consider (typically large) multistage stochastic programs, which are defined on
scenario trees as the basic data structure. It is well known that the computational complexity of the
solution depends on the size of the tree, which itself increases typically exponentially fast with its
height, i.e., the number of decision stages. For this reason approximations which replace the problem
by a simpler one and allow bounding the optimal value are of great importance. In this paper we
study several methods to obtain lower and upper bounds for multistage stochastic programs and we
demonstrate their use in a multistage inventory problem.
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1. Introduction. For very large multistage stochastic programs, the solution
to optimality may be quite tedious and it often requires high-performance computers
coupled with parallel solution algorithms.

Bounding techniques allow one to get quick information about lower and upper
bounds for the objective value; if the gap between those two values is driven to an
acceptably small value, the solution obtained may be considered good enough and a
full optimization can be avoided altogether.

The main general principle for bounding minimization problems is the relaxation
of some constraints to obtain lower bounds and the calculation of feasible solutions
to get upper bounds. Many authors have found bounds following this strategy; see,
e.g., [14], [13], [12]. Additional bounds can be found by methods of convex analysis
(Jensen’s inequality, Edmundson–Madansky inequality); see, e.g., [6], [7], [8], [9].
While the latter approaches exploit the approximation of continuous state and/or
continuous time models by discretization, we assume in this paper that a discretized
(large) tree model is already given and study alternative ways to find easy-to-compute
bounds. These bounds are found by solving many much smaller problems instead of
one big problem. The idea of looking at subproblems with only two scenarios goes
back to [2] for the two-stage linear case (see also [3] and [18]). An extension to the
multistage linear case is in [11].

In this paper we further extend the scope of the bounds calculation methodology
by considering multistage convex problems with concave risk functionals as objective
and by giving full sequences of bounds. We construct new refinement chains of lower
bounds, where each bound can be computed by solving sets of group subproblems less
complex than the original one, and recalculating the probabilities of each scenario in
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the group accordingly. Refinement chains are constructed principally in two ways:
by keeping one or several scenarios fixed in all subproblems or choosing them dis-
joint. A monotonically nondecreasing behavior in the cardinality of scenarios of each
subproblem is proved.

Lower bounds for replacing the scenario process by its expectation are also con-
sidered. Several upper bounds obtained by inserting feasible solutions derived from
smaller subproblems are presented generalizing the multistage expected value of the
reference scenario (MEVRS) and the multistage expectation of pairs expected value
(MEPEV) introduced in [11]. Relations among them are derived.

Notice that the proposed decomposition gets its justification by the fact that the
complexity of a solution method for tree structured problems increases superlinearly
with the problem size, sometimes even exponentially. Furthermore, the proposed
approach has the advantage of splitting a given problem into independent subproblems
so that parallel algorithms with high speed-up factors can easily be devised and used.
Consequently, multistage problems, which are typically computationally complex and
often not solvable by commercial solvers, could be handled by the proposed bounding
technique. If it turns out that the calculation of lower bounds in the refinement chain
is quick, then one may possibly find a good upper bound resulting in a solution gap
which is small enough to stop the procedure here and not solve the big problem at all.

In the following, we assume that the stochastic program Opt(P) is of the form1

(1.1) Opt(P) : v∗(P) = min{RP[H(x, ξ)] : x ∈ X, xC F;P ∼ (Ω,F, P, ξ)},

where Ω is a finite but possibly large probability sample space, F is a filtration on Ω,
i.e., an increasing sequence of sigma-algebras

(1.2) F = (F0 = (Ω, ∅),F1, . . . ,FT = 2Ω),

ξ = (ξ0, . . . , ξT ) is a stochastic process adapted to the filtration F (in symbol ξ C F),
P is the probability distribution on F, and X is the feasible set in which all decisions
must lie, i.e., x(ω) ∈ X for all ω ∈ Ω. The structure (Ω,F, P, ξ) is summarized by the
symbol P.2 H(x, ξ) is the cost function and R is a risk functional, like the expectation
or the average value-at-risk.

The finite probability space Ω endowed with the filtration F of length T + 1 as in
(1.2) defines a finite tree of height T with leaf nodes Ω. The probability P defined on
Ω induces probabilities on all nodes N of the tree. The distance of every node from
the root is its stage. The nodes at stage t are denoted by Nt, where N0 is a singleton
(the root) and NT = Ω (the leaves). The stochastic scenario process ξ can be seen as
defined on the node set N.

We exploit the special structure of the problem Opt(P). For a simpler presentation
we often omit some components of the model P ∼ (Ω,F, P, ξ) and write, for instance,
just P ∼ (F, P ) if both the probability space Ω and the random process ξ are fixed
and no confusion is possible.

The paper is organized as follows. Lower bounds are introduced in sections 2 and
3 by dissecting the probability measure and filtration and by replacing the scenario

1We assume throughout the paper that all optimal values are attained so that we write min and
not inf.

2 P describes the equivalence class of all models which can be bijectively mapped to the structure
(Ω,F, P, ξ). This equivalence class is called the nested distribution; see [16]. However, for reading
this paper one may always assume that a concrete model (Ω,F, P, ξ) is given.
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process by its expectation respectively. Upper bounds by inserting suboptimal solu-
tions are analyzed in section 4. Lower and upper bounds introduced in the previous
sections are then tested on a multistage inventory problem in section 5. Section 6
deals with complexity considerations and section 7 concludes the paper.

2. Lower bounds by dissecting the probability measure. Given the opti-
mal value mapping (F, P, ξ) ∼ P 7−→ v∗(P) = v∗(F, P, ξ) we keep the filtration and
the process ξ fixed and consider only the mapping

P 7→ v∗(P ).

One main structural property of some stochastic programs (including those of the
expectation type) is that this mapping is concave.

Lemma 2.1. Suppose that in the basic problem (1.1) the functional P 7−→ RP (·)
is concave (i.e., the mapping P 7→ RP (Y ) is concave for all random variables Y for
which R is defined; see [15]). Then the mapping P 7→ v∗(P ) is also concave.

Proof. Let P =
∑k
i=1 piPi with

∑
pi = 1, pi > 0, and let x∗ be a solution of

problem Opt(P ) = Opt(F, P, ξ). Since x∗ is feasible for all Opt(Pi) we have that

v∗(P )=RP [H(x∗, ξ)] ≥
∑

piRPi [H(x∗, ξ)]≥
∑

piv
∗(Pi).

Notice that the lemma holds for any feasible set X. In particular it holds for
integer or mixed integer problems.

Numerous consequences result from this simple Lemma 2.1. For instance, let
NT = Ω = {ω1, . . . , ωk} be the leaf set of the finite tree. Let δωi be the point mass
at scenario ωi. Under δωi the scenario ωi has probability 1 and all other scenarios
have probability zero. Thus solving the problem under δωi leads to a deterministic
dynamic optimization problem, with optimal value denoted by v∗(δωi). Notice that

(2.1) P =

k∑
i=1

P (ωi)δωi .

