UNIVERSITA DEGLI STUDI DI BERGAMO
SCHOOL OF ENGINEERING
DEPARTMENT OF ENGINEERING AND APPLIED SCIENCES
DOCTORAL PROGRAMME IN ENGINEERING AND APPLIED SCIENCES

MODEL-BASED TECHNIQUES FOR THE DESIGN OF
MODERN SOFTWARE SYSTEMS

Doctoral Dissertation of:

Steven Capelli

Supervisor:
Prof. Stefano Paraboschi

The Chair of the Doctoral Program:
Prof. Valerio Re

2016 — XXIX

Abstract

HE Thesis reports on the work done for the definition of several tech-
niques to support the design of modern systems. SCA-PatternBox is a
framework for modeling service-oriented applications with design pat-

terns that also permits the validation and verification of their behavior. Security
Enhanced Docker study improves the use of SELinux in Docker. Two tech-
niques are presented: Docker Policy Module (DPM) improves the use of the
SELinux Type Enforcement (TE) model and Category minimization problem
improves the use of the SELinux Multi Category Security (MCS) model. J-CO
query language devised to query heterogeneous collections of JSON objects
stored in a NoSQL document DBMS such as MongoDB.

Introduction

HE great spread of systems and services (i.e., Cloud Services, Geo-
localization services) which use a large amount of often sensitive data
requires the study of techniques and the realization of tools that validate

and verify the behavior of the systems and services and support the manage-
ment of the policy rules to ensure data security. Moreover, the dissemination
of large amounts of data, also heterogeneous, requires the study of techniques
to support and facilitate their querying.

In line with such vision, this Thesis presents several model-based tech-
niques in order to design and improve modern software system. SCA-
PatternBox 1is a framework which uses techniques to validate and verify the
behavior of the system in order to support the design of the systems and ser-
vices. It provides to engineers a tool to find the best design solution for the
system. Security Enhanced Docker presents two techniques to improve Docker
security. These techniques are also useful approaches to follow for security
systems design. J-CO query language is a language for querying of hetero-
geneous data. This query language technique can be seen as a guideline for
declarative query language design. J-CO query language has been designed
thinking about the operators useful to query data and those useful to enrich the
lenguage. Moreover, J-CO is not complete. It has been thought as a continu-
ously growing language where the developers can add new operators according
to their needs (at the moment of the language design, it is not possible to think
of all operators useful for the users. The needs can change with time).

In the following, these three research lines will be presented: SCA-
PatternBox, Security Enhanced Docker and J-CO query language.

SCA-PatternBox is a framework for modeling service-oriented applications
with design patterns that also permits the validation and verification of their

III

behavior. SCA-PatternBox, through XML template-based mechanism, allows
the definition of design patterns and their instantiation from a scratch SCA
design or from an SCA component assembly of an existing service-oriented
application. It also permits to generate automatically the corresponding com-
pound SCA component assembly and the SCA-Java skeleton code (indeed,
Java classes and interfaces with appropriate annotations for SCA). Since pat-
terns have two complementary aspects (structural and behavioral), for patterns
that have a significant behavioral aspect, it is necessary to understand how
service components collaborate to achieve the expected behavior. To this pur-
pose, SCA-PatternBox allows also the formal specification and analysis of the
functional behavioral aspect of design patterns using a formal service specifica-
tion language called SCA-ASM [32,33] which is based on the formal method
Abstract State Machine [29]. In this way, the framework provides formally
verified design patterns by producing precise and unambiguous functional de-
scriptions of design patterns in SCA-ASM and then validates and verifies these
formal specifications (e.g., through simulation and model checking). The pur-
pose of this work is to facilitate the construction of a service- oriented applica-
tion and to help engineers understand alternative means for achieving alterna-
tive architectures in the application’s design and code. Moreover, early valida-
tion by model simulation is a great means for evaluating architectural choices
and alternative designs with limited implementation effort. The mathematical
foundation of the method also facilitates reasoning about component behavior
in order to guarantee their correctness.

Docker security study presents two techniques in order to improve Docker
security. Docker is a tool to perform container virtualization using Linux con-
tainers where a container is a virtual machine used to perform a specific ser-
vice. Docker provides lightweight virtualization which permits to virtualize
many containers on the same host. The containers do not have a dedicated
operating system and use the host operating system to perform their services.
This behavior creates attack risk and needs isolation. We considered Docker in
Fedora Linux distribution that use SELinux [49] in order to ensure containers
isolation. We present two techniques in order to improve the use of SELinux
in Docker: Docker Policy Module (DPM) and Category minimization problem.
The first one, improves the isolation between host and containers. It permits
to define specific security rules for the processes inside the containers, through
the definition of SELinux modules. The second one, improves the isolation be-
tween containers. It permits to assign the SELinux categories in a specific way
and allows the system to use only the categories needed to satisfy the policy.
These improvements ensure greater system security giving to the containers
only the rules that are needed in order to perform their functionality.

J-CO query language is a query language for heterogeneous collections of
possibly geo-referenced JSON objects. The dissemination of many and het-

v

erogeneous data creates the needed to have easy ways to querying these data.
These data are often released as JSON collections. JSON collections is a for-
mat for data storage and is supported by several NoSQL document DBMSs
such as MongoDB (relational/SQL databases are unable to flexibly integrate
heterogeneous collections). However, the query language provided by NoSQL
DBMS is not easy to use for non programmers. In line with such vision, J-CO
query language provides non-programmer users with a declarative query lan-
guage able to handle JSON collections in such a way objects can be filtered,
recombined and aggregated in a flexible way. Ambitiously, this research wants
to repeat what was attempted with SQL in the 70s, i.e., enabling database tech-
nology for non-programmer users with a declarative query language.

The techniques described in this Thesis exhibit some level of heterogeneity
and focus on different research topics. However, they all have in common the
goal of using adhoc models to identify techniques that improve the design of
modern systems.

The Thesis is organized as follows: Chapter (1| shows the structure and the
funzionality of SCA-PatternBox, Chapter[2|presents two techniques to improve
Docker security, Chapter [3| shows a query language for heterogeneous collec-
tions, named J-CO and then the Conclusions are drawn.

Contents

1_SCA-PatternBox 1
1.1 Introduction|. 1
(1.2 Background concepts| 4
[I.3 The SCA-PatternBox pattern language| 7

[1.3.1 Design pattern specification| 8
[1.3.2 Design pattern instantiation| 10
[1.3.3 Design patterns examples| 12
(1.4 SCA-PatternBox framework| 17
1.4.1 Framework architecture| 18
[1.4.2 Framework methodology| 20
[1.4.3 Formal analysis techniques| 22
[L.5 Tllustrative case studies and lessons learned| 25
[1.5.1 The Order System| 26
[1.5.2 The Stock Trading System|. 33
[[.5.33 TessonsLearned 37
(1.6 Evaluation of software design pattern languages|. 38
1.6.1 Relatedworkl. 39
[1.6.2 A comparison of design pattern languages| 40
(.7 Evaluation of SCA-PatternBox] 43

2 Security Enhanced Docker| 45
2.1 Introduction|. 45
2.2 Access Control mechanisms: DAC and MAC| 46

[2.2.1 Discretionary Access Control (DAC)| 48
[2.2.2 Mandatory Access Control MAC)| 51
223 MACand DAC] 52

Contents

.............................. 53
2.3.1 Type Enforcement (TE) 54
[2.3.2 Multi Category Security (MCS)| 56

.............................. 57
2.4.1 Docker Architecture| 59
2.4.2 Docker Security| oL 60

2.5 DPM: Docker Policy Module|. 62

[2.6 Category Minimization using MCS| 65
[2.6.1 Category Minimization problem| 66
2.6.2 Software Architecture| 73
[2.6.3 Experimentresults|. 73

277 Related Work| oL 75

[2.8 Evaluation of Security Enhanced Docker| 76

13 J-CO query language| 79

3.1 Introduction|. 79

[3.2 Background concepts| 81

33 DataModell 83

34 ExecutionModell 86

3.5 J-COOperators| 87
[3.5.1 StartOperators|. 88
[3.5.2 Carry on Operators| 93

[3.6 Complete Example| 97
3.6.1 Newlaskl. 98
B.6.2 Subtask Il. 99
B.6.3 Subtask2l. 99

3.7 JJCOEngine| 99
B.7.1 Architecture| 100
3.7.2 Performance Evaluation| 101

3.8 Related Work| L. 103

[3.9 Evaluation of J-CO query language| 104

109

VIII

CHAPTER

SCA-PatternBox

1.1 Introduction

Today the biggest shift in mainstream programming and design is toward
service-oriented applications. Service-oriented applications are playing so far
an important role in several domains (e.g., information technology, health care,
robotics, defense and aerospace, to name a few). Cloud service providers,
in particular, are expanding their offerings to include the entire traditional IT
stack, ranging from foundational hardware and platforms to application com-
ponents, software services, and whole software applications.

Service-oriented Computing (SoC) is a paradigm for developing loosely-
coupled, interoperable, dynamic systems relying on the basic unification prin-
ciple that “everything is a service”. Services are intended as loosely-coupled
autonomous and heterogeneou computational components that are offered by
service providers in a distributed environment via publish/discovery protocols.
The architectural foundation for SOC is provided by the Service-Oriented Ar-
chitecture (SOA), which states that applications expose their functionality as
services in a uniform and technology-independent way such that they can be
discovered and invoked over a network and clouds.

Such a paradigm shift relies on interface-based design, composition, and
reuse; but, differently from traditional component-based design where abstrac-

!'Services are in general, heterogeneous, i.e. they differ in their implementation/middleware technology.

1

Chapter 1. SCA-PatternBox

tion, encapsulation, and modularity were the only main concerns, the service
paradigm raises a bundle of problems which did not exist previously. Early
designing, prototyping, and testing of the functionality of such assembled
service-oriented applications is hardly feasible since services are discoverable,
loosely-coupled, and heterogeneous components that can only interact with
others on compatible interfaces. Moreover, this paradigm shift requires us to
discover, formally define, document, and share new design patterns. A SOA
design pattern provides a solution in support of successfully applying service
orientation and establishing a quality service-oriented architecture. SOA pat-
terns describe common architectures, implementations, and their areas of ap-
plication to help in the planning, implementation, deployment, management,
and maintenance of complex systems. According to the SOA principles [34],
design patterns play a fundamental role to support the engineering of service-
oriented applications and the attainment of the strategic goals of SoC. In par-
ticular, a special emphasis has been put so far on the development of a catalog
of SOA design pattern

In line to such a vision, this research proposes a framework, SCA-
PatternBox, for modeling service-oriented applications with design patterns.
The framework relies on the OASIS open standard Service Component Archi-
tecture (SCA) [3] as modeling language for heterogeneous service assembly in
a technology agnostic way, and on the Java implementation for SCA. A sup-
porting prototype tool based on the Eclipse environment is also available at [5].
It was developed by extending the Eclipse plug-in PatternBox [4], an existing
design pattern editor for Java code, and by integrating it with the Eclipse-based
SCA Composite Designer and the SCA runtime platform Tuscany [1]. Through
an XML template-based mechanism, SCA-PatternBox allows the definition of
design patterns and their instantiation from a scratch SCA design to be further
customized depending on the application needs, or from an SCA component
assembly of an existing service-oriented application to generate automatically
the corresponding compound SCA component assembly and the SCA-Java
skeleton code (indeed, Java classes and interfaces with appropriate annotations
for SCA). The template-based approach for the pattern instantiation and code
generation makes SCA-Patterbox higher usable than wizard-based approaches
where you have to complete the whole design pattern instance at once. More-
over, SCA-PatternBox can be easily extended. New design patterns and code
generators can be introduced by defining new XML templates depending on
the target implementation platform and application domain.

Since patterns have two complementary aspects (structural and behavioral),
for patterns that have a significant behavioral aspect, it is necessary to under-
stand how service components collaborate to achieve the expected behavior.
To this purpose, in addition to a Java-like implementation of design patterns,

Zhttp://www.soapatterns.org/

1.1. Introduction

SCA-PatternBox allows also the formal specification and analysis of the func-
tional behavioral aspect of design patterns using a formal service specification
language called SCA-ASM [32,33]]. SCA-ASM is based on the formal method
Abstract State Machine [29] that allows the definition of executable and state-
based specifications of systems behavior. The main goal is to provide formally
verified design patterns by producing precise and unambiguous functional de-
scriptions of design patterns in SCA-ASM and then to validate and verify these
formal specifications (e.g. through simulation and model checking).

The proposed framework offers several advantages with respect to the cur-
rent state of art (see Sect. for a detailed comparison with related works).
In the literature, design patterns are typically described using a combination
of natural language, UML class and sequence diagrams, and program code
(see related work in Sect. [[.6.I). Such descriptions lack design pattern-
specific visual formalisms, leading to pattern descriptions that are hard to
understand, hard to incorporate into tool support, and therefore hard to be
machine-processable in order to automate their instantiation and application
in the current design and then in the software code. The proposed framework
was conceived instead with automation in mind and to this purpose a template-
based approach was adopted. The purpose of this work is to facilitate the con-
struction of a service-oriented application and to help engineers understand
alternative means for achieving alternative architectures in the application’s
design and code. Moreover, existing approaches are specific to object-oriented
system design and do not address SOA design patterns. Instead, our approach
addresses also design patterns related to the SOA domain. Finally, some ex-
isting approaches that use a mathematical formalism for defining design pat-
terns formally require strong mathematical background to the user and lack
of good tool support. Based on the practical and scientifically well-founded
ASM formal method, SCA-ASM models are instead executable and without
mathematical overkill. SCA-ASM allows modeling both structure and behav-
ior of service components in a unique framework integrating architectural and
behavioral views. By exploiting the prototyping/validation environment for
SCA-ASM [33], patterns and components can be executed already at high level
of formalization, without caring about implementation details. Early valida-
tion by model simulation is a great means for evaluating architectural choices
and alternative designs with limited implementation effort. The mathematical
foundation of the method also facilitates reasoning about component behavior
in order to guarantee their correctness.

A first prototype of the SCA-PatternBox environment was presented as a
tool demo at the Eclipse Italian workshop [66], while a preliminary overview
of the framework was presented in [58]]. This research extends these prelim-
inary works in several aspects. First, this chapter provides a more accurate
description of the pattern definition language adopted by the SCAPatternBox

3

Chapter 1. SCA-PatternBox

framework and its use through concrete patterns examples. Formal analysis
techniques supported by SCAPatternBox for validating and verifying the func-
tional behavioral aspects of patterns and applications are presented. The chap-
ter introduces also a supporting methodology for a general and agile prototyp-
ing of a service-oriented application with the SCA-PatternBox framework, and
illustrates the methodology through two case studies — the Order system and
the Stock Trading System (STS). Lessons learned that we gained through our
experience in developing the case studies and that should be retained for fu-
ture use are also reported. Moreover, a comparison of existing design pattern
languages is also presented according to some specific criteria.

The remainder of this chapter is organized as follows. Section pro-
vides background concepts on SCA, SCA-Java and SCA-ASM. Section
introduces the SCA-PatternBox language and alternative notations for editing
design patterns and instantiating them automatically. Section |1.4{describes the
SCA-PatternBox framework and a supporting design/development methodol-
ogy for prototyping service-oriented applications with design patterns. Sec-
tion illustrates the methodology with two case studies and provides some
lessons learned during the development of the framework and its use for the
case studies. Section surveys the main existing design pattern languages
and provides a comparison of them and of our proposed SCA-PatternBox lan-
guage. Finally, Section concludes the chapter and sketches some future
directions of our work.

1.2 Background concepts

Service Component Architecture (SCA) [3] is an XML-based component
model used to develop service-oriented applications independently from SOA
platforms and middleware programming APIs. SCA is also endowed with a vi-
sual notation and supported by an Eclipse-based design tool and runtime plat-
forms (like Apache Tuscany, FRAscaTI, IBM WebSphere Application Server
V7, etc.) for the development and deployment of service-oriented applications.

Fig. shows an SCA composite (or assembly) as a composition of SCA
components. An SCA component is a piece of configured software that pro-
vides business functions (operations) for interaction with the outside world.
This interaction is accomplished through: services that are externally visible
functions provided by the component; references (functions required by the
component) wired to services provided by other components; properties al-
lowing for the configuration of a component implementation and bindings that
specify access mechanisms used by services and references according to some
technology/protocol (e.g., WSDL binding to consume/expose web services,
JMS binding to receive/send Java Message Service, etc.). Services and refer-
ences are typed by interfaces. An interface describes a set of related opera-

4

1.2. Background concepts

.......... Properties

- Java interface

. -WSDL PortType
service Composite '

- Java interface

- WSDL PortType
'
1

Property
setting

Binding !
Web Service *
SCA

Binding

' i ;
i | H
i g i ! Web Service
Wire Wire Wire SCA
JCA
JMS
SLSB -

Figure 1.1: An SCA composite (adapted from the SCA Assembly Model V1.00 spec.)

JCA
JMS
SLSB ...

public class Almpl{

_‘

@Property
protected float pA; 1

- ’P/roper‘ty :
Name: pA |
Type: float 1

¥

1
)
[
I
I
1
1
1
T
|
|
1
|
1
\

\
\

Service
Reference
Name: b

Interface: BService

Name: AService
Interface: AService

Figure 1.2: SCA-Java component shape

tions (or business functions) which as a whole make up the service offered or
required by a component. The provider may respond to the requester of an op-
eration with zero or more messages. Message exchange may be synchronous
or asynchronous.

The SCA-Java Component Implementation defines how to implement
an SCA component using Java. Fig. shows the SCA component A of Fig.
[I.T]and its Java implementation class AImpl. Java annotations (RProperty,
@service,etc.) are used to augment Java classes with SCA concepts.

The SCA-ASM specification type complements the SCA compo-
nent model with the ASM model of computation to provide ASM-based for-
mal and executable description of services internal behavior, orchestration and
interactions. An open framework, the ASM toolset ASMETA (ASM mETA-
modeling) [2}/56], based on the Eclipse/EMF platform and integrated with the
SCA runtime Tuscany, is also available for editing, simulating, validating, and
potentially model checking SCA-ASM models [32][33]].

5

Chapter 1. SCA-PatternBox

module A /* ASM module for component A */
//@Provided services (interface)

import AService

//@Required services (interface)

import BService

... //other imports (if any)

signature: //Properties and references decl.

/* ASM module for interface //@Property .
AService */ shared pA: Agent-> D //D generic data type
//@Reference

module AService
importSTDL/StandardLibrary
... //other imports (if any)
signature:

/*Agent type and business

shared b: Agent -> Bservice
//@Backref to the requestor agent
shared client: Agent -> Agent

definitions:

locationsdeclarations */ 8
domain AService subsetof Agent //@service . .
out op1: Agent -> D rule r_opl(Sain Aservice) =
seq
... //Do something for the client
opl(Sa) := ... //setting of the out business location
endseq
... //other services
ruler_A () = ... //Component’s agent program
rule r_init(%a in AService) = ... //Constructor rule

Figure 1.3: SCA-ASM component shape

ASMs are an extension of FSMs where states are arbitrary complex
data (multi-sorted first-order structures) and the transition relation is specified
by rules describing how functions change from one state to the next. The basic
rule has the form of guarded update “if Cond then Updates” where Updates
is a set of function updates of the form f(¢y,...,t,) := ¢ which are simul-
taneously executed when Cond is true. Rule constructors express parallel ac-
tions (par), sequential actions (seq), iterations (iterate, while, recwhile), non-
determinism (existential quantification choose) and unrestricted synchronous
parallelism (universal quantification forall). Distributed computation is mod-
eled by means of multi-agent ASMs: multiple agents interact in a synchronous
and asynchronous way, each executing a program specified by an ASM rule.

In SCA-ASM, a service-oriented component is an ASM endowed with (at
least) one agent (a business partner or role). Components’ agents interact with
other agents by providing and requiring services. The service behaviors en-
capsulated in an SCA-ASM component are captured by ASM transition rules.
Fig. shows the shape of the SCA-ASM component A of Fig. and the
corresponding ASM modules for the provided interface AService (on the
left) and the skeleton of the component itself (on the right) using the textual
notation ASMETA/Asmetal. and the Gannotations to denote SCA con-
cepts. ASM rule constructors and predefined ASM rules (i.e., named ASM

6

1.3. The SCA-PatternBox pattern language

Table 1.1: SCA-ASM rule constructors for computation, coordination, communication

COMPUTATION AND COORDINATION

Skip rule skip do nothing

Update rule | f(t1,...,tn) =t update the value of f att1,...,tn tot
Call rule Rlz1,...,2n] call rule R with parameters x1, . .., ZTn
Let rule letx =tin R assign the value of ¢ to = and then execute

R

Conditional
rule

it ¢ then R; else R>
endif

if ¢ is true, then execute rule Rq,
otherwise R

Iterate rule

while ¢ do R

execute rule R until ¢ is true

Seq rule

seq R1 ... Ry endseq

rules Ry ... Ry, are executed in sequence
without exposing intermediate updates

Parallel rule

par R; ... R, endpar

rules Ry ... Ry, are executed in parallel

Forall rule

forall = with ¢ do R(x)

forall x satisfying ¢ execute R

Choose rule

choose = with ¢ do R(z)

choose an z satisfying ¢ and then execute
R

Split rule

foralln € N do R(n)

split IV times the execution of R

Spawn rule

spawn child with R

create a child agent with program R

COMMUNICATION

Send rule

wsend[/nk,R,snd]

send data snd to Ink in reference to rule R
(no blocking, no acknowledgment)

Receive rule

wreceive[/nk,R,rcv]

receive data rcv from [nk in reference to
R (blocks until data are received, no ack)

SendReceive | wsendreceive send data snd to Ink in reference to R
rule [Ink,R,snd,rcv] waits for data rcv to be sent back (no ack)
Reply rule wreply[lnk,R,snd] returns data snd to Ink, as response of R

request received from /nk (no ack)

rules in a model library) are used as SCA-ASM behavioral primitives. These
rules are recalled in Table by separating them according to the separation
of concerns computation, communication and coordination. In particular, com-
munication primitives provide both synchronous and asynchronous interaction
styles (corresponding, respectively, to the request-response and one-way in-
teraction patterns of the SCA standard). Communication relies on a dynamic
domain Message that represents message instances managed by an abstract
message-passing mechanism: components communicate over wires according
to the semantics of the communication commands reported above and a mes-
sage encapsulates information about the partner link and the referenced service
name and data transferred. We abstract, therefore, from the SCA notion of
bindin Rules for fault/compensation handling are also supported [33]].

1.3 The SCA-PatternBox pattern language

This section describes the SCA-PatternBox language supporting the specifica-
tion of architectural design patterns and their instantiation into SCA assembly
models of service-oriented applications. The section also provides concrete
examples of design patterns.

3Indeed, we adopt the default SCA binding (binding. sca) for message delivering, i.e. the SOAP/HTTP or the
Java method invocations (via a Java proxy) depending if the invoked services are remote or local, respectively.

Chapter 1. SCA-PatternBox

The SCA-PatternBox language consists of a metamodel (the abstract syn-
tax) providing a set of modeling constructs to define and reuse design patterns,
and of XML-based notations (the concrete syntax) for modeling design pattern
solutions and solution instances within SCA models. The XML-based concrete
notations are both human- and machine- comprehensible.

The SCA-PatternBox language can be used as a stand-alone modeling no-
tation for design patterns or in conjunction with SCA to model design pattern
instances within SCA assembly models of service-oriented applications. A
design pattern instance describes the relationships between the design pattern
elements modeled in the SCA-PatternBox language and the design elements
(service-oriented components and interfaces) in the SCA assembly of a spe-
cific application.

The proposed language is intended to be used only to model the generalized
solutions proposed by design patterns and facilitate their application and reuse.
Further details, such as when the solution should be applied and consequences
of using the pattern, are not included. The SCA-PatternBox language has been
designed with automated tool support in mind. It is relatively easy to learn,
particularly in conjunction with SCA.

1.3.1 Design pattern specification

Typically, an architectural design pattern describes components and details
their roles and interactions. All components together solve the problem that
the pattern addresses.

Fig. shows the SCA-PatternBox language’s metamodel capturing the
very essence of a design pattern independently of its domain. A design pattern
in SCA-PatternBox is to be intended as an instance of this metamodel. Essen-
tially, a design pattern (the class Pattern) defines roles (the class Role),
role dependencies (the class Dependence), and an informal description (the
attribute comment) in natural language. Roles are played by the participants
of a pattern solution. A role has, among other things, an attribute type to
tailor the type of architectural design elements (a component or interface) that
can play the role, a multiplicity (the attributes min and max) that constrains the
number of elements that can play the role, an attribute property to denote
a set of mandatory properties, and an attribute operation to denote a set of
mandatory service operations. The default multiplicity interval (min, max)
in the class Role is 1..*, specifying that there must be at least one element
playing the role. Dependencies are typically between a component role and a
provided/required interface role, but not necessarily. There can be also depen-
dencies between components themselves to denote, for example, wires con-
necting a composite component with a sub-component. In this last case the
attribute type of the dependence is not present. This is enforced by the follow-

8

1.3. The SCA-PatternBox pattern language

NamedElement
+name:String

«enumeration» «enumeration»
Element Type DependeType
+Interface +required
+Component +provided
Role
Pattem +min: Integer

Fid: String +max: UnlimitedNatural |

+topCategorie: String role +;:;mm§|nt: Strt|$g .4 I ree Dependence

+subCategorie: String [0..11 *> 1.+ - ttype: ElementType -

+comment: String [1..#] +property: String [0..*] +type: DependenceType [0..1]

+operation: String [0..#]

? dependence 0%

Figure 1.4: SCA-PatternBox design pattern metamodel

ing OCL invariant (i.e., a constraint that must always be met by all instances of
a class) introduced within the context of the class Dependence:
context Dependence

inv targetRoleType: not self.type.isNull implies self.role.type=interface

Some other OCL constraints not reported here have been defined to constrain
the number of valid instances of this metamodel. These constraints are embed-
ded in the SCAPatternBox editor and checked during pattern instantiation.

As concrete textual syntax associated to the metamodel, a pattern is de-
fined in an XML file conforming to a DTD manifest.dtd. Code re-
ports the XML file for the definition of a service interaction micro—patter
called Request—-Response. In this interaction schema, a component
ClientRequestResponse invokes a service of the component Server
and waits for the result to be returned before continuing with its processing.
Request-response is the default mode of invoking a service in a synchronous
way.

As complementary concrete syntax, a pattern can be also defined in terms
of an SCA assembly model thus exploiting the SCA graphical notation. This
SCA assembly consists of service components and reference-to-service wires
corresponding, respectively, to roles and role dependencies. Exploiting the
SCA (graphical) notation provides a much higher expressive power, but it is
tied to a specific design language. Fig. shows the SCA assembly for the
Request-Response micro-pattern.

