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Introduction

The electricity world is in transition. In the last years, different factors are playing
an important role in its development: the coupling of European electricity markets, the
development of renewable energies combined with their large-scale integration, the re-
search of the best investment strategy, are only some examples. Producers, consumers,
market and network operators are all interested in having as much accurate information
as possible. This is not easy to obtain, since the power system is subject to difficulties
arising from different factors, as the variability of the demand, the complexities related to
energy storage and the technical limits over the networks. These difficulties bring cogent
constraints as the request of an instantaneous and continuous trade-off balance between
the quantity of energy injected in and extracted from the network.

There are many examples of how the market participants can and want to use these
informations. In the electricity market, for example, producers try to select the best strate-
gies to maximize their profits. Since the producers interact in the market through different
types of supply orders, these have become the main strategic instrument that power pro-
ducers can use to manipulate the market. The solution of the market, however, is not
only determined by these orders, and an inadequate selection of the supply curve may
imply that the power market exchanges do not dispatch a producer. Therefore, to select
an adequate offer strategy, each power producer must predict, as accurately as possible,
the impact of its offers on the market outcomes. This motivates the development of dif-
ferent mathematical tools which allow market participants to find the optimal strategy or
operators to better analyse the market behaviour.

Another example could be the power predictions that can be useful to renewable en-
ergy producers, but also to Transmission System Operators (TSO) or market operators.

In particular, TSO can benefit from such predictions to satisfy different purposes (e.g.,



CONTENTS

overloads management or reserve estimation). The energy market operators need accu-
rate predictions to reduce penalties, which are usually proportional to the unbalances,
defined as the difference between predicted and observed power. Some individual elec-
tricity producers have now penalties when they produce less than predicted or have to
manage storage in batteries to ensure a smoother export to the grid as part of their con-
tract. The considerations above motivate the definition of an adequate modelling tool that

allows to forecast the power production in a short-term and on small or large areas.

This thesis presents different optimization and forecasting models, with the focus on
energy markets and renewable energy sources. Most of the models have been done in
collaboration with RSE - Ricerca Sistema Energetico, a company that has financed the
Ph.D. scholarship, for conducting research with concerning "Optimization and forecast-
ing models for electricity market and renewable energies". The analysis has been done
principally from two different points of view, in order to better understand the market
behaviour through different tools and at different levels. Initially, the Italian electricity
day-ahead market has been studied. The other analysis approach is related to some fore-
casts useful for market operators and participants, in particular it is related to electricity
price and power production forecasts. These tools aim the market operators to decide in

advance different operations that can be done on the market.

This chapter introduces the thesis work reported in this dissertation. First, we motivate
the thesis work, state its aim and describe the approach used to achieve the desired ob-
jectives. Then, a literature review of the topics pertaining to this dissertation is provided.
Finally, the main objectives of the thesis are described together with a description of the

chapters.

Market clearing problem

In the last years the coupling of the day-ahead European electricity markets has been
subject to a steadily growing interest. In particular, the formulation of an exact model

for solving market coupling is still considered a hot topic. In this respect Price Coupling

2
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of Regions (PCR) [1] is an initiative of seven power exchanges - APX-ENDEX, Belpex,
EPEX SPOT, GME, Nord Pool Spot, OMIE and OTE - that represent the electricity mar-
kets of Austria, Belgium, Denmark, Estonia, Finland, France, Germany, Italy, Latvia,
Lithuania, Luxemburg, Norway, Netherlands, Poland, Portugal, Czech Republic, Spain,
Sweden, Switzerland and United Kingdom. The initiative has been launched in 2009 and
it is focused on the delivery of a common European single price coupling solution. The
algorithm developed by PCR is named EUPHEMIA [2]. EUPHEMIA is used to calculate
energy allocation and electricity prices across Europe, maximizing the overall welfare. It
is the acronym of Pan-European Hybrid Electricity Market Integration Algorithm and it

is developed to solve the problem associated to the European day-ahead market.