The value v∗1 :=
∑
i P (ωi) v

∗(δωi) is the clairvoyant’s solution, which may alterna-
tively be written as

v∗1 = v∗(FT , P ),

where FT is the clairvoyant’s filtration FT = (FT , . . . ,FT ). By (2.1) and Lemma 2.1
we get the (quite trivial) lower bound by the inequality

(2.2) v∗1 = v∗(FT , P ) ≤ v∗(F, P ).

Some authors would call this inequality

wait-and-see ≤ here-and-now

which is a bit misleading, since the essence of the “wait-and-see” solution is here not
to wait but to decide immediately with complete knowledge of the future, an ability
which we may attribute only to clairvoyants.

Remark. The inequality

v∗(F, P ) ≥ v∗(FT , P )
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is just one example of the fundamental but quite trivial inequality

(2.3) F1 ⊆ F2 implies that v∗(F1, P ) ≥ v∗(F2, P ).

This inequality can produce lower and upper bounds: by refining the filtration, i.e.,
relaxing the nonanticipativity constraints, one gets lower bounds, and by coarsening
it, one gets upper bounds.

Refinement chains. While the dissection of P into its atoms (δωi) is the most
extreme dissection, one may also dissect it into a convex combination of probabilities
defined on two or more (but not all) leaves. For instance, let ω1 be a specific leaf node
(without loss of generality (w.l.o.g.) call it ω1) and set for i 6= 1

(2.4) P
(2)
i = P (ω1)δω1

+ (1− P (ω1))δωi .

Defining π
(2)
i = P (ωi)/(1− P (ω1)) one sees that P =

∑
i 6=1 π

(2)
i P

(2)
i and hence

(2.5) v∗2 :=
∑
i6=1

π
(2)
i v∗(P

(2)
i ) ≤ v∗(P ).

Thus a lower bound for the basic problem can be found by solving k − 1 multistage
problems with only two scenarios each. Since by (2.4) every subproblem with two sce-
narios is a convex combination of two (clairvoyant’s) problems with just one scenario
each, one gets for i 6= 1

v∗(P
(2)
i ) ≥ P (ω1) v∗(δω1

) + (1− P (ω1)) v∗(δωi),

and one arrives at a chain of inequalities

v∗1 =

k∑
i=1

P (ωi) v
∗(δωi) ≤ v∗2 ≤ v∗(P ).

Lemma 2.2. If Ω = {ω2, . . . , ωk} and ω1 /∈ Ω, then v∗1 = v∗2 .

Proof. See [11] for the proof.

Pairs of scenarios were considered for the first time in [2], in [3] and [18] for
the two-stage linear case, and in [11] for the multistage linear case by means of the
definition of multistage sum of pairs expected values. Inequality (2.5) has been proven
in [11] for the multistage linear case with risk functional being the expectation.

The method may be refined by considering longer refinement chains. Such a chain
has the structure

Ω

...

(Ω
(j)
1 ,Ω

(j)
2 , . . . ,Ω(j)

mj )

...

(Ω
(2)
1 ,Ω

(2)
2 , . . . ,Ω(2)

m2
)

({ω1}, {ω2}, . . . , {ωk}),
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where each row is a collection of subsets of the probability space Ω with the property

that their union covers the whole space Ω = ∪iΩ(j)
i for all j and that each set Ω

(j)
i is

the union of sets from the next more refined collection,

Ω
(j)
i = ∪

Ω
(j−1)
s ⊆Ω

(j)
i

Ω(j−1)
s .

For each refinement chain of the probability space Ω there is a correspondent

chain of dissections of the probability P into probability measures P
(j)
i ,

P

...(2.6)

(P
(j)
1 , . . . P (j)

mj )

...(2.7)

(P
(2)
1 , . . . , P (2)

m2
)

(P
(1)
1 = δω1

, . . . , P
(1)
k = δωk)

such that
(i) P

(j)
i has support Ω

(j)
i ,

(ii) P can be written as P =
∑mj
i=1 π

(j)
i P

(j)
i ,

(iii) each P
(j)
i can be written as a convex combination of probabilities from the

refined collection {P (j−1)
i }.

It is evident that such a refinement chain leads to a chain of lower bounds. Denoting

v∗j =

mj∑
i=1

π
(j)
i v∗(P

(j)

i ),

by means of Lemma 2.1 as well as (ii) and (iii) we get a chain of lower bounds expressed
as follows:

(2.8) v∗1 ≤ v∗2 ≤ · · · ≤ v∗j ≤ · · · ≤ v∗(P ).

Notice that the higher the index j, the fewer the problems that have to be solved, but
with an increasing number of scenarios. Notice also that, as expected, the clairvoyant
solution always gives the smallest lower bound in this chain.

There are many ways to construct refinement chains. One may keep one or several

scenarios fixed in all subsets Ω
(j)
i or choose them disjoint. Two examples will illustrate

some possible choices.

Example 2.3. One fixed scenario. Suppose that scenario ω1 is fixed and appears
in all subsets. Then the structure of the refinement chain is

({ω1, ω2, . . . , ωk})
({ω1, ω2, . . . , ωs}, {ω1, ωs+1, . . . , ωk})

...

({ω1, ω2}, {ω1, ω3}, . . . , {ω1, ωk}).
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Fig. 2.1. A graphical representation of a refinement chain where only the scenario ω1 is fixed.

The collection (Ω
(2)
1 , . . . ,Ω

(2)
8 ) is the “pair of scenarios” collection (with ω1 fixed). Similarly the

collection (Ω
(3)
1 , . . . ,Ω

(3)
4 ) is the “triplet of scenarios” collection (with ω1 fixed) and (Ω

(5)
1 ,Ω

(5)
2 ) for

“quintuplets of scenarios.”

The situation is illustrated in Figure 2.1. All scenarios which belong to a subset Ω
(j)
i

are connected by edges and form a connected subgraph.
As a generalization, we consider the case where two or more scenarios may be

fixed, i.e., they appear in all subsets. In order to calculate the correct weights π
(·)
i

of the dissections, assume w.l.o.g. that the first f scenarios {ω1, . . . , ωf} are fixed
and appear in all subsets. Assume further that each subset contains exactly j > f
scenarios, meaning that the total number s of subsets of cardinality j, i.e., s =
(k− f)/(j− f), is an integer. Let x = j− f > 0. The corresponding s elements of the
refinement chain are

Ω
(·)
1 = {ω1, . . . , ωf , ωf+1, . . . , ωf+x}, Ω

(·)
2 = {ω1, . . . , ωf , ωf+x+1, . . . , ωf+2x}, . . .

or in general

Ω
(·)
i = {ω1, . . . , ωf , ωf+(i−1)·x+1, . . . , ωf+i·x}, i = 1, . . . , s.

The probabilities P
(·)
i as well as the corresponding weights π

(·)
i can be calculated as

follows:

P
(·)
i =

f∑
m=1

P (ωm) · δωm +
(1−

∑f
m=1 P (ωm))∑f+i·x

m=f+(i−1)·x+1 P (ωm)

f+i·x∑
m=f+(i−1)·x+1

P (ωm) · δωm
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Fig. 2.2. A refinement chain with disjoint subsets.

and

π
(·)
i =

∑f+i·x
m=f+(i−1)·x P (ωm)

(1−
∑f
m=1 P (ωm))

, i = 1, . . . , s.