4Micro-patterns are prime candidates of “units of design” to look for and are the “basis” of more complex SOA
patterns.

O 0N WN—

Chapter 1. SCA-PatternBox

Listing 1.1: Request-Response micro-pattern

<!DOCTYPE pattern SYSTEM "manifest.dtd”>

<pattern id="requestresponse” name="RequestResponse”

topCategorie="SCA” subCategorie="Micro_Pattern”>

<role name="RequestResponseService” min="1" max="1" type="Interface” operation="request”>
<comment>

defines a service interface.

</comment> </role>

<role name="Server” min="1" max="1" type="Component”>

<comment>

implements the RequestResponseService interface. </comment>

<dependence role="RequestResponseService”/ type="provided”’> </role >

<role name="ClientRequestResponse” min="1" max="1" type="Component”>

<comment>

 maintains a reference to a RequestResponseService;

 makes a request to a RequestResponseService and waits for the result. </comment>
<dependence role="RequestResponseService” type="required”/> </role>

</pattern>

RequestResponse
Service

Figure 1.5: Request-Response micro-pattern in SCA

1.3.2 Design pattern instantiation

Instantiating a design pattern means creating a new piece of design called “de-
sign pattern instance” by mapping the design elements and relationships of
the design pattern with elements and relationships of the domain (application)
knowledge. After applying (instantiating) a pattern into an existing design, the
resulting software architecture should include a particular structure that pro-
vides for the roles specified by the pattern, but adjusted and tailored to the
specific needs of the problem at hand.

SCA-PatternBox instantiates a pattern by generating from scratch an SCA-
assembly and a skeleton SCA-Java code to be further re-factored and refined to
the specific application needs. The generation process is template-based: there
must exist a template for each design pattern supported. Such a template is an
XML file conforming to a DTD called templates.dtdin SCA-PatternBox.
Code shows an example of SCA-Java template for the Request-Response
micro-pattern.

Similarly, to support the generation of SCA-ASM formal specifications
from patterns, we defined a grammar module ASM templates.dtd for the
definition of SCA-ASM pattern templates. The goal is to precisely define the
intended execution semantics of a pattern (which is typically expressed in a
quite informal way by graphical notations like SCA or UML) using the ASM

10

O 0NN AW —

1.3. The SCA-PatternBox pattern language

Listing 1.2: SCA-Java template for RequestResponse

<?xml version="1.0" encoding="iso—8859—1" 7>

<IDOCTYPE templates SYSTEM "templates.dtd”>

<templates id="Request—Response” version="1.0">

<role name="RequestResponseService” type="interface” modifiers="public”’>
<import type="0rg.osoa.sca.annotations.x"/>

<method modifiers="public” return="java.lang.Object” name="request”>
<comment> The request service operation </comment>

<param type="java.lang.Object” name="item”/>

</method> </role>

<role name="Server” type="class” modifiers="public” >

<import type="org.osoa.sca.annotations.*"/>
<annotation>@Service(RequestResponseService.class) </annotation>
<interface type="$RequestResponseService$"/>

< constructor modifiers="public”>

<comment>Default constructor</comment>

<code> super();</code> </constructor>

<method modifiers="public” return="java.lang.Object” name="request”’>
<comment>Method implementing the service operation

of the RequestResponseService interface. </comment>

<param type="java.lang.Object” name="item”/>

<code> // TODO Write your code here ...

return item; </code> </method> </role>

<role name="ClientRequestResponse” type="class” modifiers="public” >
<import type="0rg.osoa.sca.annotations.x"/>
<annotation>@Service(Runnable.class)</annotation>

<interface type="java.lang.Runnable”/>

<field modifiers="protected” type="$RequestResponseService$”
name="fRequestResponseService”>

<comment>reference to a RequestResponseService</comment>
<annotation>@Reference </annotation>

</field>

<constructor modifiers="public”>
<comment>Constructor</comment>

<param type="$ClientRequestResponse$” name="requestresponse” />
<code> super(); </code>

</constructor>

<method modifiers="public” return="void” name="run”>

<code> Object item = fRequestResponse.request(item);

// TODO Write your code here ... </code> </method> </role>
</templates>

11

Chapter 1. SCA-PatternBox

formalism. SCA-ASM offers a more accurate description of the principles
involved in a design pattern and offers a more sophisticated insight into the
pattern behavior for those familiar with formal notations like ASM.

Code[1.3|shows the SCA-ASM template for the request-response micro pat-
tern, namely the SCA-ASM definition of the interface RequestResponse
and of the ClientRequestResponse and Server component roles.

Code shows the resulting ASM specification after in-
stantiating the micro pattern from a scratch design. The
ASM module RequestResponseService corresponds to the
RequestResponseService interface. It contains only declarations
of the business agent type RequestResponseService and of the
business function (ASM out function) request. The ASM module
ClientRequestResponseComponent imports the ASM module of the
required service interface RequestResponseService of the component,
annotated with @Required. The signature of the component contains
declarations for a reference (shared function annotated with @Reference) as
abstract access endpoint to the RequestResponse service, and declarations
of ASM functions used by the component for internal computation only. In
particular, the function items represents data associated to the request made
to the server. The ASM module ServerComponent imports the ASM mod-
ule of the provided service interface RequestResponseService of the
component, annotated with @Provided. The annotation @MainService
on the import clause for the RequestResponseService interface denotes
the main service (read: main component’s agent) that is responsible for initial-
izing the component’s state (in the predefined r_init rule). The signature of
the component contains declarations for: a back reference to requester agent
(the shared function client annotated with @Backref), and declarations of
ASM functions used by the component for internal computation only. This
resulting SCA-ASM specification is directly executable within the SCA-ASM
execution environment (see Sect. for formal validation.

1.3.3 Design patterns examples

We defined and collected different types of design patterns. First, we consid-
ered micro-patterns for service interaction. Table summarizes the SCA
micro-patterns for service interactions. Further semantics details can be found
in the SCA assembly specification model [3].We inspired to the SCA standard
and defined all these service oriented micro-patterns in SCA-PatternBox.

We then started to work with conventional architectural patterns and with
SOA patterns (like FIFO, Replicator, Ping-Echo, Publish-Subscribe, Router-
Filtering, etc.) related to the service level of abstraction (rather than the busi-
ness process or orchestration level). Some of them are to be considered as

12

O 001N WN—

1.3. The SCA-PatternBox pattern language

Listing 1.3: SCA-ASM template for RequestResponse

< ?xml version="1.0" encoding="iso—8859—1" 7>

<IDOCTYPE templates SYSTEM "templates.dtd”>

<templates id="Request—Response” version="1.0">

<role name="RequestResponseService” type="module”/>

<import type="STDL/StandardLibrary”/>

<delimiter type="signature”/>

<domain name="RequestResponseService”/> <subsetof name="Agent’/>
<function modifier="out” name="response”>

<domain>Agent</domain> <codomain>D </codomain>

</function>

</role>

<role name="ClientRequestResponseComponent” type="module”/>

<comment> //@Required interface </comment>

<import type="RequestResponseService”/>

<comment> //@Reference to the agent RequestResponseService </comment>
<function modifier="shared” name="fRequestResponse”>
<domain>Agent</domain> <codomain>RequestResponseService </codomain>
</function>

<function modifier="controlled” name="items”>

<domain>Agent</domain> <codomain>D </codomain>

</function>

<delimiter type="definitions”/>

<rule name="r_ClientRequestResponseComponent”>

<body> //Make the request in a synchronous manner by send—receive
r_wsendreceive[fRequestResponse(self),”r_request(Agent,D)”,items(self),result(self)] </body >
</rule>

<rule name="r_init">

<param type="ClientRequestResponseComponent” name="$a" />

<body> //Complete this rule body for the startup of the component
status($a) := READY </body>

</rule>

</role>

<role name="ServerComponent” type="module”/>
<comment> //@Provided interface </comment>
<import type="RequestResponseService”/>

<comment> //@Backref to the client agent </comment>
<function modifier="shared” name="client”>
<domain>Agent</domain> <codomain>Agent</codomain>
</function>

<function modifier="controlled” name="params”>
<domain>Agent</domain> <codomain>D</codomain>
</function>

<delimiter type="definitions”/>

<comment> //@Service </comment>

<rule name="r_request’>

<param type="Agent’ name="$a" /> <param type="D" name="$params” />
<body> skip //Replace this rule body with your ASM rule scheme </body>
</rule>

<rule name="r_ServerComponent”>

<body>

let($r = nextRequest(self)) in//Select the next request (if any)
if isDef($r) then seq //Handle the request $r
r.wreceive[client(self),”r_request(Agent,D)”,params(self)]

if (isDef(params(self))) then r_request[self,params(self)] endif
r-wreply(client(self),’r_request(Agent,D)”,response(self))
endseq endif endlet

</body>

</rule>

<rule name="r_init">

<param type="RequestResponseService” name="$a" />
<body> //Complete this rule body for the startup of the component

status($a) := READY </body>
</rule>

</role>

</templates>

13

Nelie N e R e o S

Chapter 1. SCA-PatternBox

Listing 1.4: SCA-ASM specification of the request-response micropattern

//@Remotable

module RequestResponseService

import STDL/StandardLibrary

import STDL/CommonBehavior

export =

signature:

domain RequestResponseService subsetof Agent
out request: Prod(Agent,D) —> Rule

module ClientRequestResponseComponent

import STDL/StandardLibrary

import STDL/CommonBehavior

//@Required service

import RequestResponseService

export =

signature:

//@Reference

shared fRequestResponse : Agent —> RequestResponseService
controlled items: Agent —> D

controlled result: Agent —> D

definitions:

rule r_ClientRequestResponseComponent =

//Make the request in a synchronous manner by send— receive
r.wsendreceive[fRequestResponse(self),’r_request(Agent,D)”,items(self),result(self)]
rule r_init($a in ClientRequestResponseComponent) =

//Complete this rule body for the startup of the component
status($a) := READY

module ServerComponent
import STDL/StandardLibrary
import STDL/CommonBehavior
//@MainService

import RequestResponseService
export

signature:

//@Backref to the client agent

shared client : Agent —> Agent
controlled params: Agent —> D
definitions:
//@Service

rule r_request($a in Agent,$params in D)=

skip //Replace this rule body with your ASM rule scheme
rule r_ServerComponent =

let($r = nextRequest(self)) in/Select the next request (if any)
if isDef($r) then seq /Handle the request $r
r.wreceive[client(self),’r_request(Agent,D)”,params(self)]

if (isDef(params(self))) then r_request[self,params(self)] endif
r-wreply(client(self),”r_request(Agent,D)”,response(self))
endseq endif endlet

rule r_init($a in RequestResponseService) =

//Complete this rule body for the startup of the component
status($a) := READY

14

1.3. The SCA-PatternBox pattern language

tactics, i.e., architectural patterns providing a generic solution to issues per-
taining to extra-functional quality attributes (such as performance, availability,
etc.). For example, a design concern for availability is “Fault Detection”. Since
services and their service providers can be discovered at run time, new ser-
vice providers may be brought into existence at any time and existing service
providers may fail or stop operating entirely. To make the application more
robust to these kind of faults, two well-known tactics for fault detection are
Ping/echo and Heartbeat.

As an example of design pattern, Fig. shows the SCA diagram for the
Ping/Echo tactic. Ping-Echo is a tactic for monitoring and checking the avail-
ability of a component by sending ping messages to the component (the re-
ceiver) regularly every t imeInterval units. If the receiver component does
not send back an echo to the sender component within the maximum waiting
time (property maxWaitingTime), the sender considers the receiver compo-
nent failed. Code[I.5]shows the XML file defining the Ping/Echo tactic in more
general terms for people not familiar with SCA. The Ping/Echo tactic can be
intended as a refinement of the call-back micro-pattern.

Fig. shows the Heartbeat design pattern in SCA as another example
of tactic for availability. It detects a fault by listening to heartbeat messages
from monitored components periodically. A sender sends a heartbeat mes-
sage to a receiver (operation imAlive) every specified time interval (property
timeInterval). The receiver updates the current time when it receives the
heartbeat message. The aliveness of the sender is checked by the receiver reg-
ularly every specified time interval (property t imeInterval) by comparing
the latency time between the current time and the last time of a heartbeat mes-
sage is received from the server. If the heartbeat message is not received within
a certain time (property maxWaitingTime) the sender is considered to be
unavailable. Code|[I.6]shows the XML file defining the Heartbeat tactic.

The Ping/Echo tactic and the Heartbeat tactics can be combined to make
more efficient and bidirectional the fault detection mechanism. The result of
this tactic composition is shown in Fig. [1.8]using SCA. Technically it has been
obtained by applying the Heartbeat tactic to the SCA asssembly of the Ping-
Echo tactic. Property re-naming is necessary to avoid ambiguities. For exam-

Table 1.2: Service Interaction Micro-patterns

Micro-Pattern Communication Annotation
Local pass-by-reference -

Remote pass-by-value @Remotable
Request-response | Synchronous -

Oneway Asynchronous @oneway
CallBack Asynchronous Bidirectional | @Callback

15

O 00 1O\ AW —

Chapter 1. SCA-PatternBox

Listing 1.5: Ping-echo tactic

<!DOCTYPE pattern SYSTEM "manifest.dtd”>

< pattern id="pingecho” name="PingEcho” topCategorie="SCA”>
<comment>

One component issues a ping and expects to receive back an

echo, within a predefined time, from the component under

scrutiny.

</comment>

<role name="PingService” min="1" max="1" type="Interface” operation="ping”>
<comment>

Defines an interface for the Ping sending service.
</comment></role>

<role name="EchoService” min="1" max="1" type="Interface” operation="echo”>
<comment>

Defines a callback interface for the Echo sending service.
</comment> </role>

<role name="PingSender” min="1" max="1" type="Component”
property= "timelnterval_maxWaitingTime.”>

<comment>

Maintains a reference to one or more Receiver services.
Sends a Ping to a Receiver component.

</comment>

<dependence role="PingService” type="required”/> </role >

< dependence role="EchoService” type="provided”/> </role >
<role name="PingReceiver’ min="1" max="1" type="Component”>
<comment>

Maintains a reference to a Sender service.
Receives a Ping from a sender and reply to it with an Echo.
</comment>

<dependence role="PingService” type="provided”/> </role>
<dependence role="EchoService” type="required”/> </role>
</role>

</pattern>

Figure 1.6: Ping/Echo tactic in SCA

16

O 01N WN—

1.4. SCA-PatternBox framework

Listing 1.6: Heartbeat tactic

<!DOCTYPE pattern SYSTEM "manifest.dtd”>

< pattern id="heartbeat” name="Heartbeat” topCategorie="SCA”>

<comment> One sender component sends a heart beat message to a receiver periodically.
The aliveness of the sender is checked by the receiver regularly every specified time interval.
If the heartbeat message is not received within a certain maximum waiting, the sender is
considered to be unavailable.

</comment>

<role name="HeartbeatService” min="1" max="1" type="Interface” operation="imAlive” >
<comment>

Defines an interface for the heart beat sending service.

<role name="HeartbeatSender” min="1" max="1" type="Component” property= "timelnterval”>
<comment> Maintains a reference to one or more Receiver services.
Sends an heartbeat message to a Receiver component. </comment>
<dependence role="HeartBeatService” type="required”/> </role>

<role name="HeartbeatReceiver’ min="1" max="1" type="Component”

property= "timelnterval_maxWaitingTime”>

<comment> Maintains a reference to a Sender service.

Receives an heart beat from a sender periodically. </comment>

<dependence role="HeartbeatService” type="provided”/> </role >

</role>

</pattern>

timelnterval timelnterval maxWaitingTime

HeartBeat
Service

Figure 1.7: Heartbeat tactic in SCA

ple, property timeInterval of the role HeartBeatSender of the Heartbeat
tactic is renamed in beat TimeInterval. The result of this pattern compo-
sition can be saved and reused as new compound design pattern.

1.4 SCA-PatternBox framework

SCA is supported by an Eclipse-based design tool and runtime platforms for the
development of service-based applications. Based on the ideas of model-based
development, the proposed framework SCA-PatternBox is Eclipse-based and
complements the SCA design environment by the use of a collection of mod-
els to specify and configure architectural design patterns and the automated
application of them in the development of SCA models of service-oriented ap-
plications. SCA aims to encompass a wide range of target implementation
technologies for SCA service components and for the access methods which
are used to connect them. In our work, we focused on the SCA-Java imple-
mentation type and on the SCA-ASM formal specification type.

17

Chapter 1. SCA-PatternBox

timelnterval beatTimelnterval timelnterval maxWaitingTime

maxWaitingTime

EchoService PingService
HeartBeat

Service

Figure 1.8: SCA composition of the Ping/Echo and HeartBeat tactics

. __.)l manifest.dtd templates.dtd |<_
Directory J | P Directories

pattern.mf conformsfo | conformsrol 1 template.java
Mypattern meJ Mytemplate.xml J(template.asm

oo e e

PatternBox SCma
SCA-PatternBox Formal analysis

- I
ﬁﬂ ek | environment

/// - (//’7 ________________ /

SCA so.urce SCA source SCA assembly |
code .java code .asm &
—f

SCA-PatternBox

p———————

Figure 1.9: SCA-PatternBox architecture

In the following, we provide an overview of the SCA-PatternBox frame-
work, a general methodology for application designers to develop service-
oriented component architectures using SCA-PatternBox and design patterns,
and a description of the supported formal analysis techniques.

1.4.1 Framework architecture

Fig. shows the SCA-PatternBox architecture using a free-style notation,
while Fig. shows a screenshot of the Eclipse view of SCA-PatternBox.
SCA-PatternBox includes a design pattern editor, code generators for produc-
ing SCA-Java code and SCA-ASM specifications, and a pattern composer. It
also exploits an external formal analysis environment for SCA-ASM specifica-
tions.

Pattern editor The pattern editor adopts a template-based approach that allows
you to insert new pattern definitions (file Mypattern.xml in Fig. and

18

1.4. SCA-PatternBox framework

appropriate templates (file Mytemplate.xml in Fig. for the generation
of SCA-Java code and of SCA-ASM formal specifications. A design pattern is
defined in an XML file within a predefined directory pattern.mf and must
be conforming to the DTD manifest .dtd within the same directory.

Code generator There exists an XML-based template files within the pre-
defined directory template. java and within template.asm of SCA-
PatternBox for each design pattern to support the generation of the
corresponding SCA-Java code and SCA-ASM specification, respectively.
For the SCA-Java code generation, we extended the existing Pattern-
Box XML grammar templates.dtd to allow the use of Java annota-
tions for SCA into the code templates, and the source code of Pattern-
Box (CodeTemplateXmlHandler. java and MemberCodeGenera-
tor.java) to generate Java code from the pattern code templates with the
appropriate SCA annotations. The code generator makes intensive use of
Eclipse’s Java development tooling (JDT) and the Plug-in Development En-
vironment (PDE). It creates Java classes and interfaces according to the code
templates and generates also an SCA XML assembly file corresponding to it.
Fragments of SCA assembly files and the associated Java skeleton code can be
therefore produced from scratch from a pattern definition.

Pattern composer The composer supports the composition and application of
design patterns on existing SCA assemblies (and on the corresponding Java or
ASM implementation). Currently, the composition is carried out in an inter-
active manner, indeed the designer has to specify the names of the elements
(components or interfaces) from the SCA assembly that play specific roles of
the design pattern. The composition strategy is incremental, i.e., the appli-
cation of design patterns to an existing SCA assembly is made through a se-
quential chain of adaptation actions of the SCA assembly and of the associated
components implementation according to the pattern definitions.

Formal specification and analysis environment The formal analysis environment
allows for an early and formal validation of the design of a service-oriented
application. It consists of the Eclipse-based SCA-ASM design and execution
framework for the simulation of SCA-ASM components within an SCA assem-
bly (exploiting the SCA Tuscany runtime platform), and of the ASM analysis
toolset ASMETA [2,56]. An SCA-ASM specification of a service-oriented
component (or of a component assembly), possibly not yet implemented in
code or available as off-the-shelf, can be: (i) simulated and possibly formally
verified (by model checking techniques) offline, i.e., in isolation from the other
components, by the use of the ASM toolset ASMETA; (ii) configured in place
within the SCA Tuscany runtime platform as abstract implementation (or spec-

19

Chapter 1. SCA-PatternBox

File Edit Diagram Navigate Search Project Run Window Help

Cived Bv B @ T |$-0-Q- [G-6- |3 s |0 |4 t Gv T %2 Java EE
= Biv oiv &y ~ [100% =
o O requestresponse.xdp 32 [} *requestresponse.composite_diagram 52 <o -
[FS} 3
requestresponse El
Micropattern-Define a type of interactionwhere the calling component | || seemn O composite
sends a message to the called component. The calling component i = - @ component
> = i 3
expects an immediate request respanse for each message that's sent. Lo - o service
= D Reference
- Requestresponse Server
Bmllequeslrespcnse [1.1] et Eent O property
Requestresponse :
v serverimpl [1..1] Bemovs wire
o PELT- = WireTarget
serverimpl Browse % promote
v (= ClientRequestresponselmpl [1..1]
. + 45CA (0ASIS)
[clientRequestresponselmpl
+) Java (0ASIS)
o,
Patternbox | requestresponse.xdp 1 Java (OASIS)
[clientRequestresponselmpljava % X] RequestResponse.composite 32
public class ClientRequestresponseInmpl implements Runnable { <7xml version="1.8" encoding="UTF-8"?
composite xmlns:sca="http://www.0s0a.0rg/xmlns/sca/1.0" name="RequestResp
/** stores the Strategy instance of the Conf¥xt */ omponent name: tRequestresponseComponent ">
@Reference implementatis va class="request_response.ClientRequestresponseImpl
protected Requestresponse fRequestresponse; ientRequestresponse”>
ava interface="request response.ClientRequestresponse”/>
Jxx
* Constructor ireference name="frequestresponse"/>
.
kL = Design|source
o® s B O wRE B

Figure 1.10: A screenshot of the SCA-PatternBox framework

ification) of a “mock” component and then executed with the other components
implementations according to the chosen SCA assembly.

This toolkit allows to study the behavior of some “critical” components in a
formal way before the final transformation into a specific implementation code.
The same consideration also apply to component assemblies representing de-
sign patterns that can be therefore specified formally in SCA-ASM as abstract
and partially complete specifications. Moreover, once these patterns are in-
stantiated into the current SCA design and their specification in SCA-ASM is
completed, the structural and behavioral conformance of the component as-
semblies to design patterns can be (potentially) checked formally.

1.4.2 Framework methodology

A general and agile development of an SCA service-oriented component ar-
chitecture (or SCA assembly) with SCA-PatternBox can be organized in the
following steps (see also Figure[I.11]).

Step 1: Sketch an outline of the application’s architecture. Define an SCA
assembly of the service-oriented application with the SCA Composite Designer
by determining the ground services and components required according to the
main requirements and use cases from the user perspective.

Step 2: Refine the architecture. 1dentify the main ways in which the com-
ponents will interact and the interfaces between them. Decide how each piece
of data and functionality will be distributed among the various components.
Choose among the various service-oriented design patterns. Instantiate and
compose them within the SCA assembly.

20

1.4. SCA-PatternBox framework

- Step 1 Step 2 Step 3 | [not satisfied]
=)
@ Sketch the Erim[iélﬁe Finalize the
=] i’c|l1rC€L1(l:EiCth9 through design interfaces [satisfied]
patterns
c
2
g :
= Step 4 Step 4
E Implement Imol
gl | |shperensin e
E SCA-Java SCA-ASM I
Step 5
Formal
[no formal . : validation
validation [formal validation required] i
required] (offline)
\lA/[issue to resolve]
5] .
g [no issue to resolve]
=
=
Step 6
Execute and [no issues to resolve]{,--\
validate the overall g)
SCA assembly
Issues to resolve]

Figure 1.11: Model development steps with SCA-PatternBox

Step 3: Finalize the interfaces. Consider each use case and adjust the archi-
tecture to make it realizable trying to finalize the interface of each component.
Refine components properties in the SCA assembly.

Step 4: Map design to implementation. Finalize the architecture as you de-
fine the final implementation classes for components and interaction protocols
according to the (possibly many and different) target implementation technolo-
gies. Determine if you can re-use existing components implementations before
implementing them from scratch. You may implement, for example, some
SCA components in SCA-Java and adopt Java-based standard communication
bindings — such the Java API for RESTful Web Services (JAX-RS) or the Java
Message Service (JMS) — for specifying how SCA services and references en-
able a component to communicate with other components/applications.

Step 41: Map design to formal specification. Optionally, you can specify
formally the behavior of some “critical” components using the SCA-ASM im-

21

Chapter 1. SCA-PatternBox

plementation type.

Step 5: Formal validation. Optionally, once specified formally the behavior
of some components or of a component assembly in SCA-ASM (Step 4/), you
may validate such components or assembly separately (in an offline manner)
using the ASM analysis toolset ASMETA.

Step 6: Overall design validation. Execute and validate the overall SCA
assembly of the application within an SCA runtime platform (like Tuscany).

More sophisticated development processes can be adopted as well. SCA-
PatternBox has been used, for example, to support a design exploration pro-
cess [60] involving more automation and combining meta-heuristic search
techniques with design patterns to produce and evaluate different design al-
ternatives.

1.4.3 Formal analysis techniques

We here describe the SCA-ASM model analysis activities we can perform of-
fline for validating and verifying the functional behavior of design patterns,
and getting early feedback (already at system design time) of their functional
correctness before applying them in concrete systems implementations.

Validation is the process of investigating a model with respect to the user
perceptions in order to ensure that the model really reflects the user needs and
statements about the application. On the SCA-ASM models of design patterns
and their concrete instantiations, formal validation can be carried out in terms
of model simulation and construction of execution scenarios — scenario-based
validation — through the execution platform for SCA-ASM [33]] and the ASM
simulator Asmetas [15] and validator AsmetaV [13] provided by the AS-
META framework [2}56]. Fig. shows the validation process: the user can
directly simulate an ASM-based specification in an interactive way or write
a scenario that automatizes the simulation and the checking of the produced
output. Early validation by model simulation is a great means for evaluating
architectural choices and alternative designs with limited implementation ef-
fort, and usually, though not in an exhaustive manner, it permits to detect faults
in the specification with limited effort w.r.t. more sophisticated analysis tech-
niques such as property verification through model checking.

