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ABSTRACT
The objective of this work is to show the effectiveness of a high-order accurate Discontinuous
Galerkin (DG) space discretization in the numerical simulation of the 3D compressible turbu-
lent flow through a turbine cascade (MTU T106A). The turbulent flow field is computed by
means of the Reynolds Averaged Navier-Stokes (RANS) equations with closure provided by
the k-ω turbulence model and an Explicit Algebraic Reynolds Stress Model (EARSM). Results
obtained with both models will be analysed and compared.

NOMENCLATURE
ρ density
ui velocity components
e0 total energy
h0 total enthalpy
k turbulent kinetic energy
ω specific turbulent dissipation rate
p pressure
qj heat flux vector
τ̂ij total stress tensor
P production terms
µt eddy viscosity
γ ratio of gas specific heats
Pr molecular Prandtl number
Prt turbulent Prandtl number
Sij mean strain-rate tensor
Ωij rate-of-rotation tensor
τij turbulent stress tensor
aij anisotropy tensor
a

(ex)
ij extra anisotropy tensor

u vector of variables
s source term
Fc inviscid flux vector
Fv viscous flux vector
v test function
Ω computational domain
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∂Ω domain boundary
Th computational mesh
T grid element
Fh set of boundary and internal faces
r lifting operator
F̂ numerical flux function
ηF penalty parameter
U global vector of unknown degrees of freedom
M global block diagonal mass matrix
R residuals vector
Pn solution polynomial approximation of degree n
α1,b, α2,b inlet/outlet blade angle
c, cax chord, axial chord
s pitch
α1 inlet flow angle
p01 inlet total pressure
p0 total pressure
Tu1 inlet turbulence intensity
M2,is outflow isentropic Mach number
Re2,is Reynolds number based on downstream isentropic conditions and blade chord
Cp pressure coefficient
y+ non dimensional wall distance

INTRODUCTION
Numerical simulation has become an important tool in almost all sectors of fluids engineering.

This evolution has been possible due to the ever-increasing computational power, but is foremost
motivated by the increasing requirements and regulations in terms of energy efficiency and environ-
mental impact. Nowadays most computational fluid dynamics (CFD) tools are based on second-order
accurate Finite Volume (FV) methods. Due to the required level of resolution and the need of analyse
ever more complex geometries and flows, there is a growing concern that state-of-the-art FV technol-
ogy requires, and will continue to require, too extensive computational resources. The requirement
for high resolution hence naturally leads to consider methods which have a higher order of accuracy,
such as Discontinuous Galerkin (DG) methods (Bassi et al., 2005).

Recently developed high-order methods have demonstrated a huge potential, which has not yet
been exploited to fulfil industrial requirements. In fact high-order solvers are currently able to solve
3D turbulent flow problems (Bassi et al., 2010a, 2011a) by means of the solution of the Reynolds
Average Navier-Stokes (RANS) and k-ω turbulence model equations, even if they are either extremely
memory consuming and/or CPU intensive.

Usually, standard CFD codes adopt the Boussinesq hypothesis that assumes Reynolds stress is
linearly related to the mean flow strain rate tensor. However such hypothesis shows limitations in
the prediction of some flow features, such as for example the secondary flows that develop at wall
junctions (Menter et al., 2009). Several authors have suggested to replace the Boussinesq linear
constitutive law with a non-linear relation to enhance the prediction capabilities.

The solution of the RANS and explicit algebraic Reynolds stress k-ω equations by means of a
high-order accurate method can represent a trade-off between standard RANS plus two equations
turbulence models simulations and more accurate and intensive simulations (e.g. DES, LES, DNS).

The objective of this work is to show the effectiveness of a high-order accurate DG space dis-
cretization in the numerical simulation of the 3D compressible turbulent flow through the T106A
turbine cascade. In particular, the feasibility of accurate simulations of such complex flows on very
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coarse grids by resorting to a sufficiently high-order accurate DG space discretization is demonstrated.
Furthermore a comparison of the computed flow field obtained by means of the RANS equations
with closure provided by the k-ω turbulence model (Bassi et al., 2011a) and the Explicit Algebraic
Reynolds Stress Model (EARSM) of Wallin and Johansson (2000) is shown.