With this choice one gets
∑s
m=1 π

(·)
i = 1 and P =

∑s
i=1 π

(·)
i P

(·)
i and therefore the

corresponding lower bound is

s∑
i=1

π
(·)
i v∗(P

(·)
i ) ≤ v∗(P ).

Notice that (2.5) is a special case with f = 1 and j = 2.

Example 2.4. Alternatively one may also consider disjoint partitions. In this case,

the refinement chain corresponds to a filtration and the probability measures P
(j)
i are

P
(j)
i =

{
1

π
(j)
i

P (ωs)δωs if ωs ∈ Ω
(j)
i ,

0 otherwise

with
π

(j)
i =

∑
ωs∈Ω

(j)
i

P (ωs).

Figure 2.2 illustrates such a refinement chain.

3. Lower bounds for replacing the scenario process by its expectation.
A popular choice for simplifying a dynamic stochastic problem is to replace the sce-
nario process (ξt)t=1,...,T by its expectation (E[ξt])t=1,...,T , if it exists. The basic
problem (1.1) is modified to

(3.1) Opt(EP ) : min {R[H(x,EP ξ)] : x ∈ X;xC F;P = (F, P, ξ)} .

We call problem (3.1) the expectation-reduced problem. Notice that we have replaced
the stochastic scenario process by a deterministic one but have kept the possibility
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for the decisions to depend on the filtration. One might argue that such random
decisions for nonrandom scenarios is not appropriate. A closer look reveals in fact
that the optimal decision for deterministic compound concave problems can be chosen
as deterministic as well, i.e., it is not necessary to consider randomized decisions.

Theorem 3.1. Suppose that the risk functional RP is concave3 in P . Then the
solution of the expectation-reduced problem (3.1) can be found for a deterministic
decision sequence (x∗0, . . . , x

∗
T−1).

Proof. Notice that the expectation-reduced problem has a deterministic objective
H̄(x) = H(x,Eξ). Dissect the probability P into the atoms defined on the leaves P =∑k
i=1 P (ωi)δωi . Then, by concavity, for any x, RP [H̄(x)] ≥

∑k
i=1 P (ωi)Rδωi [H̄(x)].

Thus the optimal decisions can be found by solving the clairvoyant problems. But
since all clairvoyant problems are equal, the same solution may be inserted for all
scenarios, i.e., the solution may be chosen deterministic as well.

Let PE(ξ) be the degenerated (nested) distribution, which assigns probability one
to the sequence Eξ1, . . .EξT . Under the assumption of Theorem 3.1, one may w.l.o.g.
assume that the solution of the deterministic problem

v∗(PE(ξ)) = min
{
RPE(ξ) [H(x, ξ)] : x ∈ X

}
= min {R[H(x,EP ξ)] : x ∈ X}

is deterministic.
The value v∗(PE(ξ)) in the linear case is known in literature as expected value (see,

for instance, [2] and many others).

Definition 3.2. The random variable X1 is dominated by the random variable
X2 in the second-order sense and we write X1 ≺SSD X2, where SSD stands for
second-order stochastic dominance [4], if E[U(X1)] ≤ E[U(X2)] for all monotonically
increasing and concave utility functions U .

Lemma 3.3. Suppose that (i) (x, ξ) 7→ H(x, ξ) is convex, (ii) P 7→ RP is concave,
and (iii) R = RP has the following property:

−Y1 ≺SSD −Y2 implies that R(Y1) ≥ R(Y2).

Then, assuming that the solution of the basic problem (1.1) is integrable and that the
set of feasible solutions X is convex,

(3.2) v∗(PE(ξ)) ≤ v∗(P).

Proof. Suppose that η = x∗(ξ) is the solution of (1.1). For all monotonically
increasing and concave utility functions U , the function V (y) = −U(−y) is convex
and monotonically increasing. Since (η, ξ) 7→ V (H(η, ξ)) is convex, by Jensen’s in-
equality E[V (H(η, ξ)] ≥ V (H(E(η),Eξ)). Let x+ = E(η) = E(x∗(ξ)) (a deterministic
function); then

E[U(−H(x∗(ξ), ξ)] ≤ U(−H(x+,Eξ))

and therefore by assumption R[H(x∗(ξ), ξ)] ≥ R[H(x+,Eξ)]. By Theorem 1, the
solution of the expectation-reduced can be found among deterministic functions and
therefore

v∗(P) = R[H(x∗(ξ), ξ)] ≥ R[H(x+,Eξ)] ≥ v∗(PE(ξ)),

which is the asserted relation.

3If the functional is expected disutility, i.e., R(Y ) = E[V (Y )], then it is affine linear and a fortiori
concave in P .
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Remark. Notice that the functional R(Y ) = E[V (Y )] with a monotonically in-
creasing and convex function V satisfies the conditions of the lemma, since y 7→
−V (−y) is monotonically increasing and concave.

Example 3.4. The convexity of (x, ξ) 7→ H(x, ξ) is, for instance, ensured in the
following decision model with random costs ct and random right-hand side ht in the
linear constraints. Suppose that the problem is formulated as

min {c0(x0) + Eξ1 [min c1(x1, ξ1) + Eξ2 [min c2(x2, ξ2)

+ EξT [· · ·+ E [min cT (xT , ξT )] . . . ]]] : x ∈ X} ,

where the feasible set X is given by

W0x0 ≥ h0

A1 x0 +W1 x1 ≥ h1(ξ1)

A2 x1 +W2 x2 ≥ h2(ξ2)

...

AT xT−1 +WT xT ≥ hT (ξT )(3.3)

x1 C F1

...

xT C FT .

Introducing the indicator function

ψX(x) =

{
0 if x ∈ X,
∞ otherwise

one may identify the cost function H(x, ξ) as

H(x, ξ) = c0x0 + c1(x1, ξ1) + · · ·+ cT (xT , ξT ) + ψW0x0≥h0
+ ψA1 x0+W1 x1≥h1(ξ1)

+ · · ·+ ψAT xT−1+WT xT≥hT (ξT ).

Notice that E[ψAt xt−1+Wt xt≥ht(ξt)] < ∞ only if At xt−1 + Wt xt ≥ ht(ξ1) almost
surely.

Lemma 3.5. If the functions (xt, ξt) 7→ ct(xt, ξt) as well as the functions ξt 7→
ht(ξt) are convex, then (x, ξ) 7→ H(x, ξ) is convex.

Proof. This follows from the fact that {(xt, xt−1, ξt) : Atxt−1 + Wtxt ≥ ht(ξt)}
are convex sets.

Example 3.6. If c(x, ξ) is not convex in both variables, but just in x and ξ sepa-
rately, no relation between the original problem and the expectation-reduced problem
holds. As a simple example, take the problem

min{ξ · x : ξ ≤ x ≤ 1}

with ξ ∼ Uniform[0, 1]. Then

1

3
= Eξ2 = E[min{ξ · x : ξ ≤ x ≤ 1}] < min{Eξ · x : Eξ ≤ x ≤ 1} =

1

4
.
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On the other hand, for the problem

min{−ξ · x : −ξ ≤ −x ≤ 0}

we get

−1

3
= −Eξ2 = E[min{−ξ ·x : −ξ ≤ −x ≤ 0}] > min{−Eξ ·x : −Eξ ≤ −x ≤ 0} = −1

4
.