Model simulation and Scenario-based validation AsmetasS permits to perform ei-
ther interactive simulation, where required inputs are provided interactively
by the user during simulation, and random simulation, where inputs values
are chosen randomly by the simulator itself. The simulator, at each step, per-
forms consistent updates checking to check that all the updates are consistent:
in an ASM, two updates are inconsistent if they update the same location to

22

1.4. SCA-PatternBox framework

Asmetas Asmetal
simulator [€""] model
— o
~ 3 Avalla
AsmetaV | g scenario
User validator

v

PASS/FAIL

Figure 1.12: Validation in the ASMETA framework

two different values at the same time [29]. In preliminary versions of our pat-
terns specifications, by simulation we found some consistency violations due
to a wrong order scheduling of the send-receive operations of the participants
agents. Moreover, the AsmetasS simulator also permits to check if some in-
variants are satisfied during simulation. Obviously, by simulation we can verify
only the states covered by the executed runs, whereas model checking (see next
paragraph) gives the assurance that the invariants hold in each model state.

A more advanced way to simulate and inspect ASMs is by specifying a
scenario representing a description of the actions of an external actor and the
corresponding reactions of the system. There are two kinds of external actors:

e a user interacts with the system in a black box manner, by setting the
values of the external environment (e.g., asking for a particular service),
waiting for a step of the machine as reaction to his/her request, and check-
ing the output values;

e an observer, instead, can also inspect the internal state of the system (i.e.,
values of machine functions) and check the validity of possible invariants
of a certain scenario.

Scenarios are described in an algorithmic way using the textual language
Avalla [13]. A scenario is as interaction sequence consisting of actions of the
external actor (user or observer) and activities of the machine as reaction to the
actor actions. The Avalla language provides constructs to set the environ-
ment (i.e., the values of input/shared functions), to check the machine state, to
ask for the execution of certain transition rules, and to force the machine itself
to make one step (or a sequence of steps by step until).

The tool AsmetaV reads scenarios written in Avalla and executes them
using the simulator Asmeta$s; during simulation, AsmetaV captures any
check violation and, if none occurs, it finishes with a PASS verdict (see
Fig.[1.12).

As an example, the excerpt of the scenario reported in Code describes
the interactions among the client ¢ and server agents s in the pattern request-
response from the client side. Appropriate assertions control that the result
message is sent. This scenario has to be used as a template and therefore it has

23

Chapter 1. SCA-PatternBox

scenario request—response
load mainRequestResponse.asm

//for the startup of the client and server agents

set status(c) := READY;

set fRequestResponse(c) = s;

set items(c):= ...;

set ...

exec r-wsendreceive[fRequestResponse(c), r-request(Agent,D)”,items(c),result(c)];
10| step

11| check isDef(response(fRequestResponse(c))) and isDef(result(c));

Nelie N e R e o R

Listing 1.7: Request-response validation scenario in Avalla

then to be instantiated according to the real services and components involved
in the pattern instance. An example of its instantiation will be given for the
case studies presented in Sect.

Model verification Model checking is an automated formal verification
technique based on state exploration of the system to be checked.
AsmetaSMV [55] is a tool of the ASMETA framework that translates ASM
specifications into models of the NuSMV model checker. It allows the veri-
fication of Computation Tree Logic (CTL) and Linear Temporal Logic (LTL)
formulae expressing desired behavioral properties of the system under verifi-
cation.

Behavioral properties related to interactions among the participants (agents)
can be obtained from a pattern definition and then expressed and configured
in terms of CTL formulae within the SCA-ASM model itself of the pattern
instance. This last is then validated against the behavioral properties by using
the AsmetaSMV model checker. Thereafter the state space of the SCA-ASM
model to be checked is searched by the model checker to verify or falsify (by
generating counterexamples) the CTL properties.

For our purposes, CTL can be used to express a temporal ordering between
send and receive messages in a sequence of interactions among agents or also
general properties such as reactivity and liveness. For example, the following
CTL property can be checked to validate the reactivity of the behavior of an
instance of the Request-Response micro-pattern:

1 |ag(isDef(nextRequest(server)) implies af(isDef(result(client(server)))))

It specifies that whenever there is a request, eventually the server (agent server
of type RequestResponseService) will reply producing a result for the client.
The formula has then to be instantiated according to the real services of the
components involved in the pattern instance.

Liveness properties (informally, liveliness means that some actions will be
executed infinitely) can be expressed and verified by giving explicit fairness

24

1.5. lllustrative case studies and lessons learned

requirements. For example, for the Ping-echo tactic, used to test the reacha-
bility of a host, the following property can be checked for a timed confirmed
sender. Property: A ping message is always followed by an echo confirmation
message or timeout:

1|ag(ping(sender,receiver) implies af((maxWaitingTime(sender) and not(echo(
receiver ,sender)))
2 | or (not(maxWaitingTime (sender)) and echo(receiver ,sender))))

where we assumed the following atomic propositions: ping(sender,receiver)
= a ping request has been sent from the sender to the receiver,
echo(receiver,sender) = an echo request has been sent back from the receiver
to the sender, and maxWaitingTime(sender) = the ping request is not answered
with the echo reply within the given time.

Invariants, i.e. properties that must hold in all the states, can be also
checked. For example, for a Request-Response micro-pattern we can verify
that, after making the request in a synchronous manner by a send-receive ac-
tion, the client effectively remains blocked until it receives back the result:

1|ag(isDef(awaitingRespMsg(client)) implies status(client) = BLOCKED)

where client 1s the client component’s agent and the controlled function await-
ingRespMsg, that is set within the predefined rule send-receive [33]], stores the
message for which the client agent is waiting to receive the corresponding re-
sponse message. Invariants are useful, for example, for guaranteeing certain
safety properties (informally, that nothing will go wrong with the system) by
verifying that invariants’ formulae are effectively true at all states of the sys-
tem.

Currently, the derivation of CTL formulae from a pattern definition is car-
ried out by hand. We postpone as future work the automatic generation of
CTL formulae and their configuration with information from concrete pattern
instances. Moreover, verification of properties on large SCA-ASM models is
possible, but it would require the use of some model slicing and model abstrac-
tion techniques in order to avoid the well-known problem of state explosion of
the model checking, and make the verification feasible.

1.5 lllustrative case studies and lessons learned

This section presents two case studies as illustrative examples of the proposed
framework. In the first example, we designed and validated a service-oriented
architecture model for the Order system case study [46]. As second example,
we considered the Stock Trading system originally presented in [67]. Finally,
the section reports our lessons learned as gained by our experience in develop-
ing these case studies.

25

Chapter 1. SCA-PatternBox

1.5.1 The Order System

The Order system is essentially an exercise of requirements capture, notori-
ously a difficult and error prone activity that requires a formalization task. To
this purpose, we show how the SCA-ASM method allows one to capture in-
formal functional requirements of a system architecture, including both the
structural and behavioral aspects of services.

The main service of the system is that of invoicing orders. Every order
refers to a product for a certain quantity (greater than zero). The same product
can be referenced by several different orders. Every product is in the stock in
different quantity. Invoicing requires to check if the order can be satisfied, i.e.
if the ordered quantity of products is less than or equal to the quantity in stock.
If so, the stock is updated and the order state changes from the state pending to
the state invoiced. If the order cannot be satisfied, it is left pending.

Two additional services offered by the system are: cancel orders and add
new quantities of products in the stock. A customer can only cancel his or her
personal orders. The order is cancelled if it is still pending. When the order
is already invoiced, the conflict must be resolved manually by the user. For
the third functionality of adding a quantity of product in the stock, the product
must be already registered in the system because the system does not consider
entries of unreferenced products. So for each product entry, the supplier must
specify the product provided and its quantity.

Step 1 — Sketch an outline of the application’s architecture

According to Step 1 of the design methodology presented in Sect. we
modeled the initial SCA architecture of the system based (see Fig. on the
main service of invoicing orders, and the additional services for order cancella-
tion and supply new products quantity. Essentially, we consider the following
application scenarios.

Order management (order entry/cancellation) For an order entry scenario, the
user requirements specify that an order is made by sending (the service
operation sendOrder (ref, gty, customerID)) a reference to the
desired product, a quantity, and a customer identifier to the system. So
the methodology leads us to define a service-oriented component namely
OrderManagement, which takes into account this entry and is in charge
of saving internal orders. For an order cancellation, we assume that a customer
must identify the order he wants to cancel and invokes the service operation
cancelOrder (orderID, customerID) also offered by the component
OrderManagement. This last checks that the customer can cancel the order
(a customer can cancel only one of his or her orders, not the order of another
customer) and if it is the case, cancels the order.

26

1.5. lllustrative case studies and lessons learned

OrderSystem

SendOrder
Service

CancelOrder
Service

ProductEntry
Service

Figure 1.13: SCA assembly of the Order System

Stock Management We assume that all products are already referenced in
the system. So, when a supplier sends a new quantity of product to
the StockManagement component (by invoking the service operation
productEntry (productID, gty)),the product quantity is updated.

Invoicing Management (order invoicing) The OrderManagement component
only registers in the database that there are new orders to invoice (i.e., or-
ders initially pending), while the component InvoicingManagement isin
charge of effectively invoicing orders. This last component does not expone
any puplic service. It executes the order invoicing functionality in background.
Essentially, it selects a set of orders which are invoicable, i.e. they are pend-
ing and refer to a product in the stock in enough quantity, it simultaneously
changes the state of each order in this set from pending to invoiced, and up-
dates the stock by subtracting the total product quantity in orders to invoice.
The system keeps to invoice orders as long as there are orders which can be
invoiced. The system guarantees that the state of an order is always defined
and the stock quantity is always greater or equal to zero.

Steps 2 and 3 — Refine the application’s architecture and finalize the interfaces

The second step of the methodology suggests to refine the architecture by in-
troducing new components and using design patterns.

First, we decided to organize the overall system architecture according to
the three-layer architectural patter by introducing the components GUI,
Application, and Data. The component Data represents the data layer
of a classical three-layer-architecture so it hides details of the database and

SThe templates definition and SCA assembly of such patterns are available online at .

27

Chapter 1. SCA-PatternBox

provides data access to the application layer represented by the component
Application. The component Application contains the application
logic. It uses the services QueryService and PersistenceService
defined by the component Data in order to send queries or changes to the
database, and provides the interface StoreService to deliver results of
database queries to the component GUI. This last acts like an interface for
the user and the Application component.

We identify the OrderSystem composite component introduced in the
previous step as the component Application. So according to the
three-layer architectural pattern, we have to refine the OrderSystem com-
ponent to allow the interaction with two other external components: the
OrdersDBComponent (the Data component) and the GUIComponent
(the GUI). These last are left in abstract. The result of such refinement is
shown in Fig.

According to the user requirements, the InvoicingManagment compo-
nent can adopt different selection strategies of orders to invoice: single-order,
all-or-none, max-orders, and default. Single-order strategy means that per step
at most one order is invoiced, with an unspecified schedule (thus also not tak-
ing into account any arrival time of orders). In case all orders for one product
are simultaneously invoiced or none if the stock cannot satisfy the request, a
all-or-none strategy can be expressed. To further maximize a product quantity
invoiced at the time, a new strategy (strategy max-orders) consists in choosing
a maximal invoicable subset of simultaneously invoiced pending orders for the
same product. If the user requests a selection strategy which is not driven by a
first choice of a product, another possible strategy consists in choosing a set of
pending orders, with enough referenced products in the stock, to be simultane-
ously invoiced. This last strategy matches the intended behavior of the system
better than the previous ones, so it is the default strategy. For supporting one
of this mode of operation, we added to the InvocingManagement compo-
nent the property OrderPolicy (see Fig. whose value range in the set
{single-order, all-or-none, max-orders, or default}. By default, this property is
initialized to the value default.

As further refinement, we applied the router patterrﬁ to enable dif-
ferent invoicing strategies as implemented by different business com-
ponents: SingleOrderBComponent, AllOrNoneBComponent,
MaxOrdersBComponent, and DefaultBComponent (see Fig. [I.15).
The router component, i.e. the InvoicingManagment component, is
responsible for sending the pending orders to a certain business component
for invoicing them according to a specific strategy (the routing criteria) as
reflected by the current value of the property OrderPolicy.

The third step of the methodology is to finalize the interfaces and properties

5The templates definition and SCA assembly of such patterns are available online at [5]

28

1.5. lllustrative case studies and lessons learned

SendOrder
Service

CancelOrde
Service

ProductEntry

Figure 1.14: SCA Order system refined (Step 2 — GUIApplicationData design pattern)

SendOrder
Service

Figure 1.15: SCA Order system refined (Step 2 — Router design pattern)

29

NN R W~

Chapter 1. SCA-PatternBox

Listing 1.8: ASM module of the ITnvoiceOrdersService interface

module InvoiceOrdersService

import STDL/StandardLibrary

import Order //Interface of the Order data type

signature:

// the domain defines the type of the provider component’s agent
domain InvoiceOrdersService subsetof Agent

out invoiceOrders: Prod(Agent, Powerset(Order)) —> Powerset(Order)

of each component in the SCA assembly. So we added the service operations
to the interfaces and properties types.

Steps 4/ and 5 — Map design to formal specification and formal validation

Being a design from scratch, before implementing components in Java we pre-
ferred specifying the behavior of the business components for invoicing orders
formally using SCA-ASM. The complete SCA-ASM implementation of such
components is also available at [5].

The default invoice strategy (the InvoiceOrdersService service) is
provided by the business component DefaultBComponent. The ASM def-
inition for the interface InvoiceOrdersService is reported in Code
It is an ASM module containing only declarations of a business agent type (the
subdomain InvoiceOrdersService of the predefined ASM Agent do-
main) and of a business function used as temporary location to store service
computation results (i.e., the orders to invoice) to return back to the service
caller.

The behavior of the DefaultBComponent is formalized in SCA-ASM
as reported in Code The service rule invoiceOrders uses a predi-
cate invoicable that is true on a set of pending orders with enough quan-
tity of requested products in the stack, and a function refProducts which
yields the set of all products referenced in a set of orders. Note that the non-
deterministic selection of the orders to invoice could be performed by a input
function which would formalize the user selection of a set of orders or the
results of a particular scheduling.

A single-order strategy is realized by the service invoiceSingleOrder
as provided by the SingleOrderBComponent. This service’s behavior is
formalized in SCA-ASM as reported in Code Per step at most one order
is invoiced, with an unspecified schedule (by the choose rule contructor).

The InvoiceAllOrNone service of the A110rNoneBComponent for
the all-or-none strategy can be specified in SCA-ASM as reported in code
The service rule makes use of a function pendingOrders yield-
ing the set of pending orders for a certain product, and of a (static) function
totalQuantity returning the total quantity of a set of orders.

Finally, the service InvoiceMaxOrders can be formalized in SCA-

30

N=H-BEN N N R e S

SO I N BN~

—

O 0NN B W —

1.5. lllustrative case studies and lessons learned

Listing 1.9: The behavior of the DefaultBComponent

asm DefaultBComponent

import STDL/StandardLibrary

import STDL/CommonBehavior

import InvoiceOrdersService

signature:

//@Backref

shared client: Agent —> Agent

// orders to invoice

controlled orders: Agent —> Powerset(Order)
definitions:

rule r_DeleteStock($p in Product ,$q in Natural) = stockQuantity($p):= stockQuantity($p) — $q

//@Service Choose subset of orders

rule r_invoiceOrders($a in Agent, $orders in Powerset(Order)) =

choose $orderSet in Powerset($orders) with invoicable($orderSet) do

par

forall $order in $orderSet with true do orderState($order) := INVOICED

forall $product in referencedProducts($orderSet) with true do
r_DeleteStock[$product, totalQuantity($orderSet,$product)]
invoiceOrders(self,orders(self)) := $orderSet //setting of the out business function
endpar

rule r_DefaultBComponent =

if nextRequest(self)="r_invoiceOrders(Agent,.Powerset(Order))” then

seq

r-wreceive[client(self), r_invoiceOrders(Agent,_Powerset(Order))”,orders(self)]

if (isDef(orders(self))) then r_invoiceOrders[self,orders(self)] endif
r_wreply[client(self),’r_invoiceOrders(Agent,.Powerset(Order))”,invoiceOrders(self,orders(self))]
endseq

endif

rule r_init($a in InvoiceOrdersService) = status($a):=READY

Listing 1.10: The behavior of the invoiceSingleOrder service

//@Service Invoice an order at a time.

rule r_invoiceSingleOrder($a in Agent, $orders in Powerset(Order)) =

choose $order in orders with orderState($order) = PENDING do
if(orderQuantity($order) <= stockQuantity(referencedProduct($order))) then

par

orderState($order) := INVOICED
r_DeleteStock[referencedProduct($order),orderQuantity($order)]
invoiceSingleOrder(self,orders(self)) := $order //setting of the out business function
endpar

endif

Listing 1.11: The behavior of the InvoiceAllOrNone service

//@Service All orders for one product are simultaneously invoiced or none.
rule r_invoiceAllOrNone($a in Agent, $product in Product) =

let ($pending = pendingOrders($product)) in

let ($total = totalQuantity($pending)) in

seq

if $total > 0 and $total <= stockQuantity($product) then

par

forall $order in $pending do orderState($order) := INVOICED
r_DeleteStock[$product, $total]

endpar

endif

invoiceAllOrNone(self,product(self)) := $pending //setting of the out business function
endseq

endlet

endlet

31

—_ =

S

—_ =

SOOI B W~

— OO0 I N RN~

Chapter 1. SCA-PatternBox

Listing 1.12: The behavior of the InvoiceMaxOrders service

//@Service Invoice maximum orders for one product.

rule r_InvoiceMaxOrders($a in Agent, $product in Product) =

let ($pending = pendingOrders($product)) in

let ($invoicablePending = {$o in $pending | totalQuantity($o) <= stockQuantity($product) : $o0}) in
choose $orderSet in maxQuantitySubsets($invoicablePending) do

par

forall $order in $orderSet do orderState($order) := INVOICED
r_DeleteStock[$product, totalQuantity($orderSet)]

invoiceMaxOrders(self,product(self)) := $orderSet /setting of the out business function
endpar

endlet

endlet

scenario DefaultinvoicingManagement
load main.asm

//for the startup of the client and server agents

set status(c) := READY;

set fRequestResponse(c) = s;

set orders(c):= ...;

set ...

exec r-wsendreceive[fRequestResponse(c), r-invoiceOrders(Agent,Powerset(Order))”,orders(c),result(c)];
step

check isDef(invoiceOrders(fRequestResponse(c),orders(c))) and isDef(result(c));

Listing 1.13: Validation scenario in Avalla for the InvoicingManagementComponent
— default strategy

ASM as shown in code For this rule we need to define a static function
maxQuantitySubsets which, given a set of set of orders, returns the set
of all the sets having a maximum quantity.

The Order system case study was essentially a requirements formalization
task and we have shown how the SCA-ASM method allowed us to capture
informal functional requirements of systems services by constructing a con-
sistent and unambiguous, simple and concise, abstract and complete mod-
els of service-oriented components, including behavioral aspects of services.
These models can be understood and checked (for correctness and complete-
ness) by both domain experts and system architects/designers. For example,
Code reports a simulation scenario in Avalla (instantiated from the one
reported in Code for checking the orders invoicing. It checks the interac-
tions among the OrderDeliveryComponent (the client c) and the default
business component (the server agent s) in the pattern request-response from
the client side. Appropriate assertions control that the result message (the set
of orders to invoice as chosen by the default strategy) is sent.

Through the requirements capture we have introduced several assumptions
to fill missing information. We introduced some assumptions directly in the
specification by means of invariants and used the Asmet aS simulator to check
them during simulation. For example, the assumption that the quantity in every
order must be greater than 0 is formalized as:

32

N —

—_

—_

1.5. lllustrative case studies and lessons learned

invariant over orderQuantity:
forall $o in Order with orderQuantity ($0) > 0

We have also stated the following desired properties which express state invari-
ants and correctness conditions. The first one states that the stock quantity is
always greater than 0.

invariant over stockQuantity:

2 | forall $p in Product with stockQuantity ($p)>=0

The second property is that the state of every order is either pending or in-
voiced, but never undefined.

invariant over orderState:

2 | forall $o in Order with orderState($o0) != undef

For other more complex properties, which are not state invariants but they
refer to execution paths, the model checker can be used, although assumptions
about the finiteness of the domains are necessary and uninterpreted domains are
not allowed. For example, one may want to express that an order o is eventually
invoiced if it refers to a product available in the stock in enough quantity. In
CTL, this can be expressed as:

AF(AG(orderState (o) = INVOICED or
orderQuantity (o) > stockQuantity (referencedProduct(o)))

Steps 5 and 6 — Mapping design to implementation and overall design validation

In a further iteration of the methodology, we implemented in Java (Step
4) the components OrderManagement, InvoicingManagement, and
StockManagement as mock components, and then execute and validate
the overall SCA assembly of the application within the SCA runtime platform
(Step 6). We did not effectively implemented all the system in Java since, being
an example of requirements elicitation, our main goal was to develop a ground
model showing how the SCA-ASM formal method allows one to capture in-
formal behavioral requirements of components’ services. So, for validation we
used orders collections and customers identifiers with fixed values to avoid at
this design phase the implementation of a real database component.

1.5.2 The Stock Trading System

The goal of such a case study is to embody non-functional requirements
(NFRs) using architectural tactics. We chose such a case study as major eval-
uation of the SCA-PatternBox language and tool and as a comparative bench-
mark because our work is on the spirit of the approach in [67]] for design pattern
specification and application (see related work in Sect. [I.6.1), but instead of
extending UML diagrams like the approach in [67] does, we preferred just to

33

Chapter 1. SCA-PatternBox

StockTradingSystem
StockExchange

OrderDelivery. Service

Service

OrderWeb
Service

StockQuote
Service

Figure 1.16: SCA assembly of the Stock Trading System

specify what is really needed to express a design pattern for facilitating pattern
instantiation and code generation.

Our case study was adopted in the adaptation exploration process presented
in [60]. It consists of an optimization process with respect to different archi-
tectural configurations of the system for multiple adaptation scenarios (e.g., a
user claims a new level of reliability and response time, or the monitor raises
the violation of the minimum level of required availability).

Figure shows the initial SCA assembly of the STS obtained by
carrying out Step 1 of the design methodology presented in Sect. [1.4.2
Briefly, an STS user, through the OrderWebComponent interacting with the
OrderDeliveryComponent, can check the current price of stocks, plac-
ing buy or sell orders and reviewing traded stock volume. Moreover, he/she can
know stock quote information through the StockQuoteComponent. STS
interacts also with an external Stock Exchange system.

By executing steps 2 and 3 of the methodology, architectural tactics are
selected, composed and instantiated based on a given set of NFRs to refine
the initial architecture of the application into one that meets the desired NFRs.
We here show, in particular, how availability and performance tactics can be
used to embody NFRs into the SCA architecture of the STS application. Let
us assume the following NFRs (as taken from [67]):

—NFR1. The STS should be available during the trading time (7:30 AM — 6:00
PM) from Monday through Friday. If there is no response from the system for
30 s, the STS should notify the administrator.

— NFR2. The system should be able to process 300 transactions per second,
400,000 transactions per day. A client may place multiple orders of different
kinds (e.g., stocks, options, futures), and the orders should be sent to the system
within 1 s in the order they were placed.

We support NFR1 by applying the Fault Detection tactics Ping/E-

34

1.5. lllustrative case studies and lessons learned

cho and Heartbeat through a monitoring component playing the role of
PingHeartbeatReceiver. NFR2 is supported by combining the tactics
FIFO and Introduce Concurrency. The FIFO tactic allows clients to place
each type of orders (e.g., stocks, options, futures) to a dedicated queue for
immediate processing. The Introduce Concurrency tactic allows the concur-
rent dispatching of the same kind of orders thus reducing the blocking time
of transactions on I/O. Figure [1.17] shows the new SCA assembly obtained
by composing these tactics: the assembly is extended to add the new compo-
nent Monitoring (for the Fault Detection tactics) and to refine the existing
components OrderWebComponent and OrderDeliveryComponent.
These last two components are to be intended as subsystems, indeed they are
composite components with a hierarchical design not further reported here. In
particular, the OrderDeliveryComponent is refined for adding a queue
sub-component for the FIFO tactic, a sub-component for the functionality of
a PingHeartbeatReceiver role and for the concurrent consuming of
different kinds of orders placed into the queue sub-component. Similarly,
the OrderWebComponent is refined by adding a sub-component for con-
currently producing orders to place into the queue of OrderDelivery-—
Component. Of course, this refinement implies a change of the components
shape (i.e., in the required/provided interfaces) and of their behavior.

OrderWeb

Service)

StockQuote

Service)

7777777

Figure 1.17: SCA assembly of the STS after applying tactics for NFRI and NFR2

Some components were implemented in SCA-ASM (Step 47). As an ex-
ample, Code [1.14] shows a fragment of an SCA-ASM specification of the
OrderDeliveryComponent. The main service of this component (the
rule r_place annotated with @service) is to place buy or sell orders when

35

Nl e R o S

O 01NN B W -

Chapter 1. SCA-PatternBox

Listing 1.14: The behavior of the OrderDeliveryComponent

module OrderDeliveryComponent

@Service
rule r_place($client in Agent,$o in Order)= ... //to place buy or sell orders

rule r_OrderDeliveryComponent=

seq

r.wreceive(client(self),”place”,order(self))
r_place(client(self),order(self))
r-wreply(client(self),”place”,place(self,order(self)))
endseq

Listing 1.15: ASM modules of the OrderDeliveryComponent interfaces

module OrderDeliveryService

import ... /Other module imports

signature:

// the domain defines the type of the provider component’s agent
domain OrderDelivery subsetof Agent

// business function value

out place: Prod(Agent,Order) —> Order

//@Remotable

module StockExchangeService

import ... /Other module imports
signature:

domain StockExchange subsetof Agent
out sendOrder: Prod(Agent,Order) — > Rule

requested (see the blocking receive action and the reply action preceding and
following, respectively, the service invocation within the component’s main
rule r OrderDeliveryComponent). The ASM definition for the provided
and required interfaces of the OrderDeliveryComponent are reported in
Code[I.15] They are ASM modules containing only declarations of business
agent types (the subdomains OrderDelivery and StockExchange of the
predefined ASM Agent domain) and of business functions (parameterized
ASM out functions) used as temporary locations to store service computation
results.

Code reports a simplified fragment of a simulation scenario (instan-
tiated from the one reported in Code for checking the order placement
executed by the OrderDeliveryComponent.

The SCA-ASM specification of some components behavior were further
refined to reflect at behavioral level the Introduce Concurrency tactic. The
behavior, for example, of the OrderDeliveryComponent was further re-
fined in ASM as shown in the fragment reported in Code the consuming
and sending of different kind of orders (stock, option, or future) are executed
concurrently by the par rule. The availability of such pattern specified in ab-
stract terms by ASM allowed us to formally validate early in the design the
benefits provided by such a tactic (Steps 5 and 6).