GOVERNING EQUATIONS
The governing equations can be written as

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (1)

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = − ∂p

∂xi
+
∂τ̂ji
∂xj

, (2)

∂

∂t
(ρe0) +

∂

∂xj
(ρujh0) =

∂

∂xj
[uiτ̂ij − qj]− Pk + β∗ρkeω̃, (3)

∂

∂t
(ρk) +

∂

∂xj
(ρujk) =

∂

∂xj

[
(µ+ σ∗µt)

∂k

∂xj

]
+ Pk − β∗ρkeω̃, (4)
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∂

∂xj

[
(µ+ σµt)

∂ω̃

∂xj

]
+ Pω − βρeω̃

+ (µ+ σµt)
∂ω̃

∂xk

∂ω̃

∂xk
+ σd

ρ

eω̃
max

(
∂k

∂xk

∂ω̃

∂xk
; 0

)
, (5)

where the pressure, the total stress tensor, the heat flux vector, the production terms Pk and Pω and
the limited value of turbulent kinetic energy k are defined as

p = (γ − 1)ρ (e0 − ukuk/2) , (6)

τ̂ij = 2µSij + τij, (7)

qj = −
(
µ

Pr
+
µt
Pr t

)
∂h

∂xj
, (8)

Pk = τij
∂ui
∂xj

, Pω = α
τij

k

∂ui
∂xj

, (9)

k = max (0, k) . (10)

Here γ is the ratio of gas specific heats, Pr and Prt are the molecular and turbulent Prandtl numbers
and

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3

∂uk
∂xk

δij, Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
, (11)

are the mean strain-rate and the rate-of-rotation tensors. The closure coefficients α, α∗, β, β∗, σ, σ∗,
σd are those of the high- or low-Reynolds number k-ω model of Wilcox (1993). Notice that Eq. (5) of
the k-ω turbulence model is not in standard form since the variable ω̃ = logω is used instead of ω, as
explained in Bassi et al. (2005). According to Wallin and Johansson (2000), the constitutive relation
for the turbulent stress tensor can be written as

τij

ρk
= −uiuj

k
= −α∗aij −

2

3
δij = α∗

(
2CµτSij − a(ex)

ij

)
− 2

3
δij, (12)
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where, for ease of implementation, the anisotropy tensor aij has been split in a linear part and a
non-linear extra anisotropy contribution. The time scale τ and the variable coefficient Cµ are given
by

τ =
1

β∗eω̃
, Cµ = −1

2
(β1 + IIΩβ6) . (13)

The time scale τ does not include the near-wall lower bound, based on the Kolmogorov time scale,
usually employed in k-ε implementations of EARSM. This limitation is actually provided by the finite
value of ω set at wall. The eddy viscosity µt and the extra anisotropy tensor a(ex)

ij are given by

µt = α∗Cµτρk, (14)

a
(ex)
ij = β3τ

2

(
ΩikΩkj −

1

3
IIΩδij

)
(15)

+ β4τ
2 (SikΩkj − ΩikSkj)

+ β6τ
3

(
SikΩklΩlj + ΩikΩklSlj − IIΩSij −

2

3
IV δij

)
+ β9τ

4 (ΩikSklΩlmΩmj + ΩikΩklSlmΩmj) ,

where the coefficients βi∈{1,3,4,6,9} are functions of the invariants IIS , IIΩ and IV

IIS = tr{S2}, IIΩ = tr{Ω2}, IV = tr{SΩ2}. (16)

DG SPACE DISCRETIZATION
RANS and turbulence model/EARSM equations can be written in compact form as

