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Abstract

Solving the road congestion problem is one of the major issues in modern cities since it
causes time wasting, pollution, higher industrial costs and huge road maintenance costs.
Among possible congestion avoidance methods, traffic assignment is a valuable choice
since it does not involve huge investments to expand the road network. Traffic assignments
are traditionally devoted to two main perspectives on which the well-known Wardropian
principles are inspired : the user equilibrium (user’s perspective) and the system optimum
(system perspective). User equilibrium is a user-driven traffic assignment in which each
user chooses the most convenient path selfishly. It guarantees that fairness among users
is respected since, when the equilibrium is reached, all users sharing the same origin and
destination will experience the same travel time. The main drawback in a user equilibrium
is that the system total travel time is not minimized. On the other hand, the system
optimum is a system-wide traffic assignment in which drivers are routed on the network in
such a way the total travel time is minimized but users might experience travel times that
are higher than the other users travelling from the same origin to the same destination.
Thus, there are drawbacks in using one of the two assignments that can be partially
overcome by applying users’ fairness considerations while minimizing a system-oriented
objective. In the last decade, few attempts have been done to present a users’ needs and
system efficiency trade-off traffic assignment with non-linear programming techniques.
In this thesis linear programming models for a fair and efficient traffic assignment in
congested road networks are presented.
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Introduction

Road congestion is becoming a serious problem in metropolitan areas where the traffic
demand is steadily growing. Congestion is a significant burden in terms of wasted time,
pollution, industrial costs and road maintenance and alleviating traffic volumes will be-
come more and more urgent as the population grows. According to a new report by INRIX
and Centre for Economics and Business Research (CEBR), the annual cost of traffic con-
gestion and gridlocks on individual households and national economies in the U.S., U.K.,
France and Germany will raise to $293 billion dollars in 2030 with a cumulative value of
congestion cost, from now to 2030, near $4.4 trillion. In some cases the road network has
been extended to accommodate the growing demand but this is not always convenient in
terms of costs/benefits trade-off. Regulating congestion without extending the current
road network can be done using Intelligent Transportation Systems (ITS), such as ramp
metering, reversible lanes, limited access roads, bus lanes, carpooling lanes, express toll
lanes, congestion pricing mechanisms, variable message signs, etc., or coordinating traffic
assignment. Traffic assignment concerns assigning paths to users in order to optimize an
objective function depending on the goal the traffic regulator wants to achieve. Traffic
assignment may be dynamic or static. Static traffic assignment is mainly used in study-
ing the rush hour period since, during that period, traffic shows a steady-state behaviour
where the main assumption is that demand is constant over time. When traffic demand
exhibits a time-dependent behaviour only dynamic traffic assignment techniques have to
be considered as reliable. Static traffic assignments are traditionally divided into two
main approaches inspired by the well-known Wardropian principles: the user equilibrium
and the system optimum. User equilibrium is a user-driven traffic assignment in which
each user chooses the most convenient path selfishly. It guarantees that fairness among
users is respected since, when the equilibrium is reached, all users sharing the same ori-
gin and destination will experience the same travel time. The main drawback in a user
equilibrium is that the total travel time is not minimized. On the other hand, the system
optimum is a system-wide traffic assignment in which drivers are routed on the network
in such a way the total travel time is minimized but users might experience travel times
that are higher than the other users travelling from the same origin to the same des-
tination. Thus, there are drawbacks in using one of the two assignments that can be
partially overcome by applying users’ fairness considerations while minimizing a system-
oriented objective. In literature there are a few attempts to overcome the limitations
of the two assignments with non-linear programming techniques. The thesis focuses on
linear programming based methods for coordinated static traffic assignment that consider
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the system perspective while focusing also on users’ fairness. To this aim, in this thesis
two different methodologies will be explained and deeply discussed: the proactive route
guidance approach and the constrained system optimum problem. The former focuses on
minimizing the average inconvenience experienced by users while guaranteeing a maxi-
mum network congestion level as low as possible. The latter focuses on minimizing the
total travel time spent by users on the network. Both methodologies account for users’
fairness by limiting the set of feasible paths for each Origin-Destination (OD) pair to the
ones that do not exceed a fixed percentage of the OD pair shortest path length. The
proposed methodologies differ for the assumptions made since the first one aims at elim-
inating congestion and it assumes that the arc travel time is constant while the second
assumes that arc travel time depends on the flow that is currently traversing the arc. The
thesis is structured as follows. First, a literature review on traffic assignment methods
for the system optimization with users’ fairness constraints is proposed. In the follow-
ing chapters the proactive route guidance approach and the linear constrained system
optimum problem are proposed. Since in solving the proactive route guidance approach
and the linear constrained system optimum an exponential the complete enumeration of
all feasible paths for each OD pair is required, complexity issues due to the exponential
number of paths raise when the instance grows. Thus, for each methodology, a heuristic
algorithm able to generate only a subset of feasible paths and to obtain a near-optimal
solution is proposed. Then, the features of the road network instance generator used for
the computational experiments are described.

0.1 Outline of the thesis

The thesis focuses on linear programming models optimizing the system while considering
users’ fairness. Chapter 1 is devoted to a review of the main traffic assignment models
for the system optimization with users’ fairness constraints. Chapter 2 introduces the
proactive route guidance approach that aims at minimizing the average experienced user
inconvenience while keeping the network uncongested or at the least possible congestion
level. An exact solution method based on a hierarchy of linear programming models and
requiring the complete path enumeration is proposed. In Chapter 3 a heuristic method
able to find a suboptimal solution for the proactive route guidance approach is shown.
In Chapter 4 the constrained system optimum problem aiming at minimizing the total
travel time while choosing only convenient paths is introduced and a linear programming
model, called linear constrained system optimum model, is proposed. In Chapter 5 a
heuristic method able to find a suboptimal solution for the linear constrained system
optimum model is presented. Finally, in Chapter 6 the instance generator, designed and
implemented in order to create instances, has been described.
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0.1.1 Chapter 1: System optimal traffic assignment with users’

constraints: a literature review

Traditionally, traffic assignment has been studied from two points of views: user fairness
and system optimality. User fairness is related to assigning paths to users in such a way
no user will experience a shorter travel time with respect to the other users of the same
OD pair. System optimality is achieved by optimizing the whole network performance
assigning paths to users. Both perspectives present drawbacks and a trade-off between
the two seems to be a valuable way to assign traffic. To this aim, the main attempts in
considering the two perspectives are presented in the literature review.

0.1.2 Chapter 2: Proactive route guidance to avoid congestion

In this chapter the proactive route guidance approach based on linear programming mod-
els is proposed. The system optimality is achieved by minimizing the average inconve-
nience experienced by users while keeping the maximum network congestion level under
the congestion threshold. User fairness is taken into account by limiting the set of avail-
able paths only to paths whose relative increase with respect to the shortest path is
within a pre-definite limit. The proposed approach relies on the complete enumeration of
all feasible paths from origin to destination for each OD pair and the set of available paths
is generated by means of an ad-hoc algorithm. This chapter has given rise to the journal
paper (Angelelli et al. (2016a)) published on Transportation Research B: Methodological.

0.1.3 Chapter 3: Heuristic path generation for the proactive

route guidance approach

The proactive route guidance approach presented in Chapter 2 is based on a complete
enumeration of all feasible paths for each origin-destination pair. When the instance size
grows, the number of generated paths grows exponentially and, at a certain point, the
approach becomes computationally intractable. To overcome this limitation, in Chapter 3
a heuristic path generation method is implemented in order to find a suboptimal solution
of the proactive route guidance approach. Experiments show that the heuristic path
generation produces very small optimality gaps. This chapter has given rise to a paper
(Angelelli et al. (2016c)) that has been submitted for publication.
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0.1.4 Chapter 4: System optimal routing of traffic flows with

user constraints using linear programming

In the literature, the most known attempt to consider users’ fairness while achieving the
system optimality is the constrained system optimum problem. The constrained system
optimum problem consists in minimizing the total travel time spent on the network using
a limited path set containing, for each user, only to paths whose relative increase with
respect to the shortest path is within a pre-definite limit. In the literature, all approaches
to the constrained system optimum are non-linear. In this chapter a linear programming
model to solve the constrained system optimum problem, called linear constrained system
optimum, is presented. This chapter has given rise to a paper (Angelelli et al. (2016b))
that has been submitted for publication.

0.1.5 Chapter 5: Heuristic path generation for the linear con-

strained system optimum model

The linear programming formulation for the constrained system optimum presented in
Chapter 4 is based on a complete enumeration of all feasible paths for each OD pair.
When big size instances are considered, the number of generated paths becomes huge
and, as for the proactive route guidance approach proposed in Chapter 2, the problem
results computationally intractable. In Chapter 5 a heuristic path generation method
is implemented in order to find a suboptimal solution of the linear constrained system
optimum model that drastically reduces time and memory use with respect to the com-
plete enumeration. Experiments show that the heuristic path generation produces very
small optimality gaps. This chapter has given rise to a technical report (Angelelli et al.
(2016d)) and it will be submitted for publication.

0.1.6 Chapter 6: On the instance generation

Generating instances for road network problems is a big issue. Either extracting a net-
work from a real map or constructing instances from scratch should lead to huge prob-
lems. In this thesis an instance generator able to model different size of road networks,
hierarchies of roads (number of lanes, safety distance, maximum speed allowed, etc.),
to consider delays due to traffic lights and other regulations, different demand patterns
and origin/destination dispersions is presented. A description of the parameters used in
generating instances for the previous works is provided.
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1. System optimal traffic assignment

with users’ constraints: a litera-

ture review

Traffic congestion on road networks has been recognized as one of most urgent problems
in modern cities because it causes long travel times, vehicular queueing and, consequently,
users’ frustration. Delays also reduce productivity and, consequently, increase operational
costs. Traffic congestion also injures the environment since it increases air pollution and
CO2 emissions. Furthermore, congestion influences a lot of economic decisions as the
choice of the living place, the working place and the travelling mode for the population.
In addition, congestion continues to increase because of the growing population and the
increased motorization level. In many cases it is not convenient, or even not possible,
to improve the road network by adding new roads or increasing existing roads capacity.
Hence, alternative methods to reduce congestion have to be implemented. From the point
of view of the ITS (Intelligent Transportation System) technologies, several congestion
reduction methods have been implemented such as ramp metering, variable message signs
and vehicle to vehicle communication. Reviews on these congestion reduction methods
can be found in Papageorgiou and Kotsialos (2000), Peeta et al. (2000), Sichitiu and Kihl
(2008) and Luo and Hubaux (2004). Also traffic limitations can be useful in order to
reduce congestion. Common traffic limitations are limited access roads, carpooling lanes,
express toll lanes, congestion pricing mechanisms, even and odd plate days and reversible
lanes. In some cases the use of ITS technologies and/or traffic limitations has completely
or partially solved the congestion problem. Another way to reduce congestion is traffic
coordination, i.e. considering the whole system welfare and assigning paths to users in
such a way the congestion problem is solved or, at least, kept at a minimum level. Traffic
coordination may become an useful tool to reduce congestion also in view of a massive use
of the autonomous vehicles in the future. A centralized system may optimize the network
performance and paths may be assigned to vehicles according to an optimal assignment.
However, traffic coordination can be applied also on current road networks if individual
needs are taken into account. A centralized system optimizing network performance that
assigns paths to user without any consideration about fairness among users will not be
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accepted by users. This is well known. Thus, coordinated traffic assignment on real
road network has to be efficient from the system perspective but also fair for users. The
literature review focuses on methods achieving efficient and fair traffic assignment that is
the subject of the thesis. In Section 1.1 congestion definitions and measures are presented.
In Section 1.2 the traditional approaches to traffic assignment are presented. Finally, in
Section 1.3 coordinated traffic assignment approaches incorporating system and users’
needs are presented.

1.1 Congestion definitions

Traffic congestion is the result of the imbalance between the network capacity and the
demand. According to Falcocchio and Levinson (2015) congestion in transportation oc-
curs when the occupancy of spaces by vehicles or people reaches unacceptable levels of
discomfort or delay. Congestion phenomena are divided into two main categories: the
recurring and the non-recurring congestion. According to Stopher (2004) and Falcoc-
chio and Levinson (2015) the recurring congestion is the delay that travellers regularly
experience during certain periods of time (for example, the rush hour during the morn-
ing commute). The non-recurring congestion is a delay due to not predictable events
that disrupt the traffic flow such as car breakdowns, crashes, works in progress and bad
weather conditions. We will focus only on recurring congestion since the scope of the
thesis is to develop methods to eliminate its effects. But how is the recurring congestion
measured? When does the recurring congestion appear? The recurring congestion level
is usually measured by means of intensity, duration and variability measures. Since the
whole thesis is devoted to solving the congestion problem during the rush hour and, ac-
cording to Sheffi (1985), traffic during the rush hour exhibits a steady-state behaviour,
we consider only intensity measures as the demand for transportation is constant over
time. The intensity indicators are usually constructed in such a way that, when the
indicator value exceeds a fixed threshold, congestion occurs. According to Falcocchio
and Levinson (2015) different thresholds can be used to detect if congestion occurs and
each threshold is suitable for specific traffic situations. In order to compare experienced
speeds or experienced travel times with a fixed value, in congestion detection two mea-
sures called FreeF lowSpeed and FreeF lowTravelT ime are used and are defined as the
experienced speed and travel time when the network is empty, respectively. We de-
fine as ExperiencedSpeed and ExperiencedTravelT ime the user experienced speed and
travel time, respectively. An example of intensity measure is the congestion delay rate
which is the difference between the inverse experienced speed and inverse free-flow speed
(min/km), i.e. 1

ExperiencedSpeed
− 1

FreeF lowSpeed
. This measure is often used in measur-

ing congestion on arterial roads and highways. Sometimes congestion level is obtained
by aggregate data on how many hours are spent each day by each driver at a certain
ExperiencedSpeed with respect to the FreeF lowSpeed. This is an averaged result and
is only used for survey purposes. Another example of intensity measure is the travel time
index, i.e. the ratio between the FreeF lowSpeed and the ExperiencedSpeed. Since in
large cities networks it is not realistic to travel at the FreeF lowSpeed during the peak
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hour, then comparing ExperiencedSpeed with FreeF lowSpeed in metropolitan areas
could be not reliable. However, this measure is appropriate for observing congestion be-
haviour over time in the same area (with the same FreeF lowSpeed value). The USA
Transportation Research Board and Ryus et al. (2011) classifies congestion on roads with
respect to the Level of Service (LoS), i.e. grades from A (free-flow) to F (forced breakdown
congestion). The level of service is evaluated taking into account ExperiencedSpeed and
travel time, delays, freedom to manoeuvre, safety, driving comfort and other parameters.
For each of the different road classes they provide a speed-flow curve able to capture the
current level of service depending on the ExperiencedSpeed.
Once the congestion level on a road network has been measured, a policy for the conges-
tion avoidance has to be implemented. When dealing with recurrent congestion, collecting
information is crucial in order to estimate the demand that will travel on the road seg-
ment. In Ben-Elia et al. (2013) an experiment with different levels of information accuracy
is described and the negative effect of low information levels is demonstrated. However,
even with full information provided, in case of bottlenecks it is necessary to reconsider
network design features. This is the case of ramp metering studies (see Kachroo and
Özbay (2011) for details). Many cities have developed congestion charging strategies for
congestion reduction (see de Palma and Lindsey (2011) for details). Congestion charging
can be developed in several ways like the facility-based strategies and cordons conges-
tion charging. The facility-based congestion charging regards tolling roads, bridges and
tunnels only on a few facilities. It can be a single point toll or a distance-based toll.
Cordons congestion charging is an area-based charging method in which vehicles pay a
toll to cross a cordon in the inbound or outbound direction or both. Another congestion
charging scheme is the zonal scheme in which vehicles pay a fee to enter or exit a zone or
to travel inside the zone. In de Palma and Lindsey (2011) some rules on which congestion
charging scheme is suitable for each case of study era offered and a good review on conges-
tion pricing technologies is provided. In Stopher (2004) a congestion charging situation,
in which tolls are applied, is considered on an area that is most likely congested and a
congestion charging situation in which tolls are distance-based. It points out that the
latter is fairer than the former because tolls are spread along the journey in a progressive
way and depend on how long the travel is.
Also congestion detection is a big issue for traffic regulators. In recent years many devices
have been developed in order to estimate vehicle speed, safety distance between vehicles
and other congestion parameters. Main methods are RFID sensors, CCTV cameras and
vehicle to vehicle communication systems but, as pointed out in the introductory section,
when the network infrastructure cannot be expanded or a no-toll policy is observed, the
traffic coordination is a valuable choice in order to relieve or alleviate congestion on road
network.

1.2 The traffic assignment problem

According to Patriksson (2015), transportation planning is usually divided into five steps:
goal definition, base year inventory, model analysis, travel forecast and network evalu-
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ation. The goal definition step is related to defining the participation, the committee
structure and staff involved in the road network study. In this phase an agreement on
goals and objectives of the work has to be defined. In the base year inventory step, all
the data related to the network (arcs, capacities, etc.) and demand patterns has to be
collected. Model analysis phase is devoted to finding the relationship between measured
quantities (traffic flows and road congestion, for instance). Model analysis is the result
of four different phases: trip generation, trip distribution, modal split and traffic assign-
ment. Trip generation consists of finding the number of trips that originate and terminate
in different zones of the studied area. Usually this phase is carried out considering socio-
economic, geographic and land use features and the different zones are categorized by
the main purpose as work, leisure or shopping areas. The result of the trip generation
phase is the Origin-Destination (OD) matrix. In trip distribution phase some formulas
to predict the demand of travellers from an origin zone to a destination zone have to be
developed. A demand value is associated with each OD pair in the OD matrix. Modal
split is a phase in which the mean of transport used by each traveller is determined. The
number of travellers that choose a particular mean of transport depends mainly on travel
cost in terms of monetary cost or travel time but, sometimes, also socio-economic factors
affect the choice. Traffic assignment is devoted to assigning the demand from an origin to
a destination to routes in a transportation network. This phase is particularly relevant
because an estimate of traffic volumes and travel time is returned. Finally, the network
evaluation is a phase in which alternative transportation networks and facilities benefits
are evaluated and compared. In this literature review we will focus only on the traffic
assignment phase of the model analysis step.
Traffic assignment is a method that assigns OD demands to paths on a transportation
network. As input of traffic assignment an OD matrix, representing all the OD pairs with
demands, and the network representation (usually a capacitated network) are required
and the output is an estimate of the traffic flows on each link. The first attempt to imple-
ment a traffic assignment scheme dates back to just after the World War II: the so-called
all-or-nothing assignment proposed in Campbell (1950). The main assumptions of the
all-or-nothing assignment are that the road travel time is not correlated to the flow on
the road and that all the demand of an OD pair is entirely assigned to the shortest path
for that OD pair. The traffic scientists realised the all-or-nothing assignment was not
realistic in modelling congested road networks and, thus, they tried taking into account
congestion effects in computing travel times. The result was the so-called latency func-
tion, i.e. a function in which arc travel time depends on the number of vehicles entering
the arc and on the arc capacity rate. A survey on the used latency functions is proposed
in Branston (1976) and includes:

• t = t0e
x
c ;

• t = t0α
β x
c where α and β are parameters;

• t = t0[1 + α(x
c
)β] where α and β are parameters;

• t =
{

d
S0

x ≥ δ
d

S(x) x ≤ δ
where d is the distance, S0 is the free-flow speed and S(x) the

experienced speed with flow greater than δ. δ should be considered as the conges-
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tion threshold.

The most used latency function is the one proposed by the Bureau of Public Roads (BPR)
t = t0[1 + α(x

c
)β] with α = 0.15 and β = 4.

In Wardrop (1952), two principles on traffic assignment flow distribution, calledWardropian
principles, related to the user’s perspective and to the system perspective are proposed.
Wardropian principles have some underlying assumptions: the drivers have a complete
information about the available paths and the network flows are stable over time. When
the information is incomplete the resulting traffic assignment is said to be stochastic and
when the network flows vary over time the resulting traffic assignment is said to be dy-
namic. Since the thesis focuses on traffic assignment methods during the rush hour and
with a complete information, the literature review goes only through static and determin-
istic traffic assignment. The first Wardropian principle is based on the assumption that
all users minimize their travel times when travelling from an origin to a destination and
travel times are equal on all used routes and lower than on any unused route. The result-
ing assignment is called user equilibrium. The second is based on the assumption that
traffic spreads on the road network in such a way the total travel time is minimized and
the resulting assignment is called system optimum. When all drivers individually decide
the route they will use in travelling from origin to destination as in the user equilibrium,
there are no drivers that can unilaterally choose another route because all used route from
an origin to a destination are characterized by the same average travel time, as stated in
the Wardropian first principle. This is because each driver decides to use the least dura-
tion path and, at the end, all routes used for the same OD pair have the same travelling
times since, if not, some users will move to the quickest path until the travel times of that
path equates the travel time of the slowest path. In fact, the equilibrium is reached when
no users will move to another quicker path. In Beckmann et al. (1956) the mathematical
models for the user equilibrium and the system optimum traffic assignments have been
developed in form of a convex non-linear optimization model with linear constraints. The
arc flows are considered continuous since, when demand values are high enough, relaxing
an integer variable into a continuous one does not affect the solution in a substantial way.
According to Beckmann et al. (1956) and Sheffi (1985), in a traffic assignment problem
formulation the set of constraints ensures that the demand of all the OD pairs has to
be routed, the flows have to be non-negative and the arc flows equate the sum of all the
path flows traversing that arc. The traversing time of a path depends on the arc flow
according to its arc latency function ta = ta(xa), where xa represents the flow on arc a.
The latency function is usually assumed convex and non-decreasing and the path latency
is usually defined as the sum over all traversed arcs of the arc latency function. The user
equilibrium objective function is formulated in Beckmann et al. (1956) as the sum over
all arcs of the integral between 0 and the arc flow of the arc latency function. In Sheffi
(1985) a proof of existence and uniqueness of the user equilibrium and a proof of the
correspondence between the user equilibrium definition and the proposed model are pro-
vided. The system optimum traffic assignment model is also provided in Beckmann et al.
(1956) where the objective function is the sum over all arcs of the arc latency function
multiplied by the flow on the arc. The system optimum traffic assignment assigns paths
to users in order to minimize the total travel time but some users could be routed on
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paths that much longer than other paths assigned to users of the same OD pair. Thus,
the system optimum is efficient from the point of view of the minimization of the total
travel time but no consideration on users’ fairness are taken into account. Conversely, the
user equilibrium considers users’ fairness but it does not guarantee the achievement of
the system optimality. Literature on Wardropian traffic assignment methods is wide and
references can be found in Potts and Oliver (1972), Newell (1980), Sheffi (1985), Bell and
Iida (1997) and Patriksson (2015). In addition, references on dynamic traffic assignment
can be found in Merchant and Nemhauser (1978) and in Peeta and Ziliaskopoulos (2001).
References on stochastic traffic assignment can be found in Daganzo and Sheffi (1977)
and in Sheffi and Powell (1981).
Bounds on the inefficiency of the user equilibrium are discussed in Section 1.2.1 while
methods to alleviate the unfairness of the system optimum imposing constraints on users’
satisfaction are shown in Section 1.3.

1.2.1 The price of anarchy

In Murchland (1970) a paradox on traffic assignment, called Braess’s paradox, has been
provided that shows that including a new road in the road network could lead to worsening
in terms of individual travel times. Braess’s paradox is stated as follows: "For each point of
a road network, let there be given the number of cars starting from it, and the destination
of the cars. Under these conditions one wishes to estimate the distribution of traffic flow.
Whether one street is preferable to another depends not only on the quality of the road,
but also on the density of the flow. If every driver takes the path that looks most
favourable to him, the resultant running times need not be minimal. Furthermore, it is
indicated by an example that an extension of the road network may cause a redistribution
of the traffic that results in longer individual running times". Examples can be found in
Sheffi (1985). Braess’s paradox is a clear example that achieving the user equilibrium does
not imply that the total travel time is minimized, showing in particular an unexpected
fact that adding a new road segment improves the total travel time in a system optimum
model but may result a worsening in individual travel times. The difference in terms
of total travel time between the two assignments is a measure of the inefficiency of the
user equilibrium and is called price of anarchy. The price of anarchy is defined as the
worst-case ratio of the total travel time produced by a user equilibrium assignment over
the total travel time under a system-optimum assignment considering a specific latency
function. The literature on the price of anarchy is wide and upper bounds have been found
for affine and non-negative coefficient polynomial arc latency functions. Considering an
instance with a latency function l drawn from a family L of non-decreasing continuous
functions, the price of anarchy is bounded from above by α(L), i.e. ∑

a
xUEa ta(xUE) ≤

α(L)∑
a
xSOa ta(xSO). According to Roughgarden and Tardos (2002), in a single OD pair

case and for linear latency functions, the price of anarchy is bounded to α(L) = 4
3 and

bounds for other function families have been derived. The maximum latency price of
anarchy is an alternative way to measure the price of selfish routing. In Lin et al. (2011)
and in Bayram et al. (2015) the price of selfish routing with respect to the maximum
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latency experienced by a user, i.e. the user equilibrium total travel time is compared
with the total travel time resulting from a min-max path latency model, is studied. The
min-max path latency model minimizes the maximum path latency over all experienced
paths under the same constraints of the user equilibrium. Conversely to the classical price
of anarchy, in Correa et al. (2007) it is proved that, even for linear latency functions, the
maximum latency price of anarchy can be unbounded. Another measure of the price
of anarchy is related to Braess’s paradox and is called Braess’s ratio. Let Li(G) be the
averaged path latency of the i−th OD pair on a graph G. LetH ⊆ Q a subgraph obtained
removing arcs from G paying attention in having at least a path for each commodity.
Braess’s ratio is: β(G) = max

H⊆G
min
i=1,...,k

Li(G)
Li(H) . In Lin et al. (2011) it is shown that the

maximum latency price of anarchy is an upper bound for the Braess’s ratio.