36

— OO0 XIN N B WIN =

——

O 0NN R WN—

1.5. lllustrative case studies and lessons learned

scenario OrderPlacement
load main.asm

//for the startup of the client and server agents

set status(c) := READY;

set fRequestResponse(c) :=s;

set order(c):= ...;

set ...

exec r-wsendreceive[fRequestResponse(c), ’r-place(Agent,Order)”,order(c),result(c)];
step

check isDef(place(fRequestResponse(c),order(c))) and isDef(result(c));

Listing 1.16: Validation scenario in Avalla for OrderDeliveryComponent

Listing 1.17: The refined behavior of the OrderDeliveryComponent

module OrderDeliveryComponent

rule r_OrderDeliveryComponent=

... seq

par //Queue consuming
r.wsendreceive[queue(self),"dequeue”,("Stock”,stockorder(self))]
r.wsendreceive[queue(self),"dequeue”,("Option”,optionorder(self))]
r.wsendreceive[queue(self),"dequeue”,("Future” futureorder(self))]
endpar

par //Order sending to the Stock Exchange system
r.wsend(stockExchange(self),”sendOrder”,(self,stockorder(self)))
r.wsend(stockExchange(self),”sendOrder”,(self,optionorder(self)))
r.wsend(stockExchange(self),”sendOrder”,(self,futureorder(self)))
endpar

endseq ...

1.5.3 Lessons Learned

We found the modeling approach to the definition of design patterns and their
instantiation in SCAPatternBox particularly useful. First, exploiting the exist-
ing PatternBox tool for Java allowed us to develop a large and sophisticated
tool for SCA in a very short period of time. The ability to work with design
patterns in conjunction with SCA and supporting implementation types was
the major benefit. We found it very sympathetic to the implementation of the
skeleton code of the application that is obtained automatically from an SCA
assembly model and through pattern instantiation.

SCA-ASM allows modeling both structure and behavior of service com-
ponents in a unique framework integrating architectural and behavioral views.
Moreover, SCA-ASM gives us an avenue for the formal validation of the pat-
tern and of the application model to which the pattern is applied. ASM rig-
orousness, expressiveness, and executability allowed us to reason and validate
some services interaction patterns in a formal way but without mathematical
overkill. Formal validation can be carried out on SCA-ASM specification frag-
ments resulting from the instantiation from scratch of single design patterns
or from the composition of two or more patterns, or on an entire SCA-ASM
specification resulting from the application of one or more design patterns on

37

Chapter 1. SCA-PatternBox

an existing SCA assembly (partially) implemented in SCA-ASM.

During the development of the case studies, for example, we implemented
some components in SCA-ASM in order to have an ASM (abstract) formal
specification of their behavior. We then validated the corresponding SCA-ASM
specification fragments before and after the application of some formally-
validated design patterns, (such as the application of the three-layer and Router
patterns to the SCA assembly of the Order system, and of the the Ping-echo and
Heartbeat tactics to the STS SCA assembly). We experienced that ASM is a
good formalism for prototyping and simulation purposes. We have carried out
model validation through the SCA-ASM simulation environment. Model vali-
dation is a model analysis activity to be executed from the earlier stages of the
model development before other more demanding but more sophisticated and
complex analysis techniques such as formal verification by model checking.
Formal high-level ASM specifications of SCA components can be assembled
together with other SCA components implemented in a different technology
(e.g., in Java) and the resulting heterogeneous SCA assembly can be managed
and executed within the SCA Tuscany runtime platform as. So SCA compo-
nents can be early validated at high level of formalization, without caring about
implementation details.

During the formalization task of the business components in the Order sys-
tem case study, we discovered how requirements are often incomplete and as-
sumptions must be stated in order to complete the specification. To this pur-
pose we noted how the SCA architecture (including design patterns) and the
SCA-ASM behavioral specification of a service are easy to adapt when dif-
ferent interpretations of same requirements are possible (for example, to sup-
port different selection strategies of orders to invoice), and how the rigor of
the ASM ground model allows formal validation and verification of properties.
Model validation, in general, allowed us to reproduce component configuration
scenarios with different pattern instantiations and be confident that the model
behaved as expected. We found this early validation is a great means for evalu-
ating architectural choices and alternative designs with limited implementation
effort, but it requires to be skilled in the ASM formal method. On this last
point, it is widely recognized that ASMs is a lightweight formal method since
ASMs are a precise abstract form of pseudo-code, generalizing (the familiar)
Finite State Machines to operate over arbitrary data structures [29]].

1.6 Evaluation of software design pattern languages

Before starting our work, we evaluated the current state of the art. We, in par-
ticular, analyzed existing design pattern languages and their supporting tools.
This section reports the outcome of such evaluation. In Subsection[I.6.1]we de-
scribe the main approaches existing in the literature, while in Subsection[1.6.2]

38

1.6. Evaluation of software design pattern languages

we briefly compare them (including our proposal, i.e., the SCA-PatternBox
pattern language) with respect to some specific criteria.

1.6.1 Related work

In the literature, there are several notations and tools supporting the process
of pattern-based system design and development. Some of these languages
are based on formal mathematical notations (such as [42,50,61,/64,/69]) or
ontology (such as [37]). Other languages are based on the OMG standard UML
notation [16,28,40,/62]. Finally, some other languages are based on XML or
general purpose programming languages [[14,4165]]. Below, we describe some
of these approaches.

The Language for Pattern Uniform Specification (LePUS) [42] is based on
mathematics and formal logic. It describes only the structure of design patterns
and provides a weak basis for integrated tool support. The language eL.eLePUS
[61] tries rectify the shortcomings of LePUS.

In [64] another formal language is proposed for the behavioral specification
of the GOF design patterns. It is based on the language of temporal ordering
specification (LOTOS). This LOTOS adaptation to patterns did not yield sim-
ple and clear specifications. Distributed Co-operation (DisCo) [50] is another
specification language for design patterns based on an action system to specify
the behavioral aspects of a pattern.

The Balanced Pattern Specification Language (BPSL) [69] formally speci-
fies the structural as well as behavioral aspects of patterns. It was derived from
LePUS and DisCo, and therefore shares many of the advantages and disadvan-
tages of the two languages.

Conceptual Ontology Design Pattern (CODeP) [37] is based on the Web
Ontology Language (OWL) and Resource Description Framework (RDF) for
engineering ontology content over the Semantic Web.

Many semi-formal UML-based notations exist. Among the most notable
ones are the following. Archilnst [68] is a tool developed as a plug-in of the
IBM Rational Software Architect (RSA) for UML to support quality-driven
development of software architectures. It allows to configure architectural tac-
tics based on quality requirements and compose the configured tactics to pro-
duce an initial architecture of the system under development. The tool uses the
Role-Based Metamodeling Language (RBML), a UML-based pattern specifi-
cation notation presented in a previous work [62], to specify tactics. This UML
extension defines a design pattern in terms of roles and role dependencies. The
concept of ClassifierRole that RBML uses has been, however, superseded in
UML 2.x. In [27,/67], a prototype tool, called RBML Conformance Checker,
has been also presented for verifying the conformance of UML models to de-
sign patterns. This work demonstrates how instantiated elements conform to

39

Chapter 1. SCA-PatternBox

their corresponding metamodel elements. PerOpteryx [16] is an Eclipse-based
optimization framework to improve component-based software architectures
for performance, reliability, and cost through model-based quality prediction
techniques and architectural tactics. It is based on the Palladio Component
Model (PCM) and a UML-like modeling notation that uses annotated UML
models as software design models. In [28] a prototype tool named DPTool is
presented. It is based on the DPML (Design Pattern Modeling Language) no-
tation for the specification of design patterns and their instantiation into UML
design models. However, the proposed modeling constructs are more complex
than other similar UML-based modeling notations. In [40] is presented the
problem to prevent defect injection during design-patterns maintenance. A de-
sign method called Pattern Instance Changes with UML Profiles (PICUP) has
been developed to this purpose as an improved design method for a corrective
UML pattern-based design maintenance and assessment after variations.

These are design pattern languages that are based on general purpose pro-
gramming languages. For example, a Prolog-like language called SPINE [14]
allows patterns to be defined in terms of constraints on their implementation
in Java. It makes addition of patterns and variants easier for those who have
programmed in PROLOG before, rather than creating an entirely new syntax.
These patterns can then be processed using a proof engine called Hedgehog.
Hedgehog reads the SPINE definitions, along with Java source code, and at-
tempts to automatically prove whether or not the class correctly realizes the
design pattern. In [41], Aspect] (aspect-oriented extension to the Java pro-
gramming language) is used to provide some improvements to the GoF OO
design patterns. These improvements allow several advantages like better code
locality, reusability, and composability, but are at code level. No abstract mod-
eling notation for pattern specification is supported.

Finally, the Design Pattern Definition Language (DPDL) [65] allows to
specify both the structural and behavioral aspects of design patterns. It is a text-
based pattern description language purely based on XML, but it is endowed
also with a graphical representation through an automated transformation of
DPDL descriptions into UML class and sequence diagrams.

1.6.2 A comparison of design pattern languages

To compare existing design pattern languages, we revised and extended the
comparison framework originally presented in [65]. The criteria adopted for
comparing the languages reflect the main and generally agreed objectives in
proposing a language for defining, sharing and applying design patterns into
concrete system designs. Essentially, a design pattern language should be:

e Easy to understand and use: The language should be easily understand-
able by the designers/developers and thus easy to use.

40

1.6. Evaluation of software design pattern languages

e Unambiguous: The language should have a clear semantics enabling its
sharing among design/development teams without any ambiguity.

e Extensible: Because technology is progressing, the language should be
capable of being extended.

e Based on existing technology/languages: The language should be based
on existing and common technology/languages so that it gains wider and
faster acceptance.

e Able to support also a graphical notation: A visual representation of a de-
sign pattern and/or a pattern instance provides an intuitive and lightweight
overview for the user.

Table below summarizes the results of such a comparison by report-
ing the main features of the design pattern languages described in Subsection
1.6.1and of our proposed language. The main difference with respect to our
proposal, is that all the existing approaches that we considered are specific to
object-oriented system design. They do not address design patterns related to
SOA. Moreover, most of these approaches are not implementation-oriented,
indeed, they provide the needed formality in the pattern specification, for ex-
ample at UML level, but often at the expense of usability and programmaticity
of the approach because they do not aim at generating the corresponding im-
plementation code. In particular, languages that purely use a mathematical for-
malism for modeling design patterns allows to specify the behavioral aspects
of a design pattern in a rigorous and unambiguous way, but often they are con-
sidered not easy to use because they require strong mathematical background
to the user and lack of good tool support. In conclusion, to the best of our
knowledge, there is a lack of tools supporting an “implementation-oriented”
definition and use of design patterns, especially in the SOA domain. So the ex-
perience gained with the development of SCA-PatternBox makes us optimistic.

41

Chapter 1. SCA-PatternBox

QIEMIJOS PAIULIO-IDTAIAS JO

(110330 y31Y) SISV JO AFpajmouy| —

(yoeoxdde o)

$9, UOTIEPI[BA [BULIO; reuondo - « 3 - . . Sens
X DepIeA | } 5 (110133 MO]) YOS “TINX JO 98pa[mouy| ON SO SO SX | INSV VIS “TIANX aSenJue|
pue Surdfi0101g A :9[qe[eds xoqurianed-vOS
0, Ioureiuew USISOP UINL, $9, (nipow) paunbas) $9, s9, $9, s
N ey Isop uroneq A oSpamouy TN X 22N A X Paseq TINN dNdId
0, 00) JO UONIIPa, $9, (ntpau) painbar $9, $9, $9, S0, A58
N $0Q jo uohoipald SOA S3papmoty TN SoX SOA SOA SoX Paseq TINN WDd
Juowdojarap aremijos . .
ON ur uonejuawardur _Ncc:anOu - o%ﬂoﬂwhu::g._ SOA SOX SOA (X mEMuE TNX 1ada
pue uoneniur Aseq SoA St OSPAMOWITINX A
o suroned uSisop jo joadse o (ySry) smeredde o © o o
N [eIo1Aeyaq Sumde)) N [ew1o} pI3iI uo pasegq N oA N N VL Isdd
o suroned uSisop Jo 10adse o (ySry) smeredde o o o
N [eI01ARYDq AU SUIKJLIOA N [ewioy pISiI uo paseg N N VN N VIL SOLOT
oq s (prey)
A uo paseq sjoejnIe (£3o10)uQ
ON aSpajmouy Jo uonear) paimbai TMO N °N A N 49M) TMO d°dod
pue ¥ Jo aSpajmouy]
uoneordde ur
H (pIey) Surpue)siopun
ON uoneyuawaldwr uroned ON - ON SOk V/IN ON Sojoid ANIdS
Sojo1g panmbay
USISP JO UONEBIYLIOA :
suroped udisop Jo 1oadse (ySry) smeredde (V71L) uonoe
°N [eroraeyaq Sutmde) °N [ew1o] pI3iI uo pasegq SR o VN N Jo o130] [erodway, oosid
o TINN ut urned uisop (wnipawr) parmbar w© o © o poseq TN
N Jo uoddns Suippy ™n S8pajmouy TN A N A N TNed
TINN Ut (wnipaur) parmbar (Aqi 2weredos)
°N suroped uSisap Sunear) TANO oSparmoy TN SOA SR Sok oN poseq TINN TNdd
WISI[RULIOJ [BONBWAYIRW (yS1y) punordyoeq 5130,
ON ySnoxy Surugisap ON [eonRWAYIRW ON SO VIN ON oot mEu, - ! SNdP TR
uaned usisoq Suons paxmbay [eonetayeN
siseq o150] (y31y) punoisyoeq 5
oN 10p10 3811 uo uraned oN [eonRWAYIRW ON Sox VIN oN o wo__w of SndeT
uSISOp JO UONBOYLIOA Suons panmbay [ednEWAIRA
pajuaLIo 1oddns | eouapuadopur sAAI
2o1A108 18y, | [eswydern Ao Surwea] | woddns TN aerdway wopelg | ur uoneiSany siseq

(159l wotf papuajxa) uosruvduiod sainpaf sadvnduvj uiayvd usisaq ¢ qeL

42

1.7. Evaluation of SCA-PatternBox

1.7 Evaluation of SCA-PatternBox

We presented a methodology and a supporting framework SCA-PatternBox for
the design and prototyping of service-oriented applications with design pat-
terns. The framework allows the definition and the semi-automated application
of design patterns into the design of a service-oriented software architecture.
We evaluated the usability and usefulness of the framework on the Order sys-
tem case study and on a quality-driven adaptation scenario of the Stock Trad-
ing System [60] where patterns and tactics required would have been difficult
to apply and combine manually without the availability of a tool like SCA-
PatternBox. We also provided a comparison of the SCA-PatternBox’s language
with existing design pattern languages.

There are a number of issues that we want to address in the future:

— Automation support for design pattern composition to create complex pat-
tern hierarchies through composition strategies.

— Formal strategies and techniques to check the structural and behavioral
conformance of the component assemblies to the applied design patterns.

— Transformation support for compatibility with UML component dia-
grams, since UML is the standard language for system modeling.

— Definition of more sophisticated SOA patterns.

— Support for more SCA component implementation types.

Moreover, a software engineering area that is gaining importance for the
maintenance and evolution of software systems is reverse engineering [30]. A
real challenge in this context is to obtain representations of a software system
at a higher level of abstraction and to identify the fundamental components,
its constituent structures and design patterns. As future work, we want to ex-
tend the proposed framework with a methodology for the detection of design
patterns and the reconstruction of service architecture models from the source
code.

Finally, since Cloud service providers are expanding their offerings to in-
clude cloud-native software services (other than foundational hardware and
platforms to application components), we would also like to extend our frame-
work to support the new standard TOSCA [6] for modeling cloud-based appli-
cations and design patterns related to the Cloud domain.

43

CHAPTER

Security Enhanced Docker

2.1 Introduction

Docker is a tool to perform container virtualization using Linux containers
where a container is a virtual machine used to perform a specific service.
Docker provides lightweight virtualization which permits to virtualize many
containers on the same host but provides less security than Hypervisor virtual-
ization. Hypervisor virtualization is a type of virtualization where each virtual
machine has a dedicated operating system (OS) separated by host operating
system using the Hypervisor. It provides a heavier but more secure virtualiza-
tion than Linux containers. Linux container virtualization provides less secure
than Hypervisor virtualization because the containers (virtual machine) are not
completely separated by the host operating system, in fact the containers do
not have a dedicated OS but use the host operating system in order to perform
their functionality.

Docker uses Linux container virtualization and leverages Linux kernel se-
curity features such as kernel namespaces to isolate users, processes, networks
and devices, and cgroups to limit resource consumption. In this chapter we
treats Docker used in Fedora Linux distribuction. It uses the SELinux Manda-
tory Access Control in order to protect the containers between them and the
host from the containers. SELinux uses two kinds of policy module: Type En-
forcement (TE) in order to protect the host from the containers and Multi Cate-

45

Chapter 2. Security Enhanced Docker

gory Security (MCS) in order to protect the containers between them. SELinux
assigns a security context (or label) to each element of the system (Subject or
Object). The security contexts are used by TE to define the rules inside the sys-
tem policy. Moreover, groups of categories can be assigned to system elements
providing a further level of security (MCS).

SELinux is used in Docker assigning a security context with the type equal
to svirt_lxzc_net_t for each process (Subject) inside the containers and a se-
curity context with the type equal to svirt_sandbox_file_t for each resource
(Object) inside the containers. Moreover, the categories in Docker are not used
with all containers. For example, the Data Volume Containers (containers only
used for storage) do not have the categories and are not protected by MCS.

This way of using SELinux permits to have more privileges than necessary,
with some attack risk from malicious containers. We present some Docker
security improvements which permit to improve the use of SELinux in Docker:
Docker Policy Module (DPM) and Category Minimization problem.

Docker Policy Module (DPM) adds the SELinux module to each Docker
image in order to assign a dedicated security context to each process and re-
source inside a specific container (running from the Docker image associated).
SELinux module also permits to define specific rules for the security context.

Category Minimization problem permits to assign the categories also to
Data Volume Containers and permits to minimize the categories used by the
system. These improvements ensure greater system security giving to the con-
tainers only the rules that are needed in order to perform their functionality.

This chapter is structured as follows: Section explains Discretionary
Access Control (DAC) and Mandatory Access Control (MAC), Section
presents the SELinux features, Section describes the Docker functional-
ity, Sections and explain our research developed in order to improve
Docker security (Docker Policy Module (DPM) and Category Minimization
problem). The last two Sections and [2.8| present Related work and Evalua-
tion of Docker security improvements.

2.2 Access Control mechanisms: DAC and MAC

In the system there are many resources and some of them may be critical.
Resources in a system have to be protected from unauthorized access. A user
(Subject) can access only some resources (Objects) in the system. In order
to do access control in the system, several types of Access Control mechanism
have been implemented. The most significant are Discretionary Access Control
(DAC) and Mandatory Access Control (MAC).

46

2.2. Access Control mechanisms: DAC and MAC

l Subject \

Owner

- rw- rw- r—steven steven paper.pdf

:> Access
YES Granted

Permission
Granted?

U NO
Access
Denied

Figure 2.1: Discretionary Access Control (DAC)

o1 02 03

s11r w WX

S2 w w

S3 rwx r

Figure 2.2: Access Matrix

$1 > {o1,1} > {02,rw} > {O3,rwx}
s2 » 01w} » (03w}
S3 > {O1,rwx} > {031}

Figure 2.3: Capabilities

47

Chapter 2. Security Enhanced Docker

o1 > st} > (S2mw)
02 s RS > (S3,wx}
03 > (S1rwx) > (S2w) > {s3.n)

Figure 2.4: Access Control List (ACL)

2.2.1 Discretionary Access Control (DAC)

In Discretionary Access Control, Subjects, Objects and Owners come into play.
A Subject can be the Owner of an Object and he is able to manage the permis-
sions on that Object.

In DAC the permissions to access an Object can be stored using: Access
Table, Access Control List (ACL) or Capabilities.

The Access Matrix is a matrix where the rows represent the Subjects, the
columns represents the Objects and each cell represents the actions that a Sub-
ject can do an Object. Figure[2.2] for example, shows a possible Access Matrix
of a system composed by three Subjects and three Objects. The cells represent
the actions that can be: read (r), write (w) and execute (x).

The actions (considering the Objects as files or directories) have the follow-
ing meaning:

e read: it allows to open the file in read mode and, in case of a directory, to
view the directory content.

e write: it allows to modify the file and, in case of a directory, to create or
remove files inside the directory.

e execute: it allows to execute a file (if it is executable) and, in case of a
directory, to access the directory content.

The Access Matrix could have many empty cells (when a Subject cannot
do any actions on an Object) and to solve this problem, it is possible to use
the other methods of permissions management, which are used to represent a
sparse matrix (Access Control List and Capabilities).

With Capabilities, each Subject is associated with a list. The list contains
the Objects on which the Subject can do actions (each element of the list con-

48

2.2. Access Control mechanisms: DAC and MAC

tains an Object with associated actions). Figure for example, shows a
possible Capabilities of a system with three Objects and three Subjects.

With Access Control Lists (ACL), each Object is associated with a list. The
list contains the Subjects that can do actions on that Object (each element of
the list contains a Subject with associated actions). Figure for example,
shows the possible ACL of a system with three Subjects and three Objects.

Figures and 2.4 show the permissions rapresentation, of the same
system, for the different methods. The Capabilities and ACLs permit to store
the permission information in more efficient way than Access Matrix. Figures
and show that Capabilities and ACL do not waste space and all list
elements are filled-

An example of Access Control List (ACL), in Unix system, is shown in the
black box of Figure[2.1] It shows the DAC permits and other information about
a file named paper.pdf. The first character indicates the file type. The character
d indicates a directory and the absence of d character indicates a file. The
following nine characters indicate the permissions separated into three groups.
The first triple indicates the permissions associated with the owner, the second
triple indicates the permissions associated with the owner’s group (each user
is associated with a group) and the last triple indicates the permits associated
with other users(all users that are not the object owner and all users outside the
owner group). Inside the triple, there are three types of action: read (r), write
(w) and execute (x); with the same meaning shown before.

The following two words indicate: the first one, the owner name (steven)
and the second one, the owner’s group name (steven). The last word indicates
the file name (paper.pdf).

In Discretionary Access Control, the Owner of the Object can give the per-
missions on that Object also to another Subject. The latter can give the re-
ceived permission on the Object to another Subject and so on. However, a
Subject S; which is not owner of an Object O; cannot give his permissions
on O to another Subjects changing the system permissions. S; may provide
his permissions on O; giving to anothers Subjects an application that uses his
permissions on O;. In this way, also other Subjects can get the permission on
O;. This behavior reduces the DAC security.

When a Subject or an Owner wants to do an action on an Object, he has
to be allowed by the Access Control System. The Access Control System
decides according to the system permissions whether to allow or not to allow
the Subject to access the Object. If the Subject can do that action on the Object,
the access is granted, otherwise the access is denied (see Figure[2.1)).

49

Chapter 2. Security Enhanced Docker

Permission
Granted?

Subject |:> Access E>
Control
¢ 3"
) Access
Policy Denied

Figure 2.5: Mandatory Access Control (MAC)

|:> Object
YES

Simple
Security
Property | - ~
Top Secret 1
J
- Secret o
8 _ V, 'E
= e R S
Confidential
+ | Unclassified
Star
Property

Figure 2.6: Bell La-Padula (BLP)

50

2.2. Access Control mechanisms: DAC and MAC

{NUC,EUR,US}

{NUC,EUR}

Figure 2.7: Bell La-Padula (BLP): Lattice Categories

2.2.2 Mandatory Access Control (MAC)

In Mandatory Access Control, Subject and Object come into play (in some
systems the distinction beetwen Subject and Object is dropped), the concept
of Owner is missing. A Subject cannot be the owner of an Object and cannot
change the permits of the Objects.

The permissions on the Objects can only be changed by the system admin-
istrator. The permissions that the Subjects have on the Objects are stored into
a file named Policy. Any row of the Policy file is named policy rule and it has,
for example, the following form: allow Subject Object {actions}.

The rule specifies that the Subject can do the set of actions (actions) on the
Object. The set of these policy rules forms the Policy file (the system policy).

When a Subject wants to do an action on an Object, he has to verify the
permission to the Access Control System. The Access Control System decides
according to the system policy (Policy file) whether to allow or not to allow the
Subject to access the Object. If the Subject can do that action on the Object,
the access is granted, otherwise the access is denied (see Figure[2.5)).

One of the most popular security models, based on MAC, is the Bell-La
Padula (BLP) model. It follows rules in order to protect data confidentiality
(avoid the information read by unauthorized Subject). It is based on state-
machines and each state has Objects and the current access information. Any
Object has a classification level (L(O)). The classification levels are, for exam-
ple, Top Secret, Secret, Confidential, Unclassified and they have a linear hierar-
chical structure as shown in Figure Moreover, any Subject has a maximal

51

Chapter 2. Security Enhanced Docker

security level (L,,(S)) and a current security level (L.(S)). The security levels
are equal to the classification levels, for the Objects.
According to BLP, a state is secure if it satisfies two properties (see Figure

2.6):
e Simple Security Property (no read up): S canread O iff L,,(S) >= L(O)

e Star Property (no write down): S can read O iff L.(S) >= L(O) and S
can write O iff L.(S) <= L(O)

In Bell La-Padula model the Subjects and Objects can also have some cat-
egories, in addition to the security level. Any Subject or Object can have a
security level and a category set as follows:{security level,{category set}}. In
this way, a Subject can read/write an Object whether:

e It is allowed by Simple security property and Star property (comparing
security level of Subject and Object)

e The category set of Subject includes the category set of the Object

For example, categories (NUC, EUR and US) are added to the system
in Figure A Subject with {TS,{NUC,EUR}} can read an Object with
{S,{EUR}}. Moreover the system structure becomes complex. The categories
create the complex lattice structure shown in Figure In Figure each
node can be seen as Subject or Object with the category set indicated. The
security level is not indicated because it is irrelevant for comparison of cate-
gories. However, a Subject can read/write an Object iff it is allowed by both
security level and category set.

The Bell La-Padula (BLP) model can be implemented by SELinux [49].

Another popular security model (in contrast with Bell La-Padula) is BIBA
[20]. It is based on data integrity.

2.2.3 MAC and DAC

The DAC is the most popular Access Control mechanism and MAC is more
secure than DAC but it is less flexible. For example, in MAC when two Subjects
have to exchange some Objects, they have to ask the system administrator (little
flexibility but significant security).

The DAC and MAC can coexist in the same system. For example, a sys-
tem that supports MAC can be extended with DAC. In this case, when a Sub-
Ject wants to access an Object, the Subject has to verify the permission to the
Mandatory Access Control system.