∂u

∂t
+ ∇ · Fc(u) + ∇ · Fv(u,∇u) + s(u,∇u) = 0, (17)

where u and s are the vectors of the m variables and source terms, and Fc,Fv ∈ Rm⊗Rd are defined
as the arrays of the inviscid and viscous flux vectors. A weak formulation of the RANS equations
is obtained multiplying each scalar conservation law in Eq. (17) by an arbitrary smooth test function
vj ∈ v, 1 ≤ j ≤ m, and integrating by parts, that is

∫
Ω

vj
∂uj
∂t

dx−
∫

Ω

∇vj ·Fj(u,∇u) dx +

∫
∂Ω

vjFj(u,∇u) ·n dσ+

∫
Ω

vjsj(u,∇u) dx = 0, (18)

where Fj is the sum of the inviscid and viscous flux vectors of the j-th equation, Ω is the domain
where the solution is to be computed, ∂Ω is its boundary, and n is the unit outward normal vector to
the boundary.

The DG discretization of Eq. (18) is constructed on a mesh Th, which consists on a set of non-
overlapping elements T . The function u and v are approximated on Th as piecewise polynomial
functions uh and vh which are in general discontinuous on element interfaces. The discontinuous
approximation of the numerical solution requires to introduce a specific treatment of the inviscid and
viscous interface fluxes. In order to ensure conservation and correctly account for wave propagation
the former is based on the Godunov flux computed with an exact Riemann solver or, alternatively, on
the van Leer-Hänel flux-splitting scheme (Hänel et al., 1987). For the latter the BR2 scheme has been
employed, proposed in Bassi et al. (1997) and theoretically analyzed in Brezzi et al. (2000); Arnold
et al. (2002).
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Accounting for these aspects, the DG formulation of the compressible RANS and k-ω/EARSM
equations consists in seeking uh such that∑

T∈Th

∫
T

vh,j
∂uh,j
∂t

dx−
∑
T∈Th

∫
T

∇hvh,j · Fj (uh,∇huh + r ([[uh]])) dx

+
∑
F∈Fh

∫
F

[[vh,j]] · F̂j

(
u±h , (∇huh + ηF rF ([[uh]]))

±) dσ

+
∑
T∈Th

∫
T

vh,jsj (uh,∇huh + r ([[uh]])) dx = 0 (19)

∀vh,

where Fh is the set of boundary and internal faces, F̂ the numerical flux function, [[ ]] the jump
operator, and r the lifting operator. In order to ensure the stability of the BR2 discretization, theory
predicts that the penalty parameter ηF in Eq. (19) has to be set larger than the number of faces of each
element (Brezzi et al., 2000; Arnold et al., 2002).

The DG space discretization of Eq. (19) results in the following system of (nonlinear) ODEs in
time

M
dU

dt
+ R (U) = 0, (20)

where U is the global vector of unknown degrees of freedom, M is a global block diagonal matrix
(M reduces to the identity matrix due to the use of orthonormal basis functions) and R (U) is the
vector of residuals.

In the case of steady state computations the semi-discrete problem in Eq. (19) is discretized in
time by means of the classical backward Euler scheme coupled with the pseudo-transient continuation
strategy proposed in Bassi et al. (2010a). The resulting linear system is solved at each time step by
means of the matrix-explicit or the matrix-free GMRES algorithm. Linear algebra and parallelization
are handled through PETSc library (Balay et al., 2001).

RESULTS
The purpose of this section is to demonstrate the performance of the DG method in the computa-

tion of the turbulent flow through a well known turbine cascade, and in particular the potential of this
high-order method to resolve complex turbulent flow features on a very coarse grid. This section also
discusses the effectiveness and limitations of the k-ω turbulence model and EARSM in the prediction
of the flow field. Starting from the linear part of the Reynolds stress tensor formulation of Eq. (12),
we evaluate the influence of the non-linear terms of EARSM on the solutions. In the following, the
notation EARSMx means EARSM including anisotropy terms up to the x-th degree.