Notice that c(ξ) = ξ or c(ξ) = −ξ and h(ξ) = ξ or h(ξ) = −ξ are convex in ξ, but
(x, ξ) 7→ ξ · x or (x, ξ) 7→ −ξ · x are not convex in both variables jointly.

4. Upper bounds by inserting (sub)solutions. Solving a real-world stochas-
tic program is often prohibitive from a computational point of view. Many problems
have a long planning horizon, which entails serious tractability issues. In such cases,
a typical way out is to solve simpler problems by considering simpler stochastic tree
models and then fixing the decisions (starting from the root) in the full stochastic pro-
gram. In these cases it is relevant for decision makers to know how well the solution
of a simplified problem performs compared to the corresponding full-size problem.
Even in cases where the full stochastic program is not solvable, one may try to solve
simpler problems for finding upper bounds and proceed to find tighter bounds, if the
gap between the lower and the upper bound is too large.

In this section we revise and extend different procedures to derive upper bounds of
the optimal objective function. In general upper bounds are obtained by constraining
(some or all) the decision variables to be equal to predetermined fixed values, like
the expected value solution, the reference scenario solution, or the optimal first stage
decision of a group subproblem. From an algorithmic perspective, these approaches
requires us to solve problems with smaller dimension than the original one, which is
a computational advantage.

Denote by v(P, x) the value of the objective; when the decision x is inserted

v(P, x) = RP[H(x, ·)].

Since any decision x cannot be better than the optimal decision, we have

v(P, x) ≥ v∗(P), x ∈ X.

Inserting a fixed decision x+
0:t−1 for times 0, . . . , t−1 and optimizing only the decisions

for times t, . . . , T is denoted by

(4.1) v∗(P, x+
0:t−1) = min

{
RP[H([x+

0:t−1, xt:T ], ·)] : xt:T C Ft:T
}
.

The following relation holds true.

Theorem 4.1.

(4.2) v(P, x+
0:T−1) ≥ v∗(P, x+

0:t−1) ≥ v∗(P).

Proof. Since the feasible region of v(P, x+
0:T−1) is obviously smaller than the one

of v∗(P, x+
0:t−1), t = 0, . . . , T − 2, which in turn is smaller than the one of v∗(P), the

relation is obviously satisfied.

Special cases of the concept discussed above are represented by the following class
of measures as already introduced in [11] in the linear case.
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Definition 4.2. By denoting x̄0:t−1, for times 0, . . . , t − 1, the optimal solution
of the expectation-reduced problem (3.1), the expected result at stage t of the expected
value solution, EEV t (t = 1, . . . , T ), is defined as

(4.3) EEV t = v∗(P, x̄0:t−1) = min {RP[H([x̄0:t−1, xt:T ], ·)] : xt:T C Ft:T } .
See [5] for an alternative definition.

Because of relation (4.2), we have

(4.4) EEVt+1 ≥ EEV t ≥ v∗(P), t = 1, . . . , T − 1.

Similarly, we have the following.

Definition 4.3. MEVRS t (t = 1, . . . , T ), defined as

(4.5) MEVRS t = v∗(P, x+ωi
0:t−1) = min

{
RP[H([x+ωi

0:t−1, xt:T ], ·)] : xt:T C Ft:T
}
,

is obtained by inserting the optimal solution x+ωi
0:t−1 until stage t−1 of the deterministic

problem under a reference scenario ωi ∈ NT .

It is worth pointing out that the problems EEVt and MEVRS t, t = 1, . . . , T ,
could be infeasible since too many variables are fixed to their deterministic solution
values. In this case no valid upper bounds can be obtained. However, even when the
difference v∗(P, x̄0:t−1)−v∗(P) is large or in the extreme case infinite, the deterministic
solution could still carry useful information for the stochastic one. This is evaluated
by the multistage expected skeleton solution value MESSV t, t = 1, . . . , T , from [10]
and [11] based on the following procedure:

1. fix at zero (or at the lower bound) all the variables which are at zero (or at
the lower bound) in the expected value model;

2. solve the related stochastic program.
MESSVt is defined as follows.

Definition 4.4. By denoting x̄0
0:t−1 for stages 0, . . . , t − 1, the optimal solu-

tion variables which are at zero or at their lower bound in the expectation-reduced
problem (3.1), the multistage expected skeleton solution value at stage t, MESSVt

(t = 1, . . . , T ), is given by

(4.6) MESSV t = v∗(P, x̄0
0:t−1) = min

{
RP[H([x̄0

0:t−1, xt:T ], ·)] : xt:T C Ft:T
}
.

Again

(4.7) MESSVt+1 ≥ MESSV t, t = 1, . . . , T − 1.

Such sequences of upper bounds allow us to understand why deterministic solutions
do not perform well. Sometimes the deterministic model selects the wrong positive
variables and sometimes the choice of out-of-basis variables is fine, but the values
are off.

First-stage solutions can also be fixed to values derived from other types of simpli-
fied problems, like pair subproblems described before. This is the case of the MEPEV,
as introduced in [11] in the linear case.

Definition 4.5. Let x+i(2)

0:0 be the optimal first-stage decision to the pair subprob-

lem v∗(P
(2)
i ), i 6= 1; then MEPEV is defined as follows:

MEPEV := min
i 6=1

v∗(P, x+i(2)

0:0 )

= min
i 6=1

min
{
RP[H([x+i(2)

0:0 , x1:T ], ·)] : x1:T C F1:T

}
.(4.8)
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MEPEV represents the minimum optimal value among those obtained by solving
the original stochastic program (1.1), using the optimal first-stage solution of each

pair subproblem v∗(P
(2)
i ), i 6= 1. As a consequence of (4.2), the following chain of

inequalities holds true.

Theorem 4.6.

(4.9) v∗(P) ≤MEPEV ≤MEV RS1 ≤ · · · ≤MEV RS T .

Proof. See Theorem 4.1 for the proof.

The MEPEV definition can be generalized by considering the optimal first-stage

decision to other subproblems v∗(P
(j)
i ), i 6= 1, introduced in section 2.

Definition 4.7. Let x+i(j)

0:0 be the optimal first-stage decision to the subproblem

v∗(P
(j)
i ); then MESEVj is defined as follows:

MESEVj := min
i
v∗(P, x+i(j)

0:0 )

= min
i

min
{
RP[H([x+i(j)

0:0 , x1:T ], ·)] : x1:T C F1:T

}
.(4.10)

MESEVj represents the minimum optimal value among those obtained by solving
the original stochastic program (1.1), using the optimal first-stage solution of each

subproblem v∗(P
(j)
i ), j 6= i. For all these subproblems

v∗(P) ≤MESEV j .

Finally, we study the quality of the upper bound if first-stage decisions are fixed
to the values of the first-stage solutions of a smaller subproblem defined below. To
this end, we refer to the following well-known theorem.