The MAC decides according to the system policy (Policy file) whether to
allow or not the Subject to access the Object. If the Subject can do that action on

52

2.3. SELinux

e N .
Access Permission Access
Subject E> Control E> Granted? E> Denied
_(MAC)) NO

@ YES

(Access Permlssu)n
Policy Control |:> Granted? Object
(DAC) YF.S

Object Access
permissions Denied
%k

Figure 2.8: MAC and DAC

the Object (according to MAC), the access request is given to DAC, otherwise
the access is denied.

The DAC decides according to the system permissions whether to allow
or not the Subject to access the Object. If the Subject can do that action on
the Object (according to DAC), the access is granted, otherwise the access is
denied (see Figure 2.8).

The use of DAC and MAC together improves the flexibility of the system.
The MAC is often too rigid but the DAC is often too insecure. In order to
balance these two aspects it is useful to have a system with both MAC and
DAC. In this way, the MAC control ensures a solid secure system and DAC
permits the correct flexibility where it is needed.

The Bell-La Padula model, for example, is very rigid and in order to im-
prove its flexibility, it can be extended with DAC. In this case an access matrix
1s used in order to describe the actions that the Subject can do on the Object.

2.3 SELinux

Security-Enhanced Linux [49] (SELinux) was designed by the Linux commu-
nity. It has been released by the United States National Security Agency (NSA)
on December 22, 2000 under the GNU GPL license. SELinux has been merged
in 2.6 series of the Linux kernel and it is used in several Linux distributions:
Red Hat, Fedora and CentOS. Moreover, it is used in Android operating system
since release 4.3.

SELinux is a Linux kernel module that provides Mandatory Access Control
(MAC) support.

It is based on three types of policy model: Type Enforcement (TE), Multi
Category Security (MCS), and Multi Level Security (MLS).

In SELinux, each process (Subject) and resource (Object) in the system is
labeled with a security context (also known as security label or label). The

53

Chapter 2. Security Enhanced Docker

security context (see Listing is composed by four parts: user indicates the
user, role indicates the role, type is used in Type Enforcement (TE) model in
order to define the policy rules and range is separated by two parts. The first
represents the security level range (used by MLS) and the second represents
the category set (used by MCS).

Listing 2.1: SELinux security context

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c255
user : role : type : range

2.3.1 Type Enforcement (TE)

The Type Enforcement (TE) policy model is based on the fype part of the secu-
rity context. The TE behavior is based on the policy rules stored in the policy
file.

The distinction between Subject and Object is dropped. In fact, each Subject
and Object 1s associated with a fype which can be indiscriminately used as
source or target inside a policy rule.

All system resources (Subject or Object) are associated with a class which
represents the kind of resource (i.e., file or process). Each class is associated
with a set of actions that are applicable on that resources class. The file class,
for example, is associated with read and write actions.

The policy file (used only by TE) is composed by policy rules. It permits to
declare the types (the type part of security context) that will be used inside the
policy file, using the following syntax: type type_name.

Moreover, thare are many types of policy rule that we can use inside the
policy file (We will present only those relevant to understand the next Sections).

The typebounds (see Linsting for its syntax) defines that some types
or domains (list of bounded_domain) will have equal or less permissions than
another type or domain (bounding_domain). In Listing the character *
indicates the presence of zero or more of those elements.

Listing 2.2: typebounds rule

typebounds bounding_domain bounded_domain bounded_domainx;

The type_transition (see Listing for its syntax) defines that a type
(source_type) has to be changed into the type (default_type), when it does an
action on another type (target_type) with class equal to class. The transaction
has also to be allowed by the policy (using the allow rule, explained below).

Listing 2.3: type_transition rule

type_transition source_type target_type:class default_type;

54

2.3. SELinux

The AV rules define what accesses are allowed for resources (Subject and
Object). There are four types of AV rule: allow permits a set of actions from
source to a target, neverallow does not permit the existence of the same allow,
dontaudit stops the audit of that denied message (inside the AVC log), and
auditallow reports (inside the AVC log) whether that event (access event) has
happened.

Each AV rule has the structure shown in Listing

rule : it represents a type of AV rule.

source : it represents the type of the source. (resource type that does a set of
actions on resource targer)

target : it represents the fype of the target. (resource type that receives the
actions)

class : it represents the class of the target.

actions : they represent a set of actions according to target class

Listing 2.4: AV rule

rule source target:class {actions};

In SELinux, an application or software can be asssociated with an SELinux
module in order to ensure the system security. The SELinux module defines
the requirements that are needed and the rules that have to be installed in the
system, in order to use the application or software. When a software or appli-
cation is downloaded, even the associated SELinux module is downloaded. In
this way, during the installation, both software or application and its SELinux
module are installed. An example of SELinux module is shown in Listing

Listing 2.5: SELinux module

module MySQL 1.0;

require{
type tempfs_t;
type mysqgld_t;
bi

allow mysqgld_t tempfs_t:file {open read write lock};

The SELinux module is composed by three parts. The module command
identifies the module name and version. The module name has to be unique
and the version is used during the version update.

55

Chapter 2. Security Enhanced Docker

The require block identifies which types, classes and roles have to exist in
the system before the module can be installed. If one or more of them are not
in the system, the module installation fails.

The last part contains the rules that have to be added to the system.

The SELinux module in Listing defines a module named MySQL at
version /.0. This module requires that in the system exist the types tempfs_t
and mysqld_t before the module can be installed.

Moreover, the AV rule allow mysqldt tempfs_t : file
{openreadwritelock}; has to be added into the system.

2.3.2 Multi Category Security (MCS)

The Multi Category Security (MCS) policy model is based on the range part of
the security context. It uses the part of categories (category set) in the range.
The range part of the security contex (for the MCS perspective) can be seen as
s0 : ¢0.c255, where s0 represents the security level (used by MLS) and c0.c¢255
represents the categories (used by MCS).

The categories in the security context can be specified in two ways: sepa-
rating categories using comma (i.e c1, c2). The categories c1 and c2 will be
assigned to the resource, and using a range (i.e. cl.c3). The categories from cl
to ¢3 will be assigned to the resource. In the last case, a dot notation is used in
order to separate the border categories.

The security level sett to sO (the lowest security level) is equivalent to not
considering the MLS. In this way, it is possible to analyze the categories be-
havior independently from the MLS.

The Multi Category Security MCS permits to have more instances of the
same type. In fact, the addition of categories to the resources (Sources and
Objects) changes the system behavior. Subjects with the same type but with
different categories might not have permission to access the same Objects.

SELinux has a set of 255 categories, from 0 to 254 (from c0 to ¢254). The
categories can be defined inside the system and then they can be assigned to
resources (Subjects and Objects). It is possible to define a label (i.e, NUC,
EUR, US) for a group of categories and assign it to the resources.

Once the categories have been assigned, a Subject can access Object with
some permissions (defined by TE) only if he has all categories of the Ob-
Jject. For example, in a system with the following categories: NUC, EUR,
US; a Subject Sy with category set {NUR, EUR} can access an Object Oy
with category set {NUC'}, but cannot access an Object O, with category set
{NUR, EUR,US} (see Figure .

The MCS does not use the policy file (it is used only by TE). The categories
and its assignment to the resources are stored in other system files. The policy
rules defined by TE do not influence the MCS behavior.

56

2.4. Docker

The Multi Level Security (MLS) is based on the range part of the security
context. It uses the part of security level in the range. The security level in the
security context is specified as follows: s0 — s0, where the first sO represents
the low level of security and the second s0 represents the high level of security.

MLS allows to define several types of security levels in the system and
assign them to the resources (Subjects or Objects). They follow a hierarchical
structure (see Figure and they conform to the Bell-La Padula model (see
Section[2.2.2).

In SELinux, when a Subject wants to do an action on an Object, he has to
ask the permission to the Access Control System. The Access Control System
decides according to the system policy (TE Policy), category set and security
level of the Subject and Object, whether to allow or not to allow the Subject to
access the Object. If the Subject can do that action on the Object (according to
TE, MCS and MLS), the access is granted, otherwise the access is denied (see
Figure 2.5).

In SELinux, a Subject, in order to access an Object, has to pass the check of
all security models (TE, MCS and MLS). When an access is denied, a row with
reject information will be written in AVC log. The AVC log stores information
about denied accesses and other access event information.

2.4 Docker
App App App
A B C
Bins/ Bins/ Bins/
VM — Libs Libs Libs
0S oS 0S
Hypervisor
Host OS
Server

Figure 2.9: Hypervisor Virtualization

57

Chapter 2. Security Enhanced Docker

Docker [11] is an open source software which realizes container virtualiza-
tion and it has been released as version 0.9, in March 2013. It is based on LCX
container enviroment but with some changes. In fact, it uses a libcontainer
library written in the Go programming language.

Docker is based on Container Virtualization which permits a lightweight
but less secure virtualization than Hypervisor Virtualization.

Container Virtualization (see Figure[2.10)) provides a lightweight virtualiza-
tion that permits to have many virtual machines (containers) on the same server.
The container is an application with its dependencies (Bins/Libs) and it runs on
host operating system. In this way, a single host operating system is needed to
run several containers. It is not necessary to have an operating system for each
container. The container processes look like normal system processes for the
host operating system and the containers management is made by Containers
Engine (Docker engine for Docker). Moreover, a container is isolated from
each other even though it shares dependencies with them. A container is also
isolated from the host.

In Hypervisor Virtualization (see Figure 2.9) each virtual machine runs on
its operating system (OS) separated by the host operating system. A virtual ma-
chine has its operating system (not only an application with its dependencies).
Moreover, a virtual machine is isolated from each other (they have different
OS) and it is isolated from the host using Hypervisor. The Hypervisor cre-
ates a strong isolation between host OS and virtual machine operating systems.
In this way, the virtualization becomes heavier (many operating systems) but
more secure (presence of Hypervisor) than Container Virtualization.

Docker permits to build, ship and run any application. It permits to cre-
ate an application (build), to ship the application from development to testing
and distribution enviroment (ship) and to run the application on several plat-
forms (run). A Docker application is built from a Docker file. A Docker file is
composed by some instructions which define how to the Docker image of that
application has to be created (an image can refer to other images). A Docker

< < m o O —
. = g = 2|l |le
Container < < < < < £)
Bins/Libs Bins/Libs || § &
Host OS
Server

Figure 2.10: Container Virtualization

58

2.4. Docker

image is a Docker application that is not running and it can be run in order to
create a Docker container of that image. A Docker container is a Docker image
that is running (it can be composed by different images). It is possible to run
many Docker containers from the same Docker image and when a Docker con-
tainer has been run, the associated Docker application can be used. A Docker
application can be seen as a container that can be moved from a platform to
another without problems.

Moreover, Docker provides a tool named docker compose. The docker com-
pose permits to create a virtualization system composed by containers. The
containers settings and their links (how the containers are linked) are indicated
in a specific file executable by docker compose tool. In this way, a system
administrator can write all system settings in this file and then this file can
be executed by docker compose in order to realize the whole system (it is not
needed to run the containers one by one).

2.4.1 Docker Architecture

The Docker Architecture is composed by three parts: Docker Client, Docker
Engine and Docker Hub (see Figure 2.11)).

Host
Docker Client Docker Hub
docker build //1' DockerEngme NS —_—
/’1'.' \ : '~
) Contai g A 1 Image A
1 4 ..‘,‘, SE—
docker pull . - Image B
S < | .
docker push | ‘ Image A
. .
‘& Image C
—

Figure 2.11: Docker Architecture

The Docker Client provides a user interface for interacting with Docker
Engine (Containers Engine in Figure 2.10). The Docker Engine permits to
manage the Docker enviroment: it permits to manage containers and images,
inside the Host (build and run), and to download and upload (pull and push)
the images from Docker Hub. The Docker Hub is a docker image repository
where the users can share their images. A user can upload his images and can
download the images uploaded by other users.

The Docker Client communicates with Docker Engine (also known as
Docker daemon) and provides to users an interface with several commands.

59

Chapter 2. Security Enhanced Docker

MCS
check

1 —
process J x L process ,'
| svirt_Ixc_net_t:s0: | | svirt_Ixc_net_t:s0: |

TEcheck ----——————-- Lo e mmmm - - _x_x _____
&> docker

host OS

benign container malicious container

svirt_Ixc_net t
does not have
access to
system types

Figure 2.12: Docker Securty

Some of these commands are: docker build, docker run, docker pull and docker
push. An example of their behavior is shown in Figure 2.11] The docker build
command permits to build a Docker image from its Docker file, inside the Host.
In Figure Image C has been built (from its Docker file) and stored in the
Host. The docker run command permits to build a Docker image inside the
host and creates a Docker container for that image. In the example, the Im-
age C has been run and the Container C has been created. The docker pull
command permits to download a Docker image from Docker Hub to the Host.
The example shows that the Image A has been downloaded from Docker Hub.
The docker push command permits to upload a Docker image from the Host
to Docker Hub. Figure |2.11|shows that the Image C has been uploaded from
the Host. The Docker Client takes the input commands from the users and
sends the commands to Docker Engine. In this way, the Docker Client and the
Docker Engine can be hosted by different servers.

2.4.2 Docker Security

Docker security [22] will be described in this Section only explaining the se-
curity aspect useful to understand the next Sections.

Docker uses two kinds of security, offered by SELinux to ensure the isola-
tion of Docker containers: Type Enforcement (TE) to protect the host from the
containers and Multi Category Security (MCS) to protect one container from
other containers (see Figure[2.12).

The host system is protected by Docker containers using Type Enforcement
(TE). The TE security model assigns to each process and object inside the con-
tainers a security context with a specific type. The processes have a type equal
to svirt_lxc_net_t and the objects have a type equal to svirt_sandbox_file_t.
This default behavoir can be modified indicating a specific type, which will be

60

2.4. Docker

used for running the container.

A process inside a Docker container can read, execute and use some files
and resources of the host system. The use of these files and resources is per-
mitted in order to allow the Docker container to perform the basic operations.
Moreover, a process inside a Docker container can write (according to TE) all
Objects (files and resources) with fype equal to svirt_sandbox_file_t (all files
inside the Docker containers).

The Type Enforcement (TE) protects the host system from the containers,
but it does not protect a container from other containers (using only TE, a
container could access the files of another container).

The Multi Categoty Security (MCS) is used in order to protect a Docker
container from other Docker containers. The processes and Objects (files and
resources) inside the same Docker container have a security context with the
same range and the processes and Objects inside different Docker containers
have instead security context with different range. For example, in Figure
the malicious container has a security context with range equal to s0 : c2,c3
and the benign container has a security context with range equal to s0 : c0, c1.
According to MCS, the malicious container cannot access benign container
and the benign container cannot access malicious container. The containers
are isolated one from the other. Each Subject (process) and Object (file or
resource) inside a Docker container has a range (of the security context) with
security level equal to s0O (the MLS is not used) and a category set composed
by a pair of categories (i.e., c0,cl). This pair of categories is generated at
random in order to avoid the same assignment of categories to different Docker
containers. This is the default behavior for Docker, but specifying, it permits
to run a container with a different number of categories.

Docker permits to run two types of containers: the containers that can do
actions to other containers (we will refer to these containers as Active Con-
tainers) and Data volume containers that are used only for storage and cannot
access other containers (we will refer to these containers as Passive Contain-
ers). The first ones are run with the default settings shown above. The second
ones are run by default without using categories. For example, a Data volume
container is run with a security context that has a range equal to sO : (both
MLS and MCS are not used). Data volume containers are used for sharing
between containers.

Moreover, Docker permits to share directories between host and containers
(mount a host directory as a data volume). A host directory can be mounted in
two ways: in order to be shared with only one Docker container and in order to
be shared with many Docker containers. In the first case, all Objects inside the
directory will be mounted with the same security context of the Objects that are
within the Docker container, with which the directory will be shared. In the
second case, all Objects inside the directory will be mounted with a security

61

Chapter 2. Security Enhanced Docker

context that has a type equal to svirt_sandbox_file_t and an empty category
set (the MCS is not used). In the last case, for MCS perspective, the directory
can be accessed by all containers and not only by really authorized containers.

The use of a security context with the same type (svirt_lxc_net_t for Sub-
jects and svirt_sandbox_file_t for Objects) for all containers and the non-use
of the category set for Data volume containers and some shared directories
could created security problems for Docker (the processes inside the Docker
containers have more privileges than the privileges they need).

In this direction, we studied some improvements for Docker Security with
the goal to satisty the principle of least privileg We considered the Docker
used in Fedora Linux distribution. The Docker Security in Fedora Linux is
implemented with SELinux Mandatory Access Control (see Section [2.3).

We took into account two SELinux policy modules: Type Enforcement (TE)
and Multi Categories Security (MCS). We did not consider Multi Level Security
(MLS) because it is not used in Docker and it is rarely used in systems that
use SELinux. A study in this direction would have limited impact for Docker
Security improvements.

Our first study analyzed the addition of SELinux modules for the Docker
image. The work has shown how to better manage TE labels, to provide a
better management of privileges (see Section[2.5).

Our second study analyzed a different management of SELinux categories
in Docker. It has shown how a better assignment of SELinux categories im-
proves Docker Security (see Section[2.6).

2.5 DPM: Docker Policy Module

Table 2.1: Validation of the AVC rules in a DPM

T € BASE 7€ DPM
(A) INVALID (B) OK/INVALID
o € BASE threat for the system | based on typebounds
(C) OK/INVALID
o€ DPM based on typebounds (D) OK

Docker runs all containers with the same SELinux types (svirt_lxzc_net_t
for Subjects and svirt_sandbox_file_t for Objects) and this is a serious limita-
tion. In fact, we have to grant svirt_lxc_net_t the upper bound of the privileges
that a container could ever need. For example, since different applications op-
erate on different network ports, svirt_lzc_net_t is allowed to listen to and
communicate over all the network ports [70]. Specializing the type per con-

Iprinciple of least privilege: it requires that in a computer enviroment, any subjects (e.g. users or process) must be
able to access only the information and resources that are necessary for its legitimate purpose.

62

2.5. DPM: Docker Policy Module

apache:latest mysql:latest python:latest
= =
httpd < % mysqld < % python
httpd_t mysqld_t svirt_Ixc_net _t
docker-baseimage:latest =
[initd [syslog [crond] sshd < o
initd_t syslog_t crond_t sshd_t a

Figure 2.13: Processes running in three Docker containers (apache, mysql and python), using
specific SELinux types defined in the DockerPolicyModules embedded in the images.

tainer (or even per process) would permit to tighten the security of Docker
containers.

Docker already offers the user the ability to start the processes in a container
with a different SELinux zype (i.e., specifying it, in the run command). How-
ever, in this case the user is in charge of defining a suitable extension to the
policy. Recently, an SELinux policy for the Apache hitpd container has been
proposed by Daniel Walsh [70]. When the policy is installed, the container can
be run with the specific type.

Although it is possible to start containerized processes with specific
SELinux types, there are still limits to the applicability of this concept. It is
reasonable to expect that many users will either be unfamiliar with the SELinux
syntax and semantics, or do not know how to compile and install a policy mod-
ule.

We propose a solution able to introduce specific SELinux types for differ-
ent containerized processes in a transparent way for the user. This is based
on Docker allowing image maintainers to ship an SELinux policy module to-
gether with their images. The module will be installed in the host system and
defines the types that will be associated with the processes in the image. These
modules are named DockerPolicyModules (DPM) and are SELinux modules
that must also satisfy the properties defined in the following (shown in Table
and explained below), in order not to represent a threat for the host system.
The DPM for an image will be specified in the Dockerfile and embedded in
the image metadata at build-time. In order to run containerized processes with
specific SELinux types, the image maintainer can label the binaries in the im-
age with specific types, and write a type transition rule. In this way, when the
binary is executed, the process is assigned the SELinux fype defined in the rule.

63

Chapter 2. Security Enhanced Docker

Even if we have multiple processes running in the same image (e.g., the widely
adopted docker-baseimage runs init, syslog, cron and ssh), it is possible to exe-
cute them with different SELinux labels. When a Docker container consists of
different images, all the DPMs for the images that compose the container will
be installed. This makes available also the SELinux types for processes in the
parent images. Figure[2.13]represents different Docker containers with custom
types provided by their DPM (The python:latest container does not use DPM
but the other containers use it).

In order to avoid the possible threats that can emerge from letting Docker
images install SELinux modules in the host system, we need to analyze the
cases that derive from the combination of the system policy and a DPM. Due
to the fact that each SELinux rule has a source (¢) and a target (7) type, and
they can be defined either in the system policy or in the DPM, we have four
possible scenarios, described in Table

A: the DPM must not change the system policy and can only have an impact
on processes and resources associated with the DPM itself. Since containers
can not be trusted a priori, it is imperative that the provided DPM does not have
an impact on privileges where both o and 7 are system types;

B and C: new types defined in a DPM must always operate within the
boundaries defined by the svirt_lxc_net_t type. The SELinux typebounds rule
is used to confine the fypes, imposing an upper bound to the privileges that a
type defined in a DPM can request. If a DPM defines a type not typebounded
by svirt_lrc_net_t, or a privilege not compliant with the typebounds rule, it is
considered invalid;

D: a DPM provides the flexibility of defining multiple types with differ-
ent privileges so that the container, according to the functionality in use, may
switch to the one that represents the least privilege domain needed to accom-
plish the current task. This permits to limit the abuse that may derive from
the exploitation of internal vulnerabilities and to tighten the overall container
security.

The Docker Hub must ensure that the DPM of any uploaded image satisfies
the requirements expressed in Table Any image with a DPM not compliant
with the above rules will be rejected. To protect the client from a compromised
Docker Hub, a pre-processing phase will be added to Docker download and
update routines in order to verify, before installing it, that the DPM does not
represent a threat to the system.

SELinux is a sound security solution and its support for policy modules has
already proved to be a significant enhancement in several services. The adap-
tation to Docker of the support for policy modules will allow the specification
of SELinux domains for the different images, leading to an increase of secu-
rity in Docker. We do not assume that all the image maintainers will include a
DockerPolicyModule in their images, but the ones who are aware of the benefit

64

2.6. Category Minimization using MCS

that SELinux provides will certainly appreciate the proposed extension.

2.6 Category Minimization using MCS

The MCS in Docker is used in order to isolate the Docker containers. Each
container can be run with a set of categories. A container can access another
container only if it is allowed by the MCS.

The goal of this study is to improve the isolation of Docker containers, im-
proving the use of MCS in Docker. This can be realized running the containers
only with the categories that we need according to the system policy and prin-
ciple of least privileges.

In order to improve the MCS management in Docker, we studied a solution
to minimize the number of categories used by the system, according to a given
system policy. We called this problem Category Minimization.

The use of this technique permits to have a secure and scalable system.
The Docker containers have only the needed categories in order to ensure their
operation and the categories assigned with this accuracy improve the system
security. The categories assigned do not allow containers to do actions not
useful for its operation. Moreover, the system scalability is improved. When
the system is modified, the new system policy is calculated and applied to the
system. In this way, the system security is ensured. This technique also permits
to save system resources (it uses the minimum number of categories that are
needed) which will remain available. Moreover, the Category Minimization
problem that will be described for Docker containers, can also be used, in
other cases, when the system resources have to be assigned in order to satisfy
the policy.

Definition 2.6.1 (Category Minimization). Let S be a system with its elements
e € E, where E is a set of system elements. Find an assignment of categories
to system elements, according to the following rules:

o The system has to satisfy the principle of least privilege

e The categories assigned to system elements have to satisfy the system pol-
icy

o The system has to use the minimum number of categories in order to sat-
isfy the system policy

Before the theoretical aspect of the problem, we will present how we solved
the problem and describe an implementation that demostrates the feasibility of
our solution.

In our analysis, without loss of generality, we consider only Multi Category
Security (MCS), since TE and MLS do not influence our analysis.

65

Chapter 2. Security Enhanced Docker

Figure 2.14: Dominance Relation

S1 S2 S3

T1 T2

Figure 2.15: System

In fact (as explained in Section[2.3), the MCS and TE behaviors are inde-
pendent. The MCS behavior is based on SELinux categories and TE behavior
is based on SELinux types.

A Docker container is run with some categories and all processes (Subjects)
and files (Objects) inside it are associated with the same categories. From the
MCS perspective only the categories are considered. When we say that a Sub-
ject (or Active Container) can access an Object/Target (Data Volume Container
or Passive Container), we mean that a process inside Active Container can ac-
cess a file inside Passive Container.

2.6.1 Category Minimization problem

The Category Minimization problem has been analyzed using Multi Category
Security (MCS). The MCS allows or does not allow the access to resources ac-
cording to the Subject and Object categories. In order to formalize this aspect,
we introduced the concept of Dominance Relation as follows:

66

2.6. Category Minimization using MCS

Generation of Policy

DBLP |

)
1)
=
@
=
=
=]
=
Qo
=
o
2
G
<
—

Minimization of Categories

Generatlon of Number of categories

‘ boolean formula in CNF formatl\ \

‘ Number of Categories

[Runnlng of SAT Solvet]

‘ Solution ‘ Other iterations

<>

Satisfied <> UnSatisfied

]

Stopping of iterations

Storing of Solution

Dicotomica

‘ Num Min and Max of categories ‘

Stored Solution - Searching of store solutlonj

‘ File solution text format ‘ @

Figure 2.16: Software Architecture

67

Chapter 2. Security Enhanced Docker

Definition 2.6.2 (Dominance Relation). Let E be a set of elements belonging
to the system. Let C be a set of categories that can be assigned to elements.
Let e; € I be an element in the System, e; € I another element in the System,
Cy C C categories assigned to e, and Cy C C' categories assigned to e;. We
say that e; dominates es iff Co C C). We represent this relation of dominance
like < eq,ey >, where ey is the dominant element and e, is the dominated
element.

In Figure the dominance relation is shown between elements o and /3.
The element « is the dominant element (o, C C' represents the set of cate-
gories assigned to element o) and element [is the dominated element (5. C C
represents the set of categories assigned to element (5). The arrow indicates
the direction of the relation, from dominant to dominated element. The dom-
inance relation (< o, >) indicates that element « can access element
(<a,8>= B.Ca).

The Dominance relation is transitive. In order to formalize this concept,
we define the direct dominance relation and the indirect dominance relation
(transitive property of Dominance relation).

Definition 2.6.3 (direct dominance relation and indirect dominance relation).
Let E be a set of elements belonging to the system. Let C be a set of categories
that can be assigned to elements. Let e; € E be an element in the System,
ey € E another element in the System, C; C C' categories assigned to e, and
Cy C C categories assigned to ey. |e1| be the number of categories of e; and
lea| be the number of categories of es.

We say that an element e, dominates an element e, with a direct dominance
relation iff Cy C Cy A (ler]=|es| V |e1]=]ea| + 1).