1.3 System optimal traffic assignment with users’ con-

straints

In order to limit the unfairness produced minimizing a system-wide objective, the paths
set can be bounded by users’ constraints that allow only those paths that guarantee a
certain level of fairness among users in the same OD pair. In order to generate only those
paths that guarantee a certain fairness level, an arc length measure called normal length
is introduced. The normal length is an a priori estimate of the path duration that can be
defined as the geographical distance, as the free-flow travel time or as the travel time under
user equilibrium. The geographical distance and the free-flow travel time are normal
length measures that do not depend on the demand volume spread on the network while
the travel time under user equilibrium depends on flow accommodated on each arc by a
user equilibrium traffic assignment and, hence, also on the global demand that intends
to travel on the network. The path set is generated choosing only those paths that are
within a certain percentage, called users’ constraints percentage, of the shortest path for
each OD pair evaluated using the normal length. Since the system-wide minimization is
done on a restricted path set, the optimal value of the traffic assignment is a lower bound
for the optimal value obtained without users’ constraints. In the literature on system
optimal traffic assignment with users’ constraints, there are some examples of system-
oriented objectives as the minimization of the total travel time and the minimization of
the weighted geometric path duration and different latency functions have been used as
the Davidson’s function ta(x) = tFFa (1 + αxa

u′a−xa
), where tFFa is the arc free-flow travel time

and u′a and α are tuning parameters, and the one provided by the U.S. Bureau of Public
Road, ta(x) = tFFa [1 + 0.15(xa

ua
)4], where tFFa represents the arc free-flow travel time and

ua represents the maximum rate of vehicles that can enter an arc without experiencing
substantial delays due to congestion.

The first attempt to model a system optimal traffic assignment with users’ constraints was
the so-called constrained system optimum proposed in Jahn et al. (2000). Constrained
system optimum approach proposed in Jahn et al. (2000) minimizes the total travel time
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and the user perspective is taken into account by bounding the path set using as normal
length the geographical distance. In order to compute the total travel time they proposed
as latency function the Davidson’s one. The road network is represented by a directed
graph where the arc capacity ua and the geographical length la are defined on each
arc. The network is considered as capacitated and, hence, it could happen that a certain
amount of demand is too high be routed on eligible paths. Since the optimization problem
is not linear, they propose as solution method a variant of the Frank-Wolfe algorithm
called Partan (see LeBlanc et al. (1985) for details). In the proposed algorithm the search
for a descent direction is made using a linearized version of the problem in which the travel
time on each arc is considered constant. They do not explicitly enumerate all possible
paths from origin to destination and a column generation technique is implemented. The
subproblem associated with the linearized version is a constrained shortest path problem,
known to be NP-hard. Later, in Jahn et al. (2005), a constrained system optimum
formulation is proposed in which the USA Bureau of Public Road latency function is
used and the user equilibrium travel time is used as normal length. They compare the
performance of the different normal lengths and point out that using the travel time under
user equilibrium reflects the impact of traffic volumes on the network and, hence, the path
set depends on the amount of traffic that intends to travel through the network. Using
the user equilibrium travel time as normal length allows us to derive the following bound
on the optimal value of the constrained system optimum: the total travel time obtained
using a constrained system optimum with any chosen users’ constraints percentage is
always lower than the total travel time under user equilibrium. The first Wardropian
principle, i.e. the user equilibrium one, states that each used path under user equilibrium
has the same travel time. If the user equilibrium travel time is used as normal length and
a user equilibrium assignment is performed on that road network, the result is, trivially,
that all demand travel on the shortest paths from origin to destination. Each of these used
paths is a shortest path and, hence, is feasible also considering a 0% users’ constraints
percentage. Given this, the user equilibrium solution is always a feasible solution for the
constrained system optimum for each users’ constraints percentage value. Hence, total
travel times under user equilibrium is always higher or equal to the optimal value of the
constrained system optimum. On the other hand, using this traffic dependent normal
length, comparisons between different levels of traffic on the same road network are not
reliable since the path set changes. As methodology they propose the Partan algorithm
used in Jahn et al. (2000). They provide a wide computational study in which they test the
model on seven real road networks where demands are generated using estimations of real
data. Results in terms of experienced unfairness are evaluated by means of the following
measures: the loaded unfairness (experienced travel time with respect to the fastest
path for the same OD pair), the normal unfairness (normal length of the experienced
path with respect to the normal length shortest path), the user equilibrium unfairness
(path experienced travel time with respect to the fastest path travel time under user
equilibrium) and the free-flow unfairness (path experienced travel time with respect to
the fastest path travel time under free-flow conditions). They show that, using a large
enough value as users’ constraints percentage, the total travel time observed is very close
to the one obtained using all possible paths as in a system optimum assignment. Contrary
to the model presented in Jahn et al. (2000), the network is considered uncapacitated,
i.e. infinite flows can be assigned to each arc. A theoretical framework on the constrained
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system optimum and, in particular, on the work shown in Jahn et al. (2005), is provided in
Schulz and Stier-Moses (2006) where theoretical considerations on efficiency and fairness
have been developed. As in the literature on the system optimum they derive results
for the price of anarchy, i.e. show how bad a user equilibrium traffic assignment acts in
terms of total travel time with respect to the constrained system optimum one. Given a
class of different latency functions Ω, the price of anarchy is formally defined as αφ(Ω) =
suplatency∈Ω

totalTravelT imeUE
totalTravelT imeφCSO

, where φ is the users’ constraints percentage used in the
constrained system optimum. They have proved results either considering as normal
length the free-flow travel time and the user equilibrium travel time. Considering the
free-flow travel time as normal length, they have proven that if the users’ constraints
percentage is within 0% and 100% and the considered latency function is affine, then the
price of anarchy is αφ(Ωaffine) ≤ (2− φ)−1. If φ < 5

4 , then α
φ(Ωaffine) < 4

3 . Considering
the user equilibrium travel time as normal length, they have proven that price of anarchy
generated by the constrained system optimum with users’ constraints percentage is the
same of the system optimum. They derive results also on fairness among users.
A few other approaches to system-optimality with users’ constraints have been proposed
in the literature. In Lujak et al. (2015) a model in which the weighted geometric mean of
the path duration is used as objective function is presented. The unfairness among users
of the same OD pair is bounded using as normal length the free-flow travel time and also
unfairness among users of different OD pairs is considered. For each OD pair they define
the OD pair average path duration cost as the geometric mean, over all OD pair paths,
of the flow on path multiplied by the path travel time. Once the OD pair average path
duration cost is defined for each OD pair, they compute the weighted geometric mean of
the path duration as the sum over all the OD pairs of the respective normalized mean path
durations. The constraints set imposes that the demand is completely routed and that
arc capacities are not exceeded. The unfairness among different OD pairs is regulated
by a constraints set called envy-free constraints. These constraints guarantee that there
is no OD pair that envies any other OD pair for paying less than the cost paid by the
other OD pairs raised to a fixed power. Computational results and comparisons with
the system optimum and the user equilibrium show that the proposed model produces
average travel times that are better than the ones produced by a user equilibrium and
near to the system optimum values. In Bayram et al. (2015) a shelter location problem,
in which a constrained system optimum traffic assignment is integrated, is shown. The
total evacuation time is minimized under optimal location of the shelters but people can
be assigned to a certain path only if the path length is within a certain percentage of the
shortest path to the shelter. Constraints set guarantees that the demand is completely
routed and that at least a fixed number of shelter will be opened. They propose also
a version in which the shelters are capacitated since this is more reliable in real world
cases. Also in communication networks the constrained system optimum model is used.
In Holmberg and Yuan (2003) the main issue is to avoid paths with high dispatching
delays. The time delay is calculated by summing up the estimated link delays of each
arc that belongs to the considered path. For this reason a limit on the cost per unit of
flow on each path is calculated. These limits can also include distortion on the network
and link failure. Another little difference is in the forcing constraints, i.e. the ones that
say if a path has to be used or not. Since binary variables are used to recognize if a path
is used or not, a relaxation is proposed. The problem is solved with a column generation
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2. Proactive route guidance to avoid

congestion

Abstract

We propose a proactive route guidance approach that integrates a system perspective:
minimizing congestion, and a user perspective: minimizing travel inconvenience. The

approach assigns paths to users so as to minimize congestion while not increasing their travel
inconvenience too much. A maximum level of travel inconvenience is ensured and a certain

level of fairness is maintained by limiting the set of considered paths for each
Origin-Destination pair to those whose relative difference with respect to the shortest

(least-duration) path, called travel inconvenience, is below a given threshold. The approach
hierarchically minimizes the maximum arc utilization and the weighted average travel

inconvenience. Minimizing the maximum arc utilization in the network, i.e., the ratio of the
number of vehicles entering an arc per time unit and the maximum number of vehicles per
time unit at which vehicles can enter the arc and experience no slowdown due to congestion

effects, is a system-oriented objective, while minimizing the weighted average travel
inconvenience, i.e., the average travel inconvenience over all eligible paths weighted by the
number of vehicles per time unit that traverse the path, is a user-oriented objective. By
design, to ensure computational efficiency, the approach only solves linear programming

models. In a computational study using benchmark instances reflecting a road infrastructure
encountered in many cities, we analyze, for different levels of maximum allowed travel

inconvenience and, the minimum maximum arc utilization and the weighted average travel
inconvenience. We find that accepting relatively small levels of maximum travel inconvenience

can result in a significant reduction, or avoiding, of congestion.

Keywords. Congestion; Proactive route guidance; Travel inconvenience; Linear pro-
gramming

15



2.1 Introduction

The fraction of the population living in urban areas continues to grow. As a consequence,
traffic in urban areas is increasing and the inability to significantly increase road network
infrastructure is making the issue of traffic control and coordination more and more
relevant and pressing. Congestion is a common phenomenon experienced in cities and
towns around the world, and causes delays, stress, and pollution. The negative impact
of congestion on the economy, the society, the environment, and on people’s health is
enormous. Government, industry, and private citizens are all interested in ways to reduce
the negative externalities of transportation. Technology has always been an integral
part of attempts to alleviate congestion, but recent and anticipated technological and
automotive advances offer enormous and exciting new opportunities.

Traditionally, traffic information has been communicated to drivers via radio or by means
of Variable Message Signs. The drawback of these systems is that the information being
communicated is the same for all drivers and, as such, has only limited value in glob-
ally coordinating traffic. The most common modern in-vehicle device aimed at helping
drivers guide a vehicle in a road network is a car navigation system based on a digitalized
road network map and a global positioning system (GPS) aerial. The GPS aerial allows
the vehicle to be localized on the map, and embedded optimization software allows the
selection of the best route to the destination. Based on the available information on the
status of the road network, the navigation system may provide an optimal route to the
destination with respect to the user’s preference, which can be the shortest path in terms
of distance or travel time, or the least expensive path in terms of fuel consumption or,
even, emissions produced. Challenges (and frustrations) occur when the road utilization
on the route proposed by the navigation system exceeds its capacity and congestion oc-
curs. In fact, and especially during peak hours, congestion often occurs because the paths
of many vehicles traverse the same sections of the road network. Recently, navigation
systems have been integrated with real-time traffic data acquisition systems that allow
detection of traffic jams and/or road interruptions and offer the potential to reroute the
drivers to different paths. Unfortunately, these systems typically do not (yet) consider
the system-wide impact of the directions they provide to the drivers. The navigation
devices, again, provide drivers with the same information and route guidance, which, in
many cases, simply shifts the congestion to other parts of the road network.

The drawbacks of user-optimal paths, which result in a user equilibrium state of the traffic
network, compared to a system-optimal set of user paths have long been investigated and
understood (see, for example, Mahmassani and Peeta (1993)). It is also well-known that,
with a system-optimal set of user paths, some users may end up being assigned to paths
that are much longer, in distance or time, than the shortest possible path between their
origin and destination. This unfairness, among others, results in users not following route
guidance, especially when suggested routes deviate substantially from a user’s preference
and are (expected to take) much longer.

However, technological and automotive advances may change the situation favorably. The
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anticipated introduction of autonomous or self-driving vehicles may drastically alter the
landscape. Massive adoption of self-driving vehicles will have several benefits in terms of
congestion. First and foremost, because the safe separation distance between two self-
driving vehicles will be much smaller, their introduction will implicitly alter the capacity
of the road network. Secondly, drivers will get used to trusting their vehicle to get them
from their origin to their destination and, as a consequence, will be more likely to accept a
route that deviates from the preferred (shortest) route. The latter, forms the motivation
and underpinning of our research. In particular, we focus on an environment in which a
specific origin-destination path can be assigned to each (self-driving) vehicle and in which
that vehicle will follow the assigned path. (We will conduct computational experiments
to study the sensitivity to the 100% compliance assumption.)

We propose a centralized proactive route guidance approach that integrates a system
perspective, focused on reducing, ideally avoiding, congestion, and a user perspective,
focused on minimizing the experienced travel inconvenience. The goal is to reduce or
avoid congestion without causing an excessive increase in the length (or duration) of
the paths traveled by individuals, when compared to the shortest (least-duration) paths
between their origin and destination.

Our starting point is a road network and an Origin-Destination (OD) matrix specifying
the number of trips that are estimated to take place between each origin and each desti-
nation. The problem of forecasting traffic on a road network has been well studied (see,
for example, Sheffi (1985), Ben-Akiva and Lerman (1985), Florian and Hearn (1999),
and more recently de Dios Ortuzar and Willumsen (2011)) and traditionally has been
modeled in four steps: trip generation, trip distribution, mode choice, and traffic assign-
ment. In particular, the zonal interchange analysis of trip distribution provides the so
called Origin-Destination (OD) matrix, that is the matrix that provides for each OD pair
the number of trips with the same origin and destination. Starting from Merchant and
Nemhauser (1978), researchers have also studied a dynamic traffic assignment problem
which presents additional challenges (see Papageorgiou (1990), Peeta and Ziliaskopoulos
(2001) and more recently Ben-Akiva et al. (2012)).

The time period of interest is the rush hour, which in large cities may last a few hours,
and in which, as Sheffi (1985) points out, traffic often exhibits a steady-state behavior.
We assume that the arcs of the road network are characterized by a capacity representing
the maximum number of vehicles per time unit at which vehicles can enter the arc and
experience no slowdown due to congestion effects. The proposed approach will assign
paths to drivers so as to minimize congestion while not increasing their experienced
travel inconvenience too much. A maximum level of travel inconvenience is ensured and
a certain level of fairness is maintained by limiting the set of considered paths for each
Origin-Destination pair to those whose relative difference with respect to the shortest
(least-duration) path, called travel inconvenience, is below a given threshold.

An important feature of the approach, and a critical design choice, is that only linear
programs are solved. To have any potential practical value, a route guidance approach
has to be computationally efficient. Computational efficiency has prompted us to restrict
ourselves to the use of linear programming models (even if that would mean sacrificing
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some accuracy in our modeling choices).

The distribution of traffic is evaluated by two measures: the minimum maximum arc
utilization in the network (a system perspective) and the weighted average travel incon-
venience (a user perspective). Arc utilization, i.e., the ratio of the number of vehicles
entering an arc per time unit and its capacity, is used as an arc congestion measure. The
weighted average travel inconvenience averages the experienced travel inconvenience over
all possible paths weighted by the number of vehicles that enter the path per time unit.
The weighted average travel inconvenience is minimized under the constraint that the
minimum maximum arc utilization does not exceed a given limit: the minimum maxi-
mum arc utilization achievable if it is greater than one, or one if it is smaller than one (by
definition no slowdown due to congestion effects occurs when the minimum maximum arc
utilization is one).

The linear structure of the models allows us to derive theoretical properties. We will
show in particular that for the problem of minimizing the maximum arc utilization,
results analogous to those well known for the maximum flow problem, such as the max
flow-min cut theorem, hold.

An extensive and comprehensive computational study demonstrates that in many settings
relatively small values of the maximum allowed travel inconvenience lead to a minimum
maximum arc utilization less than or equal to one, i.e., avoidance of congestion effects.
The computational tests are carried out using randomly generated benchmark instances
that represent characteristic features of the most common circular-shaped city road net-
works. As mentioned before, our assumption is that (self-driving) vehicles follow their
assigned path, i.e., a 100% compliance rate. Our investigation shows, among others, that
compliance is critical; it becomes much more difficult to reduce or avoid congestion when
the recommended paths are not followed.

Finding a system-optimal traffic distribution that ensures a certain level of fairness is also
considered by Jahn et al. (2005). They also limit the set of paths for an OD pair to limit
the travel inconvenience. However, they model the arc travel time as a function of the
number of vehicles on that arc (using a widely adopted non-linear increasing function).
The model assigns paths to users with the objective of minimizing the total user travel
time. The model is non-linear and a column generation solution method is proposed
and tested on real road networks. The approach we propose is substantially different as
it seeks to avoid congestion by minimizing the maximum arc utilization. We find the
minimum congestion level first and then minimize the user travel inconvenience.

A few other related papers have been published. In Sen et al. (2001), a static multi-
objective approach seeking to minimize the mean travel time cost and the travel time
variance is presented, while in Lujak et al. (2015) a centralized path assignment model
is proposed in which the objective is to minimize the geometric path duration mean for
all drivers in the system. Centrally controlled traffic systems are often encountered in
large warehouses where automated guided vehicles have to be routed (see Bartlett et al.
(2014)). In Kaspi and Tanchoco (1990), an integer programming model is proposed which
seeks to minimize the weighted path length of a set of automated guided vehicles.
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The remainder of the paper is organized as follows. In Section 2.2, the proactive route
guidance setting considered is formally introduced, the path-based linear programming
models comprising our proactive route guidance approach are given, as well as an al-
gorithm to generate the sets of eligible paths, and supporting theoretical results are
presented. In Section 2.3, we discuss the generation of road networks on which the ap-
proach is tested, discuss detailed results for a specific instance, and average results for
the complete set of instances. Finally, some conclusions are drawn in Section 2.4.

2.2 Proactive route guidance

The basic idea of the system-optimal approach we propose is to assign paths other than
the shortest (least-duration) path to vehicles in order to reduce, and possibly avoid,
congestion in the road network, but to do so in a way that minimizes the inconvenience
experienced by the drivers, in part by only considering alternative paths whose relative
increase with respect to the shortest path is within a pre-defined limit. That is, we impose
a limit on user travel inconvenience, in terms of the maximum allowed increase relative
to the shortest path, which we denote by γ and refer to as the maximum allowed travel
inconvenience.

More specifically, for each OD pair, we generate a set of eligible paths, which are those
Origin-Destination paths with a travel inconvenience that is no more than the specified
limit γ. Furthermore, we assume that, for the time period of interest, the demand
associated with an OD pair is specified in terms of the number of vehicles entering the
network at the origin per time unit. The basic premise of the approach is that the
congestion of the road network depends on the utilization of its arcs, where the utilization
of an arc is the ratio of the number of vehicles entering an arc per time unit and the
maximum number of vehicles per time unit at which vehicles can enter the arc and
experience no slowdown due to congestion effects. When the flow per time unit on an
arc exceeds its capacity, i.e., the arc utilization is greater than 1, the arc is said to be
congested. We say that the road network is congested if at least one of its arcs is congested.

Given a maximum allowed travel inconvenience, and, thus, a set of eligible paths for each
OD pair, the approach obtains a system-optimal distribution of traffic using a hierarchical
approach. First, a linear programming model is used to minimize the maximum arc
utilization, i.e., the level of congestion. If the minimum maximum arc utilization exceeds
one, then congestion in the road network is unavoidable for the imposed maximum allowed
travel inconvenience; to reduce the level of congestion even further, longer, less convenient
paths need to be allowed. On the other hand, when the minimummaximum arc utilization
is less than or equal to one, congestion can be avoided with the imposed maximum
allowed travel inconvenience. In fact, there is no reason to seek a minimum maximum
arc utilization below one, because it can only come at the expense of unnecessary user
travel inconvenience. Second, for a given minimum maximum arc utilization, another
linear programming model is used to minimize the weighted average travel inconvenience
subject to the constraint that the maximum arc utilization does not exceed the minimum
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possible value computed using the previous model (or one if this value is less than one).

Our approach focuses on a system that exhibits a steady-state behavior and seeks to
determine the minimum maximum allowed travel inconvenience that allows elimination
of congestion in the system by proactive route guidance, if such a maximum allowed travel
inconvenience exists. It is possible, of course, that the optimization reveals that such a
maximum allowed travel inconvenience does not exist, due to a combination of network
infrastructure characteristics, e.g., a small number of bridges and/or tunnels connecting
different parts of the city, and demand characteristics, e.g., extremely high demand. In
such situations, more elaborate linear programming models are needed. In Section 2.4,
we briefly discuss this possible extension.

Next, we present the two path-based linear programming models used in the approach,
followed by the algorithm for generating eligible paths and supporting theoretical results.

2.2.1 Optimization models

We consider a directed network G = (V,A), where V represents the set of vertices and
A ⊆ V × V represents the set of arcs. Each arc (i, j) ∈ A represents a road segment on
which vehicles can travel. The length of arc (i, j) ∈ A, depending on the user’ preferences,
may represent the traveling time or the length in space, and it will be denoted by lij.
The capacity of each arc (i, j) ∈ A is denoted by uij and represents the maximum rate
(number of vehicles per time unit) that can enter an arc (i, j) at the averagespeed. We
consider a set C of OD pairs. An OD pair c ∈ C is described by its origin Oc ∈ V , its
destination Dc ∈ V and a flow rate (number of vehicles per time unit) dc, representing
the rate of vehicles traveling from Oc to Dc. We let D = ∑

c∈C dc be the the total flow
rate in the network.

Let γ be the maximum allowed travel inconvenience. A set of paths Kγ
c is associated with

each OD pair c and contains all paths that are not longer than (1 + γ)SPc, where SPc
is the shortest path from the origin Oc to the destination Dc. The travel inconvenience
γkc associated with path k ∈ Kγ

c , c ∈ C, is defined as the relative increase of path k with
respect to the shortest (least-duration) path SPc. Denoting by lkc the length of path k

for OD pair c, we have γkc = lkc−SPc
SPc

.

The optimization problem formulations use an indicator akcij , which takes value 1 if path
k ∈ Kγ

c contains arc (i, j) ∈ A, and 0 otherwise. The critical parameter ρ∗γ represents the
minimum possible value of the maximum arc utilization. This value is computed by a
linear programming model, referred to as the congestion model and defined below. The
decision variables ykc represent the flow rate (number of vehicles per time unit) of OD
pair c ∈ C routed on path k ∈ Kγ

c . The auxiliary variables xij and ρ represent the total
flow rate (number of vehicles per time unit) traveling on arc (i, j) ∈ A and an upper
bound on the maximum arc utilization, respectively. The inconvenience model is a linear
programming model seeking to minimize the weighted average travel inconvenience over
all OD pairs, defined as 1

D

∑
c∈C

∑
k∈Kγ

c
γkc y

k
c . A summary of the sets, parameters and
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variables is given in Table 2.1.

The inconvenience model

min 1
D

∑
c∈C

∑
k∈Kγ

c

γkc y
k
c

ρ ≤ max(1, ρ∗γ) (2.1)
xij
uij
≤ ρ ∀(i, j) ∈ A (2.2)

xij =
∑
c∈C

∑
k∈Kγ

c

akcij y
k
c ∀(i, j) ∈ A (2.3)

dc =
∑
k∈Kγ

c

ykc ∀c ∈ C (2.4)

ρ ≥ 0 (2.5)
xij ≥ 0 ∀(i, j) ∈ A (2.6)
ykc ≥ 0 ∀c ∈ C ∀k ∈ Kγ

c . (2.7)

Constraint (2.1) guarantees that the maximum arc utilization is minimized in case con-
gestion is unavoidable (ρ∗γ > 1), and ensures that the flow rate on any arc is less than or
equal to the arc’s capacity, otherwise (ρ∗γ ≤ 1). Constraints (2.2) bound the maximum
arc utilization, i.e., max(i,j)∈A {xij/uij} ≤ ρ and constraints (2.3) set the flow rate on
arc (i, j). Constraints (2.4) ensure that the required flow rate dc of an OD pair c ∈ C
is routed on (a subset of) its eligible paths. Finally, constraints (2.5) - (2.7) define the
domains of the decision variables. Although the natural domain of variables ykc and xij
is the set of non-negative integers, it is reasonable to relax it to the set of real numbers
as long as the values dc are large. Note that ykc /dc can be interpreted as the fraction of
the flow rate dc that is routed on path k ∈ Kγ

c .

The minimum maximum arc utilization ρ∗γ required in constraint (2.1) is computed with
the following linear programming model.

The congestion model

ρ∗γ ≡ min ρ

s.t. (2.2)− (2.7)

The congestion model focuses purely on congestion, i.e., on minimizing the maximum arc
utilization, without taking into account the impact on the drivers. On the other hand,
the inconvenience model without constraints (2.1) - (2.2) focuses purely on user travel
inconvenience without taking into account the impact on congestion. For this reason,
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a hierarchical approached is used. We first focus on congestion and then focus on user
travel inconvenience.

The following remarks provide basic relations linking the maximum allowed travel incon-
venience γ, the path set Kγ

c , and the minimum value of the maximum arc utilization
ρ∗γ.

