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Abstract.

The paper deals with a new stochastic optimization model, named OMoGaS-SV (Optimisa-

tion Modelling for Gas Seller-Stochastic Version), to assist companies dealing with gas retail

commercialization. Stochasticity is due to the dependence of consumptions on temperature un-

certainty. Due to nonlinearities present in the objective function, the model can be classified as

an NLP mixed integer model, with the profit function depending on the number of contracts

with the final consumers, the typology of such consumers and the cost supported to meet the

final demand. Constraints related to a maximum daily gas consumption, to yearly maximum

and minimum consumption in order to avoid penalties and to consumption profiles are included.

The results obtained by the stochastic version give clear indication of the amount of losses that

may appear in the gas seller’s budget.

Keywords : Gas sale company, tariff components, mean reverting process, stochastic program-
ming.

1. Introduction

Starting in 1999 the Italian Natural Gas market has been undergoing a libezalisation
process aiming at promoting competition and efficiency, while ensuring adequate service
quality standards. Timings and methods for the internal gas market liberalisation have
been introduced following the European Gas Directive; the roles of different segments
of the natural gas “chain” have been identified and defined, such as import, production,
export, transportation and dispatching, storage, distribution and sale. In 2003 the Italian
Regulatory Authority for Electricity and Gas,7 defined consumption classes, on the basis
of gas consumption in the thermal year, and introduced a new gas tariff, in order to
guarantee small consumers’ protection by applying the transparency principle in the
pricing mechanism. The new tariff is based on a detailed splitting in different components,
whose values are periodically revised, and represents a maximum price to be applied to
small consumers.
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In a previous paper (Allevi et al.2), a deterministic optimization model has been devel-
oped to assist companies dealing with retail commercialization.

In this paper we introduce stochasticity in the model due to the influence of tempera-
ture on consumptions. For domestic customers, using gas either only for cooking or for
cooking and heating, and for commercial activities and small industries, gas consumption
in winter months strongly depends on the weather conditions: this fact is taken into ac-
count in the model, by including a mean reverting process modeling temperature, which
gas consumption depends on. This model is presented in Section 2. In Section 3 the
stochastic model, named OMoGaS-SV, is presented and in Section 4 numerical results
related to a case study are reported and discussed.

2. The stochastic temperature model

In this Section we introduce a stochastic model describing the temperature variations
along the months in a year time. We start with some definitions about temperature:

Definition 2.1. Given a weather station, let Tmax
µ and Tmin

µ denote the maximum and
the minimum temperatures (in Celsius degrees) measured in day µ, respectively. We
define the mean temperature of day µ as

(1) Tµ =
Tmax

µ + Tmin
µ

2
.

Definition 2.2. Let Tµ denote the mean temperature of day µ. We define Heat-

ing Degree Days (HDDµ: measure of cold in winter) and Cooling Degree Days

(CDDµ: measure of heat in summer) respectively as HDDµ = max {18 − Tµ, 0} , CDDµ =

max {Tµ − 18, 0} .

For a given day HDD and CDD are the numbers of degrees of deviation from a reference
temperature level in Bergamo (18◦ C). Typically the HDD season is from November to
March, whereas the CDD season is from May to September. April and October are often
referred to as “shoulder months”.

We have a database of temperatures measured in Bergamo in the last 12 years
(1/01/1994–30/11/2005). The database consists of daily minimum and maximum tem-
peratures, from which average daily temperatures are computed by using (1). Due to the
cyclical nature of the temperature process we find that historical data give a reasonable
idea of the temperature level in the future. We have plotted the daily mean temperatures
at Bergamo for the 12 years; it is evident that the temperature process is mean station-
ary and variance stationary so it should be a mean reverting process, reverting to some
cyclical function. However, because temperature process is evidently not deterministic,
we must consider the presence of noise. Looking at the histogram of the daily temper-
ature differences in Bergamo (1994–2005), it shows a good fit with the corresponding
normal distribution, though the frequency of small differences in daily mean temperature
is underestimated. This is the reason which brings us to choose the Brownian Motion as
model of temperature process.

In order to model the temperature behavior, we consider a Vasicek process with mean
reversion through the following stochastic differential equation:

(2) dTt = a (ϑ − Tt) dt + σdWt ,
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where Tt is the process to be modelled, a ∈ R is the speed of mean reversion, ϑ the mean
to which the process reverts to (constant), σ the volatility of the process (constant) and
Wt is the Wiener process.
For the temperature process we need a ϑ = ϑ (t) = ϑt computed according to (6), a =

a (i) = ai and σ = σ (i) = σi as functions changing over the months but constant in each
month i.
Then our process becomes

(3) dTt = ai (ϑt − Tt) dt + σidWt .