We say that an element e, dominates an element e, with an indirect domi-
nance relation iff Cy C Cy A |e1|=|es| + n, withn > 1.

A system that uses MCS and composed by several elements creates a com-
plex lattice structure of categories with many dominance relations. Figure
shows a system with several elements (Subjects and Objects) and with three
categories (NUC, EUR and US). The circles represent the system elements (a
circle represents all elements of the system with the same categories). The la-
bels assigned to elements represent the categories of those elements and the
label {} represents the elements without categories. The elements without cat-
egories are not protected by MCS and can be accessed by all elements of the
system (from the MCS perspective). In Figure an element with an arrow
towards another element can access that element (direct dominance relation).
For example, an element with category set equal to {NUC,EUR,US} can ac-
cess an element with category set equal to { NUC,EUR}. Moreover, an element
can access all elements reachable from it by a path (set of arrows that join an
element with another). For example, an element with category set equal to

68

2.6. Category Minimization using MCS

{NUC,EUR,US} can access an element with category set equal to {EUR} (in-
direct dominance relation).

The lattice structure has the join and meet properties which represent im-
portant aspects for our model. In Figure an element that can access some
elements has a set of categories that represent a join of those elements. For ex-
ample the elements with categories { NUC, US} is the join element for elements
with category { NUC} and {US}. In the same way, when an element can be ac-
cessed by more elements, it has to be the meet element of those elements. For
example, In Figure [2.7|the element with category { EUR} is the meet element
of the elements with categories { NUC,EUR} and { EUR,US}.

In Docker system, the categories or groups of categories are not replaced
with a name (they are used with the default name given by SELinux). The
categories NUC, EUR and US shown in Figure can be used in Docker as
0, ¢l and c2. In the following, we will use the categories in the same way as
they are used in Docker.

Our study solves the Category Minimization problem for complex systems.
We can find a solution of the Category Minimization problem for the system
shown in Figure[2.7]and also for more complex systems but for a better descrip-
tion, we will show our study using a simple system. We will use the system
shown in Figure where the circles represent the elements, the arrows rep-
resent the dominance relation (they are all direct dominance relations) and the
labels represent the element name.

We solve the Category Minimization problem using a SAT Solver and defin-
ing the policy rules in CNF format. The Boolean Satisfiability Problem (SAT)
determines if a way exists to satisfy a given boolean formula. It tries to sub-
stitute all variables of boolean formula with value TRUE and FALSE in order
to find if a combination of variables exists for which the boolean formula is
TRUE. If a way exists to have the boolean formula equal to TRUE, the SAT
problem is satisfiable, otherwise the problem is unsatisfiable (since the SAT
problem is NP-complete and its resolution could take more time, it is possible
to set a time-out for problem resolution. If a solution is not found before the
time-out, the problem is considered unsatisfiable).

We expressed our boolean formula in CNF format. Conjunctive normal
form (CNF) is a conjunction of clauses, where a clause is a disjunction of
literals. A literal is an atomic formula or its negation. A CNF formula can be
also seen like the AND of ORs. We create the boolean formula assuming to
assign a fixed number of categories to the elements. For example, we try to use
the categories from c0 to ¢3. In this way, four variables which represent the
categories from c0 to c3 are assigned to each element. The variables represent
the categories assignable to each element (the elements have a variable for each
category that could be assigned to them). For example, category c0 of element
el will be represented by a variable named el_c0. When the SAT problem

69

o =

Chapter 2. Security Enhanced Docker

is satisfiable, the variables with value equal to TRUE represent the categories
that have to be really assigned to that element and the variables with value
equal to FALSE represent the categories that have not to be assigned to that
element. For example, if variable el_c(is TRUE, it means that category c0 has
to be assigned to element el and when variable el_c0 is FALSE, it means that
category c0 has not to be assigned to element el. In the boolean formula other
variables are also used that are only useful for the problem definition. Their
values are not useful for the final solution. Moreover, when the problem is
unsatisfied, the value of the variables (all variables) are not considered because
the problem does not have a solution (more categories may be needed to solve
the problem).

The boolean formula is built from policy rules following three properties:
(1) Sources can access Targets (according to the policy), (ii) Sources cannot
access Targets (according to the policy), (ii1) Sources cannot access Sources

There are two other properties that are implicit and so they are not expressed
in the boolean formula: (i) Targets cannot access Sources and (ii) Targets can-
not access Targets

The Targets are passive elements (i.e., Data Volume Containers) and so they
cannot access other elements.

In the system shown in Figure there are three Sources S1, 52,53 and
two Targets 11, T'2 and the policy rules associated with the system (see Listing
allow S1 to access T'1 (row 1), S2 to access 11 and T2 (row 2), S3 to
access 1’2 (row 3). This policy configuration is rapresented by arrows (domi-
nance relations) in Figure 2.15] .

Listing 2.6: System policy

S1:T1
S2:T1,T2
S3:T2

The system policy rules (i.e., policy rules shown in Listing are con-
verted into a boolean formula which will be the input of the SAT Solver.

The boolean formula is written in CNF format and is composed by several
logical formulas joined by AND (A) operator. We will explain the structure of
the boolean formula showing the logical formulas created in order to satisfy the
three properties shown above. In the logical formulas in order to explain their
structure, we will use only category cO (the other categories will be implied).
The categories really used in the boolean formula depend on the categories that
we fix for each element (i.e., if we fixed four categories for each element, the
categories used in the logical formulas will be the categories from c0 to ¢3). In
order to explain the boolean formula, we will refer to Listing

The property Sources can access Targets (the first ones) defines that a
Source can access a Target only if it is allowed by the policy. A Source in

70

2.6. Category Minimization using MCS

order to access a Target has to have all the categories of the Target. For ex-
ample, considering row 1 of Listing and taking into account only category
0, if Target T'1 has category c0 then, even Source S1 has to have category c0.
This is defined in the boolean formula as follows: (=7'1_c0 V S1.¢0), where
T'1_c0 represents the category c0 of the Target T'1 and S1_c0 represents the
category c0 of the Source S1. If Target T'1 has other categories, the formula is
extended adding (in AND) the other logical expressions, in a similar way (in
the new logical expression the category c0 has to be replaced with the other
categories).

The property Sources cannot access Targets (the second one) defines that
a Source cannot access a Target. A Target in order to not be accessible by a
Source has to have at least one different category than the Source. For example,
considering Listing Source S1 cannot access Target T2. The property is
defined in the boolean formula using two logical expressions. The first expres-
sion (taking into account only category c0) is: < 1 > (T2_¢0 V =S1.T2_¢0) A
(=S1.c0 vV =~S1.T2_c0), where T2_c0 represents category c0 of Target T2,
S1_c0 represents category c0 of Source S1 and S1_T2_c0 is an auxiliary vari-
able useful only for the problem definition that is used in order to write the
boolean formula in CNF format. When its value is equal to TRUE, it means that
Source S1 has not category c0 and Target T'2 has category c0. If Target T'2 has
other categories, the < 1 > formula is extended adding (in AND) other logical
expressions similar to < 1 > (In the new logical expressions category c0 has
to be replaced with the other categories). Moreover, all auxiliary variables are
joined (using ORs operator) in another logical expression and considering to
use the categories c0 and c1, the expression is: < 2 > (S1.72_c0V S1.72_c1)
(if other categories come into play, their auxiliary variables have to be added).
The expressions < 1 > and < 2 > are joined using AND operator and the
resulting expression permits to define the property. Moreover, when only cate-
gory c0 is used, expression < 2 > simply becomes as follows: S1_72_c0.

The property Sources cannot access Sources (the third one) defines that a
Source cannot access another Source. A Source in order to be not accessed
by another Source has to have at least one different category than the other
Source. For example, considering Listing [2.6] Source S1 cannot access Source
S2. The property is defined in the same way as the property Sources cannot
access Targets, taking into account Source S1 and Source S2.

The final boolean formula is the join (in AND) of the three logical formulas
relating to the properties. The boolean formula generated and stored in a CNF
file becomes the input for the SAT Solver. The SAT Solver generates in output
a text file. The output defines the categories that have to be assigned to each
system element (Source or Target) in order to satisfy the policy in input. For
example, Listing[2.7]shows a probable assignment of categories for the system
shown in Figure[2.15]according to the policy in Listing[2.6]

71

N W =

Chapter 2. Security Enhanced Docker

Listing 2.7: System output

S1:c0,c2
S2:c0,cl
S3:cl,c3
T1l:cO
T2:cl

The categories assignment of Listing satisfies all properties explained
above. Source S1 can access Target T'1 (S1 has category c0) but cannot access
Target T2 (S1 does not have category c1) and the Sources S2 and S3 (S1 does
not have the categories cl and c3).

Source S2 can access Targets T'1 and T'2 (S1 has categories c0 and c1) but
cannot access Sources S1 and S3 (S2 does not have category c2 and c¢3).

Source S3 can access Target T2 (53 has category c1) but cannot access
Target T'1 (S3 does not have category c0) and Sources S1 and S2 (53 does not
have the categories c0).

Listing|2.6/shows a simple policy associated with the little system in Figure
Our technique has also been verified with more complex policies associa-
ble with larger system. In order to generate complex policies, we used DBLP,
a computer science bibliography that provides open bibliographic information
on major computer science journals and proceedings [53]. DBLP provides the
information about authors and their publications in XML format. We used
DBLP in order to create the input policy file in this way: the authors are the
Sources and the publications are the Targets. An author (Source) can access his
publications (7argets). The authors can be co-authors with other authors and
both authors and co-authors (Subjects) can access the common publications
(Targets). Each row of the policy file is composed by an author and its list of
publications. The policy created is more similar with the real system policy
than the policy created in random way. In a real system policy, usually, a group
of Sources can access the same groups of resources (7argets). For example, in a
company, the managers can access all files useful for the company management
and these files cannot be accessible by the IT that can instead access other files
useful for the technical aspects. This scenario can be represented very well by
a policy generated using DBLP (all divisions will be represented by groups of
co-authors that can access the common files (publications)) but not very well
by a policy generated in a random way beacause the Targets accessible by the
Sources are too sparse (the numbers of common 7argets between the several
Subjects do not reflect a real scenario). DBLP is useful to generate a complex
and real policy similar to a real scenario and using it, we checked our technique
for complex and real systems.

72

2.6. Category Minimization using MCS

2.6.2 Software Architecture

We developed a software in order to verify our technique. The software is com-
posed by two parts and its architecture is shown in Figure[2.16] The first part of
the software (Generation of policy) takes in input the DBLP XML file and gen-
erates the policy in text format (i.e., see Listing[2.6). The policy generated will
be the input for the second part of the software (Minimization of Categories).
The second part of the software takes in input the policy in text format and
generates (Generation of CNF file) the boolean formula (boolean formula in
CNF format) according to the policy and the Number of Categories (the fixed
number of categories which we are assuming to assign to the elements). The
Number of Categories is generated, at first, in random way (Generation of Cat-
egories) and it is less than or equal to the number of the Sources. The boolean
formula in CNF format will be the input for the SAT solver (Running of SAT
Solver) which will generate in output a solution of the problem with a specific
Number of Categories (if the problem is satisfiable) and when a solution of
the problem with that Number of categories does not exist, the output will be
unsatifiable. When the problem is satisfiable, the solution is stored and then,
the dichotomic search algorithm [*|is applied in order to generate a new Num-
ber of Categories used to create a new boolean formula in CNF file (the new
bolean formula is generated from the policy text format used also before and the
new Number of Categories). When the problem is unsatisfied, the dichotomic
search algorithm is directly applied (it does not exist a solution to store). The
dichotomic search algorithm is applied in order to search the solution that uses
the minimum number of categories to satisfy the input policy. The dichotomic
search algorithm checks whether it is possible to generate a new Number of
Categories to search a better solution. When the dichotomic search algorithm
can generate a new Number of Categories, the software continuously gener-
ates a new boolean formula in CNF format, otherwise, the software checks
whether a stored solution exist. If a stored solution exists, the software outputs
the solution (i.e., see Listing and terminates, otherwise the software out-
puts unsatisfied and terminates (a categories assignment that satisfies the input
policy does not exist).

2.6.3 Experiment results

The experiment on our technique have been run using an Amazon EC2 in-
stance. This instance (m4. 1Oxlarge) has 40 virtual CPUs, 160 GiB of Ram and
a dedicated bandwidth of 4000 Mb/s. The experimental results are shown in

2dichotomic search algorithm: it is an algorithm of binary search used on a set of ordered elements that starts
comparing the middle element with searched element. If the elements are equal, the algorithm terminates; if middle
element is lower than searched element, the algorithm continues on following elements; if middle element is greater
than searched element, the algorithm continues on previous elements; if all elements are discarded, the algorithm
terminates (the element is not found).

73

Chapter 2. Security Enhanced Docker

Computation time

160
B

=] 120
=
£
=
g

= 80
=
2
&
2

£ 40
[s]
L]

1]

400 1200 2000 2800 3600

Number of elements

Figure 2.17: Computation time in Minutes

Number of categories

Number of categories
=

200 1600 2400 3200 4000

Number of elements

Figure 2.18: Number of categories used by the system in order to satisfy the policy

2.7. Related Work

Figure and We executed the tests considering the number of the
Sources present in the system. The range of Sources that we considered is
between 50 and 600.

The experiments show that a policy with a number of elements (Sources
and Targets) between 370 (50 Sources and 320 Targets) and 842 (100 Sources
and 742 Targets) requires a computation time in order to find an assignment
of categories according to the policy that is around 12 minutes and the number
of categories used by the system is between 10 and 12. A policy composed
by 1285 (200 Sources and 1085 Targets) elements requires a computation time
of 20,47 minutes and the system has to use 14 categories in order to satisfy
the policy. A policy composed by a number of elements between 1942 (300
Sources and 1642 Targets) and 2712 (400 Sources and 2312 Targets) requires
54 minutes of computation time and the system has to use a number of cate-
gories between 15 and 18 in order to satisfy the policy. A system with a policy
composed by a number of elements between 3287 (500 Sources and 2787 Tar-
gets) and 3852 (600 Sources and 3252 Targets) has to use 17 categories in order
to ensure system security according to the policy. The computation time grows
faster than the previous case. A policy with 3287 elements is computable in
about 71 minutes and with 3852 elements is computable in about 156 minutes.

The results show that our technique permits to use few categories even in
systems that have a policy with many elements (Sources and Targets). For
example, a system with a policy composed by 3852 elements can use 17 cate-
gories to ensure system security. The software requires few minutes to find a
solution for policies with few elements (i.e., between 370 and 842 elements)
and few hours to find a solution for policies with many elements (i.e., 3852
elements).

The computation times that we obtained show the efficiency of our tech-
nique considering that this type of tool is used in phase of system installation
(in this phase the system structure is decided and the system policy is applied),
when a waiting time of a few hours is not critical. We can say that the de-
veloped technique permits to ensure the security of a system saving many re-
sources (categories) and the computation time needed to find a solution is not
critical.

2.7 Related Work

The Linux Containers (as Docker containers) permit a lightweight virtual-
ization but are less secure than hypervisor virtualization. For these reasons,
several studies have been done in order to improve their security. An ap-
proach similar to Docker Policy Module (DPM) but for Android third-party
apps has been proposed and the security implications involved have been stud-
ied [51], [17]. The Docker scenario appears to fit quite well with this proposal,

75

Chapter 2. Security Enhanced Docker

with the additional advantage that we expect image developers (as opposed to
image users and app developers) to be more familiar with the role and impact
of MAC policies.

In this research we presented some tecniques in order to improve the use
of SELinux. SELinux is a Mandatory Access Control based on labels. The
approaches based on labels is often difficult to undertand and to manage. Other
techniques, based on MAC, have been implemented to permit the creation of
policies in simple way: TOMOYO [39] and AppArmor [7].

AppArmor is based on file path and associates a security profile to each pro-
gram in order to restrict its capabilities. It is used in Ubuntu Linux distribution
and is supported by Docker. A framework named LiCShield [47] improves
the security of Docker. It protects the Linux containers and their workloads
building a security profile (based on AppArmor rules) and protects the ex-
ecution of a given container tracing and analyzing the container executions.
Moreover, a study about the Host security is Host-based Intrusion Detection
Systems (HIDS) [35] which learns the usual behaviors of the application and
detects unusual behaviors.

2.8 Evaluation of Security Enhanced Docker

Docker provides virtualization containers that permit a lightweight virtualiza-
tion, but is less secure than other types of virtualization. It leverages Linux
kernel security features such as kernel namespaces to isolate users, processes,
networks and devices, and cgroups to limit resource consumption. Moreover,
Docker in the Fedora distribution uses SELinux to ensure container isolation.
The container isolation as realized in Docker allows containers to have more
privileges than necessary for performing their work creating attack risk.

We presented two techniques in order to improve the use of SELinux in
Docker: Docker Policy Module (DPM), which is based on SELinux Type
Enforcement (TE), and Category minimization problem, which is based on
SELinux Multi Category Security (MCS). These improvements permit more
isolation for containers.

Docker Policy Module (DPM) provides SELinux module for Docker image.
A module permits to have a specific security context for the associated image.
Moreover, a module defines specific rules for the processes inside the contain-
ers that are run with that module. A module also permits to improve containers
isolation assigning specific security contexts and restrictive rules to processes
inside the containers.

The category minimization problem technique manages the categories in
a better way than the default use of SELinux categories in Docker. Using
this technique, each element in the system receives only the categories needs
in order to perform its work and also Data volume containers are protected.

76

2.8. Evaluation of Security Enhanced Docker

Moreover, the system uses the minimum number of category needed to en-
sure system security according to the system policy. The experiments showed
that the Category minimization problem permits to save many resources (cat-
egories) which remain available for the system (1300 elements need only 14
categories). Moreover, the computation time shows the feasibility of this solu-
tion (1300 elements need 22 minutes). These techniques satisfy the principle
of least privileges ensuring more secure systems.

77

CHAPTER

J-CO query language

3.1 Introduction

The buzzword Big Data is used with several possible meaning. The obvious
one is “volume”, but another meanings are related to the adverbs “variety”
([25,144,48]]): complex analyses require to integrate several data sets coming
from different sources of information.

Very often, these sources of information are Open Data portals, where pub-
lic administrations publish data sets concerning several aspects of territories
and citizenship. There is not a standard for those data sets: in spite of the
fact that usually they are JSON collections ([45]) or CSV files or XML docu-
ments, every single data set has a specific structure, with specific field names,
even though they describe similar topics. Often, these data sets contain geo-
referenced information.

Other sources of (possibly geo-referenced) information could be descrip-
tions of networks and (such as water networks, electricity networks, etc.) and
environment descriptions (streets, buildings, etc.), possibly publicly available,
that might be cross processed to discover useful information, or integrated with
(possibly geo-referenced) Open Data.

These considerations motivate a large use of NoSQL databases [24,38],63],
because traditional relational/SQL databases are unable to flexibly integrate
so heterogeneous data sets. Nowadays, the most famous NoSQL DBMS is

79

Chapter 3. J-CO query language

MongoDB [18,)57]: it deals with collections of JSON objects, in such a way
within the same collection objects with different structures can be gathered
without any limitation.

However, the query language provided by MongoDB it is not easy to use

for non programmers: it is strongly based on the object-oriented paradigm,
and complex operations on collections are not easy to write. Moreover, it is
even impossible to write operations that cross-combine two collections (unless
an external program is written).
Furthermore, the geographical support is provided by means of GeoJSON [23,
26| and several functions that implements spatial operations on such a data
format. The problem is that it is complicated writing complex operations on
that involves several collections and, possibly, spatial operations.

To overcome this problems and reducing the distance between MongoDB
and users (possibly geographers and analysts) we decided to define a novel flex-
ible query language for heterogeneous collections of possibly geo-referenced
JSON objects, named J-CO (which stands for JSON Collections). Our vision
is the following: We want to provide users with a declarative query language,
that is able to express complex query processes, that could be executed sev-
eral times; the operators allow to directly work at the collection level, i.e.,
they express transformations on collections, for example, by filtering objects
or aggregating objects in two or more collections; the operators natively deal
with spatial representation and provide high level spatial operations. We were
inspired by early works [21,)59] about a query language for heterogeneous, al-
tough structured, collections of geo-referenced data.

Ambitiously, we can say that we are trying to repeat what happened with SQL
in the 70s, i.e., enabling database technology for non-programmer users with a
declarative query language.

J-CO is not complete, in the sense that we think about it as a continuously
growing language: as far as new needs arise, new operators can be defined and
added to the language. The approach is then open to new developments.

In this research, we present the basic and minimal operators we considered
necessary in the J-CO query language, for which the data model and the exe-
cution model are devised. We will show the language and its use by means of
a running example. This research is the first step on this research line, and our
goal is to validate the approach, showing the fundamental operators and their
applicability. In our future work, we will address various application areas, in
order to identify specific needs and define new operators.

The remainder of this Chapter is organized as follows. in Section we
present the data model and a toy running example that will be exploited along
with this Chapter. Section presents the execution model on which J-CO
relies; thus way, Section can effectively introduce the operators. A com-
plete example is presented in Section [3.6] to illustrate the potential application

80

3.2. Background concepts

of J-CO. Section [3.7|presents the implementation of the prototype and discuss
experimental results. Finally, Section discusses related works and Section
draws the conclusions.

3.2 Background concepts

This Section presents the background concepts useful to understand the next
Sections. Open Data [|12] is a data that can be freely used and ridistributed by
anyone. The users have to cite the source and can share the source using the
same license. Open Data have to be: available and accessible in a convenient
and modifiable form (i.e., JSON), preferably using an internet download; re-
usable and redistributable and also mixed with other data. Moreover, they have
to provide a license that permits the re-use and redistribution.

Open data are usually released in JSON format. JSON (JavaScript Object
Notation) [9] is a lightweight text format for data exchange. A JSON object
is a set of name/value pairs. An object starts with left brace ({), follows with
a set of name/value pairs (i.e., name : value) separated by comma (,) and
ends with right brace (}). Listing shows an example. The term value can
assume several types: string, number, object, array, boolean and null (accord-
ing to programming language conventions). An array is structured as follows:
[value(, value)*], where * indicates the presence of zero or more of that ele-
ment.

Listing 3.1: JSON Example

{

"name" : "nameA",
"surname" :"surnameA",
"age" . "20"

}

JSON is a standard also used for data storage and is supported by several
databases. MongoDB [10], the database used in our tests, supports JSON for-
mat. MongoDB is an open-source document database. It support JSON stan-
dard for data storage and its record is a document which is a data structure com-
posed by field and value pairs. MongoDB supports the data types supported by
many programming languages and the use of document embedded and array
(as values) reduce expensive joins providing high performance. Moreover, it
supports a rich query language which requires little programming knowledge.

MongoDB also supports Geo-spatial data and Geo-spatial query (it provides
some functions in order to query Geo-spatial data) using GeoJSON standard.
GeoJSON [8] provides several structures to manage Geo-spatial data and be-
tween them, in J-CO query language, we use GeometryCollection in order to
storage Geo-spatial information of our objects.

GeometryCollection is structured as shown in Listing[3.2]

81

Chapter 3. J-CO query language

Listing 3.2: GeometryCollection Example

{
"type": "GeometryCollection",
"geometries": [
{
"type": "Point",
"coordinates": [100.0, 50.0]
}I
{
"type": "LineString",
"coordinates": [[101.0, 50.0],
[102.0, 51.0]]

}

It is composed by a field fype with value equal to GeometryCollection and a
field geometries that is an array containing the geometry objects shown below.
The geometry objects can be: Point, LineString, Polygon, MultiPoint, Mul-
tiLineString, MultiPolygon.
Point cordinates are the longitude,latitude (see Listing [3.3]for example).

Listing 3.3: Point Example

{
"type": "Point",
"coordinates": [100.0, 50.0]

LineString coordinates are an array of positions (see Listing for exam-
ple).

Listing 3.4: LineString Example

{

"type": "LineString",
"coordinates": [[100.0, 50.0],
[101.0, 51.01 1]

Polygon coordinates are an array of positions (at least four positions) where
the first and last positions represent equivalent points (see Listing for ex-
ample).

Listing 3.5: Polygon Example

{

"type": "Polygon",

"coordinates": [[[101.0, 0.0],
[102.0, 0.07],
[102.0, 1.0],
[101.0, 1.07,
[101.0, 0.0]

~

82

3.3. Data Model

11

MultiPoint coordinates are an array of positions and the MultiPoint object
has a field type equal to MultiPoint. MultiLineString coordinates are an array of
LineString coordinate arrays and the MultiLineString object has a type equal to
MultiLineString. MultiPolygon coordinates are an array of Polygon coordinate
arrays and the MultiPolygon has a type equal to MultiPolygon.

3.3 Data Model

The basic concept on which we rely is the one of JSON object. JSON
(JavaScript Object Notation) is a de facto standard serialized representation for
objects. Fields (object properties) can be simple (numbers or strings), complex
(i.e., nested objects), vectors (of numbers, strings, objects).

As far as spatial representation is concerned, we rely on the GeoJSON stan-
dard. In particular, we assume that the geometry is described by a field named
geometry, defined as a GeometryCollection objects type in GeoJSON standard.
The absence of this top-level field means that the object does not have an ex-
plicit geometry.

As an example, consider the object with name "buildingA" reported in
Listing The geomet ry field describes the polygon representing the foot-
print of the building on the ground.

The following definition defines the concepts of collection and Database.

Definition 3.3.1 (Collections and Databases). A Database db is a set of collec-

tions db = {ci,...,¢c,}. Each collection ¢ has a name c.name (unique in the
database) and an instance Instance(c)= [01, . .., 0,,| that is a vector of JSON
objects o;.

Thus, we need operators (see Section [3.4)) to transform collections and get
new collections. Our language should satisty the closure property.

Example 1 (Running Example). In order to illustrate the data model and, in
the next sections, the execution model and the J-CO operators, we provide a
running example.

Suppose we have a sample database named ToyDB. Within it, We have three
toy collections: the first one is named Buildings (shown in Listing[3.6)); the
second one is named WaterLines (see Listing[3.7). Finally, the third one is
named Restaurants (see Listing[3.8).

Listing 3.6: Collection Buildings

[{ "name":"buildingA",
"city":"city A",
"address":"address A",

83

Chapter 3. J-CO query language

"geometry":{"type":"GeometryCollection",
"geometries": [

{
"type": "Polygon",
"coordinates": [
[[100.0, 0.0],
[101.0, 0.0],
[101.0, 1.0],
[100.0, 1.0],
[100.0, 0.0]]]
}

}r

{"name":"buildingB",

"city":"city B",

"address":"address B",

"geometry":{"type":"GeometryCollection",
"geometries": [
{
"type": "Polygon",
"coordinates": [

[rzo.o0, 0.0j,
[21.0, 0.0],
[21.0, 1.0],
[20.0, 1.0],
[20.0, 0.0]]]

}

Listing 3.7: Collection WaterLines

[{"name": "WaterLineA",
"city":"city A",
"geometry":{"type":"GeometryCollection",
"geometries": [
{
"type": "LineString",
"coordinates":
[[90.0, 0.0],
[103.0, 1.0],
[104.0, 0.0],
[105.0, 1.0]]

84

3.3.