Remark 1. Let Kγ1
c , Kγ2

c be the sets of eligible paths for OD pair c ∈ C for γ1 and γ2,

respectively. If γ1 ≤ γ2, then Kγ1
c ⊆ Kγ2

c .

Remark 2. Let Kγ1
c , Kγ2

c be the sets of eligible paths for OD pair c ∈ C for γ1 and γ2,

respectively. If Kγ1
c = Kγ2

c ∀c ∈ C, then the minimum maximum arc utilization is the

same for the two settings.

Remark 3. Let ρ∗γ1, ρ∗γ2 be the optimum values of the congestion model when the maxi-

mum allowed travel inconvenience is γ1 and γ2, respectively. If γ1 ≤ γ2 then ρ∗γ1 ≥ ρ∗γ2.

The models can be modified to take into account that not all vehicles may follow the
recommended path. We define the compliance rate to be the fraction α of vehicles follow-
ing the recommended path and assume that 1− α vehicles, instead, choose the shortest
(least-duration) path. For sake of simplicity, we assume that the compliance rate is iden-
tical for all OD pairs. The compliance rate is taken into account by adding to each model
the constraints

ySPc ≥ (1− α)dc ∀c ∈ C. (2.8)

These constraints impose that at least a fraction 1− α of the demand is routed along its
shortest path. This fraction represents those drivers acting “selfishly”.

2.2.2 Generation of the eligible paths

To the best of our knowledge, whereas the problem of finding the first K shortest paths
is well known (see Yen (1971) and Eppstein (1994)), no algorithm has been published
for the computation of all shortest paths between two vertices whose length does not
increase the shortest path length by a given percentage. Thus, in order to compute the
set Kγ

c , an ad hoc algorithm has been developed. The algorithm relies on depth-first
search and consists of a main body ConstructingEligiblePaths (sketched in Algorithm 1)
and a recursive routine ScanVertex (sketched in Algorithm 2).

Inputs for algorithm ConstructingEligiblePaths are the network (V,A), the set of OD pairs
C, and the maximum allowed travel inconvenience γ. The algorithm first computes the
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Problem notation

Sets

V set of vertices
A set of arcs
C set of OD pairs
Kγ
c set of eligible paths for c ∈ C with maximum allowed travel inconvenience γ

Parameters

uij capacity of arc (i, j) ∈ A
akcij 1 if path k ∈ Kγ

c contains arc (i, j) ∈ A, 0 otherwise
SPc length of the shortest path for OD pair c ∈ C
lkc length of path k ∈ Kγ

c

γkc relative length increment of path k ∈ Kγ
c , with respect to SPc: γkc = lkc−SPc

SPc

dc flow rate for OD pair c ∈ C
D total flow rate over all OD pairs: D = ∑

c∈C
dc

α compliance rate

Decision variables

ykc flow rate of OD pair c ∈ C routed on path k ∈ Kγ
c

Auxiliary variables

xij total flow rate entering arc (i, j) ∈ A: xij = ∑
c∈C

∑
k∈Kγ

c

akcij y
k
c

ρ upper bound on arc utilization : ρ ≥ xij
uij

∀(i, j) ∈ A
f cij flow rate of the OD pair c traversing arc (i, j) ∈ A

Table 2.1. Proactive route guidance approach notation
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Algorithm 1: ConstructingEligiblePaths
input : V , A, C, γ
s← ComputeShortestPathMatrix(V,A)
for i ∈ V do

status(i)← INACTIV E

for c ∈ C do
Path← ∅
cPath← 0
lPath← 0
ScanV ertex(Oc)

Algorithm 2: ScanVertex
input : i
global variables: s, γ, status, Path, cPath, lPath.
status(i)← ACTIV E
Path(cPath)← i
if i = Dc then

Record(Path)
else

for j ∈ δ+(i) do
// j is the endpoint of an arc exiting from i
if status(j) = INACTIV E and lPath+ lij + s(j,Dc) 6 (1 + γ)SPc then

cPath← cPath+ 1
lPath← lPath+ lij
ScanV ertex(j)
lPath← lPath− lij
cPath← cPath− 1

status(i)← INACTIV E
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shortest path matrix (the shortest path for each pair of vertices) and labels all vertices as
inactive. Labels will change from inactive to active and back during computation. Next,
for each OD pair c ∈ C, initializations are made and a depth-first search to find the set
Kγ
c is performed by means of the recursive routine ScanVertex.

Routine ScanVertex operates as follows. The input vertex i is labeled as active (already
visited) and inserted in the growing path at the current position. If the input vertex is the
destination vertex the procedure records the path, labels the vertex as inactive and exits.
Otherwise, the routine is recursively called on each vertex reached by any outgoing arc
from the input vertex provided that the new vertex is not labeled as active (which would
imply a cycle) and the length of the growing path is within the fixed threshold. The
vertex count and the total length are increased and decreased before and after recursion.

The algorithm has time complexity O
(
q|V |+1

)
, where q is an upper bound on the number

of outgoing arcs from any vertex. The exponential complexity is due to the problem
nature as explained in the following example. Consider the network, consisting of n =
3h+ 1 vertices and with q = 3, shown in Figure 2.1. Consider vertex 1 as Oc and vertex
h + 1 as Dc and let ε ≤ γ. The h arcs connecting the h + 1 central vertices with length
1 define the shortest path from Oc to Dc, and, thus, SPc = h. The remaining arcs have
length 1

2 + ε
2h . All possible paths in this network from Oc to Dc belong to the set Kγ

c .
The number of the possible paths is 3h = 3n−1

3 .
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Figure 2.1. An instance demonstrating the exponential complexity of the algorithm for gen-
erating the sets of eligible paths for the OD pairs

2.2.3 Lower bounds on the minimum maximum arc utilization

In this section we propose an arc-based formulation for the congestion model where, for
each OD pair c, all possible paths from Oc to Dc are implicitly considered. The model,
which we refer to as the unconstrained congestion model, is equivalent to the congestion
model in which the maximum allowed travel inconvenience is set to +∞. Allowing all
paths for all the OD pairs means that the result of the unconstrained congestion model
is a lower bound for the congestion model for any value of γ.
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The unconstrained congestion model

ρ∗∞ ≡ min ρ∑
j∈V

f cij −
∑
j∈V

f cji = 0 ∀c ∈ C ∀i ∈ V, i 6= Oc, i 6= Dc (2.9)
∑
j∈V

f cij −
∑
j∈V

f cji = dc ∀c ∈ C i = Oc (2.10)
∑
j∈V

f cij −
∑
j∈V

f cji = −dc ∀c ∈ C i = Dc (2.11)

ρ ≥

∑
c∈C

f cij

uij
∀c ∈ C ∀(i, j) ∈ A (2.12)

f cij ≥ 0 ∀c ∈ C ∀(i, j) ∈ A (2.13)
ρ ≥ 0. (2.14)

Constraints (2.9) - (2.11) guarantee the flow rate conservation. The objective function
together with Constraints (2.12) set the minimum maximum arc utilization to the min-
imum of the maximum value, over all arcs, of the ratio between the total flow rate and
the arc capacity. Finally, Constraints (2.13) and (2.14) define the domains of the decision
variables.

Remark 4. The value ρ∗∞ of the unconstrained congestion model is a lower bound for ρ∗γ,

for any value of the maximum allowed travel inconvenience γ, i.e.,

ρ∗γ ≥ ρ∗∞ ∀γ.

Thus, the value ρ∗∞ is the minimum level of congestion that can be achieved when vehicles
can be sent along any possible path (regardless of the experienced travel inconvenience).
This value may be greater than one due to the structure of the network and high levels
of the traffic. In the following, we derive lower bounds on ρ∗∞ that can be computed from
the network parameters. The results we derive recall results that are well known for the
maximum flow problem (see Ford and Fulkerson (1956)).

Definition 1. A cut-set for a set of OD pairs Ĉ ⊆ C is a minimal arc set AĈ such that

in the graph G′ = (V,A \ AĈ) no path connecting Oc to Dc exists for any OD pair in Ĉ.

The capacity of a cut-set AĈ is uĈ = ∑
(ij)∈AĈ uij.

Definition 2. A minimum capacity cut-set for Ĉ is a cut-set A∗
Ĉ
with minimum capacity.

We denote the capacity of A∗
Ĉ
by u∗

Ĉ
.
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Theorem 1. Let A∗
Ĉ
be a minimum cut-set for any set of OD pairs Ĉ ⊆ C, and let u∗

Ĉ

be its capacity. Then,

ρ∗∞ ≥ max
Ĉ⊆C

∑
c∈Ĉ dc
u∗
Ĉ

.

Proof. Let Ḡ be a network in which the capacities ûij are the capacities uij of the original

network G multiplied by the minimum maximum arc utilization ρ∗∞, i.e. ûij = ρ∗∞uij.

Let Ĉ ⊆ C be a set of OD pairs and A∗
Ĉ
a minimum cut-set for Ĉ. In Ḡ it is possible

to route the demand of the OD pairs in Ĉ without violating the capacities ûij. Hence,∑
c∈Ĉ dc ≤

∑
(ij)∈A∗

Ĉ
ûij = ∑

(ij)∈A∗
Ĉ
ρ∗∞uij = ρ∗∞

∑
(ij)∈A∗

Ĉ
uij = ρ∗∞u

∗
Ĉ
. Hence,

∑
c∈Ĉ dc

u∗
Ĉ

≤

ρ∗∞. As this inequality holds for any subset Ĉ ∈ C, the claim follows.

In the following, we show that in the case of a single OD pair equality holds, but that
examples can be found with strict inequality for the case of multiple OD pairs.

Theorem 2. Let |C| = 1 and let us denote by c the OD pair. Let A∗c be a minimum

cut-set for c with capacity u∗c. Then, ρ∗∞ = dc
u∗c
.

Proof. See Appendix .1.

Remark 5. Equality ρ∗∞ = max
Ĉ⊆C

∑
c∈Ĉ dc

u∗
Ĉ

does not hold when there are two or more OD

pairs in the network, that is when |C| ≥ 2.

This example shows that the equality does not hold in the case of two OD pairs. In
Figure 2.2 all arcs have capacity u equal to 2 and each OD pair has demand equal to 2.
Deriving a lower bound on the minimum maximum arc utilization means exploring all
the possible subsets of OD pairs in C. The number of possible subsets in C is given by
the cardinality of the power set of C, P (C). The cardinality of the power set depends
exponentially on the number of OD pairs contained in C, i.e. |P (C)| = 2n, where n is
the number of OD pairs in C.

In Figure 2.3 the optimal flows for each OD pair are shown. It is easy to see that the
demand is completely routed. The minimum maximum arc utilization value is equal to
ρ∗∞ = 3

2 . Considering each subset Ĉ ⊆ C and calculating ρĈ∞ =
∑

c∈Ĉ dc

u∗
Ĉ

for each subset,

we obtain that the maximum of all these values is max
Ĉ⊆C

ρĈ∞ = max
Ĉ⊆C

∑
c∈Ĉ dc

u∗
Ĉ

= 1 < ρ∗∞.
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Figure 2.2. Proactive route guidance: example for two OD pairs
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Figure 2.3. Proactive route guidance: optimal flows on counterexample graph

2.3 Computational results

The instance generator was implemented in Java, and the optimization models were
solved by CPLEX 12.6.0. The generation of the instances and the experiments were run
on a Windows 64-bit computer with Intel Xeon processor E5-1650, 3.50 GHz, and 16 GB
Ram. Instance generation depends on a few controls, which are described in more detail in
Chapter 6. Considering all possible combinations of these controls, the number of different
types of networks is 16. Instance generation also depends on some random factors which
are not included into the control set. For example, the coordinates of the nodes in a
network is randomly perturbed from their original position. For each set of values for
the controls, we generate 5 random instances. The total number of generated instances is
therefore 80. The instances are available on http://or-brescia.unibs.it/instances.
The statistics collected for each instance are described in Section 2.3.1. Detailed results
and insights for a single, specific instance are presented and discussed in Section 2.3.2.
Section 2.3.3 is devoted to summary results for all instances.
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Network congestion

ρ∗γ The minimum maximum arc utilization ρ∗γ obtained from the
congestion model.

xij/uij classes The fraction of arcs falling in each of the following four classes
for different γ values:

• unused arcs (xij/uij = 0)

• non-congested arcs (0 < xij/uij ≤ 1)

• lightly congested arcs (1 < xij/uij ≤ 1.5)

• heavily congested arcs (1.5 < xij/uij).

No-congestion γ The no-congestion travel inconvenience, i.e. the minimum
value of maximum allowed travel inconvenience needed to
avoid congestion.

User experience

Experienced inconvenience The weighted average travel inconvenience, i.e.the optimal
value of the inconvenience model.

Inconvenience classes The percentage of the demand experiencing different levels of
travel inconvenience:

• level A: from 0% to 5%

• level B: from 5% to 10%

• level C: from 10% to 15%

• level D: from 15% to 20%

• level E: from 20% to 25%

• level F: from 25% to 30%

• level G: from 30% to 35%.

OD paths

Generated paths Average number of generated paths per OD pair.
Selected paths Selected paths in the optimal solution of the inconvenience

model:

• average number of selected paths per OD pair

• maximum number of selected paths per OD pair.

Table 2.2. Proactive route guidance approach statistics
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Figure 2.4. Proactive route guidance: average number of generated paths

2.3.1 Statistics

In our experiments, we vary the value of the maximum allowed travel inconvenience from
γ = 0% (all vehicles follow the shortest origin-destination path) to γ = 35% (and the
values of the compliance rate from 100% to 60%). We collect and compute the statistics
shown in Table 2.2. To present large amounts of information in an easy-to-interpret and
concise form, we mostly rely on graphs.

2.3.2 Detailed results and insights for a specific instance

In this section, we analyze the traffic patterns produced by the proactive route guidance
approach for a single instance. We chose an instance with a large, circular, and
oligo-centric city network with high in-city traffic and in-peak traffic density. In
order to provide a detailed understanding of the potential benefits of adopting proactive
route guidance, we solved the model with γ ranging from 0% to 35% in increments of
1%.

In Figure 2.4, we show the average number of generated paths per OD pair. As expected,
the average number of generated paths grows exponentially. Clearly, at higher values of
the maximum allowed travel inconvenience, there are more paths to choose from and it
should be possible to reduce congestion more.

In Figure 2.5, we show the minimum maximum arc utilization ρ∗γ for the different values
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Figure 2.5. Proactive route guidance: minimum maximum (Min-Max) arc utilization

of the maximum allowed travel inconvenience γ. As expected, ρ∗γ is a non-increasing
function of γ. We note that for γ = 26% the value of ρ∗γ drops below 1, which implies
that there is no congestion in the system. Consequently, for values of the maximum
allowed travel inconvenience greater than or equal to 26%, the proactive route guidance
approach minimizes the weighted average travel inconvenience while ensuring that the
minimum maximum arc utilization does not exceed one. (We note that the experienced
travel inconvenience value is realistic only when a path has no arcs with an arc utilization
that exceeds one. Otherwise, the experienced travel inconvenience value represents an
underestimate, as congestion will be encountered along the path.)

In Figure 2.6, we show the arc utilization distribution for the different values of the
maximum allowed travel inconvenience. We see that the fraction of unused arcs in the
road network remains almost steady. When γ increases from 0% to 13%, the fraction of
heavily congested arcs decreases, but, at the same time, the fraction of lightly congested
arcs increases and the fraction of the non-congested arcs slightly decreases. We have
no heavily congested arc for γ ≥ 14%, and, as previously observed, the road network
becomes free of congestion when γ ≥ 26%. The two seemingly abrupt transitions from
γ = 13% to γ = 14% when the road network looses heavily congested arcs, and from
γ = 25% to γ = 26% when the road network looses all congested arcs, are smoother
than they may appear. Indeed, for γ = 13% we have ρ∗γ = 1.54 and all the 8.3% heavily
congested arcs are very close to be classified as lightly congested. For γ = 25% we have
ρ∗γ = 1.02 and all the congested arcs are very close to be classified as non-congested.

In Figure 2.7, we show the weighted average travel inconvenience for maximum allowed
travel inconvenience values greater than or equal to 26%, i.e., values for which congestion
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Figure 2.6. Proactive route guidance: arc utilization distribution

can be eliminated. As expected, we see that the weighted average travel inconvenience
decreases, because additional paths are exploited to reduce the weighted average travel
inconvenience rather than to reduce the maximum arc utilization.

In Figure 2.8, we show, for γ = 26%, the number of OD pairs experiencing a certain level
of travel inconvenience. Importantly, we see that for almost half of the OD pairs travel
still occurs along the shortest path and that only for a relatively small number of OD
pairs travel inconvenience exceeds 15%.

The pattern shown in Figure 2.8 is also seen in Figure 2.9, where we show the fraction
of OD pairs that is experiencing a certain travel inconvenience level (A through G) for
values of γ > 26%. We see that most vehicles are sent along paths with little or no travel
inconvenience (level A) and that only a small number of vehicles are sent along paths
with a high travel inconvenience (levels E through G).

In Figure 2.10, we show the average and the maximum number of selected paths for an
OD pair. We observe that the maximum number of paths selected for an OD pair is
surprisingly small. For all but one of the maximum allowed travel inconvenience values,
the number of selected paths is less than or equal to three. This implies that vehicles
with the same origin and destination are assigned to only a small number of different
paths. (This will facilitate developing schemes that assign paths in a fair way over time,
e.g., a round-robin assignment scheme.) We also observe that for all maximum allowed
travel inconvenience values, for most of the OD pairs, the vehicles are routed along a
single path, as the average number of paths selected for an OD pair is very close to 1.
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Figure 2.7. Proactive route guidance: weighted average experienced travel inconvenience
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Figure 2.8. Proactive route guidance: experienced travel inconvenience at γ = 26%
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Figure 2.9. Proactive route guidance: experienced travel inconvenience distribution for various
levels of maximum travel inconvenience

However, we note that when a single path is selected for an OD pair, this path does not
necessarily have to be the shortest path and that, in fact, in many cases it is not.

Even though we are focusing on an environment in which a specific origin-destination
path can be assigned to each vehicle and in which that vehicle will follow the assigned
path, it is informative to examine what happens when the 100% compliance assumption
does not hold. Figure 2.11 shows the minimum maximum arc utilization ρ∗γ that can be
achieved as a function of maximum allowed travel inconvenience for different compliance
rates. We see that for α = 90% congestion can still be avoided as the minimum maximum
arc utilization falls below 1 at γ = 30%, but that for lower levels of compliance, this is
no longer possible.

2.3.3 Summary results for all instances

In this section, we present summary statistics for groups of instances. In Figures 2.12
-2.14, we group instances that require the same maximum allowed travel inconvenience
to be able to reach the no-congestion state. In the final two charts, i.e., Figures 2.15-2.16,
we look at all instances, but for specific maximum allowed travel inconvenience values.

In Figure 2.12, we show for each value of the maximum allowed travel inconvenience the
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Figure 2.10. Proactive route guidance: selected paths
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Figure 2.11. Proactive route guidance: impact of the compliance rate on the minimum
maximum (min-max) arc utilization
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Figure 2.12. Proactive route guidance:
number of instances in a no-congestion state for different values of γ (%)

number of instances for which it is possible to reach a no-congestion state (distinguishing
in-peak and off-peak traffic densities). We observe that with off-peak traffic density at
γ = 22% it is possible to reach a no-congestion state for all 40 instances, but that with
in-peak traffic density even at γ = 35% it is not possible to reach the no-congestion state
for two instances. However, the value of minimum maximum arc utilization for these two
instance is very close to one, and a no-congestion state is attained at γ = 36%.

In Figures 2.13 and 2.14, we consider particular statistics and average this statistic over all
instances that reach the no-congestion state at a particular maximum travel inconvenience
value. In Figure 2.13, we show the average and the maximum number of selected paths.
We observe that the results suggest that when a higher maximum travel inconvenience
is required to reach the no-congestion state, more OD pairs will be assigned more than
one path as both the average of the maximum number of selected paths and the average
of the average number of selected paths are (slightly) higher. In Figure 2.14, we show
the weighted average travel inconvenience. We observe that, as expected, the weighted
average travel inconvenience is higher when it is more difficult to reach a no-congestion
state, but also that the weighted average travel inconvenience remains relatively small
even for instances where it is challenging to reach a no-congestion state.

In Figure 2.15, we show the average minimum maximum arc utilization over all instances
with in-peak and off-peak traffic densities. As expected, we see that the minimum maxi-
mum arc utilization is (significantly) smaller when the traffic density is smaller, as fewer
vehicles have to be accommodated in the same road network. We see that with in-peak
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Figure 2.13. Proactive route guidance: number of paths chosen at the no-congestion travel
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Figure 2.14. Proactive route guidance: weighted average experienced travel inconvenience at
the no-congestion travel inconvenience value (%)
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Figure 2.15. Proactive route guidance: minimum maximum (Min-Max) arc utilization

traffic density it is possible (on average) to reach a no-congestion state at γ = 23%. On
the other hand, with off-peak traffic density, a no-congestion state is reached (on average)
at γ = 8%.

In Figure 2.16, we show the average arc utilization distribution. The average number of
unused arcs remains almost the same while the average number of non-congested arcs
steadily increases with increasing values of maximum allowed travel inconvenience. At
γ = 35%, the proactive route guidance approach is able to eliminate heavily congested
arcs in all instances and reduce the average number of lightly congested arcs to less than
0.5%. This congestion “residue” is due to two instances that remain lightly congested at
γ = 35%.

2.4 Final remarks and future research

In this paper, we have conducted a computational study of the potential of proactive
route guidance to reduce or avoid congestion in an environment in which a specific origin-
destination path can be assigned to each vehicle in the system and in which that vehicle
will follow the assigned path. We believe that the advent of autonomous (or self-driving)
vehicles makes this a (much more) realistic assumption.
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Figure 2.16. Proactive route guidance: arc utilization distribution

Our proposed approach has an important (computational) advantage over previously
proposed approaches: it relies only on linear programming. As such, it is more likely to
scale and be usable in real-world settings. However, much needs to happen to make that
a reality. One important step in that direction, and one that we are currently pursuing,
is the dynamic generation of paths (as opposed to generating the set of eligible paths
upfront). Given the exponential growth of the sets of eligible paths when the maximum
allowed travel inconvenience increases, this will be critical.

Another critically important extension is incorporating traffic-dependent arc travel times,
which can be done efficiently by employing piecewise linear approximations of these func-
tions. This will allow more accurate modeling of travel times along paths that contain one
or more congested arcs, i.e., arcs with a utilization greater than one, which is especially
important in situations where it is not possible to reach a no-congestion state.

A final extension, but one that is more involved, considers varying demand rates over time
(instead of assuming steady-state behavior), which will allow more accurate modeling of
the traffic dynamics.
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3. Heuristic path generation for the

proactive route guidance problem

Abstract

The benefits in reducing traffic congestion of system optimum with respect to user equilibrium
traffic assignments are well known. Recently a linear programming based approach was
proposed that aims at achieving a compromise between the system perspective, namely

eliminating congestion, and the user perspective, that is minimizing individual travel times.
The approach, called proactive route guidance, assigns to users paths that increase the travel

times by at most a given percentage, called maximum allowed travel inconvenience. The
approach requires the enumeration of all feasible paths that may be memory and time

consuming, especially when large networks and/or high values of the maximum allowed travel
inconvenience are considered. In this paper a heuristic is presented to generate a subset of all

feasible paths that is based on the iterative search of improving paths. Computational
experiments show that the number of paths generated by the heuristic is smaller with respect
to the complete set by one or two orders of magnitude on small instances and by higher orders
of magnitude when the size of the instances increases. On instances with 150 nodes, where the

complete enumeration takes an acceptable computational time, the results show that the
quality of the heuristic solutions is very close to that of the optimal ones.

Keywords. Traffic congestion; Proactive route guidance; Heuristic path generation.

3.1 Introduction

Traffic is one of the most pressing problems in modern cities. The benefits in reducing
traffic congestion of system optimum with respect to user equilibrium traffic assignments
are well known (see, for example, Mahmassani and Peeta (1993) and Roughgarden and
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Tardos (2002)). While system optimum approaches are used to coordinate traffic and pos-
sibly eliminate congestion when automated guided vehicles are involved (see Kaspi and
Tanchoco (1990) and Bartlett et al. (2014)), the application of a system optimum ap-
proach to road networks has been considered to be not realistic due to fact that users take
their own decisions. Nowadays connected vehicles and technological advances, including
driverless vehicles, make the possibility of coordinating traffic more realistic. However, a
still relevant drawback of a system optimum approach is that it does not consider fairness
towards users.

The idea of integrating a system optimum approach with user fairness considerations
has been studied in different papers. User fairness was first considered in Jahn et al.
(2005), where the arc travel times were fixed to the travel times experienced under user
equilibrium assignment and only the paths with duration smaller than the least dura-
tion obtained under user equilibrium were considered as feasible paths. A non linear
optimization model was presented, a column generation solution method proposed and
computational results were carried out on real road networks. User fairness was also con-
sidered in Lujak et al. (2015), where a mathematical programming model was proposed
based on Nash welfare optimization. A linear programming based approach to control
the trade-off between system and user perspectives, called proactive route guidance, was
recently proposed in Angelelli et al. (2016a). The approach assigns paths to users with
the goal of minimizing congestion while guaranteeing a maximum level of inconvenience
to users. This is achieved by limiting the set of paths considered for an origin-destination
pair to those that have a relative difference in length with respect to the shortest path
below a given threshold. The approach hierarchically minimizes the maximum arc utiliza-
tion, which measures the congestion and captures the system perspective, and the average
travel inconvenience, that accounts for the user perspective. The fact that the approach
is based on linear programming models makes it computationally valuable. However, the
enumeration of all feasible paths is requested for every origin-destination pair and this
step may be memory and time consuming, especially when big networks and/or high
values of maximum allowed travel inconvenience are considered.