The test case chosen for the simulations is the T106A turbine cascade. It is a low-pressure turbine
cascade designed by MTU Aero Engines, which has been extensively investigated in experimental
and computational studies (Hoheisel, 1981; Stieger and Hodson, 2004, 2005; Lodefier and Dick,
2005; Bassi et al., 2012). The main geometrical parameters of the cascade are given in Tab. 1.

An adiabatic wall boundary condition is imposed on the blade surface and end-walls. At inflow,
the total temperature, total pressure, flow angle α1 = 37.7◦ and turbulence intensity Tu1 = 4.0% are
prescribed while at outflow the static pressure corresponding to an isentropic Mach number M2,is =
0.59 is set. The Reynolds number based on the downstream isentropic conditions and on the blade
chord is Re2,is = 500000.

Computations have been performed with the standard k-ω model and with EARSM1→3 up to P3

polynomial approximation on a grid composed of 43200 hexahedral elements, see Figure 1. The
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Table 1: Geometrical parameters of T106A turbine cascade

α1,b inlet angle 37.7◦

α2,b outlet angle −63.2◦

c chord 0.1 m
s pitch 0.0799 m
s/c pitch to chord ratio 0.799 m

geometry has been represented with bi-quadratic faces since for DG space approximation a curved
approximation at the wall is mandatory in order to obtain accurate results (Bassi and Rebay, 1997).
Wall-normal height of elements adjacent to the wall corresponds to y+ ≈ 20. It is considerably greater
than that typically required by second-order accurate FV simulations of turbulent flows (y+ ≈ 1
without wall functions) but can be adopted for higher-order DG approximations (Bassi et al., 2005).
Notice that the y+ value chosen for the mesh is appropriate only for the high-order solutions, but
it is not changed in the lower-order computations because their solutions are just intended for the
initialization of the higher-order computations.

All the computations have been run in parallel (132 cores/11 processors for k-ω and EARSM1,
264 cores/22 processors for EARSM2→3), initializing the P0 solution from uniform outlet flow con-
ditions and the higher-order solutions from the lower-order ones. At the moment, a comparison in
term of computational time between FV and DG schemes would require an in-depth analysis and
the use of an engineering convergence criterion (the converged solution is now reached when the L2

norm of the residuals is below 10−8). However it is clear that FV computational efficiency is still
greater, even if DG methods show a substantial room for improvement. For this reason research effort
has been recently devoted to devise more efficient computational strategies, both for the construc-
tion of DG space discretization operators and for the integration in time of the space discretized DG
equations (see e.g. Bassi et al. (2011b, 2009, 2010b)).

Figure 2 and 3 show stream traces and skin-friction lines patterns near the end-wall obtained with
the EARSM3 model and P3 solution, which displays some vortical structures characterizing the flow
field. In particular it can be observed the horse-shoe vortex, originating near the blade leading edge.
The pressure side leg of the horse-shoe vortex is driven along the separation line across the passage
from the leading edge to the adjacent blade suction side and merges in the passage vortex. In Figure 4
the midspan pressure coefficient Cp curves of the k-ω and EARSM1→3 are displayed, showing a
good agreement with the experimental data (Hoheisel, 1981). There is a small difference in the rear
part of the suction side, because the laminar separation bubble is not predicted, due to the lack of a
transition model. As expected, at midspan the models do not show any difference in the computed
flow field.