Theorem 4.8 (Pflug and Pichler [17]). Let P ∼ (Ω,F, P, ξ) be a tree model with

filtration F and P̃ ∼ (Ω̃, F̃, P̃ , ξ̃) be an alternative tree model of the same height with
filtration F̃. The nested distance between P and P̃ is defined as

(4.11) d(P, P̃) = inf
π

∫∫
‖ξ(ω)− ξ̃(ω̃)‖ π(dω,dω̃),

where π is a probability measure with (conditional) marginals P and P̃ , i.e.,

π
(
A× Ω̃|Ft ⊗ F̃t

)
= P

(
A|Ft

)
and

π
(
Ω×B|Ft ⊗ F̃t

)
= P̃

(
B| F̃t

)
, t = 0, . . . T,

where A ∈ FT and B ∈ F̃T and Ft ⊗ F̃t represents the product of sigma algebras.
Consider the multistage stochastic optimization problem

(4.12) v∗(P) := inf {EPH(ξ, x) : xC F, x ∈ X} ,

where X is convex and L is convex in x for any ξ fixed, and Lipschitz with constant
L in ξ for any x fixed. Let x̃∗ be a solution of

(4.13) v∗(P̃) := inf
{
EP̃H(ξ, x) : xC F̃, x ∈ X

}
,

and let x+(ξ) = Eπ(x̃∗|ξ), where π is the optimizing measure is (4.11). Then x+ is
an approximate solution of (4.12) in the sense that

0 ≤ v(P, x+)− v∗(P) ≤ L · d(P, P̃).
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Proof. See [17] for the proof.

Based on this theorem we may formulate the following corollary.

Corollary 4.9. Let the assumptions of the previous theorem be fulfilled. Let x̃∗0
be the first-stage decision of the simpler problem (4.13). Fixing this solution as the
first-stage decision of the original problem (4.12) we get

v∗(P) ≤ v(P, x̃∗0) ≤ v∗(P) + L · d(P, P̃).

Proof. Since the first-stage decisions are always deterministic, we have that x+
0 =

x̃∗0, and therefore v(P, x̃∗0) = v(P, x+
0 ) ≤ v(P, x+) ≤ v∗(P) + L · d(P, P̃).

5. Case study: A multistage inventory problem. This section presents a
simple multistage inventory problem adopted to test the bounds introduced before.
The problem can be summarized as follows. Random demands have to be satisfied
from an inventory. If the demand exceeds the stock, it will be satisfied by rapid orders
from a different source, which come at a higher price. At each time step (stage), orders
can be placed, and they will be delivered one period later. The objective is to minimize
the expected disutility of the total costs where profits are considered as negative costs.
Demands are the only random quantities in the model and all financial quantities are
assumed to be already discounted to the present.

We introduce the following notation:
Deterministic parameters:
bt the buying price at time t = 0, . . . , T − 1
st the selling price at time t = 1, . . . , T
ht the inventory holding costs from time t to time t+ 1
ct the procurement costs for extra stock from another retailer at t = 1, . . . , T
d the final value of the inventory
ζ0 the initial stock value

Stochastic scenario process:
ξt the demand at time t = 1, . . . , T (the random scenario process)

Stochastic decision variables:
xt ≥ 0 the order sizes at time t = 0, . . . , T − 1

Derived variables:
ζt the stock after all sales are effectuated at t = 1, . . . , T

If ζt is positive (i.e., ζt = [ζt]+), then [ζt]+ is the amount of stock which will
be carried to the next time step. If ζt is negative (i.e., ζt = −[ζt]−), then the extra
procurement costs of ct[ζt]− occur at time t and no stock has to be stored until the
next time step. The initial stock ζ0 is fixed at a given value. The final stock is valuated
with the value d[ζT ]+.

The cost function is

(5.1)

T−1∑
t=0

bt · xt +

T∑
t=1

ct · [ζt]− +

T−1∑
t=0

ht · [ζt]+ −
T∑
t=1

st · ξt − d · [ζT ]+,

and the constraints are

xt−1 + [ζt−1]+ − ξt = ζt = [ζt]+ − [ζt]−, t = 1, . . . , T,(5.2)

[ζt]+ ≥ 0, t = 1, . . . , T,(5.3)

[ζt]− ≥ 0, t = 1, . . . , T.(5.4)
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The first sum in the cost function (5.1) denotes the expected buying cost, while the
second sum represents the procurement costs for extra stock from another retailer,
the third term is the inventory holding cost between two consecutive periods, and the
last two terms are the profits respectively from selling and for the final value of the
inventory. Finally the constraints (5.2), (5.3), and (5.4) define the decision variables
of the problem and the relation among them.

The objective function is

min

{
E

[
V

(
T−1∑
t=0

bt · xt +

T∑
t=1

ct · [ζt]− +

T−1∑
t=0

ht · [ζt]+ −
T∑
t=1

st · ξt − d · [ζT ]+

)]}
,

where V is a convex disutility function, which we choose as

V (y) =

{
y1+δ if y ≥ 0,
y if y < 0

for a δ > 0.

5.1. Computation of bounds for a multistage inventory problem. This
section presents some computational tests on the multistage inventory problem.

For this purpose, we consider the scenario tree structure presented in Figure 5.1,
with the demand process shown in Figure 5.2: this is a six-stage tree with 5 branches
from the root, 4 from each of the second-stage nodes, 3 from each of the third-stage
nodes, 3 from each of the fourth-stage nodes, and 3 from each of the fifth-stage nodes,
resulting in k = 5 × 4 × 3 × 3 × 3 = 540 scenarios and 806 nodes. We adopt it as a
benchmark to evaluate the cost of optimal solutions obtained using the other reduced
scenario trees.

0 1 2 3 4 5

Fig. 5.1. Scenario tree structure adopted for the full multistage stochastic inventory problem
with k = 540 scenarios.
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Table 5.1
Buying price bt, selling price st, inventory holding cost ht from time t to time t + 1, and

procurement cost ct for extra stock from another retailer at time period t.

t bt st ht ct
0 3.5 - 2 -
1 3.6 10.7 1.9 8
2 2.3 10.5 2.1 8.1
3 2.8 10.9 2.2 7.9
4 3 10.6 2.1 7
5 - 10 - 7.5

0 1 2 3 4 5
30

40

50

60

70

80

90

100

110

Fig. 5.2. Scenario tree structure with k = 540 scenarios, generated on the basis of a time-
inhomogeneous exponential autoregressive AR(1) model, with demand values ξt, t = 0, . . . , 5, repre-
sented as y-values.

The scenario tree has been generated in MATLAB on the basis of a time-inhomogeneous
exponential autoregressive AR(1) model for the demand process ξt, t = 1, . . . , 6,

(5.5) ξt = ec+ϕξt−1+εt ,

with c = 0, ϕ = 0.8√
t+1

, εt = 1−0.8√
t+1
N (4, 0.32) and N (4, 0.32) represents a normally

distributed random variable with mean parameter µ = 4 and standard deviation
parameter σ = 0.3.

The value of the process at the root is ξ0 = 65. The final value of the inventory
is d = 2 per unit, the initial stock value is ζ0 = 2. V (y) was chosen as y2 and values
of buying price bt, selling price st, inventory holding cost ht, and procurement cost ct
at time period t are presented in Table 5.1.