Thus, we need to determine a functional form for ϑt and estimates for ai and σi from
historical data. Dornier and Queruel8 showed that the process found in (3) is not reverting
to ϑt; to obtain a process that really reverts to the mean we have to add the term ϑ

′

t to
the drift term in (3) so that the equation becomes

(4) dTt =

[

ai (ϑt − Tt) +
dϑt

dt

]

dt + σidWt .

2.1. The mean temperature ϑt

By observing the plot of the temperature data measured in Bergamo in the last 12
years, we note a strong seasonal variation, which can be modelled by the function

(5) sin (ωt + ϕ) ,

where t is the time measured in days, ω = 2π/365 is the period of oscillation and ϕ is
a phase angle due to the fact that the yearly minimun and maximum mean tempera-
tures do not necessarily occur at January 1 and July 1 respectively. Moreover, the mean
temperature actually increases each year (the positive trend in the data is weak but it
does exist): therefore we assume a linear warming trend. A deterministic model ϑt for the
mean temperature at time t, is assumed to be given by

(6) ϑt = A + Bt + C sin (ωt + ϕ) ,

where we estimate the unknown parameters A, B, C, ω and ϕ so that the curve given by
(6) fits the data.
In order to estimate the parameters in (6), a change of variables is operated and the
constants are renamed as follows

A = a1, B = a2, C =
√

a2
3 + a2

4, ϕ = arctan

(

a4

a3

)

− π

and we obtain

(7) ϑt = a1 + a2t + a3 sin (ωt) + a4 cos (ωt) .

The numerical values of the parameters in (7) are computed by the least squares method,
i.e. the parameter vector ξ = (a1, a2, a3, a4) is computed that solves

(8) minξ ‖ϑ − X‖2 ,

where ϑ is the vector whose elements are given by (7) and X is the data vector. By using
the series of 4323 observations of the historical daily temperatures we get

A = 13.33, B = 6.8891 · 10−5, C = 10.366, ϕ = −1.7302.

In Figure 1 we can see a comparison between the observed temperatures and those
estimated by using the deterministic approach given by ϑt in the years 1994–2005.
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Figure 1. Comparison between measured temperatures and estimated mean ϑ (t) at Bergamo in the
years 1994–2005.

2.2. Estimation of volatility σi and of speed of reversion ai

For the estimation of the volatility σi we follow the same approach as in Alaton et
al.,1 where the quadratic variation σ2

i of temperature is assumed to be different along
the months in the year, but nearly constant within each month. For the estimation of
the speed of reversion ai we follow the same approach as in Bibby and Sorensen,4 based
on observations collected during Ni days of month i. See Maggioni et al.11 for details on
implementation.

2.3. Generation of temperature scenarios

In this section we consider the problem of generating temperature scenarios. Using
Euler approximation scheme, we discretize equation (4) obtaining

(9) Tt = ϑt − ϑt−1 + aiϑt−1 + (1 − ai) Tt−1 + σiǫt−1 ,

where {ǫt}
364
t=1 are independent standard normally distributed random variables. Figure 2

shows both the evolution of a simulated trajectory of the estimated temperature and its
mean ϑt.

The following notation is used:

• T
s ∈ R

365 is the vector of random variables along scenario s, s = 1, . . . , N which we
have obtained using a mean reverting process; the component T s

t represents the
daily average heating degree days for day t, t = 1, . . . 365 along scenario s;

• Due to the fact that the consumption data are monthly data, we generate monthly
temperature scenarios from the vector T

s by averaging. Tm
s represents the
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Figure 2. Simulation of sample paths of temperature and the mean over the year 2006 estimed by using
the Euler scheme.

monthly temperature scenario s, whose component Tms
i represents the monthly

heating degree days for month i, i = 1, . . . 12 along scenario s.

• T̄mi =

∑N
s=1 Tms

i

N
for i = 1, . . . , 12, is the expected value over all scenarios of the

random variable Tms
i ;

• ∆
s ∈ R

12 is the vector of distances of monthly heating degree days from its
expected value along scenario s, s = 1, . . . , N , i.e. ∆s

i := Tms
i − T̄mi i =

1, . . . , 12, s = 1, . . . , N.

• ps is the probability related to each scenario s, s = 1, . . . , N ; we assume equal

probability, i.e. ps =
1

N
, s = 1, . . . , N ;

3. The stochastic OMoGaS-SV model

In the literature (see Brooks,5 Eydeland and Wolyniec,9 Ermoliev and Wets10 and
Ruszczynski and Shapiro12) stochastic approaches in the gas market deal mainly with
the scheduling of development of gas fields, the use of gas storage and the gas delivery
problem.