The European market is divided into several zones, and each area is expected to be
driven by different prices. When all the electricity traded at the same location and at the
same time period is exchanged at the same price then this price is referred to as linear.
These prices are computed as optimal dual variables (shadow prices) of the demand-
supply matching program [3][4]. With the assumption of non-convex constraints, that can
hold for some electricity production [5], uniform, linear prices can not exist [6] or can not
be defined as shadow prices of a demand-supply matching problem. This is the case of
the European day-ahead market, with a variety of order types, as block orders, complex
orders subject to a Minimum Income Condition (MIC) or orders subject to a Uniforme

Purchase Price, as the Italian Prezzo Unico Nazionale (PUN) [2][7][8].

The complexities brought along by these orders are mainly related to their acceptance.
A market clearing model could accept a block order even if it does not satisfy some price’s
definitions since in this case the welfare would be higher. In the PCR such orders are
called paradoxically accepted and they are not allowed. Another complexity is given by
Italian orders: supply orders are driven by the zonal prices, while the majority of demand
orders are driven by PUN, except for some types of demand orders (as pumping demand
orders) that are subject to the zonal prices. Hourly zonal prices, in a zonal market, are
obtained by the intersection point between the demand curve and the supply curve in
the considered market area. The hourly PUN is defined as the price that equals the total
incomes with the total revenues (cost recovery constraint). Since the two different price

signals cannot be both found as shadow prices of the demand-supply matching problem,

3
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one must devise an ad-hoc procedure to clear the market obtaining both PUN and zonal
prices. Furthermore, the PUN constraint cannot be simply added as a post-processing
result since the acceptance of a class of purchase bids is related to the value of the PUN
at the optimal solution.

Currently used approaches for the Italian and European electricity market clearing
problem usually consist in the solution of different problems, each of them specific for a
particular complexity of the entire market problem. In particular, the state of the art solver,
EUPHEMIA, provides a solution to the pan-European Day-Ahead market coupling pro-
blem by solving a sequence of interrelated sub-problems. Namely, a combinatorial master
problem is defined to maximize the social welfare without providing zonal market prices.
After solving this problem, the framework solves three interdependent sub-problems to
determine prices, PUN and overall exchanged volumes. When prices are determined in
one of the sub-problems, the framework ensures that no orders are paradoxically accepted.
Should this not happen, then the integer solution of the master problem is rejected and a
cut is included in the master problem to prevent such solution to be picked in a subse-
quent iteration. If there is no paradoxical acceptance of the aforementioned orders, the
framework proceeds to include its other sub-problems. One of the sub-problems of EU-
PHEMIA solves PUN problem with a procedure based on an heuristic iterative algorithm.
The overall solution is then computed considering all the solutions together, and all these
computations must be done within the available computational time. If the solution is not
found in this time, an approximation on the different problems is done. This means that
an optimal or exact (i.e. not approximated) solution is difficult to obtain, also because
these approaches work with different problems, or on different iterations.

To our knowledge, an exact model without iterations, post-processing or sub-problems
does not exist, neither for the Italian nor for the European day-ahead electricity market.
This does not mean that these markets are not solved correctly, but the advantages of an

unique model are various, as:

e The computational time of a unique model could be lower than the computational

time of a model constituted by sub-problems, iterations or post-processing.

e If the unique model is well formulated, it could be easier and immediate to find the



CONTENTS

optimal solution.

Forecasts

On the electricity market there are different players (as consumers, producers, traders),
with different characteristics and with specific strategic objectives. For each player it is
extremely important monitoring and forecasting the market trend on different temporal
horizons for many reasons: in the short-medium term, for example, to manage the risk,
in the medium-long term to plan the investment. To compute the market clearing price,
all the orders (i.e. the offered quantities and prices) must be known. Without this infor-
mation, it is possible only to forecast the market price, imaging a possible offer strategy
and a possible future scenario. To create the best market offer, to make the higher profit
or the best strategy, it is extremely important to have the right forecasts of all the useful
information. For example, having a good forecast can mean reducing the penalties that
must be paid by the producers for the unbalancing, which are computed as the difference
between the promised energy and the delivered one, as shown in [9]. To this aim it would
be good to have a forecast of the power production but also of the market price of the zone
in which the producer is located.

Another example could be how price forecasts from few hours to few months ahead
have become of particular interest to power portfolio managers. A generator, utility com-
pany or large industrial consumer who can forecast the volatile wholesale price with a
reasonable level of accuracy can adjust its bidding strategy or its own production or con-

sumption schedule in order to reduce the risk or maximize the profits in day-ahead trading.