In this paper a heuristic is presented to generate the feasible paths for the proactive
route guidance approach. Methods for the generation of paths in a road network have
been widely studied in literature. According to Prato (2009) most of the deterministic
path generation methods are based on repeated shortest path searches over the network.
These methods are popular because of the efficiency of shortest path algorithms. The
well known k-shortest path algorithm proposed by Yen (1971) is an example of deter-
ministic generation methods based on the shortest path calculation. Several variants of
the k-shortest path algorithm have been developed. An interesting variant involves using
more than one objective function (see Ramming (2001) and Van der Zijpp and Catalano
(2005)). In Ramming (2001) a literature review on the main path generation methods is
provided. Deterministic path generation is carried out also using heuristics as the link
penalty and the link elimination methods. The idea underlying link penalty methods is
to iteratively penalize the links belonging to the shortest paths as proposed in de la Barra
et al. (1993). In link penalty methods the weight of the links belonging to the shortest
path is increased by a percentage and then a new shortest path search on the modified
network is performed. Other variants are presented in Park and Rilett (1997), Bekhor
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and Prato (2006) and Bekhor et al. (2006). The link elimination method consists in it-
eratively removing one or more links from the network and in performing a new shortest
path search on the modified network. This latter method was first presented in Azevedo
et al. (1993) and variants can be found in Prato and Bekhor (2006), Prato and Bekhor
(2007) and Frejinger and Bierlaire (2007).

The heuristic presented in this paper can be seen as a link elimination method applied
to the congested arcs of the network. The heuristic set of paths is generated through an
iterative process. The algorithm starts with a set of paths that contains the shortest path
for each origin-destination (OD) pair only. At each iteration, new paths that improve
the current solution are identified and added to the restricted set until a stop condition
is satisfied. Computational experiments show that the number of paths generated by the
heuristic is smaller with respect to the complete set by one or two orders of magnitude on
small instances and by higher orders of magnitude when the size of the instances increases.
On instances with 150 nodes the complete enumeration takes an acceptable computational
time and the solution obtained with the heuristic set of paths can be compared with
the optimum obtained with the complete set. The results show that the quality of the
heuristic solutions is very close to that of the optimal ones. In particular, if the maximum
allowed travel inconvenience is 5%, the congestion (the maximum arc utilization) obtained
with the heuristic set of paths coincides with the minimum congestion obtained with the
complete enumeration. If the maximum allowed travel inconvenience is 10%, the heuristic
congestion coincides with the optimum on 38 over 40 instances. For higher values of the
maximum allowed travel inconvenience the heuristic congestion increases on average by
at most 0.79% (when maximum allowed travel inconvenience is 30%). The average travel
inconvenience with the heuristic set of paths increases on average at most by 0.50 when
maximum allowed travel inconvenience is 20%.

The paper is organized as follows. In Section 3.2 the proactive route guidance approach
is recalled. In Section 3.3 the heuristic for the path generation is described. In Section
3.4 the results of a thorough computational analysis are presented and the benefits of
the heuristic versus the complete enumeration are shown. Finally, some conclusions are
drawn in Section 3.5.

3.2 The proactive route guidance approach

In order to make the paper self-contained, we recall in this section the proactive route
guidance approach of Angelelli et al. (2016a). The problem is defined on a graph G =
(V,A) representing a road network, where vertices V represent road intersections and
arcs A represent allowed directed links between intersections. For each arc (i, j) ∈ A,
the practical capacity uij and its length lij are provided. The former represents the
maximum rate of vehicles that can enter and traverse the arc in free-flow conditions,
whereas the latter is proportional to the arc traversal time in free-flow conditions. A set
C of origin-destination (OD) pairs is also given where each OD pair c ∈ C is defined
by three parameters: Oc ∈ V , Dc ∈ V and dc > 0, the origin, the destination and

43



the rate of vehicles entering the network in Oc with destination Dc, respectively. The
demand dc of any OD pair c ∈ C has to be routed through one or more paths in G
from origin Oc to destination Dc. A path is measured on the basis of the so called path
travel inconvenience, computed as the relative increment γc,p of the length of a path
p with respect to the shortest path from Oc to Dc. A parameter γ, called maximum
allowed travel inconvenience, defines the set of feasible paths Pc for each OD pair c ∈ C
as the set of paths p such that γc,p ≤ γ. Traffic assignment is described by variables
yc,p, c ∈ C, p ∈ Pc, where variable yc,p represents the amount of demand routed on path
p ∈ Pc. Parameters aijc,p connect feasible paths to arcs. More precisely, aijc,p = 1 if arc
(i, j) is traversed by path p ∈ Pc, 0 otherwise. The total rate of vehicles traversing an
arc (i, j) is, thus, xij = ∑

c∈C

∑
p∈Pc

aijc,pyc,p, and the arc congestion level is defined as the ratio

xij/uij. If the arc congestion level exceeds 1, then the arc is said to be congested, while
it is said uncongested otherwise. Analogously, we define the path congestion level as the
maximum congestion level of its arcs, and the OD pair congestion level as the maximum
congestion level of its feasible paths. Finally, the network congestion level is the maximum
arc congestion level (equivalently, the maximum path or OD pair congestion level). The
network is said to be congested if its congestion level exceeds 1, and uncongested otherwise.

The proactive route guidance approach assigns the demand dc of each OD pair c ∈ C
to a set of paths in Pc with the objective to minimize the so called weighted average
travel inconvenience, that is the sum of the weighted travel inconvenience over all paths
where the weight of a path is the ratio between the demand assigned to the path and the
total demand. Assignment of demand to paths has to leave the network uncongested, if
possible, or at the minimum congestion level otherwise.

The proactive route guidance approach consists in two hierarchical linear programming
models: the congestion model and the inconvenience model. The congestion model finds
the minimum network congestion level ρ∗. If ρ∗ ≤ 1, the inconvenience model is solved
to minimize the weighted average travel inconvenience while keeping the network uncon-
gested. Otherwise, the inconvenience model is solved imposing ρ∗ as an upper bound on
the network congestion level. In Table 3.1 we summarize the used notation.

The inconvenience model
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γ̄∗ ≡ min 1∑
c∈C

dc

∑
c∈C

∑
p∈Pc

γc,pyc,p

ρ ≤ max(1, ρ∗) (3.1)
xij
uij
≤ ρ ∀(i, j) ∈ A (3.2)

xij =
∑
c∈C

∑
p∈Pc

aijc,pyc,p ∀(i, j) ∈ A (3.3)

dc =
∑
p∈Pc

yc,p ∀c ∈ C (3.4)

yc,p ≥ 0 ∀c ∈ C ∀p ∈ Pc. (3.5)

Constraints (3.1) and (3.2) ensure that the network remains uncongested if ρ∗ ≤ 1, or
that its congestion level is minimized when ρ∗ > 1. Constraints (3.3) set the flow rate
on arc (i, j) equal to sum of flows on paths containing the arc (i, j). Constraints (3.4)
ensure that the demand of an OD pair c ∈ C is completely routed on its feasible paths.
Constraints (3.5) bound variables yc,p to be non-negative.

The minimum network congestion level ρ∗ used in constraint (3.1) is the optimal value
of the following congestion model.

The congestion model

ρ∗ ≡ min ρ

s.t. (3.2)− (3.5)

The congestion model shares with the inconvenience models the same decision variables
and operative constraints. However, the congestion model focuses on the network con-
gestion level only, while the inconvenience model without constraints (3.1) - (3.2) would
take into account only user travel inconvenience.

In Angelelli et al. (2016a) all the feasible paths from origin to destination for each OD pair
are generated. The set of feasible paths obviously depends on the value of the maximum
allowed travel inconvenience γ and the number of paths increases when γ increases. In
the rest of the paper, we refer to this method as the complete enumeration (CE). It has
been shown that, with the CE, not only the number of generated paths grows with γ,
but that the total number of feasible paths, given γ, is, in the worst case, exponential in
the instance size. Since each path is associated with a variable in the models, the number
of variables in the models grows, in the worst case, exponentially. For example, for a
benchmark instance with 150 vertices and γ = 15%, 70125 paths had to be generated.
For an instance with 300 vertices, the number of paths was 9649118. In Angelelli et al.
(2016a) it was observed that in the optimal solution of the proactive route guidance
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Proactive route guidance approach notation

G road network
V set of vertices
A set of arcs
uij practical capacity of arc (i, j) ∈ A
lij length of arc (i, j) ∈ A
C set of OD pairs
dc flow rate for OD pair c ∈ C
Oc origin vertex of OD pair c ∈ C
Dc destination vertex of OD pair c ∈ C
SPc length of the shortest path for OD pair c ∈ C
lc,p length of path p from Oc to Dc

γc,p inconvenience of path p from Oc to Dc : γc,p = lc,p−SPc
SPc

γ maximum allowed travel inconvenience
Pc set of feasible paths for OD pair c ∈ C: Pc = { path p from Oc to Dc | γc,p ≤ γ}
aijc,p is 1 if path p ∈ Pc contains arc (i, j), 0 otherwise
yc,p flow rate of OD pair c ∈ C routed on path p ∈ Pc
xij total flow rate entering arc (i, j) ∈ A: xij = ∑

c∈C

∑
p∈Pc

aijc,pyc,p

Table 3.1. Proactive route guidance approach notation

approach only few paths were used for each OD pair. This a characteristic of the solution
that allows us to hope that a well designed heuristic can achieve high quality solutions.

3.3 The heuristic path generation algorithm

The Heuristic Path Generation (HPG) algorithm aims at generating, with respect to
the CE, a substantially smaller set of paths that contains most of the paths used in
the optimal solution of the inconvenience model and, thus, such that the solution of the
inconvenience model, computed using the heuristic set of paths, is close to the optimum.

The heuristic set of paths is generated through an iterative process. The algorithm starts
with a set of paths, that we call restricted set, that contains the shortest path for each
OD pair only. At each iteration, new paths are identified and added to the restricted
set until a stop condition is satisfied. More precisely, at each iteration an estimate of
ρ∗ is computed by solving the congestion model using the paths currently available in
the restricted set. Then, an improving set of paths, that can guarantee a reduction of
the current congestion level of the network, is searched for. These paths are selected, for
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each OD pair, among the shortest ones that comply with the maximum allowed travel
inconvenience γ. If an improving set of paths is found, then it is added to the restricted
set, and the process continues. Otherwise, the algorithm stops and the current restricted
set is the final heuristic set of paths.

The heuristic assignment of demand to the paths is found by solving the inconvenience
model using the final restricted set of paths generated by the HPG algorithm and using
as congestion value the final estimate of ρ∗.

The HPG algorithm is sketched in Algorithm 3. Variable PRes represents the restricted
set of paths and variable P Imp represents the improving set. They are initialized with
the empty set and the set of shortest paths for each OD pair, respectively. At each
iteration the improving set is added to the restricted set, and the congestion model is
solved on the new restricted set. The resulting optimal value ρ′ and optimal solution
y′ are used in the next step to search for a new set of improving paths by means of
the SearchForImprovingPaths routine that will be described in detail in Section 3.3.1.
If the search is successful (P Imp 6= ∅), the restricted set is updated and the congestion
model is solved again. When routine SearchForImprovingPaths fails (P Imp = ∅), the path
generation ends. Then, the inconvenience model is solved using the restricted set of paths
PRes and as ρ∗ the current estimate ρ′. The heuristic value of the objective function of
the inconvenience model is denoted by γ̄.

Algorithm 3: Heuristic Path Generation (HPG) algorithm
input : Network G and set of OD pairs C
output: Approximate value of the minimum weighted average travel inconvenience γ̄
global : G,C
– PRes := ∅;
– P Imp := set of shortest paths from origin Oc to destination Dc for each c ∈ C;
while P Imp 6= ∅ do

– PRes := PRes ⋃P Imp;
– solve congestion model on the path set PRes:

- ρ′ := optimal value;
- y′ := optimal solution;

/* searches for a set of paths able to improve the solution */
– P Imp := SearchForImprovingPaths(PRes, y′, ρ′);

– solve the inconvenience model on the path set PRes and ρ∗ = ρ′:
- γ̄ := optimal value;

return γ̄

3.3.1 Searching for an improving set of paths

At each iteration of the HPG algorithm the congestion model provides a heuristic solution.
The objective of the routine SearchForImprovingPaths is to find an improving set of paths,
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that is a set of paths such that, when added to the restricted set, the congestion model
produces a new (sub-)optimal solution with a smaller network congestion. In order to
provide details on how the routine SearchForImprovingPaths works we need to introduce
a few definitions and state some properties of a feasible solution of the congestion model.

Let variables ŷ indicate a feasible solution of the congestion model, which we call a feasible
flow assignment, and let ρ̂ be the corresponding network congestion level. For all c ∈ C,
let P̂c ⊆ Pc be the set of paths with a positive flow (ŷc,p > 0) and P̂ = ⋃

c∈C P̂c. Finally,
an arc is said to be critical if its congestion level equals ρ̂. Analogously, an OD pair c
and a path p ∈ Pc are said to be critical if their congestion levels equal ρ̂, respectively.

Proposition 1. Let ŷ be a feasible flow assignment with network congestion level ρ̂ and

let c be a critical OD pair. If a path p ∈ Pc exists with congestion level strictly less than

ρ̂, then a feasible flow assignment exists such that:

1. No arc increases its congestion level to ρ̂ or above.

2. Congestion level of path p is strictly less than ρ̂.

3. Congestion level of c is strictly less than ρ̂.

4. No other OD pair increases its congestion level to ρ̂.

5. Network congestion level does not increase.

Proof. Let us move an arbitrarily small flow ε > 0 from every critical path in P̂c to path

p.

1. The only arcs that may increase their congestion level are those in p as they receive

a positive flow ε from other paths. Provided ε is small enough to keep the path

congestion level of p strictly lower than ρ̂, no arc increases its congestion level to ρ̂

or above.

2. It follows directly from Proposition 1.1.

3. All paths in P̂c with congestion level ρ̂ yield a positive flow ε to p. Consequently,

their congestion level must decrease by a positive quantity. Proposition 1.1 com-

pletes the argument.
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4. The only OD pairs that can increase their congestion level are those with paths

sharing arcs with p, but from Proposition 1.2 we know that all these arcs maintain

a congestion strictly less than ρ̂.

5. It follows directly from Proposition 1.1.

Corollary 1. If the new flow assignment ỹ produced under Proposition 1 assumptions

has network congestion level ρ̃ = ρ̂, then:

1. Critical OD pairs in ỹ are a proper subset of critical OD pairs in ŷ. In particular,

OD pair c is not critical in ỹ.

2. Critical arcs in ỹ are a proper subset of critical arcs in ŷ. In particular, critical

arcs in critical paths p ∈ P̂c are not critical in ỹ.

Proof. It follows directly from Proposition 1.

Proposition 2. Let ŷ be a feasible flow assignment with network congestion level ρ̂ and

let h be a critical arc in a critical path p ∈ P̂c for some critical OD pair c ∈ C. Let us

also assume that a path p′ ∈ Pc exists such that p′ may contain some critical arcs from

p, but not h and no critical arc from any other path.

Then, a feasible flow assignment exists such that:

1. No arc increases its congestion level to ρ̂ or above.

2. Congestion level of h is strictly less than ρ̂.

3. Congestion level of p′ is at most ρ̂.

4. No other OD pair increases its congestion level to ρ̂.

5. Network congestion level is at most ρ̂.
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Proof. Let us move an arbitrarily positive flow ε > 0 from p to p′ small enough to keep

the path congestion level of p′ stricly lower than ρ̂.

1. Let us consider four different types of arcs:

• Arcs shared by paths p and p′ maintain their congestion level as the flow moved

from p to p′ converges again on these arcs. In particular, shared critical arcs

maintain their congestion level at ρ̂, while other shared arcs maintain their

congestion strictly below ρ̂.

• Arcs in p but not in p′ decrease their congestion level as the total flow through

them is decreased by ε. This is true in particular for arc h.

• Arcs in p′ but not in p increase their congestion level; however, provided that

ε is small enough, their congestion levels remain strictly smaller than ρ̂.

• Arcs neither in p nor in p′ remain unchanged.

2. It follows directly from argument for Proposition 2.1.

3. It follows directly from argument for Proposition 2.1.

4. The only OD pairs that can increase their congestion level are those with paths

sharing arcs with p, but from Proposition 2.2 we know that all these arcs maintain

a congestion strictly less than ρ̂.

5. It follows directly from argument for Proposition 2.1.

Corollary 2. If the new flow assignment ỹ produced under Proposition 2 assumptions

has network congestion level ρ̃ = ρ̂, then critical arcs in ỹ are a proper subset of critical

arcs in ŷ. In particular, arc h is not critical in ỹ.

Proof. It follows directly from Proposition 2.

Remark 6. If assumptions of Proposition 1 are satisfied, assumptions of Propositions 2

are satisfied for all critical arcs in P̂c. In this sense Proposition 1 is a particular case of

Proposition 2.
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Proposition 3. Let a feasible flow assignment ŷ on which Proposition 2 can be applied be

given and let ρ̂ be its network congestion level. Let ỹ the feasible flow assignment resulting

from the Proposition 2 application and let ρ̃ be its network congestion level. Then there

are three possible cases:

• ρ̃=ρ̂ and Proposition 2 can be applied on the new flow assignment ỹ;

• ρ̃=ρ̂ and Proposition 2 cannot be applied because there exists no path satisfying the

assumptions of the Proposition 2;

• ρ̃<ρ̂, i.e. there are no more critical OD pair.

Proof. The new flow assignment ỹ can have network congestion level equal or smaller

than ρ̂. If ρ̃<ρ̂ than there are no more critical OD pairs since there is no arc with arc

congestion level greater or equal to ρ̂. According to Corollary 2, if network congestion

level ρ̃, corresponding to the new feasible flow assignment ỹ found by Proposition 2,

equals ρ̂, the number of arcs with congestion level ρ̂ is reduced with respect to ŷ. Thus,

either Proposition 2 can be applied on ỹ and, hence, the new flow assignment satisfy one

of the three possible cases or the Proposition 2 cannot be applied because there exists no

path satisfying the assumptions.

Remark 7. Let ỹ be the new flow assignment obtained after applying the transformation

described in Proposition 1 or Proposition 2. If ρ̃=ρ̂ and a critical OD pair c̃ for ỹ has a

path p̃ ∈ P̃c̃ with no critical arcs, then Proposition 1 can be recursively applied on feasible

flow ỹ, OD pair c̃ and path p̃.

The basic step of the SearchForImprovingPaths routine is to search for a path p′ ∈ P
that satisfies the assumptions of Proposition 2 for some critical arc h of a path p ∈ P̂c for
some critical OD pair c. According to Corollary 2, such path is able to relieve arc h and,
according to Remark 7 and Corollary 1, may also relieve a critical path, and, recursively,
even more critical arcs, and critical paths. The recursion stops when the relieved arc
is not able to relieve a whole path. We use the word relieve with respect to a critical
element (arc, path, OD pair) in the sense that a new traffic assignment can be found such
that the congestion level of the relieved critical element is strictly less than ρ̂ while the
network congestion level does not get worse. If, according to Proposition 3, we manage
to iterate the basic step until all critical OD pairs are relieved, we finally improve the
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network congestion. Notice that according to Remark 6 we do not need to check explicitly
for assumptions of Proposition 1.

Routine SearchForImprovingPaths is sketched in Algorithm 4. The initialization phase
exploits the current optimal solution of the congestion model on P̂, ŷ and ρ̂. The set
ImprovingPaths is first initialized to the empty set. Set Acrit is initialized with all critical
arcs, set Ccrit is initialized with all critical OD pairs, and sets Acritc,p for all c ∈ Ccrit and
p ∈ P̂c are initialized with critical arcs in path p ∈ P̂c.

During the main loop execution, for each critical OD pair c ∈ Ccrit, for each critical
path p ∈ P̂c and for each critical arc h ∈ Acritc,p , routine SearchForNewPath is used
to search for a path p′ from Oc to Dc such that the assumptions of Proposition 2 are
satisfied. If the search is successful, the new path is stored in ImprovingPaths and
RelieveCriticalElements routine is run to find the relieved critical elements in a poten-
tial flow assignment on P̂ ⋃ ImprovingPaths and, consequently, update the critical sets
Ccrit, Acrit, Acritc,p . Details on this task will be given in Section 3.3.3. When Ccrit has
been emptied, all critical OD pairs are relieved and the algorithm terminates with all
the paths stored in ImprovingPaths. This set guarantees that there exists a feasible
flow assignment on P̂

⋃
ImprovingPath that allows a congestion network smaller than

ρ̂. If, at some iteration, the search of a new path p′ fails on all triples (c, p, h), then the
algorithm is not able to relieve some of the critical OD pairs and returns an empty set.

Algorithm 4: SearchForImprovingPaths
input : P̂, ŷ, ρ̂
output: A list of paths ImprovingPaths
global : G,C,Ccrit, Acrit, Acritc,p

– ImprovingPaths := ∅;
– Using solution P̂, ŷ, ρ̂, initialize:

– Acrit := set of critical arcs;
– Ccrit := set of critical OD pairs;
– Acritc,p := set of critical arcs ∀c ∈ Ccrit, p ∈ P̂c;

while Ccrit 6= ∅ do
– success := false;
for c ∈ Ccrit do

for p ∈ P̂c do
for h ∈ Acritc,p do

– p′ := SearchForNewPath(c, p, h);
if p′ is not null then

– success := true;
– add p′ to ImprovingPaths;
– Execute RelieveCriticalElements(h) to update Ccrit, Acrit, Acritc,p ;

if success = false then
– return ∅;

– return ImprovingPaths;
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3.3.2 Searching for the new path

Given an OD pair c ∈ Ccrit, a critical path p ∈ P̂c and a critical arc h ∈ Acritc,p , the
SearchForNewPath routine, sketched in Algorithm 5, is devoted to finding a feasible path
p′ from Oc to Dc able to relieve arc h. In order to do that, a subgraph of G is created:
all critical arcs Acrit are first removed from the graph, then all arcs in Acritc,p but h are
reinserted. In other words, the only critical arcs allowed in the new path are those that
have already been relieved and the not-yet-relieved ones in p but h. The search for a
path could address any path in Pc, here we search for the shortest one in view of the fact
that this path will eventually concur to define a solution for the inconvenience model.

Algorithm 5: SearchForNewPath
input : c, p, h
output: p′
global : G,Acrit, Acritc,p

– A′ := (A \ Acrit)⋃(Acritc,p \ {h});
– G′ := (A′, V );
– Search in G′ the shortest feasible path p′ from Oc to Dc;
if p′ exists then

– return p′

else
– return null

In Figures 3.1 and 3.2 we show an example of how SearchForNewPath routine operates
in two different runs. In Figure 3.1(a) we have a critical OD pair c with a single path
p1 =< Oc − 2 − Dc > in P̂ emphasized with solid lines. Other arcs available in the
graph are depicted with dashed lines. Critical arcs are appropriately labeled. For ease
of exposition, suppose that all arcs have length 1 and that maximum allowed length is
3. Notice that path < Oc − 1− 2− 3−Dc >, which could relieve both arcs (Oc, 2) and
(2, Dc), is not feasible having length 4.

Suppose now that the first run is on path p = p1 and arc h = (Oc, 2). Figure 3.1(b) shows
the subgraph obtained after removing critical arcs not in p {(1−Dc), (Oc, 3)} and arc h;
Figure 3.1(c) shows the new path p2 =< Oc− 1− 2−Dc > found and able to relieve arc
h.

In Figure 3.2(a) we see the generated subgraph in a second run of SearchForNewPath
routine where p = p1 and h = (2, Dc): critical arcs not in p ((1, Dc) and (Oc, 3)) and arc
h are removed. Figure 3.2(b) shows the new path p3 =< Oc − 2 − 3 −Dc > found and
able to relieve arc h.
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(c) New path relieving arc (Oc, 2)

Figure 3.1. Heuristic Path Generation: an example of SearchForNewPath routine for a path
containing two critical arcs (continues in Figure 3.2)
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(b) New path relieving arc (2, Dc)

Figure 3.2. Heuristic Path Generation: an example of SearchForNewPath routine for a path
containing two critical arcs

3.3.3 Relieving critical elements

When a new path p′ is found by SearchForNewPath routine, at least one arc h can be
relieved. As a consequence of this fact, the network congestion level cannot increase and
the number of arcs with congestion level ρ̂ decreases as well (see Corollary 2). For this
reason we remove the relieved arc from Acrit and all Acritc,p where present. By doing this it
could happen that a set Acritc,p is emptied for some c ∈ Ccrit and p ∈ P̂c. In this lucky case,
according to Remark 7 and Proposition 2, we know that all critical arcs on p are relieved.
Thus, all arcs still in Acritc,p for p ∈ P̂c are automatically relieved and can be recursively
treated by RelieveCriticalElements without adding any new path to P̂c. Moreover, OD
pair c is relieved and we remove it from Ccrit.

This is what RelieveCriticalElements routine does. Details are provided in Algorithm
6. In particular, recursion is implemented in iterative form by adding relieved arcs to a
queue.