The stochastic version of our model, which can be classified as a two-stage stochastic
program with recourse, uses the temperature ∆ as source of uncertainty. The consump-
tions of the first six classes of consumers are considered as dependent on temperature
variations along the months. The following notations are used:

• cs
ij is the consumption of consumer j, j = 1, . . . , 6, in month i, i = 1, . . . , 12 along scenario

s, s = 1, . . . , N : cs
ij = C̄ij + Cij∆

s
i , where C̄ij is the average consumption of consumer

j in month i; for j = 7, . . . , 10 the consumption does not depend on temperature and
therefore cij = C̄ij ;

• vas
j is the annual volume of gas for consumer j = 1, . . . , 6, along scenario s, s = 1, . . . , N :

vas
j =

∑12
i=1 cs

ij ; for j = 7, . . . , 10 the annual volume of gas is vaj =
∑12

i=1 C̄ij ;
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• vws
j is the winter volume of gas for consumer j, j = 1, . . . , 6, along scenario s, s =

1, . . . , N : vws
j =

∑9
i=5 cs

ij ; for j = 7, . . . , 10 the winter volume of gas is vwj =
∑9

i=5 C̄ij ;

• rs
j is the ratio of winter gas consumption with respect to the total annual consumption

of consumer j, j = 1, . . . , 6, along scenario s, s = 1, . . . , N : rs
j =

vws
j

vas
j

; for j = 7, . . . , 10

the ratio of winter gas consumption with respect to the total annual consumption is
rj = vwj

vaj
;

• cds
ij is the peak consumption per day of customer j, j = 1, . . . , 10, in month i, i = 1, . . . , 12

for s = 1, . . . , N : cds
ij = cs

ij
γ
Ni

, where Ni is the number of days of the month i and γ is
a parameter given by the Authority;

• cms
i is the citygate consumption of month i, i = 1, . . . , 12 along scenario s, s = 1, . . . , N :

cms
i =

∑6
j=1 cs

ij · ncj +
∑10

j=7 cij · ncj, i = 1, . . . , 12 ;

• ncj are the first stage decision variables representing the number of consumers of
class j, restricted to be nonnegative integers, subject to upper bounds, ncj , 0 ≤ ncj ≤

ncj j = 1, . . . , 10 ;

• cas is the gas volume to be purchased for supplying the citygate consumers along
scenario s, s = 1, . . . , N : cas =

∑12
i=1 cms

i ;

• xs is the citygate loading factor along scenario s, s = 1, . . . , N and g is the first stage

decision variable representing the maximum consumption per day above which the
gas seller has to pay a penalty: xs = cas

365·g ;

• lj is the loading factor of consumer class j, j = 7, . . . , 10;
• s+ s

ki , k = 0, 1, 2 are second stage decision variables along scenario s, s = 1, . . . , N

that represent the surplus of consumption in the peak day of winter month i (i =

5, . . . , 9) with respect to gas availability given by the first stage decision variable g.
These variables are used in computing the penalties by

∑9
i=5

∑2
k=1 µkis

+ s
ki where µki is

the unitary penalty in month i to be paid on the amount s+ s
ki . The unitary penalty

µ0i is zero and the surplus variables s+ s
ki must satisfy the relations 0 ≤ s+s

0i ≤ π0i · g ,

π0i · g ≤ s+s

1i ≤ π1i · g , π2i · g ≤ s+s

2i , i = 5, . . . , 9, , s = 1, . . . , N , where πki represents the
width of penalizations classes k = 0, 1 (no upper bound for class k = 2);

• cws is the citygate consumption in winter months along scenario s, s = 1, . . . , N : cws =
∑9

i=5 cms
i ;

• hs is the ratio of winter gas consumption with respect to total annual consumption
along scenario s, s = 1, . . . , N : hs = cws

cas ;

• P s is the purchase price to be paid by the gas seller to the shipper along scenario
s, s = 1, . . . , N : it is expressed as a linear function of xs, and is defined as P s =

QT + QS + q + m ·xs ; where q is the intercept and m is the slope; QT and QS are fixed
by the Italian Regulatory Authority;

• P
′

j is the price to be paid by the first 6 classes of consumers and is defined as
P

′

j = (CMP + QV D) · (1 − αj) , where the values of CMP and QV D are fixed by
the Italian Regulatory Authority and cover raw material costs (production, importa-
tion and transport) and retail commercialization costs respectively; αj is a parameter
representing possible discount fixed by the gas seller to be applied to consumer j;

• P
′′ s

j is the price applied by the gas seller to consumer class j = 7, . . . , 10 along scenario
s, s = 1, . . . , N

P
′′ s

j = P s − βj · (1 −
xs

lj
) + δj · (rj − hs) + λj ,

where βj and δj are constant values and λj is a possible recharge which can be applied
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to the industrial consumer class j;

We choose as objective function the expected value of the gas seller profit:

w = E[
6

∑

j=1

(P
′

j · vas
j · ncj) +

10
∑

j=7

(P
′′ s

j · vaj · ncj)+

(1) −P s · cas −

9
∑

i=5

2
∑

k=1

µkis
+ s
ki ] .