A lot of research is focused in the activity of developing tools and algorithms for price,
power production and load forecasting. A variety of methods and ideas have been tried for
these forecasts, with varying degrees of success. Unfortunately, it has been observed that
forecasting errors are still high from risk management perspective, from producers points
of view, or for network security. For this reason in collaboration with RSE, different
models and tools have been investigated and the variables that most influence electricity

market objects, as prices and renewable energies, have been analysed. In particular, firstly

5



CONTENTS

we decided to test a power production forecasting approach for large areas. This is due
to the fact that in recent years, the development of wind and solar energy combined with
their large-scale integration is creating a growing interest for predictions of the overall
power production over large areas. These predictions can be used for reserve estima-
tion, unbalances managing or to predict the electricity market prices. Furthermore, the
supply orders of renewable energies offered on the electricity market come from power
production forecasts, and a wrong prediction can lead to high penalties.

Afterwards, the role of different methods and predictors for the electricity market
prices has been tested. Such predictions are useful since, for example, participants in
deregulated electricity market can use price forecasting to develop their bidding strategies
to maximize the profit obtained by trading energy. In bilateral contracts the agreed price
of buyers and sellers is based on market clearing price predictions. On the other hand, the

market behaviour can be analysed by the market operators using accurate price forecasts.

Literature review

Energy markets

The reference description of the European electricity markets is published in the docu-
ments of algorithm EUPHEMIA [2], the algorithm developed by the PCR [1] to solve the
problem associated to the European day-ahead market. In this document it is possible to
find the full description of all the European market structure (included the Italian market)
and how the clearing problem is solved.

Italian (and so European) market is non-convex due to its complex orders and con-
straints. An extensive literature exists on non-convex day-ahead electricity markets, in
particular references [6][7][10][11][12][13] and [14] show how the presence of indivisi-
bilities in real-word markets preclude obtaining competitive prices. These prices do not
maximize surplus to market participants as shown by [S][15][16] and [17].

Different methods have been proposed to find prices in a non-standard way, as [6]
that presents an innovative methodology to find prices based on a reformulation of the

non-convex market clearing problem where the integer variables are fixed at their optimal

6
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value. In [18] is proposed a pricing approach based on a decentralized formulation of the
electricity market, which considers simultaneously the problems faced by the generators

and the system operators.

European electricity market is based on a zonal market, where optimal dual variables
of the primal problem provide equilibrium prices [3][4]. A way to formulate common
European market requirements in a mathematical model is via the addition of dual and

complementary constraints to the primal program [4][19].

Other authors tried to find an exact solution of the European market clearing problem
without iterations, among all [12][13], but a complete formulation, to our knowledge, is

not given.

The Italian day-ahead electricity market has been coupled with the other European
markets since February 2015, by linking the Italian border with France, Austria through
the PCR (it was already linked with Slovenia). Up to this date, the Italian day-ahead elec-
tricity market was cleared with an heuristic iterative algorithm called UPPO [20]. UPPO
was based on a Linear Programming (LP) model of a zonal market in which only the ac-
cepted quantities referred to orders subject to zonal prices were considered as variables;
the sum of accepted quantities of orders subject to PUN and PUN itself were treated as
parameters. The values of these parameters were fixed or calculated at the beginning of
each iteration by means of sensitivity analysis on the LP model, then the LP model was
solved and if the obtained solution along with the other parameters cleared the equation
defining PUN, it was considered as the market clearing solution. UPPO, even if heuristic
in nature, was able to find the correct solution, but was not suitable for easily being in-
tegrate in an European Market Coupling algorithm; furthermore, it was not able to solve
markets with block orders or other kinds of complex orders which could be introduced in

the Italian market. Anyway, EUPHEMIA is partially based on UPPO algorithm.

Currently used approaches for the Italian electricity market clearing problem usually
solve a master problem with all the complex orders with a Mixed Integer Linear Program
(MILP) [21][22][23] ignoring the PUN definition and considering all the Italian demand
orders as subject to the zonal prices and a consecutive sub-problem that reintroduces the
PUN definition and the partition between demand orders subject to PUN and demand

orders subject to zonal price, with a possible relax requirement of the constraints related
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to PUN. If a solution of the PUN sub-problem does not exist, some operations (i.e. cuts)
on the master problem must be done to find a global solution for the updated master
problem [2]. This method adds complexities to the problem, and might not lead to an
exact solution, in particular when an upper bound on the available computational time is

set for the identification of the solution.