In Figure 3.3 an example is shown of how the RelieveCriticalElements routine works.
In Figure 3.3(a) we see the optimal solution produced by the congestion model at the
first iteration of the HPG algorithm. Set P̂ contains paths p1 =< O1 − 2 − D > and
p2 =< O2 − 2−D >.
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Algorithm 6: RelieveCriticalElements
input : h
global : P̂, Ccrit, Acrit, Acritc,p

– R := {h};
while R 6= ∅ do

– Remove one arc a from R;
– Remove a from set Acrit;
for all c ∈ Ccrit and p ∈ P̂c do

– Remove a from Acritc,p , if present;
for all c ∈ Ccrit do

if p ∈ P̂c exists such that Acritc,p = ∅ then
– Remove c from Ccrit;
for all p ∈ P̂c do

– Add Acritc,p to R; // avoid duplicates

– return;

In a first scenario let us assume that only arc (2, D) is critical. SearchForImproving-
Paths routine would initialize Acrit = {(2, D)}, Acrit1,p1 = {(2, D)}, Acrit2,p2 = {(2, D)} and
Ccrit = {1, 2}. When SearchForImprovingPaths routine executes SearchForNewPath on
c = 1, p = p1, and h = (2, D) a path p′ =< O1− 2− 3−D > is found (see Figure 3.3(b)).
Now arc (2, D) can be relieved: routine RelieveCriticalElements removes arc (2, D) from
Acrit, Acrit1,p1 and Acrit2,p2 ; since Acrit1,p1 and Acrit2,p2 are empty, OD pairs 1 and 2 are removed
from Ccrit. Since Ccrit is now empty, SearchForImprovingPaths return path p′ which is
sufficient to improve current solution.

In another scenario, let us assume that in Figure 3.3(a) arcs (O1, 2) and (2, D) are crit-
ical. SearchForImprovingPaths routine would initialize Acrit = {(O1, 2), (2, D)}, Acrit1,p1 =
{(O1, 2), (2, D)}, Acrit2,p2 = {(2, D)} and Ccrit = {1, 2}. When SearchForImprovingPaths
routine executes SearchForNewPath on c = 1, p = p1, and h = (2, D) a path p′ =<
O1 − 2 − 3 −D > is found (see Figure 3.3(b)). Now arc (2, D) can be relieved: routine
RelieveCriticalElements removes arc (2, D) from Acrit, Acrit1,p1 and Acrit2,p2 ; since A

crit
2,p2 only is

empty, OD pair and 2 is removed from Ccrit. Routine SearchForImprovingPaths would
try another iteration to relieve OD pair 1.

3.3.4 HPG may miss to find some optimal paths

The HPG algorithm aims at generating a good solution for the inconvenience model by
iteratively solving restricted versions of the congestion model. At each iteration a set of
paths to be added to a restricted set are searched for in such a way that the congestion
level can be reduced. When the SearchForImprovingPaths routine ends with a set of
paths, we are sure that the current solution can be improved, but the converse is not
true. Here, we provide two examples depicted in Figures 3.4 and 3.5 to illustrate this
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(b) A new path p′ for OD pair 1

Figure 3.3. Heuristic Path Generation: an example of RelieveCriticalElements routine

point.

Figure 3.4 shows an instance in which the network congestion level obtained with the HPG
algorithm is suboptimal. Let the network be as in Figure 3.4(a) and let the maximum
allowed travel inconvenience be γ = 30%. All arcs have capacity u equal to 1, all the four
OD pairs C = {1, 2, 3, 4} have demand equal to 1 and the arc duration is equal to 1 for
each arc. In Figure 3.4(b) the optimal flows for the congestion and for the inconvenience
models are shown: labels fc on arcs represent the flow of OD pair c. It is easy to see
that the demand is completely routed and the network congestion level is 5

6 . However,
the HPG algorithm stops with a network congestion level of 1. That happens because
the algorithm misses some paths used in the optimal solution of the congestion model.
In the first iteration of SearchForImprovingPaths the shortest paths only are considered
(Figure 3.4(c)). All OD pairs are critical and critical arcs are shown in Figure 3.4(d). The
SearchForNewPath routine finds a new path only for OD pair 3 SP32 ≡< O3−D4−D3 >
(Figure 3.4(e)), the critical arc set is reduced by the RelieveCriticalElements and the
critical OD pairs set becomes Ccrit = {1, 2, 4} (Figure 3.4(f)). Now SearchForNewPath
is not able to relieve any other arc and fails. The same does SearchForImprovingPaths
routine. Thus, the HPG algorithm stops at the value ρ′ = 1. However, in this case
the HPG algorithm finds the optimal solution of the inconvenience model because the
shortest paths are sufficient to keep the network uncongested.

In Figure 3.5 an example where the HPG algorithm finds the minimum network congestion
level and fails to find the optimal solution of the inconvenience model is provided. Let
us consider a network with 2 OD pairs C = {1, 2}, γ = 30%, and demand d1 = 8
and d2 = 7. Capacities and arc durations are as shown in Figure 3.5(a). In Figure
3.5(b) the optimal flows for the congestion and the inconvenience model are shown:
labels fc on arcs represent the flow of OD pair c on the arc. It is easy to see that the
demand is completely routed, the network congestion level is equal to 1 and the weighted
average travel inconvenience is around 2.5%. The paths considered in the first iteration of
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SearchForImprovingPaths are shown in Figure 3.5(c), critical OD pairs are {1, 2}; there
is only one critical arc with congestion level 1.5 shown in Figure 3.5(d). First iteration of
routine SearchForNewPath finds a path SP12 represented in Figure 3.5(e) that relieves
the only critical arc and OD pairs 1 and 2 altogether. Thus, SearchForImprovingPaths
is successful and returns only one path SP12. The new obtained network congestion
level is 1 with only one critical arc shown in Figure 3.5(f). At this point, during the
second iteration of SearchForImprovingPaths, routine SearchForNewPath fails and the
same does SearchForImprovingPaths. The set of paths for the inconvenience model is
suboptimal, although the congestion network level is optimal, and the resulting weighted
average travel inconvenience is 8.3̄%.

3.4 Computational results

The HPG algorithm and the CE were implemented in Java, and the optimization models
were solved by CPLEX 12.6.0. The experiments were run on a Windows 64-bit com-
puter with Intel Xeon processor E5-1650, 3.50 GHz, and 16 GB Ram. Experiments are
organized in two parts. The first part is mainly devoted to comparing the set of paths
generated with the CE and the set generated with the HPG algorithm on instances of
increasing size. Experiments were carried out using 8 benchmark instances, with up to
330 nodes, and values of γ ranging from γ = 0% to γ = 25% with step 5%. The second
part is devoted to comparing the optimal solutions of the congestion and inconvenience
models (with paths generated through the CE) and the heuristic solutions of the models
when only the paths generated with the HPG algorithm are used. Here experiments were
carried out on 40 benchmark instances with 150 nodes and values for γ ranging from
γ = 0% to γ = 35% with step 5%. The instances were generated taking into account
different demand patterns and point attractiveness distributions as explained thoroughly
in Chapter 6 and are available at http://or-brescia.unibs.it/instances. The statis-
tics collected for each instance are described in Section 3.4.1. Results for the former set
of experiments are presented and discussed in Section 3.4.2. Section 3.4.3 is devoted to
summarize results for the latter set of experiments.

3.4.1 Statistics

A number of statistics on the CE and the HPG algorithm are collected or computed on
all the tested instances.

• Computational time. The computational time is computed considering the total
computational time. For the CE this is the time to generate the paths and to solve
the congestion and the inconvenience models. For the HPG algorithm it is the time
required by the HPG algorithm.
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• Network Congestion.

– network congestion level: the network congestion level corresponding to the
generated solution.

– the fraction of arcs falling in each of the following four classes for different γ
values:

∗ unused arcs (xij/uij = 0)
∗ non-congested arcs (0 < xij/uij ≤ 1)
∗ lightly congested arcs (1 < xij/uij ≤ 1.5)
∗ heavily congested arcs (1.5 < xij/uij)

For this statistic results are reported in a graphical form.
– relative congestion gap εγ = ρHPG−ρCE

ρCE
, where ρCE is the optimum of the

congestion model (with paths generated through CE) while ρHPG is the value
of the congestion model when paths are generated with the HPG algorithm.

• User Experience.

– weighted average travel inconvenience corresponding to the generated solu-
tions.

– absolute inconvenience gap, κγ = γ̄HPG − γ̄CE, where γ̄CE is the optimum
of the inconvenience model (with paths generated through CE), while γ̄HPG
is the value of the inconvenience model when paths are generated with the
HPG algorithm. Usually gaps are computed in terms of relative error but
the weighted average travel inconvenience is a percentage itself and, using a
percentage of a percentage as quality measure can be misleading because if
the weighted average travel inconvenience is very small, then the relative error
will turn out to be very high, even if the difference between the two solutions
is small.

• Memory usage. The number of generated paths.

• Iterations. The number of iterations performed by the HPG algorithm.

3.4.2 Comparison of the heuristic set of paths with the complete

set

As already mentioned, experiments were carried out considering 8 networks, with a num-
ber of nodes that ranges from 120 to 330 and with γ values ranging from γ = 0% to
γ = 25% with step 5%. In Tables 3.2 and 3.3 the statistics are presented. At each step
the number of nodes in the network is increased by 30 nodes. Note that, for instances
with a number of nodes greater than 150 and for some values of γ, the statistics for the
CE are not shown. This is because the solver was not able to produce a solution because
it ran out of memory. For these cases we report the number of paths generated by the
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CE with the computational time required to generate them (values are marked with *).
We observe how slowly the number of paths generated by the HPG algorithm grows with
respect to the CE as the number of nodes increases. With γ = 25%, for the 120 nodes
instance this number is approximately 3% of the number generated by the CE while for
the 180 nodes instance it is approximately 0.4%. The percentage with γ = 25% and
a higher number of nodes is not available because the solver is not able to handle the
number of variables needed for the CE. However, considering γ = 20%, for the 210 nodes
instance the percentage is approximately 0.3%. Considering 240, 270 and 300 nodes in-
stances, the percentage experienced with γ = 15% is 0.4%, 0.2% and 0.06%, respectively.
For the 330 nodes instance, the value of γ for which we have the statistic is 10% and the
percentage of paths generated with the HPG algorithm with respect to the CE is 0.1%.
These statistics indicate that the HPG algorithm requires a memory that may be 3 orders
of magnitude less than the CE. From the point of view of the computational time, it is
possible to observe the same positive behaviour of the HPG algorithm. The percentage of
the computational time required by the HPG algorithm with respect to the CE is around
50% considering γ = 25% and 120 nodes, whereas considering 150 nodes this percentage
decreases to 2.7%. For a higher number of nodes we do not have results for γ = 25%.
However, with γ = 20% on the 180 nodes instance the HPG algorithm takes only 2.8%
of the computational time taken by the CE. The best result in terms of computational
time happens with the 300 nodes instance where the largest value of γ for which we have
the CE solution is 10%. In this case the HPG algorithm takes 0.28% of the time spent
by the CE.

After the analysis of the memory and time saving of the HPG algorithm on these in-
stances, we consider its effectiveness in generating high quality solutions. The relative
congestion gap εγ is very low. The maximum experienced value of εγ is around 4.4% with
150 nodes and with γ = 25%. From the point of view of the weighted average travel
inconvenience, the κγ value has a tendency to increase with γ, but is always below 1.1%.
This means that a user routed using the HPG algorithm can experience, on average, a
travel inconvenience that is 1.1% higher than with the CE. Furthermore, this value ap-
pears with high values of γ. With γ = 25% the weighted average travel inconvenience is
on average 7%. It means that with the HPG algorithm users will experience on average
8%, in the worst case.

3.4.3 Effectiveness of the heuristic set of paths

In this section we summarize the results obtained on 40 benchmark instances with 150
nodes and values of γ ranging from γ = 0% to γ = 35% with step 5% In Table 3.4 the
computational times required by the CE and by the HPG algorithm are shown. The
HPG algorithm confirms to be widely less time consuming than the CE, especially when
high values of γ are considered. In fact, with γ = 35% the CE, on average, spends more
than 1000 seconds per instance while the HPG algorithm spends 90 seconds per instance.
In this case the use of the HPG algorithm with γ up to 10% is not convenient because
it takes an amount of time similar to the CE. However, as shown in Table 3.3, the HPG
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algorithm becomes faster than the CE when the number of nodes increases, even for small
values of γ.

γ
Time (sec) 0% 5% 10% 15% 20% 25% 30% 35%
HPG 0 3 11 19 27 42 62 90
CE 1 3 11 31 85 207 456 1084

Table 3.4. Heuristic Path Generation: computational time (sec)

In Tables 3.5 and 3.6 statistics on the congestion gap εγ are shown. In Table 3.5 the
average and the maximum εγ over all instances and for different γ values are shown.
Note that, for γ = 5%, εγ is 0 as all instances are optimally solved with respect to
the congestion model. With γ = 10% two instances present positive, although negligible,
values of εγ. With higher values of γ, the average εγ increases. The worst case takes place
when the γ value is 30% where the average εγ value is equal to 0.79%. The maximum
value of εγ follows the behaviour of the average εγ with no congestion gap with γ = 5%
and a very small value, 0.02%, with γ = 10%. As in the average case, the worst case
appears with γ = 15% for which the maximum value is 3.26%.

γ
εγ (%) 0% 5% 10% 15% 20% 25% 30% 35%
Average 0 0 0 0.51 0.41 0.75 0.79 0.17
Maximum 0 0 0.02 3.26 1.87 3.05 2.94 0.84

Table 3.5. Heuristic Path Generation: average and maximum relative congestion gap

Table 3.6 reports the number of instances reporting εγ in different classes of values.
Almost all the instances are experiencing an εγ value under 3%. One exception is with
γ = 15% where 5% of the instances (2 over 40 instances) are experiencing a value of εγ
between 3% and 3.26%, which is the maximum εγ over all the instances with γ = 15%.
The other exception is when γ = 25% is considered and 5% of the instances have a
congestion gap between 3% and 3.05% (maximum congestion gap over all instances with
γ = 25%). With γ = 5% the congestion gap is always 0 and with γ = 10% the congestion
gap is very low (under 0.5%). When γ = 10%, the HPG algorithm has strictly positive
εγ only on 5% of the instances, that is on 2 over 40. The HPG algorithm produces εγ = 0
with γ = 15% on 80% of the instances and the rest of the instances are experiencing εγ
values distributed between 1% and 3%. For higher values of γ the percentage of instances
experiencing a congestion gap equal to 0 decreases. For γ = 35%, 55% of the instances
present no congestion gap and all the instances are affected by congestion gaps that are
not greater than 1%.

In Figures 3.6(a) and 3.6(b) the distribution of arc congestion level on different congestion
classes is shown. Note that this value is averaged over all instances. The two graphics
present almost the same behaviour. This means that, on average, the traffic distribution
over all arcs is well approximated by the HPG algorithm.
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Figure 3.6. Heuristic Path Generation: arc congestion level distribution for the two methods
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γ
εγ classes (%) 0% 5% 10% 15% 20% 25% 30% 35%
εγ =0% 100 100 95 80 70 40 45 55
0%< εγ ≤0.5% 0 0 5 0 5 15 10 35
0.5%<εγ ≤1% 0 0 0 0 5 15 10 10
1%<εγ ≤2% 0 0 0 5 20 15 25 0
2%<εγ ≤3% 0 0 0 10 0 10 10 0
3%<εγ ≤4% 0 0 0 5 0 5 0 0

Table 3.6. Heuristic Path Generation: instance experiencing εγ classes

Table 3.7 shows the behaviour of the absolute inconvenience gap κγ of the weighted
average travel inconvenience. In the worst case, γ = 20%, the value of κγ is on average
less than 0.5%. This means that users are diverted to a route that is, on average, 0.5%
longer than the one assigned by the CE. In terms of maximum, κγ is, in the worst case,
less than 2.5%. In Table 3.8 the distribution of κγ among different classes is shown.
Note that, considering γ = 5% and γ = 10%, all the instances present κγ values greater
than 0 but always lower than 0.5%. Regarding γ = 10%, only 10% of the instances have
κγ = 0, but almost all of the remaining instances are experiencing κγ values under 1%.
For higher values of γ there are no instances experiencing κγ = 0, but very few instances
are experiencing high values of κγ. In fact, in the worst case, γ = 25% and γ = 30%, the
percentage of instances experiencing κγ values greater than 1.5% is only 10%.

γ
κγ (%) 0% 5% 10% 15% 20% 25% 30% 35%
Average 0 0.04 0.14 0.26 0.50 0.49 0.44 0.44
Maximum 0 0.1 0.43 1.08 1.34 1.93 2.44 2.48

Table 3.7. Heuristic Path Generation: average and maximum absolute inconvenience gap on
γ̄

γ
κγ classes (%) 0% 5% 10% 15% 20% 25% 30% 35%
κγ =0% 100 0 0 10 0 0 0 0
0%< κγ ≤0.5% 0 100 100 55 55 55 70 70
0.5%<κγ ≤1% 0 0 0 30 10 25 20 15
1%<κγ ≤1.5% 0 0 0 5 35 10 0 10
1.5%<κγ ≤2% 0 0 0 0 0 10 5 0
2%<κγ ≤2.5% 0 0 0 0 0 0 5 5

Table 3.8. Heuristic Path Generation: instance experiencing κγ classes

In order to compare the memory usage of the HPG algorithm with respect to the CE,
we report the number of paths generated by the two methods in Table 3.9. The number
of paths generated with the CE rapidly grows with increasing values of γ. Notice that
with γ = 35% less than 0.3% of paths are generated by the HPG algorithm with respect
to the CE.
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γ
Approach 0% 5% 10% 15% 20% 25% 30% 35%
HPG 1170 1449 2212 3129 4090 5397 6881 8375
CE 1170 4055 18536 69449 214936 572058 1355029 2944161
% HPG on CE 100 36 12 5 2 1 0.5 0.3
Iterations 1 149.35 366 607.8 782.5 928 1071 1202.6

Table 3.9. Heuristic Path Generation: number of paths and iterations of the HPG algorithm

In Table 3.9 also the number of iterations of algorithm SearchForImprovingPaths is shown.
Consider that, at each iteration, a linear programming problem is solved on the restricted
set and, on average with γ = 35%, more than 1200 iterations are performed.

3.5 Conclusions

In this paper we have presented a heuristic for the generation of paths for the proactive
route guidance approach, a linear programming based approach that aims at finding a
system optimum traffic assignment that takes into account fairness for users by using
only paths with limited inconvenience. The computational complexity of the approach
is determined by the number of paths that, in the worst case, grows exponentially with
the number of nodes of the network. The computational experiments show that the
heuristic reduces by orders of magnitude the number of generated paths and the amount
of memory usage. The results also show that the quality of the solutions of the proactive
route guidance approach obtained using only the heuristic set of paths is very close to that
of the optimal ones. Although the heuristic has been designed to generate a set of paths
that allow us to find high quality solutions of the proactive route guidance approach, it
may be useful for the generation of paths required by other approaches and models for
traffic assignment.
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4. System optimal routing of traffic

flows with user constraints using

linear programming

Abstract

For static traffic assignment problems, it is well-known that (1) the total travel time in a
user-equilibrium solution can be substantially higher than the total travel time in a

system-optimum solution, and (2) the user-experienced travel time in a system-optimum
solution can be substantially higher that the user-experienced travel time in a user-equilibrium

solution. By seeking system optimal traffic flows subject to user constraints, a comprise
solution can be obtained that balances system and user objectives. We propose a linear

programming based approach to efficiently obtain a solution that effectively balances system
and user objectives. A computational study reveals that solutions with near-optimal total
travel times can be found in which most users experience travel times that are better than
user-equilibrium travel times and few users experience travel times that are slightly worse

than user-equilibrium travel times.

Keywords Traffic assignment, congestion, latency function, constrained system opti-
mum, linear programming, piecewise linear approximation

4.1 Introduction

Road congestion is one of the most pressing problems in urban areas, as it has negative
economic, environmental, and health impacts. Since in most situations, road network
infrastructure expansion is not feasible, because of a lack of available space or the huge
costs, alternative solutions have to be explored. Route guidance is natural and popular
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choice. Many vehicles, nowadays, are equipped with navigational devices that can com-
pute a shortest route (based on user preferences) from an origin to a destination. The
latest versions of these devices can also display current traffic conditions and use current
traffic data on shortest route computations. Unfortunately, these devices do not consider
the potential impact of the directions provided to a driver on the traffic system. As a
consequence, the same route may be suggested to many users, which, if the recommended
routes are followed by the users, may simply result in congestion occurring in other parts
of the road network rather than a reduction in system-wide congestion or in avoiding an
increase in system-wide congestion. Coordinating route guidance across the users of the
system, and adherence to the suggested routes by the users, is needed to reduce conges-
tion or, even better, to avoid congestion. In the (near) future, with the introduction of
self-driving vehicles, this may become a reality. Our research focuses on optimization
models to support these developments.

Route choice, or traffic assignment, concerns the selection of routes (alternatively called
paths) between origins and destinations in transportation networks. It is the fourth
step in the conventional transportation forecasting model, following trip generation, trip
distribution, and mode choice. Traffic assignment problems are defined on a road network
with an origin-destination (OD) matrix specifying demand, i.e, the number of vehicles
per time unit that is expected to travel from each origin to each destination. Details
on forecasting demand on road networks can be found in Sheffi (1985), Ben-Akiva and
Lerman (1985), Florian and Hearn (1999) and de Dios Ortuzar and Willumsen (2011).

A distinction is made between static and dynamic traffic assignment problems. In a
dynamic traffic assignment problem, origin-destination demand varies over time. Early
studies on dynamic traffic assignment date back to Merchant and Nemhauser (1978).
However, this class of traffic assignment problems is very challenging Jahn et al. (2005)
and there is no generally accepted model or methodology Papageorgiou (1990); Mahmas-
sani and Peeta (1995); Peeta and Ziliaskopoulos (2001); Ben-Akiva et al. (2012). In a
static traffic assignment problem, on the other hand, origin-destination demand is as-
sumed to be constant over time. Sheffi (1985) points out that this assumption is realistic
during a rush hour period when traffic exhibits a steady-state behavior. This class of
problems has been widely studied (see Sheffi (1985) and Patriksson (2015) for references)
and is also the focus of our research.

In his seminal work, Wardrop (1952) introduced two, now famous, principles that describe
the characteristics of the so-called user and system equilibrium. In the user equilibrium,
the journey times along all routes used from an origin to a destination are equal and
less than the journey time that would be experienced by a single user on any unused
route, i.e., no user can lower his transportation cost through unilateral action. In the
system equilibrium the average journey time is minimum, i.e., the sum of the journey
times experienced by all users is as small as possible.

To compute journey times, it is critical to be able to compute the experienced travel time
on an arc, which, of course, depends on the traffic flow on the arc. To do so, a latency
function ta(x) is used, which gives the experienced travel time on arc a given traffic flow x.
The most popular latency functions are the Davidson’s function ta(x) = tFFa (1 + αxa

u′a−xa
),
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where tFFa is the arc free-flow travel time and u′a and α are tuning parameters, and the
U.S. Bureau of Public Road function ta(x) = tFFa [1+0.15(xa

ua
)4], where tFFa represents the

arc free-flow travel time and ua represents the maximum rate of vehicles that can enter
an arc without experiencing substantial delays due to congestion.

Differences between user equilibrium and system optimum traffic assignments are exten-
sively studied in literature (see, for example, Mahmassani and Peeta (1993)). The user
equilibrium ensures fairness for users traveling between the same origin and destination.
On the other hand, in a system optimum traffic assignment, some users may be assigned
to paths that are much longer, in terms of distance or travel time, than paths assigned
to other users traveling from the same origin to the same destination.

Controlling the unfairness that is inherent in a system optimum traffic assignment is
critical when seeking an efficient and implementable traffic assignment. This has lead
several researchers to explore system optimal routing of traffic flows with user constraints,
in which only paths that ensure a certain level of fairness among users with the same
origin and destination are considered. In order to generate a set of paths that is likely
to result in an acceptable level of fairness, the concept of normal length of an arc is
introduced, an a priori estimate of the traversal time of an arc. Natural choices for the
normal length of an arc are its distance, its free-flow traversal time, or its traversal time
in the user equilibrium. The distance and free-flow traversal time are normal length
measures that do not depend on the demand in the network, while the traversal time
in the user equilibrium does depend on the demand in the network. The set of paths
generated for an origin-destination pair contains all paths that have a travel time that
is within a certain percentage of a shortest travel time path evaluated using the normal
length.

To the best of our knowledge, the first attempt at computing a constrained system opti-
mum is due to Jahn et al. (2000). Their model seeks to minimize the total (experienced)
travel time, uses the Davidson latency function, and restricts the set of paths considered
by using the geographic distance as the normal length of an arc. The solution method
is based on the Frank-Wolfe algorithm. In a subsequent paper, the latency function is
replaced by the one provided by the U.S. Bureau of Public Road and the traversal time
in the user equilibrium is used as the normal length of an arc Jahn et al. (2005). The
computational results, on data for seven real road networks, show that total travel time
close to the system optimum total travel time can be achieved with travel times experi-
enced by users close to the travel times experienced by users in the user equilibrium traffic
assignment. A more theoretical assessment of the efficiency and fairness of constrained
system optimum traffic assignments is presented in Schulz and Stier-Moses (2006). Re-
cently, Lujak et al. (2015) investigated a model in which the weighted geometric mean
of the experienced travel times of the used paths is minimized. A generic latency func-
tion is used and the set of paths considered is restricted by using the free-flow traversal
time as the normal length of an arc. The solution method is a multi-agent negotiation
model. Correa et al. (2007) study the problem of minimizing the maximum experienced
travel time on any used path in road networks with congestion, i.e., road networks with
flow-dependent arc traversal times. They compare the resulting traffic assignment with
the system optimum and user equilibrium traffic assignments in terms of the average
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experienced travel time on any used path (which is equivalent to the total experienced
travel time) and the unfairness, i.e., the maximum ratio of the largest experienced travel
time and the smallest experience travel time for an origin-destination pair. Note that
in this setting there are no restrictions on the set of paths considered. Angelelli et al.
(2016a) present a linear programming model in which user inconvenience is minimized
while keeping the network non-congested, if possible, or at its minimum congestion level,
otherwise. They assume a constant, flow-independent, latency function and measure user
inconvenience as the ratio of the travel time of the user’s path and the fastest travel time
from the user’s origin to the user’s destination. The network is considered non-congested
if the flow on every arc is less than or equal to the maximum rate of vehicles that can en-
ter the arc without experiencing substantial delays. The computed user inconvenience is
accurate only when the network can be kept non-congested. The set of paths considered
is restricted by using the free-flow traversal time as the normal length of an arc. The
advantage of their proposed model is that it can be solved with any (commercial) linear
programming solver. The disadvantage is that it assumes constant, flow-independent, arc
traversal times.