Data Model

}r

{"name" : "WaterLineB",
"city":"city A",
"geometry":{"type":"GeometryCollection",
"geometries": [
{
"type": "LineString",
"coordinates":
[[102.0, 10.0],
[103.0, 2.0],
[104.0, 1.0],
[102.0, -1.0]]

}/

{"name" : "WaterLineC",
"city":"city C",
"geometry":{"type":"GeometryCollection",
"geometries": [
{
"type": "LineString",
"coordinates":
[[104.0, 10.0],
[105.0, 2.0],
[109.0, 1.0],
[110.0, -1.0]]

Listing 3.8: Collection Restaurants

[{"name":"RestaurantA",
"city":"city A",
"address":"address A"

}r

{"name":"RestaurantB",
"City".’ "City B",
"address":"address C"

Iy

{"name":"RestaurantC",

"city":"city C",

"address":"address D",

"geometry":{"type":"GeometryCollection",

"geometries": [

{
"type": "Polygon",
"coordinates": [

85

Chapter 3. J-CO query language

[(20.0, -10.0],
[21.0, -10.0],
[21.0, -11.0],
[20.0, -11.0],
[20.0, -10.0]]]

}
}]

J-CO is able to query the informations inside ToyDB database by using
the operators shown in Section We will use the ToyDB database and its
informations, in the next Sections in order to explain J-CO query language.

3.4 Execution Model

Queries will transform collections stored in MongoDB databases, and will gen-
erate new collections that will be stored again into these databases, for persis-
tency. for simplicity we call such databases as Persistent Databases

Definition 3.4.1 (Query Process State). A state s of a query process is a tuple
s = (te, IR), where tc is a collection named Temporary Collection. while I R
is a database named Intermediate Results database.

Definition 3.4.2 (Operator Application). Consider an operator op. Depending
on the operator, it is parametric w.r.t. input collections (present in the persistent
databases orin I R) and, possibly, an output collection, that can be saved either
in the persistent databases or in I R.
The applications of an operator op, denoted as op, is defined as

op:s— s
where both domain and codomain are the set of query process states. The oper-
ator application takes a state s as input, possibly works on the temporary col-
lection s.tc, possibly takes some intermediate collection stored in s.IR; then,
it generates a new query process state s', with a possibly new temporary col-
lection s'.tc and a possibly new version of the intermediate result database
s'.IR.

The idea is that the application of an operator starts from a given query pro-
cess state and generates a new query process state. The temporary collection tc
is the result of the operator; alternatively, the operator could save a collection
as intermediate result into the [R database, that could be taken as input by a
subsequent operator application.

Definition 3.4.3 (Query). A query q is a non-empty sequence of operator ap-
plications, i.e., ¢ = (0py, . ..,0p,), withn > 1.

86

3.5. J-CO Operators

Table 3.1: Type of operators

Operators

GET COLLECTION
OVERLAY COLLECTIONS
JOIN COLLECTIONS
MERGE COLLECITONS
INTERSECT COLLECTIONS
SUBTRACT COLLECTIONS
FILTER

GROUP BY

SET INTERMEDIATE AS
SAVE AS

DERIVE GEOMETRY

Start operators

Carry on operators

Thus, the query is a sequence of operator applications; each of them starts
from a given query process state and generates a new query process state, as
defined by the following definition.

Definition 3.4.4 (Query Process). Given a query ¢ = (0py, . ..,0p,,), a query
process QP is a sequence of query process states QP = (sq, 1, ..., Sp), such
that sy = (tc: [|, IR : 0) and, for each 1 <i < n, itisop: s;_ 1 — S;

The query process starts from the empty temporary collection sg.tc and the
empty intermediate results database sy./R. Thus, the GeCo query language
must provide operators able to start the computation, taking collections from
the persistent databases, while other operators carry on the process, contin-
uously transforming the temporary collection and possibly saving it into the
persistent databases. But the query could be complex and composed by several
subtasks, thus the temporary collection could be saved into the intermediate
results database /2. At this point, a new subtask can be started by the same
operators that can start the query, which can take collections either from per-
sistent databases or from the intermediate result database as input, giving rise
to a new subtask.

For this reason, we identified two classes of operators (see Table : start
operators and carry on operators, that will be described in the next section.

As a final consideration, observe that the reason why the intermediate re-
sults database IR is part of query process states is isolation: it exists only
during the query process and in case of parallelism, each parallel process has
its own intermediate results database.

3.5 J-CO Operators

J-CO operators can be classified into two groups, reported in Table Start
operators and Carry on operators.

87

Chapter 3. J-CO query language

Table 3.2: Meaning of terms

Terms Meaning of terms

dbName name of a persistent database
collectionName name of a collection

fieldName name of a field

value value of a attribute
dbName.collectionName collection inside a persistent database
collectionName.fieldName | field of a collection

Start operators can be used to start a new processing (sub)task in the query.
Their inputs are collections coming from a persistent database or from the in-
termediate results databases /R. Their output is a new temporary collection
computed from input collections.

Carry on operators can continue the processing (sub)task. They implicitly
take the temporary collection and possibly produce a new version of it. Fur-
thermore, they can store collections into the intermediate results database IR,
or into a persistent databases.

Hereafter, we will make use of terms reported in Table to introduce the
syntax of operators and explain their behaviours.

Regarding the notation for the syntax of operators, we will make use of the
symbol to denote denote 0 or more repetitions and of the + symbol to denote
1 or more repetitions; square brackets denote optionality; the vertical bar |
separates alternatives. For example, ([dbName. [collectionName)+ denotes that
a non empty list of collection names is required, where each one could come
from a persistent database (when the optional dBName. is specified) or from the
intermediate results database /R (when the optional dBName. is not specified).

3.5.1 Start Operators

GET COLLECTION

The GET COLLECTION operator permits to get a collection from a database
(persistent or intermediate) and make it the new temporary collection. The
syntax of the operator is:

GET COLLECTION [dbName.]collectionName;

When the dbname is specified, the JSON collection named collectionName
is retrieved from the persistent database named dbname; otherwise, it is re-
trieved from the intermediate result database IR.

OVERLAY COLLECTIONS

The OVERLAY COLLECTIONS operator makes the geospatial join between
two collections; the result becomes the new temporary collection. The in-

88

3.5. J-CO Operators

put collections can come from a persistent database or the intermediate results
database IR. The syntax of the operator is hereafter.

[LEFT |RIGHT |FULL] OVERLAY COLLECTIONS [dbName.]collectionNamel,
[dbName.]collectionName?2

[ON selectionCondition]

KEEP (INTERSECTION | RIGHT |LEFT|ALL);

The output of the OVERLAY COLLECTIONS operator is a JSON
collection containing the result of the geospatial join between db-
Name.collectionNamel (left collection) and dbName.collectionName?2 (right
collection). For each object /; in the left collection and an object r; in the right
collection, an object o, ; appears in the output collection if the geometries of /;
and r; overlaps (intersect), and the optional selectionCondition (expressed on
fields of the two objects) is true. The output object o; ; has three fields: one
with the name of the left collection and contains object /;, one with the name
of the right collection and contains object 7;, a geometry field.

The KEEP clause permits to specify the content of field geometry. If
KEEP INTERSECTION is specified, field geometry in o; ; represents the
spatial intersection (for instance, the intersection of two crossing line is a
point); if KEEP LEFT (resp., KEEP RIGHT) is specified, field geometry
in o; ; represents the full geometry of the left object /; (resp., of the right object
r;); if KEEP ALL is specified, field geomet ry in o, ; represents the union of
geometries in both the left object /; and the right object r;.

The alternative options LEFT, RIGHT and FULL at the beginning of the
operator slightly change the behaviour of the operator when specified. If the
LEFT (resp., RIGHT) option is specified, all non-matching objects [, in the
left collection (resp., all non-matching objects 7 in the right collection) have
a corresponding object 0, in the output collection, such that the field in o
corresponding to the right (resp., left) object is not present, and its geomet ry
field coincides with the geometry of [, (resp., 7). The FULL option specifies
that all non-matching objects [}, and 7;) must have a corresponding object oy,
in the output collection.

Example 2. Consider collection Buildings shown in Listing and col-
lection WaterLine shown in Listings stored in database ToyuDB. Suppose
we are a company committed to perform maintenance of water lines. Thus, we
want to know which water lines passes below which buildings in city "City
A". The query is the following:

OVERLAY COLLECTIONS ToyDB.Buildings, ToyDB.WaterLines
ON Buildings.City = "City A"
KEEP INTERSECTION;

The operator performs a geospatial join between each object b; in collection
Buildings and each object w; in collection WaterLines, in such a way the

89

Chapter 3. J-CO query language

geospatial representations of b; and wj intersect. In practice, we are interested
in discovering which water lines passes below which building. The output
collections :

[
{
Buildings: {
"name":"buildingA",
"city":"city A",
"address":"address A",
"geometry":{"type":"GeometryCollection",
"geometries": [
{
"type": "Polygon",
"coordinates": [
[[100.0, 0.0],

[101.0, 0.0],
[101.0, 1.0],
[100.0, 1.0],
[100.0, 0.0]]]

]
}
}s
Waterlines: {
"name":"WaterLineA",
"city":"city A",
"geometry":{"type":"GeometryCollection",
"geometries": [
{
"type": "LineString",
"coordinates":
[[%90.0, 0.0],
[103.0, 1.0],
[104.0, 0.0],
[105.0, 1.0]]
}
]
}
}I
"geometry":{
"type": "LineString",
"coordinates":
[[100.0,0.7692307692307692],
[101.0,0.8461538461538461]]
}
}
]

Notice that field Buildings contains the matching object b; coming from the

90

3.5. J-CO Operators

left collection, while field Wat erLines contains the matching object w j com-
ing from the right collection; field geometry is the GeoJSON representation of
the geospatial intersection between geometries of objects b; and wj, that in our
cases is a line. Notice that we obtain only one pair, related to city "City A",
because it is the only one that actually overlays and the city of the building is
the required one.

JOIN COLLECTIONS

The JOIN COLLECTIONS operators makes the no-geospatial join between
two collections. W.r.t. operator OVERLAY COLLECTIONS, the JOIN
COLLECTIONS operator works on non-geospatial fields. The syntax of op-
erator is hereafter.

[LEFT |RIGHT |FULL] JOIN COLLECTIONS [dbName.]collectionNamel,
[dbName.]collectionName2
ON joinCondition;

The output of the JOIN COLLECTIONS operator is a JSON collec-
tion obtained by pairing objects in both collections. For each object [;
in dbName.collectionNamel (left collection) and for each object r; in db-
Name.collectionName?2 (right collection), an object o; ; appears in the output
collection if the joinCondition is true for the pair /;,7;. The output object o; ;
contains two fields: the first one has the name of the left collection and con-
tains object [;, while the second one has the name of the right collection and
contains object r;.

Similarly to the OVERLAY COLLECTIONS operator, the alternative op-
tions LEFT, RIGHT and FULL at the beginning of the operator slightly change
the behaviour of the operator, when specified. If the LEFT (resp., RIGHT)
option is specified, all non-matching objects I, in the left collection (resp.,
all non-matching objects 7, in the right collection) have a corresponding ob-
ject o in the output collection, such that the field in o5 corresponding to the
right (resp., left) object is not present. The FULL option specifies that all non-
matching objects /;, and 7,) must have a corresponding object 0, in the output
collection.

Example 3. Suppose we are the same company of Example We need to
associate restaurants to buildings, based on their address. We can write the
following query.

JOIN COLLECTIONS ToyDB.Buildings, ToyDB.Restaurants
ON Buildings.City=Restaurants.City AND
Buildings.Address=Restaurants.Address;

The join condition specifies that objects must be pairs if their cities and
their address coincides. The output collection is reported in the listing below.
Notice that no attribute geomet ry is present at the top level.

91

Chapter 3. J-CO query language

[{
{"name":"buildingA",
"city":"city A",
"address":"address A",
"geometry":{"type":"GeometryCollection",
"geometries": [

{

"type": "Polygon",
"coordinates": [
[[100.0, 0.0],
[101.0, 0.0],
[101.0, 1.0],
[100.0, 1.0],
[100.0, 0.0]]]
}
]
}
}/
{
"name":"RestaurantA",
"city":"city A",
"address":"address A"

}
}

The join in example can be useful in order to get restaurant position infor-
mation from its address.
MERGE COLLECTIONS

The MERGE COLLECTIONS operator merges the content of two or more col-
lections into the temporary collection. Here is its syntax.

[ALL] MERGE COLLECTIONS [dbName.]collectionName
(, [dbName.]collectionName) +;

When the option ALL is not specified, the operator removes duplicate ob-
jects, possibly coming from different collections. When the ALL option is
specified, duplicate objects are not removed. The operator exploits the het-
erogeneous nature of JSON collections: objects with different structure can be
stored together without any limitation.

INTERSECT COLLECTIONS

The INTERSECT COLLECTIONS operator makes a set-intersection between
collections and puts the resulting collection into the temporary collection.

INTERSECT COLLECTIONS [dbName.]collectionNamel,
[dbName.]collectionName?2;

92

3.5. J-CO Operators

The INTERSECT COLLECTIONS performs a deep equality matching:
only identical objects present in both the input collections matches and only
one single occurrence of them is put into the output collection.

SUBTRACT COLLECTIONS

The SUBTRACT COLLECTIONS operator makes a setoriented -subtraction
between collections and puts the resulting object into the temporary collection.

SUBTRACT COLLECTIONS [dbName.]collectionNamel,
[dbName.]collectionName?2;

The SUBTRACT COLLECTIONS returns a JSON collections containing
all objects in dbName.collectionNamel without an identical object (based on
deep equality matching) in dbName.collectionName2.

3.5.2 Carry on Operators

This group encompasses operators whose input collection is the temporary col-
lection and possibly generate a new version of it. They are suitable to perform
continued transformations on one single collection, thus avoiding the need to
continuously refer to collections.

FILTER

The FILTER operator permits to filter objects in the temporary collection, ac-
cording to some selection conditions, and possibly change the structure of se-
lected objects. The operator is designed to deal with the heterogeneous nature
of JSON collections; for this reason, the syntax is more articulated than other
operators.

FILTER
(CASE:
(fieldName = value (,fieldName = value)x |
WITH fieldName (, fieldName) » |
WITHOUT fieldName (, fieldName) %)+
[WHERE selectionCondition]
[PROJECT fieldName (,fieldName) x])+
(KEEP OTHERS |DROP OTHERS) ;

The FILTER operator contains one or more CASE branches. Each CASE
branch specifies a subset of objects to select by means a list of selectors. Three
types of selectors are provided: equal conditions on fields; WITH selectors, that
asks for objects with the specified field name; WITHOUT selectors, that ask for
objects without the specified field name. For any objects in the input temporary
collection that matches with the specified selectors, the WHERE clause, if spec-
ified, is evaluated and if it is false, the object is discarded, otherwise the object
is kept. Finally, if the PROJECT clause is specified, the object is projected on

93

Chapter 3. J-CO query language

the specified list of fields, in order reduce the number of fields or extract (by
means of a dot notation) fields nested in object fields.

If more than one CASE branch is specified, they are evaluate in the order:
an object is handled by the first branch that matches with it.

The alternative clauses KEEP OTHERS and DROP OTHERS specifies what
to do with objects that do not match any CASE branch. If KEEP OTHERS is
specified, these objects are put into the output collection; if DROP OTHERS is
specified, these objects are not put into the output collection.

Example 4. Consider Restaurants shown in Listing|3.8|which represents some
restaurant. We are only interested in the names of restaurants in city "city
C" having the geometry. The query is hereafter.

GET COLLECTION ToyDB.Restaurants;
FILTER
CASE: city="city C" WITH geometry
PROJECT name
DROP OTHERS;

The GET COLLECTION operator retrieves the initial Restaurants col-
lection from the persistent database; this collection becomes the new tempo-
rary collection. The FILTER operator carries on the process.

Only one CASE branch is sufficient for our purpose, with two selectors:
the first one is an equal condition on field City; the second one is a WITH
selector on field geometry. As a result, only one object in our sample
Restaurants collection will be selected, and then projected on the field
name. Other possibly not matching objects are dropped.

The new temporary collection produced by the operator is hereafter.

[{

"name":"RestaurantC"

H

Notice the very simple structure of the resulting object.

GROUP BY

The GROUP BY operator groups objects in the input temporary collection
based on a list of grouping fields. Here is its syntax.

GROUP BY fieldName (,fieldName)
INTO fieldName
[SORTED BY fieldName (,fieldName) *];

The GROUP BY operator groups the objects in such a way a group contains
all the objects o4, . . . , 0, having the same values for field names specified after
the GROUP BY jeywords.

94

3.5. J-CO Operators

For each group, an object g, appears in the output temporary collection,
such that it has all the grouping fields and a field vector containing objects
01, . . ., 0n; the name of this field is specified in the clause INTO.

Finally, the optional clause SORTED BY specifies whether to sort objects
into the vector fields. If so, the following field names are the sort keys.

Notice that the output temporary collection contains as many objects as the
number of groups.

Example 5. Consider collection WaterLines shown in Listing We might
be interested in grouping water lines by their city. The query is hereafter.

GET COLLECTION ToyDB.WaterLines;
GROUP BY city
INTO waterLineCity;

The GET COLLECTION operator retrieves the WaterLines collection
from the persistent database and makes it the new temporary collection,
on which the GROUP BY operator works. Water lines are grouped by at-
tribute City, the name given to the vector field containing grouped objects
is waterLineCity. Here is the output temporary collection.

[{"city":"city A",
"waterLineCity": [
{"name" : "WaterLineA",
"city":"city A",
"geometry":{"type":"GeometryCollection",
"geometries": [
{"type": "LineString",
"coordinates":
[(90.0, 0.0],
[103.0, 1.0],
[104.0, 0.0],
[105.0, 1.0]]

}r

{"name":"WaterLineB",
"city":"city A",
"geometry":{"type":"GeometryCollection",
"geometries": [
{"type": "LineString",
"coordinates":
[[102.0, 10.0],
[103.0, 2.0],
[104.0, 1.0],
[102.0, -1.0]]

95

Chapter 3. J-CO query language

}]
}I
{"city":"city C",
"waterLineCity": [
{"name" : "WaterLineC",
"city":"city C",
"geometry":{"type":"GeometryCollection",
"geometries": [
{
"type": "LineString",
"coordinates":
[[104.0, 10.0],
[105.0, 2.0],
[109.0, 1.0],
[110.0, -1.0]]

H
}]

The output contains an object which represent the group for city A (first
object) and an other object which represents the grouping for city C (second
object). The first object contains a field name (grouping field) with value city
A and a field waterLineCity which contains all objects of the Listings|3.7|with
the field city equals to ’city A” (grouped objects). The second object has the
same structure but the grouping field is City C.

SET INTERMEDIATE AS

The SET INTERMEDIATE AS operator stores the input temporary collection
into the intermediate results database [R. The syntax of operator is:

SET INTERMEDIATE AS collectionName;

Note that collectionName is the name given to the new temporary collection
into the intermediate results database.
SAVE AS

The SAVE AS operator saves the input temporary collection into a persistent
database.

SAVE AS dbName.collectionName;

The name of the new collection stored into the persistent database dbName
is collectionName.

96

wn W N =

3.6. Complete Example

DERIVE GEOMETRY

The DERIVE GEOMETRY operator is used to manage geospatial fields, when
geospatial fields of JSON input are not conform to the J-CO data model. The

input collection is the temporary collection created by previous operator. The
syntax of operator is:

DERIVE GEOMETRY (POINT (latFieldName, lonFieldName) | fieldName) ;

The DERIVE GEOMETRY operator adds the geomet ry field to each ob-
ject o; in the input temporary collection. If the POINT pair is specified, the
values of the two specified fields plays the role, respectively, of latitude and
longitude. If a simple fieldName is specified, this is intepreted as a GeoJSON
specification whose name is not geomet ry, or, in case of dot notation expres-
sion, it can be in some nested objects.

3.6 Complete Example

tef] | IR={}
GET COLLECTION
(ROW 1)
| tc[B] | IR={} |

te[Bea] | IR=(}

SAVE AS
(ROW 18)

tc[Fr] | IR={Bca,Bwca} I pp—

| tc[Jbr] | IR={Bca,Bwca} |

JOIN COLLECTIONS
(ROW 10)

| tc[Bwca] | IR={Bca,Bwca} |

FILTER
(ROW 2)
SET INTERMEDIATE AS

(ROW 9)

tc[Bwca] | IR={Bca}

SET INTERMEDIATE AS
(ROW 5)

OVERLAY
COLLECTIONS
(ROW 6)

tc[Bca] | IR={Bca}

Figure 3.1: Execution Model example.

In order to show the effectiveness of J-CO for complex tasks, we wrote the
query in Listings based on the collections stored in our sample DB named
ToyDB. The goal is to extract the names of restaurants located in buildings in
city A under which some water lines pass. This query is useful for the water
lines maintenance in the city A.

Listing 3.9: Complete Example

GET COLLECTION ToyDB.Buildings;
FILTER

CASE: city="city A" WITH geometry
DROP OTHERS;

SET INTERMEDIATE AS BuildingsCityA;

97

[c<BEN o)

11
12
13
14
15

Chapter 3. J-CO query language

OVERLAY COLLECTIONS BuildingsCityA, ToyDB.WaterLines
KEEP INTERSECTION;
SET INTERMEDIATE AS BWCityA;
JOIN COLLECTIONS BWCityA, ToyDB.Restaurants
ON BWCityA.BuildingsCityA.address = Restaurants.address;
FILTER
CASE: WITH name
PROJECT Restaurant.name
DROP OTHERS;
SAVE AS ToyDB.RestaurantsWL;

Figure shows the execution model of the example. It shows how the
temporary collection and intermediate database / [? change during the process.
In Figure for lack of space, we used abbreviated names with the following
meaning:

e B means ToyDB.Buildings,

e Bca means BuildingsCityA,

e Bwca means BWCityA,

e Jbr means Output of the join operator
e F'r means Output of second filter

Moreover, with term fc, we indicate the temporary collection and with term
IR, we denote the intermediate database. Rectangles represent the system status
and show how the temporary collection and intermediate database / R change
during the query process.

The query process works as follows:

3.6.1 New Task

The query starts a new task using the GET COLLECTIONS operator (which
is a Start operator). The GET COLLECTION (see row 1) outputs the
ToyDB.Buildings (shown in Listings [3.6), into the temporary collection.
The Figure shows that the element B (ToyDB.Buildings) has become
the new fc.

The temporary collection is now the input collection for the FILTER oper-
ator. It keeps any buildings located in “city A” which have the field geometry
(see its CASE branch). The result becomes the new temporary collection. Fig-
ure[3.1]shows that the element Bca (BuildingsCityA) has become the new
tc. All others buildings are dropped (see the DROP OTHERS option).

The temporary collection produced by FILTER is then saved into the /R
by the SET INTERMEDIATE AS operator. This operator saves fc into I R,
naming the collection as BuildingsCityA (see row 5). Figure shows
that the element Bca (BuildingsCityA) has been added to I R.

98

3.7. J-CO Engine

3.6.2 Subtask 1

In row 6 the OVERLAY COLLECTIONS operator starts a new subtask. This
operator makes a geospatial join between collection BuildingsCityA
(previously stored in the intermediate results database /R) and collection
ToyDB.WaterLines (retrieved from the persistent database ToyDB). It out-
puts the geospatial intersection (see KEEP INTERSECTION clause). The out-
put will be saved as the new temporary collection zc. Figure [3.1{shows that the
element Bwca (BWCityA) has become the new fc.

The following SET INTERMEDIATE AS operator in row 9 saves the
temporary collection generated by the OVERLAY COLLECTIONS operator
into I R with the name BWCityA. Figure shows that the element Bwca
(BWCityA) has been added to I RR.

3.6.3 Subtask 2

Inrow 10 the JOIN COLLECTIONS operator starts the final subtask. This op-
erator makes a join between the intermediate collection BWCityA (retrieved
from [/ R) and the collection ToyDB.Restaurants (retrieved from the per-
sistent database ToyDB). It outputs the join between buildings and restaurants
which have the same address (see the ON clause). The output becomes the new
temporary collection. Figure shows that the element Jbr (output of the
join) has been the new fc.

The temporary collection generated by JOIN COLLECTIONS, is then fil-
tered by the FILTER operator. The operator (see row 14) keeps any restaurants
which have field name (see, the CASE branch) and projects them on the name
of this restaurants (see the PROJECT clause), generating a new temporary col-
lection. Figure|3.1|shows that the element F r (output of the FILTER operator)
has become the new fc. All others objects are dropped (see the DROP OTHERS
clause).

Finally, the current temporary collection tc, which indeed contains the de-
sired restaurant names, is saved into the persistent database named ToyDB by
the SAVE AS operator, with name Restaurant sWL. Figure shows that
the element Fr (output of the filter) is saved into persistence database 7ToyDB.

The reader can observe that the query is easy to read and rather intuitive as
far as its execution is concerned.

3.7 J-CO Engine

In order to prove the feasibility of our approach, we developed a prototype
version of the J-CO Engine. In Subsection we present the architecture;
in Subsection we discuss a performance evaluation that encourages us to
carry on the research.

99

Chapter 3. J-CO query language

Parser

Query Planner

Executor

Driver Manager

J-CO Engine

‘MongoDB Driver ‘

v

9 mongo
&

00806

Figure 3.2: Architecture of J-CO Engine.

MongoDB Service

3.7.1 Architecture

J-CO Engine is written in Java; it is designed to be an external tool w.r.t. Mon-
goDB: this choice makes the tool substantially independent of the DBMS tech-
nology, and opens the way to make J-CO engine able to operate on several
others DBMSs. The architecture of J-CO Engine is reported in Figure 3.2

The stack of components includes the Parser, that transform the query text
into an internal representation received by the Planner. This component gener-
ates the execution plan by relying on an internal object-oriented representation.
The Executor controls the execution of each single instructions in the query
plan, manage main memory usage and temporary collections and the interme-
diate results database. When necessary, it interacts with the Driver Manager,
that at the moment includes only the MongoDB Driver, but in the future will
includes drivers for other DBMSs and data sources. The Driver Manager inter-
acts with MongoDB to retrieve collections, store result collections and, when
necessary (in case of low levels of available memory) transfers intermediate
collections to MongoDB.