Forecasts

Since electricity is difficult to storage, it is very important to have a good forecast of
the renewable energy produced. For this reason in the last years the number of authors
interested in this field is growing, and it is possible to find a huge literature. Different
reviews and state-of-the-art papers describe perfectly the current situation, as [24][25]
and [26]. Many different methods have been proposed. Kalman Filter are used by many
authors, as in [27][28]. In [29] the authors use ARMA models for short-terms wind
forecasts, while a linear autoregressive model and an adaptive fuzzy logic based model
is used in [30]. Adaptive linear models, adaptive fuzzy logic models and wavelet based
models are the methods used in [31][32], while in [33] is used an analysis of principal
components of wavelets derived from wind speed time series for a measure-correlate-
predict technique.

Large-scale wind power and solar irradiance forecasts have been the subject of sev-
eral studies [34][35]. The most straightforward method to predict the power generated
over an entire area is to sum the individual forecasts of each power plant. To do that, the
location and characteristics of each plant must be known. Alternative methods can be pro-
posed, which only require historical time-series of power measurements produced by all
the plants located within the area, as the Principal Component Analysis (PCA) technique.
PCA [36][37][38] is widely used in multivariate statistics and allows reducing the dataset
size, retaining only the most relevant information. PCA is applied on the correlation ma-
trix of the original predicted variables over all the grid points inside the area. A similar
methodology was implemented to evaluate the performance of an analogous model on
day-ahead forecasting of wind power production over large European regions in [39].

Price forecasting has been the subject of several studies (see e.g. [40] and [41] for a

review), and a lot of different methods have been proposed for price and load forecast-
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ing, such as linear regressions [42], stochastic processes [43], ARMA models [44], and
also weighted nearest neighbours techniques [45], quantile regressions [46][47] or hybrid
correction methods [48].

For the type of problem and available data in this thesis Neural Network, Analog
Ensemble and Support Vector Regression are used. Neural network is a deterministic
method [49][50], it is possible to use any different configuration of the network, and in
literature there are a lot of examples, as [51][52][53], or rules [54][55] for the wind and
solar power forecasts as long as in [56][57][58] for price forecasting.

Analog Ensemble method was originally proposed in [59]. It is a probabilistic pre-
diction, and it can be used by the day-ahead electricity markets for trading future energy
production, obtaining higher results than those obtained by using deterministic forecasts
alone, as shown in [9][60]. Indeed, by using probabilistic forecasting, it is possible to
optimize the revenue for a producer in an economic model depending for example on the
specific penalties for forecast errors valid in that market. The analog ensemble produces
probabilistic power predictions from historical deterministic predictions and observations
of the quantity to be predicted, as in [46][61][62][63][64].

Support Vector Regression is based on Support Vector Machine, a new method pro-
posed by Vapnik [65][66]. It is used a lot for price forecasting, with good results, as in
[58][67] and [68].

Thesis

The main topic of the thesis is related to the forecasting models in the energy sector,
in particular those for wind and solar power forecasts and those for electricity prices
forecasts. These topics are important in the energy sector since, for example TSO can use
wind and solar power forecasts for overloads management or reserve estimation, or can
use price forecasting to analyse the market behaviour.

The thesis is composed of two parts. The first part includes this introduction and the
modeling framework reported in Chapter 1.

The second part of the thesis consists in two chapters related to forecasting models.

The first of them, Chapter 2, shows the application of a statistical methods and of two

9
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forecasting methods (Neural Network and Analog Ensemble) to forecast the wind and
solar power produced on large areas. Neural Network, together with Support Vector Re-
gression, are the methods used in Chapter 3, for price forecasting.

The chapters related to models and methods are organized as follows.