In this paper, a linear programming model is presented, thus retaining the desirable
property that it can be solved efficiently by any (commercial) linear programming solver,
that accommodates a flow-dependent latency function, thereby removing the unwanted
limitation that user inconvenience is only computed accurately when the system is non-
congested. The model seeks to minimize the total (experienced) travel time, using the
latency function provided by the U.S. Bureau of Public Road, and restricts the set of
paths considered by using the free-flow traversal time as the normal length of an arc.
A piecewise linear approximation of the flow-dependent latency function ensures the
linearity of the model. Thus, the model assigns paths to users so as to minimize the
total travel time experienced, but uses only paths that are expected to have a limited
inconvenience. An extensive computational study demonstrates that solutions with near-
optimal total travel times can be found in which most users experience travel times that
are better than user-equilibrium travel times and few users experience travel times that
are slightly worse than user-equilibrium travel times.

The remainder of the paper is organized as follows. In Section 4.2, we introduce and
discuss the relevant traffic assignment models. In Section 4.3, we introduce the solution
methods developed to solve these traffic assignments models. In Section 4.4, we discuss
the results of an extensive study of the constrained system optimum model with a piece-
wise linear approximation of the latency function. Finally, in Section 4.5, we present
some concluding remarks.

4.2 Traffic assignment models

In this section, we present the mathematical models that form the basis of this study.
We consider a directed network G = (V,A), where V represents the set of vertices and
A ⊆ V × V represents the set of arcs. Each arc (i, j) ∈ A represents a road segment
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on which vehicles can travel. A latency function tij(x), is defined for each arc (i, j) ∈ A
representing the arc traversal time when the rate of vehicles entering the arc is x. The
free-flow traversal time of an arc (i, j) ∈ A is denoted by tFFij and represents the traversal
time experienced when no other vehicles enter the arc tFFij = tij(0). In addition, there
is a set C ⊆ V × V of commodities, i.e., represented by origin-destination (OD) pairs,
where each c ∈ C has an origin Oc ∈ V , a destination Dc ∈ V , and a demand rate dc,
representing the number of vehicles per time unit that travel from Oc to Dc. The set of all
the possible paths between origin Oc and destination Dc is denoted by Kc. The indicator
akcij takes value 1 if path k ∈ Kc contains arc (i, j) ∈ A and takes value 0 otherwise. The
decision variables ykc represent the flow of commodity c ∈ C routed on path k ∈ Kc. The
variables xij represent the (total) flow on arc (i, j) ∈ A.

4.2.1 The user equilibrium

The user equilibrium model (UE model), as formulated in Beckmann et al. (1956), is
the following:

min
∑

(i,j)∈A

∫ xij

0
tij(ω) dω

xij =
∑
c∈C

∑
k∈Kc

akcij yck ∀(i, j) ∈ A (4.1)

dc =
∑
k∈Kc

yck ∀c ∈ C (4.2)

xij ≥ 0 ∀(i, j) ∈ A (4.3)
yck ≥ 0 ∀c ∈ C ∀k ∈ Kc. (4.4)

Constraints (4.1) set the flow on an arc as the sum of the flow on each path passing
through the arc. Constraints (4.2) ensure that the demand dc of commodity c ∈ C
is routed on paths in Kc. Finally, constraints (4.3) - (4.4) define the domains of the
decision variables. As pointed out in Sheffi (1985), the objective function has no direct
interpretation but is constructed in such a way that the solution to the model is equivalent
to the user equilibrium.
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4.2.2 The system optimum

The system optimum model (Path-based SO model), as formulated in Beckmann
et al. (1956), is the following:

min
∑

(i,j)∈A
tij(xij)xij

(4.1)− (4.4).

The objective function minimizes the total travel time experienced by the users while the
constraints are the same as in the user equilibrium model formulation. The equivalent
arc-based formulation (Arc-based SO model) is the following:

min
∑

(i,j)∈A
tij(xij)xij

xij =
∑
c∈C

xcij ∀(i, j) ∈ A (4.5)∑
j∈V

xcij −
∑
j∈V

xcji = 0 ∀c ∈ C ∀i ∈ V, i 6= Oc, i 6= Dc (4.6)
∑
j∈V

xcij −
∑
j∈V

xcji = dc ∀c ∈ C i = Oc (4.7)
∑
j∈V

xcij −
∑
j∈V

xcji = −dc ∀c ∈ C i = Dc (4.8)

xcij ≥ 0 ∀c ∈ C ∀(i, j) ∈ A. (4.9)

Variables xcij represent the flow of commodity c on arc (i, j), Constraints (4.5) impose
that the total flow on arc (i, j) is the sum of the flows of all commodities c ∈ C passing
through it, and constraints (4.6) - (4.8) guarantee flow conservation and that demand is
completely routed. Finally, constraints (4.9) define the domain of the variables xcij.

Note that the user equilibrium is a feasible solution to the system optimum model, and,
therefore, the total travel time experienced in a system optimum is less than or equal
to the total travel time experienced in a user equilibrium. The difference between the
total travel times of the two traffic assignments is commonly referred to as the price of
anarchy and reflects how selfish routing (user equilibrium) affects the total travel time
when compared to a system-wide coordinated traffic assignment (system optimum).
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4.2.3 The constrained system optimum

Like the system optimum model, the constrained system optimum model (C-SO model)
assigns paths to commodities so as to minimize the total travel time experienced by
users. However, the set of paths considered is restricted as follows. We define the path
inconvenience to be the relative percentage difference between the normal length of the
path and the shortest normal length path from the same origin to the same destination.
For a given percentage γ, the set of paths Kγ

c for commodity c ∈ C contains all the paths
with an inconvenience not larger than γ. We refer to γ as the maximum inconvenience.
Recall that the normal length of an arc (and thus a path) can be defined in a number of
different ways. The C-SO model formulation is the following:

min
∑

(i,j)∈A
tij(xij)xij

xij =
∑
c∈C

∑
k∈Kγ

c

akcij yck ∀(i, j) ∈ A (4.10)

dc =
∑
k∈Kγ

c

yck ∀c ∈ C (4.11)

xij ≥ 0 ∀(i, j) ∈ A (4.12)
yck ≥ 0 ∀c ∈ C ∀k ∈ Kγ

c . (4.13)

The only difference with Path-based SO model is that the set of path Kγ
c for com-

modity c ∈ C is a subset of Kc.

4.3 Solution methods

In this section, we present the solution methods for the models that form the basis of
this study.

4.3.1 Computing the user equilibrium

There are several ways to compute the UE on a network. In Sheffi (1985) and Patriksson
(2015) heuristic methods, such as the capacity restraint method and the incremental
assignment method, as well as exact methods are proposed. We implemented the following
convex combination method to obtain the UE:

Step 0: Perform an “all-or-nothing” assignment based on the free-flow traversal times
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t0ij = tFFij , (i, j) ∈ A, i.e., route the entire demand of a commodity on the fastest
path with respect to tFFij . The resulting flows are represented by {x1

ij}. Set n = 1.

Step 1: Update the current traversal times based on the flows {xnij} and the latency
function, i.e., tnij = tij(xnij), (i, j) ∈ A.

Step 2: Perform an “all-or-nothing” assignment based on the current traversal times
tnij. The resulting flows are denoted by {ynij}. This gives a descent direction.

Step 3: Perform a line search, i.e., find the δn that solves

min
∑

(ij)∈A

∫ xnij+δn(ynij−x
n
ij)

0
tij(ω) dω

0 ≤ δn ≤ 1
δn ≥ 0.

Since we have assumed that the arc latency function is tij(xij) = tFFij [1+0.15(xij
uij

)4],
the resulting one variable optimization problem is

min
∑

(ij)∈A
{tFFij [xnij + δn(ynij − xnij)] + 0.15

5u4
ij

[xnij + δn(ynij − xnij)]5}

0 ≤ δn ≤ 1
δn ≥ 0,

which can be solved easily (note that tFFij , xnij and ynij are fixed).

Step 4: Compute flows {xn+1
ij }, i.e., xn+1

ij = xnij + δn(ynij − xnij), (i, j) ∈ A.

Step 5: Convergence test. Let lnc be the travel time for commodity c at the n-th it-
eration. If ∑

c∈C

|lnc−l
n−1
c |
lnc

≤ κ, then STOP, otherwise set n = n+1 and return to Step 1.

4.3.2 Piecewise linear approximation

Since we want to take advantage of the enormous power of modern (commercial) lin-
ear programming solvers, we will replace the objective function in the system optimum
models, when it is nonlinear, with a piecewise linear approximation. More specifically,
we replace the terms Fij(xij) = tij(xij)xij in the objective function of Arc-based SO
model and C-SO model by a piecewise linear convex function on [0, Uij], where Uij is
a natural upper bound on the admissible flow xij through arc (i, j).

Let
B = {b0

ij = 0, b1
ij, ...., b

n−1
ij , bnij = Uij}
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Figure 4.1. Linear constrained system optimum: σij(xij) construction

be a set of breakpoints that partition the domain [0, Uij] of function Fij into n intervals,
and let

F = {f 0
ij = Fij(0) = 0, f 1

ij = Fij(b1
ij), ..., fnij = Fij(Uij)}

be the set of corresponding function values. Furthermore, let ∆h
ij = bhij − bh−1

ij for h =
1, . . . , n be the length of the h-th interval. The piecewise linear approximation σij(x) of
Fij(x) is given by (see Figure 4.1)

Fij(x) ≈ σij(x) =



f 0
ij + f1

ij−f
0
ij

∆1
ij

(x− b0
ij) x ∈ [b0

ij, b
1
ij]

f 1
ij + f2

ij−f
1
ij

∆2
ij

(x− b1
ij) x ∈ (b1

ij, b
2
ij]

...... ....

fn−1
ij + fnij−f

n−1
ij

∆n
ij

(x− bn−1
ij ) x ∈ (bn−1

ij , bnij].

When the latency functions are convex, as is the case with the Davidson and the US
Bureau of Public Road latency functions, then Fij(x) and its approximation σij(x) are
convex as well. The convexity of σij(x) functions allows them to be easily expressed in a
linear programming model.
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This results in the following Lin-SO model:

min
∑

(ij)∈A
σij

xij =
n∑
h=1

λhij ∀(i, j) ∈ A (4.14)

σij =
n∑
h=1

fhij − fh−1
ij

∆h
ij

λhij ∀(i, j) ∈ A (4.15)

0 ≤ λhij ≤ ∆h
ij ∀(i, j) ∈ A ∀h = 1, ..., n (4.16)

xij =
∑
c∈C

xcij ∀(i, j) ∈ A (4.17)∑
j∈V

xcij −
∑
j∈V

xcji = 0 ∀c ∈ C ∀i ∈ V, i 6= Oc, i 6= Dc (4.18)
∑
j∈V

xcij −
∑
j∈V

xcji = dc ∀c ∈ C i = Oc (4.19)
∑
j∈V

xcij −
∑
j∈V

xcji = −dc ∀c ∈ C i = Dc (4.20)

xcij ≥ 0 ∀c ∈ C ∀(i, j) ∈ A
xij ≥ 0 ∀(i, j) ∈ A.

Variable xcij represents the flow of commodity c on arc (i, j) and variable xij represents to
total flow on arc (i, j). They are linked through constraints (4.14). Auxiliary variables λhij
represent the fraction of flow xij assigned to interval [bh−1

ij , bhij]. Constraints (4.14) ensure
that the entire flow xij is assigned. The convexity of Fij(x), the objective function, and
constraints (4.15) guarantee that in an optimal solution the flow xij is assigned to intervals
in order of increasing indices, i.e., λhij > 0 if and only if λh−1

ij = ∆h−1
ij for h = 2, . . . , n.

Constraints (4.18) - (4.20) guarantee flow conservation and that the entire demand is
routed.

The piecewise linear approximation can be also applied to the C-SO model and results
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in the following Lin-C-SO model:

min
∑

(ij)∈A
σij

xij =
n∑
h=1

λhij ∀(i, j) ∈ A (4.21)

σij =
n∑
h=1

fhij − fh−1
ij

∆h
ij

λhij ∀(i, j) ∈ A (4.22)

0 ≤ λhij ≤ ∆h
ij ∀(i, j) ∈ A ∀h = 1, ..., n (4.23)

xij =
∑
c∈C

∑
k∈Kγ

c

akcij yck ∀(i, j) ∈ A (4.24)

dc =
∑
k∈Kγ

c

yck ∀c ∈ C (4.25)

xij ≥ 0 ∀(i, j) ∈ A
yck ≥ 0 ∀c ∈ C ∀k ∈ Kγ

c .

As before, variables xij and yck represent the flow on arc (i, j) and the flow on the k-th
path of commodity c ∈ C, respectively, and constraints (4.24) and (4.24) ensure that
the flow on arc (i, j) is set correctly and that the entire demand for a commodity is
routed, respectively. Constraints (4.21)-(4.23) play the same role as the corresponding
constraints in Lin-SO model. For convenience, the notation used in Lin-C-SO model
is summarized in Table 4.1.

4.4 Computational results

A large and diverse set of instances has been used in a computational study to assess the
performance of the Lin-C-SO model. The instances were generated taking into account
different demand patterns, point attractiveness distributions and other parameters as ex-
plained thoroughly in Chapter 6. The instances are available at http://or-brescia.unibs.it/instances.
For each instance, we generate a traffic assignment using a restricted set of paths for max-
imum inconvenience values, γ, ranging from 0% to 35% in increments of 1% (i.e., 36 traffic
assignments). The linear programs are solved using CPLEX 12.6.0. The experiments were
conducted on a Windows 64-bit computer with Intel Xeon processor E5-1650, 3.50 GHz,
and 16 GB Ram. For all experiments, we have used the latency function proposed by the
U.S. Bureau of Public Roads, i.e., tij = tFFij (1 + 0.15(xij

uij
)4). To define a set of restricted

paths, we use the free-flow travel time of an arc as its normal length.
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Constrained system optimum notation

Sets

V set of vertices
A set of arcs
C set of OD pairs
Kc set of all possible paths for c ∈ C
Kγ
c set of eligible paths for c ∈ C with maximum inconvenience γ

Parameters

uij parameter representing the maximum rate of vehicles that can enter the arc
(i, j) ∈ A without experiencing substantial delays due to congestion

tFFij free-flow travel time of arc (i, j) ∈ A
akcij 1 if path k ∈ Kγ

c contains arc (i, j) ∈ A, 0 otherwise
dc flow rate for OD pair c ∈ C
bhij h-th breakpoint related to the arc (i, j)
fhij value of the function F (xij) in breakpoint bhij
n number of intervals
∆h
ij interval size

Decision variables

yck flow rate of OD pair c ∈ C routed on path k ∈ Kγ
c

xij total flow rate entering arc (i, j) ∈ A: xij = ∑
c∈C

∑
k∈Kγ

c

akcij yck

Auxiliary decision variables

σij total travel time multiplied by xij evaluated using the piecewise function
λij amount of vehicles in the h− th interval of piecewise function of arc (i, j)

Table 4.1. Notation used in Lin-C-SO model
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Figure 4.2. Linear constrained system optimum: Fij(xij) and σij(xij) curves

4.4.1 Piecewise linear approximation accuracy

In the computational experiments with Lin-SO model and Lin-S-CO model, we use
a piecewise linear approximation of the objective function

Fij(xij) =
∑

(i,j)∈A
tFFij (1 + 0.15(xij

uij
)4)xij.

The piecewise linear approximation is obtained by dividing the domain [0, Uij] of the
flow variable xij associated with arc (i, j) into n = 1000 equal length intervals. In
Figure 4.2, we show Fij(xij) and its piecewise linear approximation σij(xij) for the latency
function with parameters tFFij = 0.2 hours and uij = 2500 vehicles/hour. We see that
the two functions almost overlap - to enhance the visual effect, we have magnified parts
of the figure using a 20x scaling factor. In fact, the maximum relative difference, i.e.,
σij(xij)−Fij(xij)

Fij(xij) , is always less than 0.5%. High-quality approximations can also be obtained
with a smaller number of intervals, e.g., n ≥ 50. However, as the solution times with the
chosen number of intervals was acceptable, we did not explore the choice of the number
of intervals in much detail.
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4.4.2 Statistics

We collect and compute the statistics shown in Table 4.2. Note that the total travel
time of a traffic assignment is always evaluated using the non-linear latency function
tFFij (1 + 0.15(xij

uij
)4).

4.4.3 Results for the Lin-C-SO model

We analyze the traffic assignments produced by the Lin-S-CO model for maximum
inconvenience values ranging from 0% to 35% in increments of 1% and averaged over the
80 instances. Recall that inconvenience and maximum inconvenience are defined in terms
of the normal length of arcs and used only to define a restricted set of paths. The reported
free-flow inconvenience and UE inconvenience are defined using the actual experienced
travel times.

Figure 4.3 shows the (average) total travel time, ΘLin-C-SO, as a function of the maximum
inconvenience, γ. As a reference, we have included, in the form of two horizontal lines,
the (average) total travel time of the user equilibrium assignment, ΘUE, and the (average)
total travel time of the system optimum traffic assignment, ΘLin-SO. We see that when the
maximum inconvenience is greater than 10%, then ΘLin-C-SO is almost equal to ΘLin-SO.
Furthermore, we see that only when the maximum inconvenience, γ, is very small. i.e.,
0, 1, or 2%, we have ΘUE ≤ ΘLin-C-SO. Already with a maximum inconvenience of 3%,
there are enough paths in the set of restricted paths used in the Lin-S-CO model to
achieve a smaller (average) total travel time than in the UE. This is a manifestation of
the “price of anarchy”, i.e., individual decision making (UE equilibrium model) results in
worse performance than coordinated decision making (SO and C-SO models).

Figure 4.4(a) shows the (average) free-flow inconvenience, IFF , as a function of the max-
imum inconvenience, γ. The dashed line helps to identify those values of the maximum
inconvenience for which the experienced free-flow inconvenience is larger than the max-
imum inconvenience. We see that that happens for maximum inconvenience values less
than or equal to 4%. In addition, we see that when the maximum inconvenience is greater
than 10%, IFF is less than or equal to 3%. As the average free-flow inconvenience conveys
only part of what is happening, in Figure 4.4(b), we show the maximum free-flow incon-
venience over all instances as a function of the maximum inconvenience. As expected,
it takes longer for the maximum experienced free-flow inconvenience to drop below the
maximum inconvenience, i.e., only for maximum inconvenience values greater than or
equal to 10%. We also see that maximum free-flow inconvenience stabilizes around 7%
for maximum inconvenience values greater than or equal to 14%.

The free-flow inconvenience compares the experienced travel time to the shortest free-flow
travel time. A more relevant and insightful comparison, however, may be the comparison
with the experienced travel time in the user equilibrium traffic assignment, i.e., IUE.
Figures 4.5(a) and 4.5(b) show the average value of IUE and the maximum value of IUE,
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Travel time
ΘLin-C-SO Experienced total travel time for the traffic assignment produced by the

Lin-C-SO model.
ΘLin-SO Experienced total travel time for the traffic assignment produced by the

Lin-SO model.
ΘUE Experienced total travel time for the traffic assignment produced by the

UE algorithm.
User experience
IFF Free-flow inconvenience, i.e., the average of the relative difference be-

tween the experienced travel time on the path and the travel time on the
fastest path under free-flow conditions for the associated OD pair over
all used paths weighted by the path flow.

IUE UE inconvenience, i.e., the average of the relative difference between the
experienced travel time on the path and the travel time experienced in the
user equilibrium for the associated OD pair over all used paths weighted
by the path flow.

Arc utilization
xij/uij classes The fraction of arcs falling in each of the following six classes:

• A (0% < xij/uij ≤ 20%)

• B (20% < xij/uij ≤ 40%)

• C (40% < xij/uij ≤ 60%)

• D (60% < xij/uij ≤ 80%)

• E (80% < xij/uij ≤ 100%)

• F (xij/uij > 100%)

OD paths
Selected paths Selected paths in the optimal solution of the Lin-C-SO model:

• average number of selected paths per OD pair,

• maximum number of selected paths per OD pair.

Table 4.2. Linear constrained system optimum statistics
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Figure 4.3. Linear constrained system optimum: total travel time, ΘLin-C-SO as a function of
the maximum inconvenience, γ

respectively, as a function of the maximum inconvenience. We see that for a maximum
inconvenience of 5%, the average IUE becomes negative. This means that, on average,
users are experiencing travel times that are shorter than the travel time experienced in
the user equilibrium traffic assignment. In fact, for a maximum inconvenience of 5% the
maximum IUE is also low, about 7%. For higher maximum inconvenience values, we see
even better performance, e.g., at 12% the average IUE is -1% and the maximum IUE is
0. That is, at 12%, we are able to reduce the average experienced travel time without
increasing the maximum experience travel time (compared to the travel times experienced
in the UE traffic assignment).

To provide more detail about the traffic assignment produced by the Lin C-SO model,
we present, in Figure 4.6, the average and maximum number of used paths for an OD pair,
and, in Figure 4.7, information on the ratio of arc flow and arc capacity across the arcs in
the network. Figure 4.6 shows that, on average, the number of used paths for an OD pair
is close to one, which means that, on average, the demand of an OD pair is routed along
a single path. However, it is also clear that in most settings the demand of a few OD
pairs is routed along multiple paths, up to seven paths for γ = 19%. Figure 4.7 shows
the distribution of the ratio of arc flow and arc capacity across the arcs in the network.
The arcs are divided into utilization classes A through F. Class A contains the least used
arcs (with a ratio between 0 and 0.2). Intermediate classes contain arcs with moderate
flows, in which any user experienced delays are still acceptable. Class F contains the
most heavily used arcs with flows exceeding the practical capacity, which implies that on
these arcs users will experience significant delays. As expected, we see that the fraction
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Figure 4.4. Linear constrained system optimum: free-flow inconvenience, IFF
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Figure 4.6. Linear constrained system optimum: average and maximum number of each OD
pair used paths

of heavily used arcs decreases when the maximum inconvenience increases so as to avoid
significant delays and minimize total experienced travel time.

4.5 Final remarks and future research

The Lin-C-SO model has an important advantage over previously proposed constrained
system optimum models: it is a linear programming model and, hence, it is more likely
that even very large instances can be solved efficiently. As such, it has larger potential to
be of use in practical settings. However, the upfront enumeration of the sets of restricted
paths from an origin to a destination may prove to be computationally prohibitive for very
large instances, when the number of paths could easily reach several millions. A natural
extension, therefore, will be developing a column generation approach for the Lin-C-SO
model, possibly using heuristics to dynamically identify beneficial paths. Furthermore,
as pointed out in the introduction, the steady-state assumption, which allows us to work
with static traffic assignments, may be reasonable during rush hour periods, but will not
be appropriate for a period in which the demand varies over time. To accommodate
varying demand over time, a time-dependent variant of the Lin-C-SO model can be
investigated.
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5. Heuristic path generation for the

linear constrained system optimum

model

Abstract
In this paper we propose a heuristic algorithm to solve a linear programming model for the

constrained system optimum traffic assignment problem recently proposed in the literature.

This kind of models compromise between user equilibrium and system optimum models.

However, limiting the set of eligible paths may require a huge amount of paths to be explicitly

considered, and, thus make the model computationally intractable. In this paper a heuristic

iterative algorithm aimed at generating a near optimal set of feasible paths, and to obtain a

near-optimal solution, is presented. Computational experiments highlight that the number of

paths generated by the heuristic algorithm is several orders of magnitude smaller with respect

to the complete set. Accordingly, the heuristic computational time is orders of magnitude

smaller than solving the model with complete enumeration of feasible paths. We also show

that, when the model with path complete enumeration can be solved, the heuristic produces

very high quality solutions.

Keywords. Traffic congestion; linear constrained system optimum; Heuristic iterative
path generation.
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5.1 Introduction

Traffic management has been attracting more and more attention in the last decades
as, due to the growing population, the number of vehicles travelling in urban areas has
kept increasing at an higher rate than road network development. The effects of the
implied traffic congestion are multifold: pollution, stress and delays for public and private
transport. All these factors form a vicious circle in which they feed on each other. Several
theoretical models and methods have been developed in the attempt to provide tools
able to relieve the traffic congestion problem. Approaches to traffic-flow control can be
classified in two main classes: micro and macro traffic control.

Microscopic traffic-flow control models aim at describing the individual behavior of each
vehicle while the macroscopic ones aim at describing traffic as a continuous flow subject
to global rules. Details on these methodologies can be found in Treiber and Kesting
(2013).