The nonlinear problems derived from our case study have been formulated in
AMPL and solved using a MOSEK solver by an interior point algorithm. All the
computations have been performed on a 64-bit machine with 12 GB of RAM and an
Intel Core i7-3520M CPU 2.90 GHz processor.

Summary statistics on the size of the optimization problems that AMPL generates
are reported in Tables 5.2, 5.3, 5.4, and 5.5 for the six-stage case.

The full stochastic problem is composed by 4304 scalar variables and 2693
constraints.
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Table 5.2
Refinement chain of lower bounds made with disjoint subsets for the multistage inventory prob-

lem with k = 540 scenarios.

j # subproblems s Objective value CPU s per subproblem
1 540 v∗1 = −2198.81 0.066
5 108 v∗5 = −2193.31 0.0705
20 27 v∗20 = −2162.65 0.0825
60 9 v∗60 = −2138.17 0.108
180 3 v∗180 = −2114.67 0.176
540 1 v∗ = −2096.66 0.31

Table 5.3
Refinement chain of lower bounds obtained by keeping the first scenario fixed in all subsets Ω

(j)
i

for the multistage inventory problem with k = 540 scenarios.

j f # subproblems s Objective value CPU s per subproblem
2 1 539 v∗2 = −2198.77 0.068
8 1 77 v∗8 = −2165.61 0.072
12 1 49 v∗12 = −2157.53 0.077
50 1 11 v∗50 = −2125.75 0.091
78 1 7 v∗78 = −2120.92 0.135
540 1 1 v∗ = −2096.66 0.31

Table 5.4
Refinement chain of lower bounds obtained by keeping the first eight scenarios fixed in all subsets

Ω
(j)
i for the multistage inventory problem with k = 540 scenarios.

j f # subproblems s Objective value CPU s per subproblem
9 1-8 532 v∗9 = −2198.37 0.065
10 1-8 266 v∗10 = −2189.3 0.071
12 1-8 133 v∗12 = −2176.85 0.073
15 1-8 76 v∗15 = −2165.47 0.079
22 1-8 38 v∗22 = −2152.49 0.075
27 1-8 28 v∗27 = −2145.58 0.080
36 1-8 19 v∗36 = −2139.86 0.09
46 1-8 14 v∗46 = −2132.18 0.104
84 1-8 7 v∗84 = −2119.82 0.135
141 1-8 4 v∗141 = −2114.75 0.195
274 1-8 2 v∗274 = −2104.86 0.202
540 1-8 1 v∗ = −2096.66 0.31

We construct refinement chains keeping one or several scenarios fixed in all subsets

Ω
(j)
i or choosing them disjoint as described in section 2.

We arbitrarily choose the first f scenarios in the set of available scenarios as
fixed for all instances. For any given group size j, choosing alternative fixed scenarios
can potentially change the sequence of refinements. Knowledge of special structure
in a particular instance may lead to better choices of the f fixed scenarios and it is
desirable.

Tables 5.3–5.4 provide detailed results obtained respectively by keeping fixed the

first and the first eight scenarios in all subsets Ω
(j)
i , i = 1, . . . , s.

Figure 5.3 refers to the results of Table 5.2 for increasing values of complexity of
the calculation measured in CPU seconds. The refinement chain has been constructed
choosing disjoint subsets Ω

(j)
i , i = 1, . . . , s, and following the structure of the scenario

tree: 5 branches from the root, 4 from each of the second-stage nodes, 3 from each of



BOUNDS FOR MULTISTAGE STOCHASTIC PROGRAMS 847

0.00 0.05 0.10 0.15 0.20 0.25 0.30
-5

-4

-3

-2

-1

0

CPU seconds

P
er

ce
n

ta
g

e
d
ev

ia
ti

o
n

fr
o

m
th

e
o

p
ti

m
al

o
b

je
ct

iv
e

v
al

u
e

R
P

Fig. 5.3. Percentage deviation from the optimal objective value v∗ of refinement chain reported
in Table 5.2 for increasing values of complexity of calculation measured in CPU seconds.

the third-stage nodes, 3 from each of the fourth-stage nodes, and 3 from each of the
fifth-stage nodes, resulting in k = 5× 4× 3× 3× 3 = 540 scenarios.

The first bound v∗1 in the chain has been obtained by solving all 540 scenario
subproblems independently and taking their mean, v∗5 by considering 180 subproblems
made by 5 equidistant scenarios from the five branches in the root, v∗20 by taking 27
subproblems made by 20 equidistant scenarios from the branches at the second stage,
v∗60 by taking 9 subproblems made by 60 equidistant scenarios from the branches at
the third stage, v∗180 by taking 3 subproblems made by 180 equidistant scenarios from
the branches at the fourth stage, and finally the 540 scenarios all together. In this
case the refinement chain corresponds to a filtration.

Figures 5.4–5.5 show the percentage deviation of refinement chains reported in
Tables 5.3–5.4 for increasing values of complexity of calculation measured in CPU
seconds. Figure 5.4 refers to the case of one scenario (f = 1) fixed in all sub-

sets Ω
(j)
i and Figure 5.5 to the case of eight scenarios (f = 8) fixed in all subsets

Ω
(j)
i . The cardinality j of each subset in the chain has been chosen to have the ratio

540−f
j−f = s an integer. For instance, with f = 1 the cardinality of each subprob-

lem in the chain can take only the values j = 2, 8, 12, 50, 78, 540, or with f = 8,
j = 9, 10, 12, 15, 22, 27, 36, 46, 84, 141, 274, 540.

From the results we observe that v∗j improves monotonically with the number of
scenarios j of each subproblem (for a fixed number f of fixed scenarios), as proved
in (2.8). As expected the worst lower bound in the refinement chains is given by v1,
which underestimates the optimal value by 4.87% but requires the lowest CPU time
per subproblem (0.066 CPU seconds over 30 runs).

Increasing the group size j in the refinement chain and keeping f fixed significantly
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Fig. 5.4. Percentage deviation from the optimal objective value v∗ of refinement chain reported
in Table 5.3 for increasing values of complexity of calculation measured in CPU seconds.

improves the bounds in both construction types, monotonically reaching lower values
of percentage deviation. The time required to solve the subproblems in the chain
monotonically increases with the dimension of each subproblem reaching the highest
value for the biggest scenario tree considered (j = 540).

Notice that the same lower bound can be obtained in several ways, keeping fixed a
different number of scenarios. This is the case, for example, of lower bound v∗12 which
can be obtained with one fixed scenario and eleven free (see Table 5.3) or with 8 fixed
scenarios and 4 free (see Table 5.4). In case of one fixed scenario, v∗12 is obtained by
solving 49 subproblems and it achieves a negative percentage deviation of only 2.9033.
In the case of 8 fixed scenarios, the negative percentage deviation increases to 3.8246
and is obtained by solving a much larger number of subproblems, i.e., 133. Thus we
can deduce that better lower bounds are obtained by keeping low the number f of
fixed scenarios in all subsets.