Chapter 2: Post-processing Techniques and Principal Component Anal-

ysis for Regional Wind Power and Solar Irradiance Forecasting

This work explores a Principal Component Analysis in combination with two post-
processing techniques for the prediction of wind power produced over Sicily, and of solar
irradiance produced over the Oklahoma Mesonet. For wind power, the study is conducted
over a 2-year long period, with hourly data of the aggregated wind power output of the
island. The 0-72 hour wind predictions are generated with the limited-area Regional At-
mospheric Model System, with boundary conditions provided by the European Centre
for Medium-Range Weather Forecasts (ECMWF) deterministic forecast. For solar irra-
diance, we consider daily data of the aggregated solar radiation energy output (based on
the Kaggle competition dataset) over an 8-year long period. Numerical Weather Predic-
tion data for the contest come from the National Oceanic & Atmospheric Administration
— Earth System Research Laboratory (NOAA/ESRL) Global Ensemble Forecast System
(GEFS) Reforecast Version 2. The PCA is applied to reduce the datasets dimension. A
Neural Network and an Analog Ensemble post-processing are then applied on the PCA
output to obtain the final forecasts. The study shows that combining PCA with these
post-processing techniques leads to better results when compared to the implementation

without the PCA reduction.

Chapter 3: Forecasting Italian electricity market prices using a Neural

Network and a Support Vector Regression

This work explores two different techniques (a Neural Network and a Support Vector
Regression) for the prediction of the Italian day-ahead electricity market prices, the zonal
prices and the uniform purchase price (Prezzo Unico Nazionale or PUN). The study is

conducted over a 2-year long period, with hourly data of the prices to be predicted and

10
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a large set of variables used as predictors (i.e. historical prices, forecast load, wind and
solar power forecasts, expected plenty or shortage of hydroelectric production, net transfer
capacity available at the interconnections and the gas prices). A Neural Network and
a Support Vector Regression are applied on the different predictors to obtain the final
forecasts. Different predictors’ combinations are analysed to find the best forecast. We
compare the NN and SVR to two less sophisticated post-processing methods, i.e. a linear

regression and the persistency.
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Chapter 1

Modelling framework

1.1 Operations Research

Operations research can be defined as a science which uses quantitative methods to
support decision making in order to take the best decision [1][2]. Mathematical program-
ming is the study of problems in which a real function must be maximized or minimized
choosing the values of real or integer variables from an allowed set. In what follows, a
short introduction of the mathematical programming models is given. It is not a complete
overview, but references to literature are given for each model. An introduction to the
field of operations research can be found in [3].

An optimization problem can be represented in the following way:

Given: afunction f:A — R
Find: an element xg € A s.t. f(xp) < f(x)Vx € A in case of minimization

an element xg € A s.t. f(xp) > f(x)Vx € A in case of maximization

The subset A C R", called search space or choice set, is specified by a set of con-
straints, equalities or inequalities that the elements of A have to satisfy. The elements of A
are called feasible solutions. The function f is called in general objective function, other-
wise loss function or cost function when must be minimized [4], utility function or fitness
function when must be maximized. A feasible solution that minimizes (or maximizes) the

objective function is called an optimal solution.
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Operations research has different sub-fields, each of them called with a name that

describes the structure of the domain or the proprieties of the objective function.

1.1.1 Linear Programming (LP)

Linear programming (LP) is a sub-field of operations research in which the problem
is represented by linear relationships. More formally, linear programming is a technique
for the optimization of a linear objective function, subject to linear equality and linear

inequality constraints. The general LP problem can be formulated in the following way:

max ¢! x (1.1)
st. Ax<b (1.2)
x>0 (1.3)

The decision variable in the problem is given by x, while ¢, A and b are known param-
eters. Equation (1.1) is the objective function, equation (1.2) gives the constraint on the
decision variable x. Equation (1.3) is the non-negativity constraint on x. Equations (1.2)
and (1.3) define the feasible set for x.

A vector x for a linear programming problem is said to be feasible if it satisfies the
corresponding constraints. A linear programming problem is said to be feasible if the
constraint set is not empty; otherwise it is said to be infeasible. A feasible vector at which
the objective function achieves the maximum (or minimum) value is called optimal. The
feasible region is a convex polytopes, which is a set defined as the intersection of finitely
many half spaces, each of which is defined by a linear inequality.

For example, let us suppose to have the following objective function
f(x) =3x; +4x;

subject to the following constraints:

x1+2x <14
3x1 —x >0
X]—xp <2

-xlu-xZZO
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Figure 1.1: Convex polytopes defined by the inequalities of the example.