Macro traffic models are rooted in the two Wardropian principles: the system optimum
and the user equilibrium traffic assignment. After the seminal work by Wardrop (1952)
the concepts of system optimum and user equilibrium were formulated in the form of
optimization models in Beckmann et al. (1956). The two Wardropian principles assume
that travel demand is constant over the whole period of interest. According to Sheffi
(1985), this hypothesis is considered to be reliable especially during rush-hour periods
when traffic exhibits a steady-state behavior. Furthermore, in both traffic assignments
the arc traveling time is assumed to be dependent on the arc flow according to a function
called latency function. A review on the mainly used latency functions can be found in
Branston (1976) and Rose et al. (1989).

System optimum traffic assignment aims at minimizing the total travel time spent by
users on the road network while user equilibrium traffic assignment guarantees that not
only users with the same origin and destination (OD pair) will experience the same travel
time, but none of them will have any advantage in changing unilaterally their assigned
path. The total travel time in a user equilibrium is generally worse than the one provided
by a system optimum traffic assignment, but, on the other side, in a system optimum
traffic assignment different users with the same origin and destination may be ’unfairly’
routed on paths with remarkably different travel times. Moreover, far from being in an
equilibrium solution, some user could gain personal advantage at community expenses by
unilaterally changing their assigned path.

To the best of our knowledge, the first attempt to find a compromised solution between
the two assignments, is due to Jahn et al. (2000) where a traffic assignment model called
constrained system optimum has been developed. The set of feasible paths is defined
through an a priori measure of their arcs: the Euclidean distance between arc extreme
points. For each OD pair the feasible paths are those with length within a fixed percentage
of the shortest path, which we call maximum inconvenience.

Later, the same authors (Jahn et al. (2005)) generalized the a priori arc measure by the
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concept of normal length which can refer to different measures, e.g. Euclidean distance,
free-flow travel time, and travel time under the user equilibrium. In this new work,
a constrained system optimum model is proposed in which the latency function is the
one provided by the Bureau of Public Roads (U.S.), ta(x) = tFFa [1 + 0.15(xa

ua
)4], where

tFFa represents the arc free-flow travel time, xa represents the flow rate assigned to arc
a and ua is a shape parameter, which we call capacity, affecting the curvature of the
latency function. The problem is solved using a variant of the Frank-Wolfe algorithm,
called Partan (see LeBlanc et al. (1985)), in which the search for a descent direction is
performed with a linearized version of the model.

A different way to look at both system and users’ perspectives is proposed in Angelelli
et al. (2016a), where a simple linear model for the so-called proactive route guidance
problem is presented. The proactive route guidance approach aims at minimizing the un-
fairness experienced by users while keeping the network uncongested, if possible, or at its
minimum congestion level, otherwise. As normal length, the free-flow travel time is used
and, as latency function, a constant function is considered. The hierarchical approach
requires the complete enumeration of all feasible paths for each OD pair. The number
of paths may be so high to make models computationally intractable. To obviate the
generation of all the possible paths, in Angelelli et al. (2016c) a heuristic path genera-
tion method, able to generate a small set of paths providing a near optimal solution, is
presented. The main feature of the approach presented in Angelelli et al. (2016a) is that
it is based on linear programming models only. On the other hand, the main drawback
is that the impact of traffic flows on travel time is not considered because the latency
function is assumed to be constant.

With the aim to maintain the linearity feature of the proactive route approach and to
consider the effect of traffic flows on travel time, in Angelelli et al. (2016b) a linear pro-
gramming model for the constrained system optimum problem, called linear constrained
system optimum, is proposed. The linear constrained system optimum model approxi-
mates the non-linear latency function on each arc with a n-piecewise linear function and
assigns paths to users so as to minimize the total travel time experienced on the con-
strained path set. The linear constrained system optimum model requires to generate all
the feasible paths from origin to destination for each OD pair. As proved in Angelelli
et al. (2016a), the number of paths grows exponentially with the instance size. Thus,
when large instances are considered, a huge number of paths have to be generated and
the model becomes computationally intractable as its size grows accordingly. In the re-
mainder of the paper, we refer to the algorithm that generates all feasible paths as the
complete enumeration (CE) algorithm.

In this paper a heuristic algorithm for the linear constrained system optimum model
is proposed that generates a small set of feasible paths chosen among those able to
improve the current solution. Generating suitable paths in a graph is a matter deeply
studied in literature (see Ramming (2001) and Prato (2009) for reviews). Most of the
path generation techniques are based on the shortest path algorithms as their efficiency
is well-known. One of the well-know deterministic generation methods based on the
shortest path calculation is the k-shortest path algorithm proposed in Yen (1971). Other
generation methods involve the use of more than one objective function (see Ramming
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(2001) and Van der Zijpp and Catalano (2005)). The most popular path generation
heuristic approaches use either the arc elimination or the arc penalty methods. The
arc elimination method removes one or more arcs from the network and performs a new
shortest path search on the modified network. This method was first presented in Azevedo
et al. (1993), variants can be found in Prato and Bekhor (2006), Prato and Bekhor (2007),
Frejinger and Bierlaire (2007) and Angelelli et al. (2016c). The arc penalty methods are
based on penalizing some or all the network arc weights and calculating the shortest path
on the new network as proposed in de la Barra et al. (1993). Variants can be found in
Park and Rilett (1997), Bekhor et al. (2006) and Bekhor and Prato (2006).

The heuristic presented in this paper starts with a set of paths containing only the shortest
path for each OD pair, and iteratively uses an arc penalty method in order to find new
paths that can help in reducing the total travel time. Namely, at each iteration, for each
OD pair, the shortest path from origin to destination is sought according to the current
value of the latency function determined by the current flow on each arc.

The paper is organized as follows. In Section 5.2 the linear constrained system optimum
model is recalled. In Section 5.3 the heuristic iterative path generation algorithm for the
linear constrained system optimum (HI-GEN) is described. In Section 5.4 the results of
a thorough computational analysis are presented and the benefits of the heuristic Lin-
C-SO(n) model are shown. Finally, some conclusions are drawn in Section 5.5.

5.2 The linear constrained system optimum model

In order to make the paper self-contained, we recall in this section the linear constrained
system optimum model (Lin-C-SO(n)) proposed in Angelelli et al. (2016b). The model
is defined on a graph G = (V,A) representing a road network, where vertices V represent
road intersections and arcs A represent directed links between intersections. The decision
variables xij represent, for each arc (i, j) ∈ A, the rate of vehicles entering arc (i, j) in a
steady state situation. Each arc is also assigned a latency function tij(xij) representing
the time spent by each user traversing arc (i, j) as a function of the entering flow. The
latency function considered in Angelelli et al. (2016b) is the one proposed by the U.S.
Bureau of Public Roads,

tij(xij) = tFFij [1 + 0.15(xij
uij

)4]

, and used in Jahn et al. (2005), but w.l.o.g. any other non-decreasing convex function
could be used. Obviously, parameters tFFij (free-flow travel time) and uij (capacity) are
provided for each arc. The normal length of each arc (i, j) ∈ A is measured by the free-
flow traveling time tFFij = tij(0). A set C of OD pairs is also given where each OD pair
c ∈ C is defined by its origin Oc ∈ V , its destination Dc ∈ V and a positive demand dc
representing the rate of vehicles entering the network in Oc with destination Dc.

The linear constrained system optimum model admits, for each OD pair c ∈ C, the
set of feasible paths Kγ

c given by those paths whose normal length does not exceed, in
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percentage, the OD pair shortest path by a fixed maximum inconvenience γ. The relative
difference between the normal length of path k and the shortest path for OD pair c is
called path inconvenience.

The decision variables yck represent, for each OD pair c ∈ C and feasible path k ∈ Kγ
c ,

the amount of demand to be routed on path k. Relationship between variables xij and
yck is expressed by the following equation

xij =
∑
c∈C

∑
k∈Kγ

c

aijc,pyck,

where aijc,k is a parameter with value 1 if arc (i, j) is traversed by path k ∈ Kγ
c and 0

otherwise.

The objective of the constrained system optimum formulation presented in Jahn et al.
(2005) is the minimization of the total travel times in steady traffic conditions

∑
(i,j)∈A

tij(xij)xij.

The idea of the linear constrained system optimum model proposed in Angelelli et al.
(2016b) is to approximate each non-linear term Fij(xij) = tij(xij)xij of the objective
function by a piecewise linear convex function on a fixed interval [0, Uij], where Uij is a
given upper bound on the flow xij. This given upper bound is assumed to be high enough
to keep the model feasible also considering γ = 0%. Given an accuracy parameter n, the
range [0, Uij] is partitioned in n intervals at break-points B = {b0

ij = 0, b1
ij, ...., b

n−1
ij , bnij =

Uij} with corresponding values F = {f 0
ij = Fij(0) = 0, f 1

ij = Fij(b1
ij), ..., fnij = Fij(Uij)}.

The width of the intervals is given by ∆h
ij = bhij − bh−1

ij (h = 1, . . . , n).

The piecewise linear approximation of Fij(x) is given by σij(x):

Fij(x) ≈ σij(x) =



f 0
ij + f1

ij−f
0
ij

∆1
ij

(x− b0
ij) x ∈ [b0

ij, b
1
ij]

f 1
ij + f2

ij−f
1
ij

∆2
ij

(x− b1
ij) x ∈ (b1

ij, b
2
ij]

...... ....

fn−1
ij + fnij−f

n−1
ij

∆n
ij

(x− bn−1
ij ) x ∈ (bn−1

ij , bnij].

The resulting model is the linear constrained system optimum Lin-C-SO(n) formulated
as follows:

The Lin-C-SO(n) model
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min
∑

(ij)∈A
σij

xij =
n∑
h=1

λhij ∀(i, j) ∈ A (5.1)

σij =
n∑
h=1

fhij − fh−1
ij

∆h
ij

λhij ∀(i, j) ∈ A (5.2)

0 ≤ λhij ≤ ∆h
ij ∀(i, j) ∈ A ∀h = 1, ..., n (5.3)

xij =
∑
c∈C

∑
k∈Kγ

c

akcij yck ∀(i, j) ∈ A (5.4)

dc =
∑
k∈Kγ

c

yck ∀c ∈ C (5.5)

xij ≥ 0 ∀(i, j) ∈ A (5.6)
yck ≥ 0 ∀c ∈ C ∀k ∈ Kγ

c . (5.7)

Auxiliary variable λhij represents a portion of the flow xij in interval [bh−1
ij , bhij] as in

constraints (5.3). The arc flow on arc (i, j) is obtained by summing over all λhij variables
in constraints (5.1). Constraints (5.2) set the arc travel time as the sum over all the
pieces in the piecewise function of the h-th slope multiplied by the corresponding λhij.
Constraints (5.4) set the flow rate xij equal to the sum of flows on paths containing
the arc (i, j). Constraints (5.5) guarantee that the demands dc are completely routed
on their feasible paths. Constraints (5.6)-(5.7) guarantee that variables xij and yck are
non-negative. Table 5.1 summarizes the notation.

5.3 The HI-GEN algorithm

The Heuristic Iterative path GENeration (HI-GEN) algorithm aims at generating a near
optimal solution of model Lin-C-SO(n) by solving a sequence of restricted versions of
it. The idea is to start with a solution provided by a minimal set of paths and iteratively
add a few paths to the current set in order to improve the current solution. Algorithm
HI-GEN stops when no improvement can be guaranteed.

More in detail, each arc (i, j) of the network graph is first assigned a travel time equal
to its normal length which is consistent with its latency function with null flow; the
shortest/fastest paths from origin to destination of every OD pair c ∈ C initialises a
current path set, and a restricted model R-Lin-C-SO(l) is built similar to Lin-C-SO(n)
by substituting the whole set of feasible paths with the current path set. Parameter
l < n indicates that a less accurate approximation of the latency function to be used in
the objective function of the optimization model. This is done to make the model faster
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Linear constrained system optimum notation

Sets

V set of vertices
A set of arcs
C set of OD pairs
Kγ
c set of eligible paths for c ∈ C with maximum inconvenience γ

Parameters

γ maximum inconvenience
dc flow rate for OD pair c ∈ C
uij capacity of arc (i, j) ∈ A
Uij maximum flow allowed on arc (i, j) ∈ A
tFFij free-flow travel time of arc (i, j) ∈ A
akcij 1 if path k ∈ Kγ

c contains arc (i, j) ∈ A, 0 otherwise
n number of intervals
bhij h-th breakpoint related to the range [0, Uij] , (h = 0, . . . , n))
fhij value of the function F (xij) at breakpoint bhij, (h = 0, . . . , n)
∆h
ij = bhij − bh−1

ij h− th interval size, (h = 1, . . . , n)

Decision variables

yck flow rate of OD pair c ∈ C routed on path k ∈ Kγ
c

xij total flow rate entering arc (i, j) ∈ A: xij = ∑
c∈C

∑
k∈Kγ

c

akcij yck

Auxiliary decision variables

σij total travel time multiplied by xij evaluated using the piecewise
function

λhij amount of vehicles in the h − th interval of piecewise function of
arc (i, j)

Table 5.1. Notation related to the Lin-C-SO(n) model
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to solve. Model R-Lin-C-SO(l) is thus solved producing a first traffic assignment. Note
that a feasible solution for R-Lin-C-SO(l) is also feasible for Lin-C-SO(n). The traffic
flows of the solution are used to redefine the traveling time of each arc according to its
latency function. On this modified graph a new shortest path is computed for every OD
pair and added to the current path set. The process is iterated as far as at least one new
and feasible path is generated. Otherwise, the algorithm stops.

The HI-GEN algorithm is sketched in Algorithm 7.

Algorithm 7: HI-GEN algorithm
input : G : graph of the road network,

C : set of OD pairs,
γ : maximum inconvenience,
n, l : approximation levels of the latency function

output: x : heuristic solution of Lin-C-SO(n)
global : G,C, γ, PCurr

– PCurr := ∅;
– L := set of shortest paths for each c ∈ C from origin Oc to destination Dc with
respect to the arc normal length;
while L 6= ∅ do

– PCurr := PCurr ⋃L;
– x := optimal solution of R-Lin-C-SO(l) on path set PCurr;
– L := findCheaperPaths(x);

– x := optimal solution of R-Lin-C-SO(n) on path set PCurr;
– return x

PCurr represents the current path set and first initialized as empty while L is an auxiliary
set containing paths found at each iteration. It is initialized with the shortest path with
respect to the normal length for each OD pair. While the auxiliary set is not empty, the
algorithm will go through three steps. First, the auxiliary set L is added to PCurr and,
then, the R-Lin-C-SO(l) is run on the augmented PCurr set. The latter step allow us
to find optimal flows that are used in the L := findCheaperPaths(x) function in order
to find new paths to include in the current path set. When the algorithm is not able to
find new paths, the R-Lin-C-SO(n) is run considering the Pcurr set constructed during
the iterations.

5.3.1 Searching for an improving set of paths

At each iteration of the HI-GEN algorithm, the R-Lin-C-SO(l) model provides the
current approximation x of the optimal solution of model Lin-C-SO(n). The objective
of the routine findCheaperPaths is to find, for at least one OD pair c ∈ C, a path p
with the two following properties: p ∈ Kγ

c , and travel time on p in the current traffic
assignment x is less than any other path already in the current path set for OD pair c.
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We first search the shortest path according to the arc latency function valued by solution
x (i.e. tij = tij(xij)), then we check the feasibility of such path. If no path with the
required properties is found, the routine fails and returns an empty set.

Routine findCheaperPaths is sketched in Algorithm 8.

Algorithm 8: findCheaperPaths
input : x : traffic flow
output: L improving path set
global : G,C, γ, PCurr

– L := ∅;
for c ∈ C do

– p := shortest path in G from Oc to Dc with respect to arc lengths tij = tij(xij);
– nlp := length of p with respect to arc normal length tij = tij(0);
– nlsp := length of shortest path from Oc to Dc with respect to arc normal length
tij = tij(0);
if nlp ≤ (1 + γ)nlsp ∧ p /∈ PCurr then

– L := L
⋃{p};

– return L

The set L represents an auxiliary path set in which new paths are added and is initialized
as empty. For each OD pair c ∈ C, the algorithm searches the shortest path considering
tij = tij(xij) as arc length and if feasible it can be added to L. The feasibility check has
been constructed according to the one used in constructing the path in the Lin-C-SO(n)
model, i.e. using the normal lengths as arc lengths.

5.3.2 An example

The HI-GEN algorithm aims at producing a traffic assignment on a small path set that
is very near to the assignment produced by the Lin-C-SO(n) model. In Figures 5.1, 5.2
and 5.3 we provide an example instance with l = 100 and γ = 30%. In Figure 5.1(a) the
free-flow travel times and capacities for each arc are shown. At the beginning of the first
iteration path set PCurr contains the shortest path path1 from origin O to destination D
(Figure 5.1(b)). Figure 5.1(c) illustrates the solution provided by R-Lin-C-SO(l) solved
on PCurr. The obtained flows xij are used by the findCheaperPaths function to compute
the shortest path path2 on the network with updated travel times tij(xij) (Figure 5.2(a)).
In the second iteration path2 is added to PCurr and R-Lin-C-SO(l) model is solved on
the new path set; Figure 5.2(b) depicts the new solution. Note that travel time on path1
is 202.4 while travel time on path2 is 202.73. A new shortest path path3 is found in the
network with updated flows (Figure 5.2(c)) and added to PCurr at the beginning of the
third iteration. The solution of the R-Lin-C-SO(l) model is shown in Figure 5.3(a). A
new run of findCheaperPaths function returns again path1 (Figure 5.3(b)) and, hence,
fails (no new path found as in Figure 5.3(b)), iterations stop and the R-Lin-C-SO(n)
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model is run in order to find the HI-GEN solution as in Figure 5.3(c) There are three
paths in PCurr and 350 units are assigned to path1, 350 to path2 and 300 to path3. The
total travel time is 201339.09 seconds.
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(c) Current solution and modified arc travel times

Figure 5.1. HI-GEN: an example with l = 100 (continues in Figure 5.2)

Finally, in Figure 5.4 the Lin-C-SO(n) solution is provided. The optimal solution assigns
374.5 units to path1, 339.5 units to path2 and 286 units to path3. Total travel time,
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Figure 5.2. HI-GEN: an example with l = 100 (continues in Figure 5.3)
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Figure 5.3. HI-GEN: an example with l = 100
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evaluated by means of the non linear latency function with the optimal solution as input,
is 201331.49.
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Figure 5.4. HI-GEN: solution of the Lin-C-SO(n) CE

5.4 Computational results

The HI-GEN and the CE algorithms were implemented in Java, and the optimization
models were solved by CPLEX 12.6.0. The experiments were run on a Windows 64-
bit computer with Intel Xeon processor E5-1650, 3.50 GHz, and 64 GB Ram. In all
experiments, parameters Uij are set as four times the capacity uij of the corresponding
arc. Break-points are uniformly distributed in [0, Uij] so that ∆h

ij = Uij/n for h = 1, . . . , n.

Experiments, devoted to compare algorithm CE to algorithm HI-GEN, are organized
in two parts. In the first part, experiments are carried out on 40 network graphs with
150 nodes, values of γ range from 5% to 25% with step 5%, the accuracy level n used in
Lin-C-SO(n) is fixed to 1000 while several values for the accuracy l used in algorithm HI-
GEN are tested: l = 100, 300, 500, 700, 1000. The second part is devoted to comparing
algorithm CE to HI-GEN when instance size increases. Experiments were carried out
using 8 network graphs, with up to 330 nodes, and values of γ ranging from 5% to 25%
with step 5%. Here, the accuracy level l used in HI-GEN algorithm is l = 100.

The instances were generated taking into account different demand patterns and point
attractiveness distributions as explained thoroughly in Angelelli et al. (2016a) and are
available at http://or-brescia.unibs.it/instances. The statistics collected for each
experiment are described in Section 5.4.1. Results for the 150 nodes network graphs are
presented and discussed in Section 5.4.2. Results for the increasing size of network graphs
are presented and discussed in Section 5.4.3.
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5.4.1 Statistics

A number of statistics on the CE and the HI-GEN algorithms are collected or computed
on all the tested instances.

• Computational time. The computational time is computed considering the
total computational time. In particular, the computational time accounted for CE
algorithm includes the time needed to generate paths and solve the Lin-C-SO(n)
model.

• Solution quality.

– total travel time θCE and θHI−GEN : solution value produced by CE and HI-
GEN, respectively;

– optimality gap Θγ = θHI−GEN−θCE
θCE

.

• Network congestion. Fraction of arcs falling in each of the following four
classes for different γ values:

– unused arcs (xij/uij = 0);
– non-congested arcs (0 < xij/uij ≤ 1);
– lightly congested arcs (1 < xij/uij ≤ 1.5);
– heavily congested arcs (1.5 < xij/uij).

• Memory usage. The number of generated paths.

5.4.2 Comparison of the HI-GEN solution with the CE solution

As already mentioned, in this section we summarize the results obtained on 40 networks
with 150 nodes and values of γ ranging from 5% to 25% with step 5%. In Table 5.2, the
CE and HI-GEN computational times are shown for different γ values and for different
accuracy levels l. Algorithm HI-GEN is less time consuming than CE and time savings
grow as growing values of γ are considered. In fact, considering an accuracy level l = 100
and γ = 5% algorithm CE, on average, spends about twice the time needed by HI-GEN.
However, considering an accuracy level l = 100 and γ = 25%, on average, algorithm CE
uses 107 seconds while HI-GEN spends 6.8 seconds, i.e. only 6.4% of CE.

In Tables 5.3 and 5.4 statistics on the optimality gap Θγ are shown. In Table 5.3, the
average Θγ over all instances and for different γ and l values is shown. Note that, for
γ = 5%, the average Θγ is around 0.278% for all values of l. For higher values of γ, the
average Θγ reduces until an average value 0.096% is obtained with γ = 25%. From the
point of view of the average Θγ, differences in considering different l values are negligible.
In Table 5.4 the maximum Θγ over all instances and for different γ and l values is shown.
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HI-GEN algorithm CE algorithm
l n

100 300 500 700 1000 1000
γ = 5% 5.9 8.0 10.2 13.3 15.2 9.8
γ = 10% 5.9 8.1 10.6 13.8 15.4 15.8
γ = 15% 6.1 7.9 10.3 13.5 14.9 27.0
γ = 20% 6.6 7.7 10.3 13.3 14.8 44.1
γ = 25% 6.8 7.9 14.6 13.5 16.0 107.1

Table 5.2. HI-GEN: computational time (sec)

The maximum value of Θγ follows the behaviour of the average Θγ, i.e. it decreases with
the increasing of γ. Note that, for γ = 5%, the maximum Θγ is around 1.14% for all
values of l while with γ = 25% the maximum Θγ is 0.212% with l = 100 and 0.209% with
all the other l values. In order to statistically test the differences in the average optimality
gapwith different levels of l on the proposed instances, we have used a t-student test with,
as null hypothesis, the equivalence between the results. We have obtained that, with a
significance value of 0.05, the hypothesis of no difference between the average errors in
using different levels of l is accepted.

HI-GEN algorithm
l

100 300 500 700 1000
γ = 5% 0.2791 0.2780 0.2784 0.2784 0.2783
γ = 10% 0.1675 0.1645 0.1646 0.1646 0.1646
γ = 15% 0.1263 0.1262 0.1260 0.1261 0.1260
γ = 20% 0.1023 0.1016 0.1011 0.1014 0.1014
γ = 25% 0.0960 0.0955 0.0955 0.0958 0.0956

Table 5.3. HI-GEN: average optimality gap Θγ (%)

HI-GEN algorithm
l

100 300 500 700 1000
γ = 5% 1.1444 1.1417 1.1417 1.1417 1.1417
γ = 10% 0.6018 0.6018 0.6018 0.6019 0.6018
γ = 15% 0.3910 0.3894 0.3900 0.3900 0.3900
γ = 20% 0.2574 0.2545 0.2497 0.2497 0.2497
γ = 25% 0.2123 0.2090 0.2090 0.2090 0.2090

Table 5.4. HI-GEN: maximum optimality gap Θγ (%)

In Table 5.5, the Θγ distribution for different l and γ values is shown. For each γ value,
instances are classified into five different classes calculated as classes of percentage of
the maximum Θγ value over all instances. For each class, we indicate the percentage
of instances with a Θγ falling in that class. Considering γ = 5, 10, 20%, there are no
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differences among different values of l while considering γ = 15, 25% there are very few
differences. Note that, for all l values and γ = 5, 10, 15%, 75% of the instances are
experiencing Θγ values that are lower than 40% of the maximum Θγ. For all l values
and γ = 20, 25%, half of the instances are experiencing Θγ values that are lower than
40% of the maximum Θγ. Globally, less than 15% of the instances are experiencing Θγ

values that are higher than 80% of the maximum error. In order to statistically test
the differences in optimality gapdistribution in using different levels of l on the proposed
instances, we have used a t-student test with, as null hypothesis, the equivalence between
the results. We have obtained that, with a significance value of 0.05, the hypothesis of
no difference in the optimality gapdistribution in using different levels of l is accepted.