Table 5.5 shows the comparison between the stochastic, the expected value so-
lution, and upper bounds by inserting (sub)solutions for the multistage inventory
problem, in terms of first-stage decision variables, total cost, and CPU seconds. In-
equality (3.2) is verified as well as (4.4), where EEV t, t = 1, . . . , 5, is obtained by
fixing the stochastic variables until stage t is equal to the expected value solution (see
Figure 5.6). Results show that the best upper bound in terms of percentage devia-
tion versus CPU time is given by EEV 1. The worst upper bound is given by EEV 5

overestimating the optimal value by 1.69% but with the lowest CPU time since the
dimension of the problem is smaller (0.19 CPU seconds over 30 runs). All EEV t

computations take less time compared to the full stochastic problem.
In this example upper bounds defined by formulas (4.8) and (4.10) are sharp,

since they correspond exactly to v∗, but are very expensive in terms of running time
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Fig. 5.5. Percentage deviation from the optimal objective value v∗ of refinement chain reported
in Table 5.4 for increasing values of complexity of calculation measured in CPU seconds.

Table 5.5
Comparison between the stochastic solution, the expected value solution, and upper bounds by

inserting (sub)solutions for the multistage inventory problem (k = 540 scenarios).

Problem type x0 [ζ0]+ [ζ0]− ζ0 Objective value CPU s
v∗(PE(ξ)) 61.4188 2 0 2 −2199.70 0.02
v∗(P) 63.8405 2 0 2 −2096.66 0.31
EEV 1 = v∗(P, x̄0:0) 61.4188 2 0 2 −2095.67 0.2486
EEV 2 = v∗(P, x̄0:1) 61.4188 2 0 2 −2093.35 0.2294
EEV 3 = v∗(P, x̄0:2) 61.4188 2 0 2 −2083.58 0.2205
EEV 4 = v∗(P, x̄0:3) 61.4188 2 0 2 −2071.34 0.2122
EEV 5 = v∗(P, x̄0:4) 61.4188 2 0 2 −2061.03 0.1923
MEPEV 63.8405 2 0 2 −2096.66 56.69
MESEVj 63.8405 2 0 2 −2096.66

(56.59 CPU seconds for MEPEV).
MEPEV = MESEVj = v∗ means that among all the subproblems considered

for the computation of v∗j , there exists at least one with optimal first-stage solution
equal to the optimal first-stage stochastic solution. The high computational cost of
such approaches is due to the comparison of the objective function of the full stochas-
tic problem with first-stage solution fixed from each of the subproblems considered.
MEPEV should then be considered as an alternative to EEV t upper bounds only in
the case that their distance in terms of total cost from v∗ remains high, which is not
the case of the example analyzed here.

Now we consider the case of a problem that is too large to be solved exactly. This
is the typical situation in which most modelers would actually resort to the bounding
methods described in this paper.
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Fig. 5.6. Percentage deviation from the optimal objective value v∗ of upper bounds EEV t,
t = 1, . . . , 5, reported in Table 5.5 for increasing values of complexity of calculation measured in
CPU seconds in the case of a six-stage scenario tree with k = 540 scenarios.

Table 5.6
Buying price bt, selling price st, inventory holding cost ht from time t to time t + 1, and

procurement cost ct for extra stock from another retailer at time period t in the case of a scenario
tree with 10 stages, 725,760 scenarios, and 1,262,417 nodes.

t bt st ht ct
0 3.5 - 2 -
1 3.6 10.7 1.9 8
2 2.3 10.5 2.1 8.1
3 2.8 10.9 2.2 7.9
4 3 10.6 2.1 7
5 3.1 10 2.3 7.5
6 3.2 10.4 1.8 7.3
7 3.7 10.3 1.9 7.7
8 4 10.8 2.1 8.1
9 - 10.9 - 7.5

For this purpose, we consider a larger scenario tree structure given by a ten-stage
tree with 8 branches from the root, 7 from each of the second-stage nodes, 6 from
each of the third-stage nodes, 6 from each of the fourth-stage nodes, 5 from each of
the fifth-stage nodes, 4 from each of the sixth-stage nodes, 3 from each of the seventh-
stage nodes, 3 from each of the eight-stage nodes, and 2 from each of the ninth-stage
nodes, resulting in k = 8 × 7 × 6 × 6 × 5 × 4 × 3 × 3 × 2 = 725,760 scenarios and
1,262,417 nodes. We use it as a benchmark to evaluate the cost of optimal solutions
obtained using the other reduced scenario trees.

The scenario tree has been generated as in the previous case with exception of
the following values: the value the process at the root was ξ0 = 60, and δ was set
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Table 5.7
Refinement chain of lower bounds made with disjoint subsets for the multistage inventory prob-

lem with k =725,760 scenarios.

j # subproblem s Objective value CPU s subprob. CPU s procedure
8 90720 v∗8 = −3967.61 0.0287 2612.29
56 12960 v∗56 = −3941.06 0.0539 698.71
336 2160 v∗336 = −3921.15 0.1990 430.011
2016 360 v∗2016 = −3902.77 0.9385 337.89
10080 72 v∗10080 = −3884.23 5.4852 394.94
40320 18 v∗40320 = −3869.42 27.4512 494.123
120960 6 v∗120960 = −3857.06 166.5516 999.31
362880 2 v∗362880 = −3842.61 1274.424 2548.848
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Fig. 5.7. Total costs of refinement chain of lower bounds reported in Table 5.7 for increasing
values of complexity of calculation measured in CPU seconds in the case of the 10-stage scenario
tree with k = 725, 760 scenarios.

to 3. The values of buying price bt, selling price st, inventory holding cost ht, and
procurement cost ct at time period t are presented in Table 5.6.

We again use the AMPL environment with the MOSEK solver on a 64-bit machine
with 12 GB of RAM and an Intel Core i7-3520M CPU 2.90 GHz processor.

Summary statistics on the size of the optimization problems that AMPL generates
are reported in Table 5.7 and Figure 5.7 for the ten-stage case.

The full stochastic problem is composed of 6,501,188 scalar variables and 3,976,355
constraints.

We construct refinement chains, choosing them disjoint as described in section 2.
Figure 5.7 refers to the results of Table 5.7 for increasing values of complexity

of calculation measured in CPU seconds. The refinement chain has been constructed
choosing disjoint subsets Ω

(j)
i , i = 1, . . . , s, and following the structure of the scenario

tree: 8 branches from the root, 7 from each of the second-stage nodes, 6 from each of
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Table 5.8
Expected value solution and upper bounds EEV t, t = 8, 9 by inserting (sub)solutions for the

multistage inventory problem until stage t, in the case of the 10-stage scenario tree with k =725,760
scenarios.

Problem type Objective value CPU s
v∗(PE(ξ)) −3986.71 0.09

EEV 8 = v∗(P, x̄0:8) −3543.16 2412.51
EEV 9 = v∗(P, x̄0:8) −3483.56 4254.97

the third-stage nodes, 6 from each of the fourth-stage nodes, 5 from each of the fifth-
stage nodes, 4 from each of the sixth-stage nodes, 3 from each of the seventh-stage
nodes, 3 from each of the eight-stage nodes, and 2 from each of the ninth-stage nodes,
resulting in k = 8× 7× 6× 6× 5× 4× 3× 3× 2 = 725,760 scenarios.