For details on implementation of the objective function see Maggioni et al..11

The constraints of our stochastic problem are the following:

(2) 0 ≤ ncj ≤ ncj j = 1, . . . , 10 ,

(3)
6

∑

j=1

cds
ij · ncj +

10
∑

j=7

cdij · ncj − g ≤

2
∑

k=0

s+s

ki i = 5, . . . , 9, s = 1, . . . , N ,

(4) 0 ≤ s+s

0i ≤ π0i · g , i = 5, . . . , 9, s = 1, . . . , N ,

(5) π0i · g ≤ s+s

1i ≤ π1i · g , i = 5, . . . , 9, s = 1, . . . , N ,

(6) π2i · g ≤ s+s

2i , i = 5, . . . , 9, s = 1, . . . , N .

4. Results and model validations

In this section, we show the results of our stochastic model for a local gas seller
who has to decide the customer portfolio structure in a village in Northern Italy (Sotto
il Monte). The simulation is based on the data of thermal year 2004-2005 (for these data
see Allevi et al.3). We have developed a simulation framework based on ACCESS 97, for
database management, on MATLAB release 12, for data visualization, and on GAMS
release 21.5, for optimization. In the GAMS framework the DICOPT solver has been
used for the nonlinear mixed integer optimization problem. DICOPT solves a series of
NLP subproblems by CONOPT2 and MIP subproblems by CPLEX.
The relation between the purchase price P s and xs is estimated by the gas seller through
a linear regression using the data related to year 2004-2005 for all citygates managed
by the gas seller. The regression of P s values has also been tried on the annual volume
cas, hs and g but it has been found not significant. Indeed, the value of R2-test (see e.g.
Davidson6) with the regression on xs is 0.603, therefore not highly significant. However, the
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introduction of non parametric regression, would introduce a more complicated function
in the model. On the other side, linear regression is currently used by the gas seller in their
simulations. In our case we use P s(xs) = QT +QS +18.348−3.866 ·xs , where the intercept
value 18.348 and the slope value −3.866; the values QT and QS are given by the Italian
Regulatory Authority: in our numerical experiments QT = 2.4953171 Eurocent/Stm3 and
QS = 0.63882 Eurocent/Stm3.
The relation between the consumption cs

ij of consumer j, j = 1, . . . , 6, in month i =

1, . . . , 12 along scenario s = 1, . . . , N and the deviation from mean value over scenarios,
∆s

i , is supposed to be linear with intercept equal to C̄ij and the other coefficient computed
via a linear regression. The regression results to be significative for all the consumers.
The model has been validated by running several tests both in the deterministic (see
Allevi et al.2) and in the stochastic case, see Table 1. For the stochastic model, we report
the result obtained by solving 10000 times the problem, each time with N = 50 scenarios
randomly chosen with the procedure described in Section 2.3. The optimal values both
in the function and in the decision variables are stable. We report in the second column
of Table 1 their average over 10000 trials.
While in the deterministic case, the consumption surplus in January and February is un-
der 10% and therefore no penalization has to be paid, in the stochastic case a nonzero pe-
nalization is applied in scenarios with high variance in consumptions. In fact the stochastic
approach gives indications to the gas seller that in scenarios with colder temperatures
he could face the possibility of a reduced profit due to penalties. This solution, though,
allows gas seller to have the same purchase price of the deterministic case and therefore
the same selling price for the industrial customer; this means that that industrial con-
sumer is still very important and worthwhile to belong to the retail seller’s portfolio.
To validate the model we have analyzed the sensitivity of solutions to different number of
scenarios. We have run 1000 and 10000 simulations with increasing number of scenarios.
In Figures 1 and 2 we report for each number of scenario the average optimal value over
the corresponding number of simulations; we observe that the optimal profit converges
to a value between 152200 and 152210.
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Figure 1. Case of 1000 simulations: optimal profit value as the number of scenarios increases.
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Figure 2. Case of 10000 simulations: optimal profit value as the number of scenarios increases.

Table 1. Optimal values for citygate Sotto il Monte in
the deterministic and stochastic case.

Deterministic Stochastic
Profit 154265 152219 Euro

P 19.67 19.67 Eurocent/Stm3

ca 4484406 4484525 Stm3

g 26399 26309 Stm3

x 0.4654 0.4669

5. Conclusions

We have proposed a stochastic model for the management of a gas sale company where
the uncertainty is based on a mean reversion stochastic process for the evolution of
temperature; as the number of scenarios increases, the complexity of the problem also
increases: one further possibility is to devise a new algorithm that decouples computation
of g from all other decision variables so that the problem becomes linear. Moreover, there
exists a relation between purchase price p and international price indices, since gas seller
must choose the index of reference among a certain number of admitted choices: it is
possible to investigate the influence on P of future variations of these indices to help gas
seller in taking his decision.
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