Classes γ
5% 10% 15% 20% 25%

l = 100

0-20 % 70 60 45 35 25
20-40 % 10 20 30 15 25
40-60 % 0 10 10 30 25
60-80 % 10 0 5 5 10
80-100 % 10 10 10 15 15

l = 300

0-20 % 70 60 45 35 20
20-40 % 10 20 25 15 30
40-60 % 0 10 15 30 20
60-80 % 10 0 5 5 15
80-100 % 10 10 10 15 15

l = 500

0-20 % 70 60 45 35 15
20-40 % 10 20 25 15 35
40-60 % 0 10 15 30 25
60-80 % 10 0 5 5 10
80-100 % 10 10 10 15 15

l = 700

0-20 % 70 60 45 35 15
20-40 % 10 20 25 15 35
40-60 % 0 10 15 30 25
60-80 % 10 0 5 5 10
80-100 % 10 10 10 15 15

l = 1000

0-20 % 70 60 45 35 15
20-40 % 10 20 25 15 35
40-60 % 0 10 15 30 25
60-80 % 10 0 5 5 10
80-100 % 10 10 10 15 15

Table 5.5. HI-GEN: Θγ distribution (%) with respect to the maximum Θγ

In order to compare the memory usage of algorithm HI-GEN with respect to CE, we
report the number of paths generated by the two methods and for different values of l
in Table 5.6. The number of paths generated with the CE rapidly grows with increasing
values of γ. For l = 100 and γ = 25% the percentage of paths generated by the HI-GEN
algorithm is 0.39% of the paths generated by the CE. Considering higher values of l,
memory usage remains almost steady.
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γ
5% 10% 15% 20% 25%

CE algorithm
n = 1000

paths 16365 43305 91046 160740 452059

l = 100 HI-GEN paths 1637 1685 1706 1730 1744
% HI-GEN on CE 10.00 3.89 1.87 1.08 0.39

l = 300 HI-GEN paths 1642 1688 1711 1731 1749
% HI-GEN on CE 10.03 3.90 1.88 1.08 0.39

l = 500 HI-GEN paths 1643 1686 1710 1731 1747
% HI-GEN on CE 10.01 3.89 1.87 1.08 0.39

l = 700 HI-GEN paths 1643 1687 1711 1732 1746
% HI-GEN on CE 10.00 3.90 1.88 1.08 0.39

l = 1000 HI-GEN paths 1643 1687 1711 1732 1747
% HI-GEN on CE 10.01 3.89 1.87 1.08 0.39

Table 5.6. HI-GEN: number of generated paths by CE and HI-GEN algorithms

In Figure 5.7 the distribution of arc congestion level in different congestion classes is
shown. Note that these values are averaged over all instances. Considering all values
of parameter l, there are negligible differences among arc congestion distributions. This
means that the percentage of arcs experiencing a certain congestion level remains almost
steady when the accuracy level in searching paths is increased (or decreased). Regarding
the arc congestion level produced by algorithm CE, there are relevant differences when
compared to the HI-GEN one. The unused arc percentage is larger than the HI-GEN
one while the non-congested percentage is lower than the HI-GEN one. Furthermore, CE
assigns demands to paths in such a way no heavily congested arcs exist while a small
heavily congestion percentage is produced by the HI-GEN assignment when γ = 5%.
Even though the objective function does not explicitly reduces the arc utilization, the
increase of the arc utilization affects negatively the arc travel time and, therefore, the
model, implicitly, tends to keep the arc utilization at low levels.

5.4.3 The HI-GEN algorithm on increasing size instances

Experiments were carried out considering 8 networks, with a number of nodes that ranges
from 120 to 330 and with γ ranging from 5% to 25% with step 5%. We use a single value
of accuracy level l = 100 since, as shown in Section 5.4.2, differences among different
accuracy levels in generating paths are negligible. In Tables 5.8 and 5.9 the collected
statistics are presented. At each step the number of nodes in the network is increased by
30. Note that, for instances with a number of nodes greater than 150 and for some values
of γ, the statistics for algorithm CE are not shown because either the path generation
procedure ran out of memory or the solver running time exceeded a time threshold of
7200 seconds. Entries are denoted with ’*’ when the solver ran out of memory and with
’-’ when the time threshold was exceeded. The number of paths generated by algorithm
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Congestion distribution
Unused Non-

congested
Lightly
congested

Heavily
congested

γ = 5%

l=100 10.84 88.49 0.67 0.01
l=300 10.82 88.51 0.67 0.01
l=500 10.81 88.52 0.67 0.01
l=700 10.81 88.52 0.67 0.01
l=1000 10.81 88.52 0.67 0.01
CE n=1000 12.06 87.79 0.15 0

γ = 10%

l=100 10.92 88.60 0.48 0
l=300 10.91 88.62 0.48 0
l=500 10.91 88.62 0.48 0
l=700 10.91 88.62 0.48 0
l=1000 10.90 88.63 0.48 0
CE n=1000 12.22 87.75 0.03 0

γ = 15%

l=100 10.87 88.86 0.28 0
l=300 10.87 88.86 0.28 0
l=500 10.87 88.86 0.28 0
l=700 10.87 88.86 0.28 0
l=1000 10.86 88.87 0.28 0
CE n=1000 12.24 87.74 0.02 0

γ = 20%

l=100 10.87 89.03 0.10 0
l=300 10.87 89.03 0.10 0
l=500 10.84 89.04 0.11 0
l=700 10.85 89.03 0.11 0
l=1000 10.85 89.03 0.11 0
CE n=1000 12.26 87.72 0.02 0

γ = 25%

l=100 10.89 89.03 0.08 0
l=300 10.90 89.02 0.08 0
l=500 10.90 89.02 0.08 0
l=700 10.88 89.04 0.08 0
l=1000 10.90 89.02 0.08 0
CE n=1000 12.26 87.72 0.02 0

Table 5.7. HI-GEN: arc utilization distribution (%)
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CE grows dramatically faster with respect to algorithm HI-GEN as the number of nodes
increases. In rows ’Time CE (sec)’ the global computational time is shown (time spent
to generate the set of feasible paths in brackets), while in rows ’Time HI-GEN (sec)’
the HI-GEN computational time is shown. Rows ’Paths CE’ and rows ’Paths HI-GEN
’ represent, respectively, the number of generated paths. Finally, rows ’optimality gap
Θγ (%)’ represent the optimality gap produced by HI-GEN. With γ = 25%, for the 120
nodes instance the number of paths generated by the HI-GEN algorithm is approximately
3.7% of the number of generated paths by the CE while for the 150 nodes instance the
percentage is approximately 0.36%. When the instance size grows to 180 nodes the
percentage decreases to 0.1% and, when it grows to 210 nodes, the percentage is 0.03%.
This means that the HI-GEN algorithms produces a number of paths that is less than
3 orders of magnitude of the paths generated by CE. With higher instance sizes there is
no available data for γ = 25% since the solver exceeded the time threshold or ran out of
memory. However, regardless the value of γ, this percentage continues to decrease with
the increase of the instance size.

Regarding the computational time, the time required by algorithm CE grows faster with
respect to HI-GEN as the number of nodes increases. With γ = 25%, for the 120 nodes
instance the HI-GEN algorithm computational time is approximately 36% of the CE
computational time while for the 150 nodes instance it is approximately 5.2%. When the
instance size grows to 180 nodes the percentage decreases to 1.4% and when it grows to
210 nodes the percentage is 0.5%. This means that algorithm HI-GEN takes a time that is
less than 2 orders of magnitude of the time required by CE. As for the number of paths,
with higher instance sizes there is no available data for γ = 25% but the percentage
continues to decrease with the increase of the instance size. For example, with a 330
nodes instance and γ = 15% the computational time required by HI-GEN is 0.5% of the
time required only for the generation of the feasible path set by algorithm CE.

After the analysis of HI-GEN memory and time saving, some conclusions also on its
effectiveness in generating high quality solutions can be derived. The optimality gap Θγ

seems to reduce when the instance size grows. The maximum experienced value of Θγ

is around 3.4% with 120 nodes and with τ = 5% and the best value is experienced with
a 300 nodes instance and γ = 10% where Θγ is 0.06%. The trend is a decrease of Θγ

with the increase of γ and with the increase of instance size. The results suggest that the
larger an instance is the smaller is the HI-GEN optimality gap.

5.5 Conclusions

.

In this paper a heuristic algorithm generating the path set for the linear constrained
system optimum model is presented. The computational complexity of the model is
mainly affected by the number of paths that, in the worst case, grows exponentially
with the number of nodes of the network. The computational experiments show that
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algorithm HI-GEN reduces by orders of magnitude the number of generated paths and,
consequently by orders of magnitude the amount of memory usage and computational
time. The results also show that the quality of the solutions produced by HI-GEN is very
high since the HI-GEN solution is very close to the one obtained generating all feasible
paths. On larger instances HI-GEN is able to return a solution in a few second where
Lin-C-SO(n) is computationally intractable.
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6. On the instance generation pro-

cess

In this chapter the main guidelines used in generating road network instances for the
proactive route guidance and for the linear constrained system optimum problem are
presented. An instance for both problems is represented by a directed graph G ≡ (V,A)
where V is the set of vertices representing all junctions of the road network and A is the set
of arcs representing the road segments, and by a set C of Origin-Destination pairs. The
described problems and respective approaches require the following arc attributes: free-
flow arc travel time, arc length and arc capacity. Free-flow arc travel time represents the
travel time needed to traverse the arc when the arc is empty, arc length can be either the
euclidean or the geographical arc length and the arc capacity represents the maximum rate
of vehicle that can enter the arc without experiencing substantial delay due to congestion
effects. Presented approaches require also a demand value associated to each OD pair
c ∈ C, dc, representing the rate of vehicles that intend to travel from the origin Oc to
the destination Dc. In this chapter a graph generation algorithm able to create vertices,
arcs and OD pairs in such a way the resulting instances will reflect the main features of
some road network topologies/structure is presented. The generation algorithm models
highways, bypasses and orbital roads with arc travel times and capacities depending on
the road importance. Most circular cities are formed by an internal ring surrounding the
downtown area. This internal ring is usually considered as a low-speed way allowing the
access to the central area. Usually there exists an external ring where the heavy traffic
coming from suburbs and surrounding towns converges. When the city is big enough,
there usually exists a number of intermediate rings between the outer and the inner one.
In addition, roads connecting rings and external highways or heavy traffic arterial roads
are always present. We call circular a network topology of this kind (see Rome, London
or Berlin as examples). In Figure 6.1 two examples of possible outputs of the generator
and cities with similar networks are shown.

Circular networks are characterized by an angle of opening determining if the city network
is semicircular, circular or with a specific angle. This opening angle is here called angular
width and it reflects the degree of the circular sector forming the network. In order
to generate a road network reflecting roads with different level of importance, some arc
parameters have to be fixed as the free-flow speed, the number of lanes, the delay due
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(a) Circular city (b) Semicircular city

(c) Circular road network (d) Semicircular road network

Figure 6.1. City with a circular and semicircular road network
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to traffic regulations and the safety distance. The delay due to traffic regulations can
be considered as an average delay due to traffic lights, greenswirls policies and one-way
regulations that a user could experience on a certain arc and the safety distance is a
parameter fixed by law. Length and the free-flow speed affects the free-flow travel time
value, and the number of lanes and safety distance affect the arc capacity value. The
key point in assigning these parameters to arcs is that a sort of continuity between
adjacent arcs has to be guaranteed. For example, parameters are fixed in such a way
arcs belonging to the same ring have the same free-flow speed and capacity, since they
have more likely the same number of lanes, the same size and similar features. In order
to simulate different network sizes, additional parameters have to be fixed as the internal
and the external radius, i.e. the radius of the downtown area and of the metropolitan
area respectively, the total number of rings, the angular width, the number of principal
directions from which the morning commute traffic origins, a perturbation parameter
that describes the regularity level in positioning vertices and the distance of the external
origins from the city center. It is assumed that the traffic comes from the external zones
to internal points of the city network simulating a morning commute scenario.

6.1 Instance generation

Instances are based on a directed graph G=(V,A) representing the road network in a
metropolitan area including the city center and the surrounding towns. The generation
of an instance uses a number of parameters that have to be fixed.
A summary of these parameters is shown in Table 6.1.

Generation is implemented through these two steps:

• Generation of the road network V

– V is the set of vertices representing road intersections. We describe vertices i ∈
V with Euclidean coordinates (xi, yi), but it can be substituted by geographical
coordinates. The procedure for the vertex set generation is shown in Section
6.2

– A is the set of arcs representing road segments. For each arc (i, j) ∈ A the
arc length lij, the free-flow arc travel time tFFij and the arc capacity uij have
to be generated. Length lij is computed as the euclidean arc length, lij =√

(xi − xj)2 + (yi − yj)2. Free-flow travel times tFFij are computed using the
following formula tFFij = lij

vFFij
+ td. The capacity uij is the rate of vehicles that

can traverse an arc without experiencing slowdowns due to congestion and it
computed using the formula uij = lij

sd
nl, where sd is the safety distance and

nl the number of lanes. The procedure for the arc set generation is shown in
Section 6.3.

• Generation of the OD pairs with demands C.
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Parameters for the vertex set V:

npd number of principal directions from the external zone to the city centre,
nr number of rings,
α angular width (for instance if we want a half circle city is 180, or if

circular 360),
IntRadius internal radius (a circumference around the downtown area),
ExtRadius external radius (a circumference around the metropolitan area),
Pert maximum rate of perturbation of the vertex coordinates, Pert ≤ 1,
δ percentage of distance of the external vertices from the city center with

respect to the ExtRadius.

Parameters for the arc set A:

vFFij free-flow speed,
td delay due to traffic regulations,
sd safety distance,
nl number of lanes,
nh number of highways from external centroid to the outer ring.

Parameters for the OD pair set C:

uppB upper bound percentage for demand,
lowB lower bound percentage for demand,
it percentage of in-city OD pairs on out-city OD pairs,
pa point attractivity probability.

Table 6.1. Instance generation: vertex set parameters
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– OD pairs c ∈ C are distinguished only with respect to the pair of vertices
(Oc, Dc) representing origin and destination, respectively. Procedure for the
generation of the OD pair set is deeply explained in 6.4. For each of such
OD pairs, we also generate a multiplicity or a demand representing the rate
of vehicles that intend to travel from an origin Oc to a destination Dc. The
demand value is randomly drawn from an interval depending on the considered
level of traffic as explained in Section 6.4.

6.2 Generation of the vertex set

In order to generate the vertex set V , we have to generate all the points related to the
rings, junctions between rings’ points and links connecting different rings.

The vertex generator works through these steps:

• Generate the city centre point (Figure 6.2(a)),
• Create a circumference using the internal radius IntRadius (Figure 6.2(a)),
• Create a circumference using the external radius ExtRadius (Figure 6.2(a)),
• Create a number of equispaced intermediate rings in order to have nr rings globally

(In Figures 6.2(a)-6.3(b) we have used nr = 3),
• Divide the plane into npd equivalent circular sectors (Figure 6.2(b)),
• Choose as vertex every intersection between the circumferences and the main di-

rections (Figure 6.3(b)),
• Generate a vertex on each principal direction with distance from the center exceed-

ing the ExtRadius of a fixed percentage δ (Figure 6.3(b)). These vertices represent
the points from which demand of the sorrounding towns originates. These vertices
are called external centroids.

In fact, the generator is able to produce city networks with different angular widths using
the parameter α. Since for our experiments we have considered only α = 360◦ in the
following we will refer to the procedure with α = 360◦. However, considering other values
of α, the procedure is very similar. In generating instances for the proposed problems
also parameter δ is fixed equal to 50%.

In order to get a more realistic graph, the vertex generator can add some distortion to
each point, as in Figure 6.4, through the following steps:

• Find the distance between the point and the nearest neighbour, MinD,
• uB = MinD · Pert, where Pert represents the maximum rate of perturbation of

the vertex coordinates chosen,
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City centre
InnRadius

ExtRadius

(a) Creation of the circumferences

(b) Creation of principal directions

Figure 6.2. Creation of the vertex set V
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(a) Find the intersections

(b) Created vertices

Figure 6.3. Instance generation: creation of the vertex set V
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• Generate a circular neighbourhood around the point we want to perturb with radius
uB and choose a random point inside this neighbourhood. The generator uses this
new point as vertex and deletes the old one.

Vertex
MinD

uB

Figure 6.4. Instance generation: perturbation of the vertex coordinates

6.3 Generation of the arc set

The arc set A is generated connecting vertices on the rings, connecting rings to the next
rings and connecting the external ring with the external centroids as in Figure 6.5. First,
empty links are created and, then, parameters are generated. Empty links are created by
connecting all the vertices for each ring and connecting each vertex of each link with the
correspondent vertices on the closest rings. Then, the external ring vertices are connected
with the correspondent external centroids. In order to simplify the choice of the initial
parameters we have divided roads in four different classes with fixed parameters listed in
Table 6.2.

In order to guarantee a sort of continuity between roads, each road is classified into the
four classes as shown in Figure 6.6 and according to the following list:

• Internal ring: Internal roads,
• External Ring: Highways,
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(a) Creating rings

(b) Connecting rings and external centroids

Figure 6.5. Instance generation: connecting vertices
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Road type ln vFF sd td
(m) (m/sec) (sec)

Internal Roads 2 13.89 10 150
Primary Roads 3 25 30 100
Linking Roads 2 25 0 150
Highways 4 30.55 40 100

Table 6.2. Instance generation: road dependent parameters

• Intermediate Rings: Primary Roads,
• Links between rings: Linking Roads,
• Roads from external centroids to the external ring: These roads could be either

highways or primary roads. The generator chooses randomly nh of these roads and
label them as highways.

Figure 6.6. Instance generation: road classification in a three-rings instance

6.4 Generation of the OD pair set

Since we are generating instances for the morning commute it is reasonable to have most
of the OD pairs with origin in the external centroids and destination inside or on the
external ring. These OD pair are called out-city OD pair. However, a percentage of

120



commuters, forming the so-called in-city OD pairs, can have origin on a vertex inside
or on the external ring. For this reason we define a parameter it that represents the
percentage of in-city OD pairs on out-city OD pairs number. We denote the set of origins
as J . We choose as origin each external centroid and we collect them in J . A number of
vertices inside or on the external ring equal to it% the number of external centroids is used
as origin adn collected in J . An example of an in-city and an out-city OD pair is shown
in Figure 6.7. For every origin we set a number of destinations nDest = d (nr+1)npd

5 e. We
assign to each vertex inside the external ring a boolean value determining if the vertex
is allowed to be chosen as destination or not. A parameter pa, called point attractivity
probability, represents the percentage of the vertices that are allowed to be chosen as
destination. The OD pairs’ destinations are drawn randomly among all the vertices that
can be chosen as destination. Once the OD pairs are generated, the demand has to be
fixed. Since usually roads entering the road networks are sized in such a way demand is
serviced in most cases, it is reasonable to calculate demands proportional to the capacity
of all the arcs exiting from the origin vertex. We call S the sum of all the arc capacities
exiting from the origin vertex. Two parameters uppB and lowB related to the traffic
density have to be provided to the generator and, then, the demand is randomly drawn
from the interval [lowB · S;uppB · S].

6.5 Controls on generation

The generator contains many parameters which allow changing the resulting network.
Among these parameters there are some crucial and others that involve minor changes or
technical details. The set of generated instances can not be very large so we have chosen,
for each type of parameter, only a few values.

• Size of the city. The generator allows you to create small-medium or large city.
The choice of this parameter is equivalent to the choice of different parameters si-
multaneously, such as the inner radius, the outer radius, the number of the outgoing
main directions, the number of rings to create and the number of entering highways.
The chosen values for this parameter are the followings:
– Small cities

∗ IntRadius: 2000 m
∗ ExtRadius: 6000 m
∗ nr: 2
∗ npd: 15
∗ nh: 2

– Big cities
∗ IntRadius: 1000 m
∗ ExtRadius: 20000 m
∗ nr: 4
∗ npd: 30
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(a) An in-city origin and an out-city origins

(b) Respective destinations

Figure 6.7. Instance generation: creating OD pairs
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∗ nh: 4
• Point attractivity Not all places are equally attractive for the city traffic. For this

reason the generator implements a random procedure that identifies which points
are desirable. To be able to choose these points, the generator requires a percentage
that represents the number of attractive points on the total number of points. This
percentage represents the point attractivity. The proposed values for this parameter
are:
– Oligo-centric cities. The point attractivity value is pa = 40%. This means

that only a few points on the graph are attractive.
– Poli-centric cities. The point attractivity value is pa = 80%. This means that

a lot of points on the graph are attractive.
• Internal traffic OD pairs. Most of the traffic comes from surrounding cities

and cross the city area or reach places inside the city limits. But there is a small
component of traffic that is domestic, i.e. that is due to the people, living in the
city, who decide to travel by car despite of the presence of public transportation.
This parameter is a percentage of the whole amount of traffic that is in city traffic.
The proposed values for this parameter are:
– it = 10% in city traffic.
– it = 20% in city traffic.

• Traffic density
The flow for an OD pair is set randomly from some specified intervals. We distin-
guish off-peak and in-peak traffic densities for each network size:
– Small-to-medium

∗ off-peak: lowB = 0.2 and uppB = 0.4
∗ in-peak: lowB = 0.2 and uppB = 0.6

– Big
∗ off-peak: lowB = 0.1 and uppB = 0.3
∗ in-peak: lowB = 0.3 and uppB = 0.6

The set of instances is the result of the Cartesian product of all the control values.
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Appendices
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.1 The one OD pair case proof

Theorem 3. Let |C| = 1 and let us denote by c the OD pair. Let A∗c be a minimum

cut-set for c with capacity u∗c. Then, ρ∗∞ = dc
u∗c
.

Proof. Let ρ̂ = dc
u∗c
. We prove that ρ∗∞ = ρ̂ in two steps, showing that:

1. There exists a flow f̂ij, ∀(i, j) ∈ A, such that:

• dc flows from Oc to Dc,

• f̂ij ≤ ρ̂, ∀(i, j) ∈ A,

• f̂ij = ρ̂ for some (i, j) ∈ A.

2. There does not exist a flow gij, ∀(i, j) ∈ A, such that:

• dc flows from Oc to Dc,

• gij
uij

< ρ̂, ∀(i, j) ∈ A.

1. We solve the maximum flow problem on the graph G for the OD pair c. Let δ+(Oc)

be the set of the successors of Oc. From the max flow-min cut theorem, the maximum

flow Fmax is equal to the minimum cut-set capacity u∗c . Flows fij in the optimal solution

of the maximum flow problem are such that:

• fij ≤ uij, ∀(i, j) ∈ A,

• fij = uij, ∀(i, j) such that (ij) ∈ A∗c .

We construct new flows f̂ij = fij ρ̂, ∀(i, j) ∈ A, and obtain:

• ∑
j∈δ+(Oc) f̂Ocj = ∑

j∈δ+(Oc) fOcj ρ̂ = ρ̂
∑
j∈δ+(Oc) fOcj = ρ̂Fmax = ρ̂u∗c = dc. Thus, this

flow satisfies all the demand,

• f̂ij
uij

= fij ρ̂

uij
≤ ρ̂, ∀(i, j) ∈ A,
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• f̂ij
uij

= fij ρ̂

uij
= ρ̂, ∀(i, j) such that (i, j) ∈ A∗c where fij = uij.

2. By contradiction. Suppose there exists a flow gij such that gij
uij

< ρ̂, ∀(i, j) ∈ A. Then,∑
(i,j)∈A∗c gij <

∑
(i,j)∈A∗c uij ρ̂ = ρ̂

∑
(i,j)∈A∗c uij = ρ̂u∗c = dc. As this flow is not able to satisfy

all the demand, we have a contradiction.

.2 Graphical representation of the proactive route

guidance approach solution

.2.1 Proactive route guidance approach arc utilization

In Figures 8-13 the arc utilization produced by the proactive route guidance approach is
displayed. Black arcs represents the unused arcs, arcs in green the uncongested arcs, arcs
in orange the lightly congested arcs and arcs in red the heavily congested arcs.

.2.2 Proactive route guidance approach OD pair selected paths

In Figures 14-19 the paths assigned by the proactive route guidance approach to a single
OD pair with increasing values of γ are highlighted in red.

.3 Graphical representation of the linear constrained

system optimum solution

.3.1 Linear constrained system optimum arc utilization

In Figures 20-23 the arc utilization produced by the linear constrained system optimum is
displayed. Black arcs represents the unused arcs, arcs in green the uncongested arcs, arcs
in orange the lightly congested arcs and arcs in red the heavily congested arcs. Figures
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Figure 8. Arc utilization for γ = 0%
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Figure 9. Arc utilization for γ = 5%
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Figure 10. Arc utilization for γ = 10%
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Figure 11. Arc utilization for γ = 15%
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Figure 12. Arc utilization for γ = 20%
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Figure 13. Arc utilization for γ = 25%
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Figure 14. Selected paths for a single OD pair for γ = 0%
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Figure 15. Selected paths for a single OD pair for γ = 5%
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Figure 16. Selected paths for a single OD pair for γ = 10%
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Figure 17. Selected paths for a single OD pair for γ = 15%
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Figure 18. Selected paths for a single OD pair for γ = 20%
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Figure 19. Selected paths for a single OD pair for γ = 25%
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for γ = 20% and γ = 25% are not shown since there is no difference when compared to
the one with γ = 15%.

.3.2 Linear constrained system optimum OD pair selected paths

In Figures 24-29 the used paths by a single OD pair with increasing values of γ are
highlighted in red.
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Figure 20. Arc utilization for γ = 0%
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Figure 21. Arc utilization for γ = 5%
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Figure 22. Arc utilization for γ = 10%
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Figure 23. Arc utilization for γ = 15%
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Figure 24. Selected paths for a single OD pair for γ = 0%
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Figure 25. Selected paths for a single OD pair for γ = 5%
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Figure 26. Selected paths for a single OD pair for γ = 10%
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Figure 27. Selected paths for a single OD pair for γ = 15%
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Figure 28. Selected paths for a single OD pair for γ = 20%
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Figure 29. Selected paths for a single OD pair for γ = 25%
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