The first measure v∗8 in the chain has been obtained by solving 90,720 scenario
subproblems independently and taking the expectation, v∗56 by considering 12,960
subproblems made by 56 equidistant scenarios from the eight branches in the root,
v∗336 by considering 2160 subproblems made by 336 equidistant scenarios from the
branches at the second stage, v∗2016 by considering 360 subproblems made by 2016
equidistant scenarios from the branches at the third stage, and so on until v∗362880,
obtained by considering 2 subproblems made by 362,880 equidistant scenarios from
the branches at the ninth stage. The full problem was unsolvable with the above
specified computing environment.

From the results we observe that v∗j improves monotonically with the number
of scenarios j of each subproblem, as proved in (2.8). As expected the worst lower
bound in the refinement chains is given by v8 but requires the lowest CPU time per
subproblem (0.0287 CPU seconds).

As expected, the bounds improve by increasing the group size j in the refinement
chain, with a difference between the first and last bounds in the chain v∗362880 −
v∗8 = 125 (= 3.25% v∗362880). Since the exact value of the full stochastic problem is
not available, values of percentage deviations with respect to it cannot be explicitly
computed. However, the best calculated lower bound obtained is given by v∗362880 but
with the largest CPU time per subproblem.

The last column of Table 5.7 reports the CPU seconds for the computation of the
bounds sequentially. Evaluating the numerical results from the experimental setting
considered, it appears to be more convenient to solve s = 360 subproblems with
j = 2016 and a time of 337.89 CPU seconds than to calculate the bounds obtained
with a lower subproblem cardinality (j < 2016), which is also further away from the
optimum. Increasing the subproblem cardinality j leads to tighter and tighter bounds
as predicted, but at a cost of increasing CPU times.

Another lower bound can be obtained from the expected value problem v∗(PE(ξ)) =
−3986.71 (see Table 5.8), which is still worse than v∗8 but solved with a computational
time of only 0.09 CPU seconds.

Table 5.8 also shows upper bounds for the multistage inventory problem with
k=725,760 scenarios in terms of total cost and CPU seconds. The only upper bounds
that we were able to calculate were EEV t, t = 8, 9, obtained by fixing all the variables
until stage t at the expected value solution, reducing the number of free nodes to
1,088,640 for t = 8 and to the number of scenarios for t = 9, i.e., 725,760. All the
other proposed upper bounds EEV t, t = 1, . . . , 7, MEPEV, and MESEVj go out of
memory because the number of fixed variables from the expected value solution is not
enough to reduce the dimension of the scenario tree to a computationally tractable
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size. The difference between the best upper and lower bounds obtained, EEV8 and
v∗362880, respectively, is 299.45 (7.79% v∗362880) and gives information about the range
where we should expect to find the total cost of the full stochastic problem that we
are not able to compute.

6. Complexity considerations. In the previous section we demonstrated that
the calculation of lower bounds requires the solution of many independent problems
of smaller size. Since the complexity of a stochastic program grows superlinearly with
the number of nodes of the scenario tree, this may result in a considerable reduction
of complexity compared to the solution of the full problem, even if the subproblems
are all solved sequentially.

To illustrate this, assume that c(n) denotes the worst case execution complexity
of a tree structured stochastic program with n nodes, denoted from now on with
P. Suppose that the tree has branching factor b, i.e., b = 2 for binary trees, b = 3
for ternary trees, and so on. For a tree with height T , the number of scenarios is
|Ω| = k = bT and the number of nodes is |N| = (bT+1−1)/(b−1). If the subproblems

Ω
(j)
i = {ω1, . . . , ωf , ωf+(i−1)·x+1, . . . , ωf+i·x}, i = 1, . . . , s,

are based on j leaf nodes, out of which f are kept fixed, with x = j − f > 0, one

has to solve s = (bT − f)/(j − f) of them, where each subproblem Ω
(j)
i has at most
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Fig. 6.1. The complexity ratio given by (6.1) using (6.2) for various values of the branching
factor b and the tree height T . Here the number of leaf nodes for each subproblem is j = 2 and there
are no fixed scenarios among the subproblems, f = 0.
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Fig. 6.2. A similar picture as Figure 6.1, but with the choice of 10 leaf nodes for each subprob-
lem, j = 10, and one fixed scenario f = 1.
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Fig. 6.3. The complexity ratio given by (6.1) using (6.2) for various values of the branching
factor b and the tree height T . Here the number of leaf nodes for each subproblem is j = 10 and
there are no fixed scenarios among the subproblems, f = 0.

|N(j)
T | = jT + 1 nodes. Let P(j) the problem obtained by solving Ω(j) = {Ω(j)

i |i =
1, . . . , s}, with associated lower bound v∗j . Its complexity is then given by

c(P(j)) = c(jT + 1) · b
T − f
j − f

and the ratio between the worst case complexities of the lower bound calculation P(j)

and the full stochastic problem P is

(6.1)
c(P(j))

c(P)
=

c(jT + 1)

c((bT+1 − 1)/(b− 1))
· b
T − f
j − f

.

As an example of a concrete function for c(·) we assume for simplicity that the stochas-
tic program is linear with just one decision variable and one linking constraint per
node. If this program is solved by interior point method, then we may use the com-
plexity function

(6.2) c(n) = O(L · n3/log(n))

given by Anstreicher [1], with L being the data bit size. Inserting (6.2) into (6.1) (with
L = 1), one gets the ratio behaviors shown in Figures 6.1, 6.2, and 6.3, which go fast
to zero for large T , showing the advantage of the proposed procedure. Figures 6.2 and
6.3 exhibit the fact that for small b and T , this ratio may even be larger than one.

7. Conclusions. This paper presents strategies to calculate lower and upper
bounds for multistage stochastic programs in both the linear and the nonlinear case.

Lower bounds to the optimal solution have been found by relaxation of some con-
straints and upper bounds by inserting feasible solutions derived by simpler problems.

We introduced lower bounds to the optimal solution by changing the probability
measure P (see section 2) or by replacing the scenario process by its expectation
(see section 3). In the first case, each lower bound has been calculated by solving
group subproblems formed by choosing disjoint scenarios or by keeping some scenarios
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fixed in all subproblems. The monotonicity of the chain of lower bounds in terms of
the cardinality of subproblems has been proved as a consequence of the concavity of
the probability mapping P 7→ v∗(P ) (see Lemma 2.1).

Different upper bounds by inserting (sub)solutions are also analyzed and com-
pared in section 4.

The proposed approach has the important advantage of dividing a given problem
into subproblems, the solution of which may easily be parallelized with a good speed-
up factor due to their independence. Note that lower bounds typically do not lead to
feasible solutions of the basic problem, but a small gap between an upper bound (with
feasible solution) and a lower bound indicates a nearly optimal solution. Numerical
results obtained applying the proposed methodology to a large-scale nonlinear multi-
stage inventory problem have been presented, considering two data sets: one in which
the full stochastic problem could be solved and one in which computational difficulties
made such solution impossible. Complexity considerations for the computation of the
proposed bounds as function of tree depth and branching factor are also discussed.
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