The query plan is represented as a vector of objects defined on the abstract
class JCO_Executable, from which specific and non-abstract subclasses are de-
rived, one for each J-CO operator (see Figure 3.3). By exploiting polymor-
phism, the Executor calls the execute_operator method of each object,
providing references to its internal component to get input collections, store
the temporary collection, the intermediate collections and save collections to
the persistent database. The execute_operator can call these components
when necessary.

The implementations of the operators make use of some libraries, neces-

100

3.7. J-CO Engine

JCO_Executable

\
‘ Carry_On_Operator ‘
T
\

| ‘ [] | | |
Get_Collection Join_Collections ‘ ‘ Filter ‘ ‘ Save ‘
|

‘Overlay_CoIIections ‘ ‘ Merge ‘ ‘ Dérive_Geometry ‘ ‘Group_By ‘

Figure 3.3: Class hierarchy for JCO_Executable objects used to build the query plan.

sary to an efficient implementation. In particular, LocationTech Spatial4 and
Tsusiat Software Java Topology Suite || are used to deal with spatial repre-
sentations, while David Moten’s R-tree/R*-tree in memory indexin 1s used
to build main-memory spatial indexes necessary to implement the OVERLAY
COLLECTIONS operator.

Main-memory indexes are important to accelerate the execution of complex
operators, such as GROUP BY and JOIN COLLECTIONS. In both case, we
create main-memory indexes on the fly, so that we can perform equi-join oper-
ations (currently, we support only the equality predicate in join conditions) or
grouping with linear complexity, after the indexes are built.

A similar approach is used for the OVERLAY COLLECTIONS operator.
A spatial index on-the-fly over the geometry field of the left collection using
the R*-Tree library. For each element of the right collection, a search on the
index is done and all the documents of the left collection that intersect with
the geometry of the element are retrieved. For each pair, a new JSON object is
generated and inserted into the new temporary collection.

3.7.2 Performance Evaluation

Operation Size of C1 | Size of C2 | Size of Output | Indexing time | computation time | Total time
JOIN COLLECTIONS 25360 25360 446768 194.95 62,6 257.55
OVERLAY COLLECTIONS 176 25360 21336 245.1 3455.3 3700.4
OVERLAY COLLECTIONS 176 111993 111993 870.4 14808.9 15679.3
GROUP BY 1 field 25360 6 201 212.1 413.1
GROUP BY 2 fields 25360 3058 1929 229 421.9
GROUP BY 3 fields 25360 11854 193.6 248.1 441.7
DERIVE GEOMETRY 25360 25360 220.5 220.5

Table 3.3: Execution times (in msec) observed during the experiments.

Uhttps://github.com/locationtech/spatial4j
2JTS - http://tsusiatsoftware.net/jts/main.html
3https://github.com/davidmoten/rtree

101

Chapter 3. J-CO query language

In order to have a first validation of our approach, we ran some experiments
with the prototype of the J-CO Engine. We made the experiments on a Mac-
Book Pro Retina, equipped with an Intel i7 Quad Core processor with 2,5 GHz
clock-rate, 16 GB RAM e a SS hard disk.

We used two data sets available on the internet. The first one is named
restaurants.json and contains about 26500 objects with point geometry. The
second one is named countries.geo.json and describes the polygon geometry
of 180 countries.

In Table we report the execution times (in msec) we measured during
tests; each experiment was repeated 10 times and we report the average execu-
tion times.

We tested the most critical operators, i.e., the JOIN COLLECTIONS fam-
ily, the OVERLAY COLLECTIONS and the GROUP BY operators. Further-
more, we also tested the DERIVE GEOMETRY with the POINT option.

In the table, columns Size of CI and Size of C2 report the number of objects
in the input collections; column size of output reports the number of objects in
the output collection; columns Indexing time, Computation time and Total time
reports, respectively, the execution time neded for the indexing phase (when
done), the execution time for the computation phase (generation of the output
objects) and the total execution time of the operator.

As far as the JOIN COLLECTIONS operator is concerned, we tested it by
joining the collection restaurants.json with itself. Notice that, even though the
number of potential pairs was 25360 x 25360, the total execution time is only
a quarter of second.

As far as the OVERLAY COLLECTIONS operator is concerned, we over-
laid collection countries.geo.json (countries) with collection restaurants.json
(restaurants). In order to stress the implementation, in the second experi-
ment with the OVERLAY COLLECTIONS operator, we duplicated the restau-
rants.json collection to get to 111993 objects. The execution times show that
this is the slowest operator, but 3 secs and 15 secs are acceptable times for users
(notice that the time needed to build the R*-tree index is negligible).

The GROUP BY operator was tested on collection restaurants.json (restau-
rants) with three different settings: 1, 2 and 3 grouping fields. Observe that the
execution times are substantially stable and less than half second is needed.

Finally, the DERIVE GEOMETRY with the POINT option has been tested
on collection restaurants.json (restaurants). It is able to process about 150000
objects in a quarter of sec.

The results show that the approach is correct. Even though some operators
could appear too complex to process, the J-CO engine is able to execute them
producing results in seconds or tenth of seconds, depending on the operators.
Consequently, we can expect that complex queries can be processed in min-
utes. Thus, the J-CO query language is effective as far as execution time is

102

3.8. Related Work

considered.

3.8 Related Work

J-CO moves from our previous work on the problem of querying heteroge-
neous collections of complex spatial data [21,59]. In those work, we proposed
a database model able to deal with heterogeneous collections of possibly nested
spatial objects, based on the composition of more primitive spatial objects; at
the same time, an algebra to query complex spatial data is provided, inspired
by classical relational algebra. W.r.t. those works, J-CO rely on the JSON stan-
dard, thus we do not define an ad-hoc data model; furthermore, J-CO abandon
the typical relational algebra syntax, because it relies on a more flexible and
intuitive execution model.

The adoption of NoSQL databases is motivated by the need of flexibility,
as far as data structures are concerned. In interesting survey about NoSQL
databases in [38]], where several systems are catalogued and classified. In par-
ticular, a DBMS like MOngoDB falls into the category of document databases,
because collections of JSON objects are generically considered as documents.
Consequently, the query language provided by such systems does not allow
complex and multi-collection transformations like those provided by J-CO
(see the web sites reported in the footnot for details). Readres interested
in NoSQL DBMSs evaluation can refer to [63]] and to [24].

As far as query language for JSON objects are concerned, the closest pro-
posal is Jagl [52]. It was designed to help Hadoop [71] programmer writing
complex transformations, avoiding low-level programming, to perform in a
cloud and parallel environment. Flexibility and physical independence are the
main goals of Jaql: in particular, its execution model is similar to our execution
model, since it explicitly relies on the concept of pipe; in fact, the pipe operator
is explicitly used in Jaql queries. However, it is still oriented to programmers;
its constructs are difficult to understand for non programmer users, while J-CO
constructs are at a higher level and truly declarative.

On the same track of query languages for improving MapReduce/Hadoop
programming, we cite ChuQL [43]], which deals with XML documents (not
JSON objects, even though an XML is logically related to JSON). Compared
to Jagl, ChuQL is even worst, in the sense that its constructs are still too pro-
grammatic; thus, it is not suitable for non programmers.

An interesting language is Pig Latin [54], a query language developed by
Yahoo for writing complex analysis tasks on nested (1-NF, first normal form)
data sets on top of Hadoop; thus, JSON collections are implicitly included. Pig
Latin’s constructs have names similar to J-CO constructs, however, it strongly

4MongoDB: https://www.mongodb.com/
CouchDB: http://docs.couchdb.org/en/2.0.0/

103

Chapter 3. J-CO query language

relies on the concept of variables: the result of each statement must be explic-
itly assigned to a variable, that can be later referred to by other statements; in
contrast, J-CO provides the concepts of temporary collection and intermediate
results database. The DryadLINQ language, presented in [72], follows a very
similar approach to Pig Latin’s approach.

J-CO is instead thought as a language oriented to non programmers. In
our mind, we would like to replicate what happened with SQL, that enabled
database querying to non technicians. Furthermore, J-CO provides operators
for transforming geo-referenced objects, that is a common lack of other lan-
guages.

Since JSON and XML are both suitable for representing semi-structured
documents, it is worth mentioning the mostly known languages for query-
ing XML documents. The first to mention is XPath [19], that allows to write
path expressions to retrieve elements in a single XML document. On the ba-
sis of XPath, a complex language designed to work on collections of XML
docuemtns is XQuery. Among all features, it provides constructs to generate
new documents, as well as the possibility to express complex queries. How-
ever, it is still oriented to programmes and not to non programmer users.

Finally, our proposal is somehow related to the world of PolyStore DBMS,
i.e., database management systems that deal with several DBMS at the same
time, each of them possibly providing a different logical model, such as rela-
tional, graph, JSON, pure-text, images, videos. An interesting work on this
topic is BigDAWG [31,36]. Among all features, the support to querying relies
on the query languages provided by the integrated DBMSs, enriched with a
couple of instructions that permit to transform data from one model to another
(CAST) and to specify where to store a query results.

Even considering a more classical enterprise environment, where images
and video are not considered, the concept of PolyStore DBMS is relevant. An
example is the QUEPA (QUerying and Exploring a Polystore by Augmenta-
tion) system, that provides a solution to give a uniform view of relational DB,
data warehouse, JSON data. In this perspective, J-CO could play a signifi-
cant role in a PolyStore environment, since relational data, CSV files and spa-
tial data managed by spatially augmented object-relational DB such as Post-
greSQL/PostGIS can be viewed as non-nested JSON/GeoJSON objects.

3.9 Evaluation of J-CO query language

In this research, we proposed a query language, named J-CO, specifically de-
vised to query heterogeneous collections of JSON objects stored in a NoSQL
document DBMS such as MongoDB. The idea is to provide non-programmer
users with a declarative query language able to handle JSON collections in
such a way objects can be filtered, recombined and aggregated in a flexible

104

3.9. Evaluation of J-CO query language

way. Geo-referenced objects can be queried by means of the Overlay op-
erator, allowing the specification of complex spatial queries in a very simple
way. The execution model on which the J-CO query language relies is, simple,
intuitive, and suitable to express complex queries based on several subtasks.
Furthermore, J-CO overcome typical limitations of query languages provided
by document DBMSs, that are usually unable to combine collections in a flex-
ible way.

The prototype we realized demonstrates the feasibility of the approach, and
the performance we obtained, even though the implementation is not particu-
larly optimized, are encouraging. We expect, at the end of development, that
J-CO could become a powerful and effective tool for querying databases of
JSON collections.

At this moment, we do not think J-CO is complete. We are planning to
extend current operators with new features able to better deal with nesting,
such as specific aggregation functions possibly based on geo-references. But
above all, we are going to define new powerful operators for spatial analysis
over big data, since territorial analysis (with the contribution of possibly geo-
referenced open data published by institutions) are becoming more and more
important in day-by-day life of institutions and citizens.

105

Conclusions

HE model-based techniques presented in this thesis have shown, also
through some experimental results, the efficacy and the advantages
given by their use in the design of modern systems.

SCA-PatternBox is a framework for modeling service-oriented applications
with design patterns that also permits the validation and verification of their
behavior. The framework allows the definition and the semi-automated ap-
plication of design patterns into the design of a service-oriented software ar-
chitecture. SCA-PatternBox facilitates the construction of a service-oriented
application and helps engineers understand alternative means for achieving al-
ternative architectures in the application’s design and code. We evaluated the
usability and usefulness of the framework on the Order system case study and
on a quality-driven adaptation scenario of the Stock Trading System [60] where
patterns and tactics required would have been difficult to apply and combine
manually without the availability of a tool like SCA-PatternBox.

Security Enhanced Docker study improves the use of SELinux in Docker.
Two techniques have been presented: Docker Policy Module (DPM) improves
the use of the SELinux Type Enforcement (TE) model, in Docker, associat-
ing specific policy rules to the processes inside the containers using SELinux
modules; Category minimization problem improves the use of the SELinux
Multi Category Security (MCS) model, in Docker, associating specific cate-
gories with each element in the system. These improvements ensure greater
system security giving to the containers only the rules that are needed in order
to perform their functionality. The experiments showed that Category mini-
mization problem permits to save many system resources (few categories are
needed to satisfy a large policy) and the time needed to obtain a solution is
not critical. Moreover, this technique also protects Data Volume Containers.

107

Chapter 3. J-CO query language

These techniques permit to ensure system security saving many resources.
J-CO query language was devised to query heterogeneous collections of
JSON objects stored in a NoSQL document DBMS such as MongoDB. It pro-
vides non-programmer users with a declarative query language able to handle
JSON collections in such a way that objects can be filtered, recombined and
aggregated in a flexible way. J-CO query language permits to execute com-
plex queries (also on Geo-references objects) in a simple way. The prototype
demonstrates the feasibility of the approach, and the performance obtained is
encouraging even though the implementation is not yet optimized.

108

Bibliography

[1] Apache tuscany. http://tuscany.apache.org/.
[2] Asmeta website. asmeta.sourceforge.net/.

[3] Oasis service component architecture (sca). http://www.oasis-
opencsa.org/sca/.

[4] Patternbox website. http://www.patternbox.com/.

[5] Sca-patternbox repository. https://github.com/stevencapelli/SCA-
PatternBOX.

[6] Topology and orchestration specification for cloud applications (tosca).
http://docs.oasis-open.org/tosca/tosca/vl.0/os/tosca-v1.0-0s.html.

[7] Apparmor. http://wiki.apparmor.net/, 2016.

[8] The geojson format specification. http.//geojson.org/geojson-spec.html,
2016.

[9] Introducing json. http://www.json.org/index.html, 2016.

[10] Introduction to mongodb. https://docs.mongodb.com/manual/introduction/,
2016.

[11] What is docker? https://www.docker.com/what-docker, 2016.

[12] What is open data? http.//opendatahandbook.org/guide/en/what-is-open-
data/, 2016.

109

Bibliography

[13] Elvinia Riccobene Patrizia Scandurra Alessandro Carioni, Angelo Gar-
gantini. A scenario-based validation language for asms. In International
Conference on Abstract State Machines, B and Z, pages 71-84. Springer,
2008.

[14] Ian Stark Alex Blewitt, Alan Bundy. Automatic verification of design
patterns in java. In Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pages 224-232. ACM,
2005.

[15] Patrizia Scandurra Angelo Gargantini, Elvinia Riccobene. A metamodel-
based language and a simulation engine for abstract state machines. J.
UCS, 14(12):1949-1983, 2008.

[16] Ralf Reussner Anne Koziolek, Heiko Koziolek. Peropteryx: auto-
mated application of tactics in multi-objective software architecture op-
timization. In Proceedings of the joint ACM SIGSOFT conference—
QoSA and ACM SIGSOFT symposium—ISARCS on Quality of software
architectures—QoSA and architecting critical systems—ISARCS, pages 33—
42. ACM, 2011.

[17] Paraboschi Stefano Bacis Enrico, Mutti Simone. Apppolicymodules:
mandatory access control for third-party apps. In Proceedings of the 10th
ACM Symposium on Information, Computer and Communications Secu-

rity, pages 309-320. ACM, 2015.
[18] Kyle Banker. MongoDB in action. Manning Publications Co., 2011.

[19] Anders Berglund, Scott Boag, Don Chamberlin, Mary F Fernandez,
Michael Kay, Jonathan Robie, and Jérome Siméon. Xml path language
(xpath). World Wide Web Consortium (W3C), 2003.

[20] Kenneth J Biba. Integrity considerations for secure computer systems.
Technical report, DTIC Document, 1977.

[21] Gloria Bordogna, Marco Pagani, and Giuseppe Psaila. Database model
and algebra for complex and heterogeneous spatial entities. In Progress
in Spatial Data Handling, pages 79-97. Springer, 2006.

[22] Thanh Bui. Analysis of docker security. arXiv preprint
arXiv:1501.02967, 2015.

[23] H Butler, M Daly, A Doyle, S Gillies, S Hagen, and T Schaub. The
geojson format. Technical report, 2016.

[24] R. Cattell. Scalable sql and nosql data stores. SIGMOD Record, 39
(4):12-27, 2011.

110

Bibliography

[25] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: a survey. Mobile
Networks and Applications, 19(2):171-209, 2014.

[26] T Edwin Chow. Geography 2.0: A mashup perspective. Advances in
web-based GIS, mapping services and applications, pages 15-36, 2011.

[27] Wuwei Shen Dae Kyoo Kim. Evaluating pattern conformance of uml
models: a divide-and-conquer approach and case studies. Software Qual-
ity Journal, 16(3):329-359, 2008.

[28] John Grundy David Mapelsden, John Hosking. Design pattern modelling
and instantiation using dpml. In Proceedings of the Fortieth International
Conference on Tools Pacific: Objects for internet, mobile and embedded
applications, pages 3—11. Australian Computer Society, Inc., 2002.

[29] R. Stéark E. Borger. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer Verlag, 2003.

[30] James H Cross Elliot J. Chikofsky. Reverse engineering and design re-
covery: A taxonomy. IEEFE software, 7(1):13-17, 1990.

[31] A Elmore, Jennie Duggan, Michael Stonebraker, Magdalena Balazinska,
Ugur Cetintemel, Vijay Gadepally, J Heer, Bill Howe, Jeremy Kepner,
Tim Kraska, et al. A demonstration of the bigdawg polystore system.
Proceedings of the VLDB Endowment, 8(12):1908-1911, 2015.

[32] Fabio Albani Elvinia Riccobene, Patrizia Scandurra. A modeling and ex-
ecutable language for designing and prototyping service-oriented applica-
tions. In 2011 37th EUROMICRO Conference on Software Engineering
and Advanced Applications, pages 4—11. IEEE, 2011.

[33] Patrizia Scandurra Elvinia Riccobene. A formal framework for service
modeling and prototyping. Formal Aspects of Computing, 26(6):1077—
1113, 2014.

[34] Thomas Erl. SOA Design Patterns. Prentice Hall, 2008.

[35] Somayaji Anil Forrest Stephanie, Hofmeyr Steven. The evolution of
system-call monitoring. In Computer Security Applications Conference,
2008. ACSAC 2008. Annual, pages 418-430. IEEE, 2008.

[36] Vijay Gadepally, Peinan Chen, Jennie Duggan, Aaron Elmore, Brandon
Haynes, Jeremy Kepner, Samuel Madden, Tim Mattson, and Michael
Stonebraker. The bigdawg polystore system and architecture. arXiv
preprint arXiv:1609.07548, 2016.

[37] Aldo Gangemi. Ontology design patterns for semantic web content. In
International semantic web conference, pages 262-276. Springer, 2005.

111

Bibliography

[38] Jing Han, E Haihong, Guan Le, and Jian Du. Survey on nosql database.
In Pervasive computing and applications (ICPCA), 2011 6th international
conference on, pages 363-366. IEEE, 2011.

[39] Toshiharu Harada, Takashi Horie, and Kazuo Tanaka. Task oriented man-
agement obviates your onus on linux. In Linux Conference, volume 3,
2004.

[40] David C Rine Jaeyong Park, Seok Won Lee. Uml design pattern
metamodel-level constraints for the maintenance of software evolution.
Software: Practice and Experience, 43(7):835-866, 2013.

[41] Gregor Kiczales Jan Hannemann. Design pattern implementation in java
and aspectj. In ACM Sigplan Notices, volume 37, pages 161-173. ACM,
2002.

[42] Amnon H Eden Rick Kazman Jonathan Nicholson, Epameinondas Gas-
paris. Verification of design patterns with lepus3. 2009.

[43] Shahan Khatchadourian, Mariano P Consens, and Jérdme Siméon. Hav-
ing a chugl at xml on the cloud. In AMW. Citeseer, 2011.

[44] D. Laney. 3-d data management: controlling data volume, velocity and
variety. Technical Report META Group Research Note, META Group,
February 2001.

[45] Zhen Hua Liu, Beda Hammerschmidt, and Doug McMahon. Json data
management: supporting schema-less development in rdbms. In Proceed-
ings of the 2014 ACM SIGMOD international conference on Management
of data, pages 1247-1258. ACM, 2014.

[46] Henri Habrias Marc Frappier. Software specification methods: an
overview using a case study. Springer Science & Business Media, 2012.

[47] Allouche Yair Corradi Antonio Dolev Shlomi Foschini Luca Mat-
tetti Massimiliano, Shulman-Peleg Alexandra. Securing the infrastructure

and the workloads of linux containers. In Communications and Network
Security (CNS), 2015 IEEE Conference on, pages 559-567. IEEE, 2015.

[48] Viktor Mayer-Schonberger and Kenneth Cukier. Big data: A revolution
that will transform how we live, work, and think. Houghton Mifflin Har-
court, 2013.

[49] Bill McCarty. Selinux: Nsa’s open source security enhanced linux.
O’Reilly Media, Inc., 2004.

112

Bibliography

[50] Tommi Mikkonen. Formalizing design patterns. In Proceedings of the
20th international conference on Software engineering, pages 115-124.
IEEE Computer Society, 1998.

[51] Paraboschi Stefano Mutti Simone, Bacis Enrico. Policy specialization to
support domain isolation. In Proceedings of the 2015 Workshop on Au-
tomated Decision Making for Active Cyber Defense, pages 33-38. ACM,
2015.

[52] Ameya Nayak, Anil Poriya, and Dikshay Poojary. Type of nosql
databases and its comparison with relational databases. [International
Journal of Applied Information Systems, 5(4):16—-19, 2013.

[53] University of Trier and Schloss Dagstuhl. Dblp. http://dblp.uni-trier.de/,
2016.

[54] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and
Andrew Tomkins. Pig latin: a not-so-foreign language for data process-
ing. In Proceedings of the 2008 ACM SIGMOD international conference
on Management of data, pages 1099-1110. ACM, 2008.

[55] Elvinia Riccobene Paolo Arcaini, Angelo Gargantini. Asmetasmv: a way
to link high-level asm models to low-level nusmv specifications. In Inter-
national Conference on Abstract State Machines, Alloy, B and Z, pages
61-74. Springer, 2010.

[56] Elvinia Riccobene Patrizia Scandurra Paolo Arcaini, Angelo Gargantini.
A model-driven process for engineering a toolset for a formal method.
Software: Practice and Experience, 41(2):155-166, 2011.

[57] Zachary Parker, Scott Poe, and Susan V Vrbsky. Comparing nosql mon-
godb to an sql db. In Proceedings of the 51st ACM Southeast Conference,
page 5. ACM, 2013.

[58] Steven Capelli Patrizia Scandurra. A practical and automated approach
for engineering service-oriented applications with design patterns. In
Computer Software and Applications Conference Workshops (COMP-
SACW), 2014 IEEE 38th International, pages 684—-689. IEEE, 2014.

[59] Giuseppe Psaila. A database model for heterogeneous spatial collections:
Definition and algebra. In Data and Knowledge Engineering (ICDKE),
2011 International Conference on, pages 30-35. IEEE, 2011.

[60] Patrizia Scandurra Raffaela Mirandola, Pasqualina Potena. Adaptation
space exploration for service-oriented applications. Science of Computer
Programming, 80:356-384, 2014.

113

Bibliography

[61] Sivakumar Chinnasamy Rajeev R Raje. elelepus-a language for speci-
fication of software design patterns. In Proceedings of the 2001 ACM
symposium on Applied computing, pages 600-604. ACM, 2001.

[62] Sudipto Ghosh Eunjee Song Robert B France, D-K Kim. A uml-based
pattern specification technique. IEEE transactions on Software Engineer-
ing, 30(3):193-206, 2004.

[63] Hecht Robin and Stefan Jablonski. Nosqgl evaluation: A use case ori-
ented survey. In CSC-2011 International Conference on Cloud and Ser-
vice Computing, Hong Kong, China, pages 336-341, December 2011.

[64] Motoshi Saeki. Behavioral specification of gof design patterns with lotos.
In Software Engineering Conference, 2000. APSEC 2000. Proceedings.
Seventh Asia-Pacific, pages 408—415. IEEE, 2000.

[65] Mohammad Alshayeb Salman Khwaja. Towards design pattern definition
language. Software: Practice and Experience, 43(7):747-757, 2013.

[66] Patrizia Scandurra Steven Capelli, Benedetta Nodari. Sca-patternbox: an
eclipse-based design pattern editor for service component architectures.
In ECLIPSE-IT’2012-Italian Eclipse Workshop, September 20-21, 2012,
Accademia Aeronautica Pozzuoli, Naples—Italy, 2012.

[67] Lunjin Luand Sooyong Park Suntae Kim, Dae-Kyoo Kim. Quality-driven
architecture development using architectural tactics. Journal of Systems
and Software, 82(8):1211-1231, 20009.

[68] Sooyong Park Suntae Kim, Dae Kyoo Kim. Tool support for quality-
driven development of software architectures. In Proceedings of the
IEEE/ACM international conference on Automated software engineering,
pages 127-130. ACM, 2010.

[69] David Chek Ling Ngo Toufik Taibi. Formal specification of design
pattern combination using bpsl. Information and Software Technology,
45(3):157-170, 2003.

[70] D. J. Walsh. Tuning docker with the newest security enhancements.
http://opensource.com/business/15/3/docker-security-tuning, 2015.

[71] Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

[72] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. Dryadling: A system for general-
purpose distributed data-parallel computing using a high-level language.
In OSDI, volume 8, pages 1-14, 2008.

114

	SCA-PatternBox
	Introduction
	Background concepts
	The SCA-PatternBox pattern language
	Design pattern specification
	Design pattern instantiation
	Design patterns examples

	SCA-PatternBox framework
	Framework architecture
	Framework methodology
	Formal analysis techniques

	Illustrative case studies and lessons learned
	The Order System
	The Stock Trading System
	Lessons Learned

	Evaluation of software design pattern languages
	Related work
	A comparison of design pattern languages

	Evaluation of SCA-PatternBox

	Security Enhanced Docker
	Introduction
	Access Control mechanisms: DAC and MAC
	Discretionary Access Control (DAC)
	Mandatory Access Control (MAC)
	MAC and DAC

	SELinux
	Type Enforcement (TE)
	Multi Category Security (MCS)

	Docker
	Docker Architecture
	Docker Security

	DPM: Docker Policy Module
	Category Minimization using MCS
	Category Minimization problem
	Software Architecture
	Experiment results

	Related Work
	Evaluation of Security Enhanced Docker

	J-CO query language
	Introduction
	Background concepts
	Data Model
	Execution Model
	J-CO Operators
	Start Operators
	Carry on Operators

	Complete Example
	New Task
	Subtask 1
	Subtask 2

	J-CO Engine
	Architecture
	Performance Evaluation

	Related Work
	Evaluation of J-CO query language

	Bibliography