In order to asses the effectiveness of the EARSM, flow features near the end-walls are now ana-
lyzed. In Figure 5 turbulence intensity and total pressure contours at the junction between the blade
suction side and the end-wall are depicted on a plane normal to the axial direction (x/cax = 0.93).
The turbulence distribution of the EARSM1→3 results are more sharply defined and better resolved
in a vortex-like structure when compared to the standard k-ω model. In particular the passage vortex
and the corner vortex at the junction are better resolved with EARSM. Figure 6 shows same con-
tours on a different plane (x/cax = 1.04), which is just after the blade trailing edge. Also in this
case the vortical structures are better resolved by using EARSM models. Notice that corner vortex
is captured only by using the EARSM models, as shown by the total pressure contours. In Figure 7
the Mz isolines and the stream traces in a plane normal to the axial direction (x/cax = 1.447) are
depicted. It can be observed the different shape and intensity of the vortex. In particular vortices
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obtained with ERASM2-3 are characterized by greater velocity gradients. Differences between mod-
els are now analyzed in terms of total pressure distributions, p0/p0,1 (normalized with respect to the
inflow value), along the pitch-wise direction at different blade heights and distance from the trailing
edge. In particular in Figure 8 the total pressure distribution at x/cax = 1.187 (top), x/cax = 1.332
(central) and x/cax = 1.447 for a blade height z/h = 0.33% (left) and z/h = 4.67% (right) is
shown. Notice that at z/h = 4.67% (right column) the total pressure distributions predicted by the
models are similar. There are just small differences in the distribution inside the wake and in term
of amplitude of the wake (the wake predicted by EARSM2→3 models is greater, probably due to a
better resolution of the passage vortex). Moving away from the trailing edge (right, top→ bottom),
all models, as expected, predict an increasing of the vortices amplitude. At the wake interfaces there
are some nonphysical oscillations above unit of p0/p0,1. This phenomenon can be explained by the
low resolution of the blade leading edge, which produce an oscillations in the total pressure, which is
advected downstream due to the low diffusion property of the DG schemes. Decreasing the distance
from the end-wall, z/h = 0.33% (left column), total pressure distributions are instead different. In
particular near the trailing edge (x/cax = 1.187) k-ω model predicts a wake characterized by higher
total pressure losses and greater amplitude. Total pressure losses between adjacent wakes are instead
lower for the k-ω model, due probably to the corner vortices, which are not captured very well. No-
tice that there is no appreciable differences between EARSM2→3 total pressure distribution curves,
meaning that in both cases a “converged” solution has been reached. Moving away from the trailing
edge (left, top → bottom), differences in the wakes predicted by k-ω and EARSM become greater,
implying a different evolution of the vortex, as already observed in Figure 7.

Figure 1: Computational grid, 43200 hexahedral
elements with bi-quadratic faces, Wall surfaces

Figure 2: Stream traces near the end-wall,
EARSM3, P3 solution

CONCLUSIONS
An implicit high-order DG solver for the RANS equations coupled with the standard k-ω and the

EARSM k-ω turbulence models has been presented and applied to compute the subsonic flow through
the MTU T106A turbine cascade.

The computational results have been compared in order to assess the benefits of the improved
Reynolds stress modelization provided by the EARSM k-omega model. As expected, this model
provided better resolution of rotational flow features taking place close to the end-walls and at the
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Figure 3: Skin-friction lines near the end-wall,
EARSM3, P3 solution
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Figure 4: Pressure coefficient distribution at
midspan, k-ω and EARSM1→3, P3 solution

Figure 5: Turbulence intensity (top) and total pressure (bottom) contours at junction between end-wall
and suction side on a plane normal to the axial direction (x/cax = 0.93)
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Figure 6: Turbulence intensity (top) and total pressure (bottom) contours at junction between end-wall
and suction side on a plane normal to the axial direction (x/cax = 1.04)

Figure 7: Mz isolines and stream traces on a plane normal to the axial direction (x/cax = 1.447), k-ω
and EARSM1→3, P3 solution
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Figure 8: Pitch-wise total pressure distribution at x/cax = 1.187 (top), x/cax = 1.332 (central) and
x/cax = 1.447 for a blade height z/h = 0.33% (left) and z/h = 4.67% (right), k-ω and EARSM1→3,
P3 solution
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blade/end-walls junctions. The different behavior of the two models also resulted in quite different
distributions of total pressure losses close to the end-walls.

Ongoing work focuses on the assessment of the influence of near-wall grid spacing on the turbulent
quantities profiles and on a in-depth investigation of the accuracy of the method by looking at several
characteristic flow quantities.
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