Its feasible region is shown in Figure 1.1.

The objective function of a LP problem is a real-valued affine function defined on this
polyhedron. A linear programming algorithm finds a point in the polyhedron where this

function has the smallest (or largest) value if such a point exists.

A linear programming problem is usually solved with the simplex method. Developed
by George Dantzig in 1947 [5][6], it has proved to be a remarkably efficient method that
is used routinely to solve huge problems on today’s computers [3]. Except for its use
on tiny problems, this method is always executed on a computer, and sophisticated soft-
ware packages are widely available. A description of how to solve a linear programming

problem through the simplex method can be found in [3][7].

In the general case in which the objective function, the constraints or both contain non
linear terms the problem is called non linear. Solving a non-linear program is harder that
solving a linear program, and the optimal solution it is not always guaranteed. Different

methods and algorithms to solve a non linear program are shown in [8][9].

Dual problem

To every linear program (called primal problem) there is a dual program with which

it is strictly connected. Given the standard form for the primal problem (1.1) - (1.3), its
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dual problem has the following form:

min y’ b (1.4)
s.t. Ay > ¢ (1.5)
y=>0 (1.6)

Thus, the dual problem uses exactly the same parameters as the primal problem, but
in different locations. Let us summarize the relationships between the primal and dual

problems.

Theorem 1.1 (Weak duality property). If x is a feasible solution for the primal problem

and y is a feasible solution for the dual problem, then
cI'x < yTb.

Theorem 1.2 (Strong duality property). If x* is a optimal solution for the primal problem

and y* is a optimal solution for the dual problem, then
CTX* — y*Tb

We call duality gap the difference between the primal and dual solutions, ¢! x* —y*7b.

The duality gap is zero if and only if strong duality holds [10].

Karush-Kuhn-Tucker conditions

The Karush—Kuhn—Tucker (KKT) conditions are first order necessary conditions for
a solution in linear and non-linear programming to be optimal, provided that some regu-

larity conditions are satisfied. Given the explicit form of a general problem:

min f(x)

subject to h;(x) <0 i=1,...,m
lj(X)IO lzl,...,r

and the correspondent dual problem
max u,v
uceR™ yeR” g( )

subject to u; > 0
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The KKT conditions are:

0=0df(x)+ Z ui - dhi(x) + Z vj-dlj(x) stationarity
i=1 j=1

ui-hi(x)=0 Vi complementary slackness
hi(x) <0, Ij(x)=0 Vi,j primal feasibility
u; >0 Vi dual feasibility

The following two proprieties hold [11][12]:

Necessity If x* and u*,v* are primal and dual optimal solutions, and if the duality gap is

zero, then x*, u™ and v* satisfy the KKT conditions.

Sufficiency If x*, u* and v* satisfy the KKT conditions, then they are primal and dual

optimal solutions.

Linearization Techniques

In KKT conditions there are products between primal and dual variables, as u; - h;(x) =
0. If we want to solve a LP problem, these products cannot be inserted, otherwise the
problem would become non-linear. Therefore they must be considered using linear con-
straints and this is possible using disjunctive constraints. Namely, for each constraint of
the form u; - h;(x) = 0 it is possible to add a binary variable y; to the problem and use the
following auxiliary constraints with a big M > 1 [13]:
up < M-y

h,-(x) SM (1 —y,')

1.1.2 Integer Linear Programming (ILP)

In a LP problem, if the variables are logical (with values O or 1) or integer, then the
problem is called Integer Linear Programming (ILP). The general formulation is given

by:
max ¢ x
s.t. Ax<b

n
xeZ
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Figure 1.2 shows the geometric representation of such a problem, where the feasible

region is given by the only points falling in the crossing of the squared area.

I I I I I I I I I I
--l--1-=-f+t--r--rr-—A-—-"t-"~-"tr--Fr--I=-
I I I I I I I I I I

1

1

1

1
—— = — 4 —

1

1
-———— =

1

1
--a--1-

Figure 1.2: The points of the feasible region of the ILP problem are marked in red.

Note that the feasible region (consisting of a discrete set of points) is not a convex set
anymore, as it was the case in linear programming. Consequently, the theory developed
for LP cannot be directly applied to this class of problems.

Operation research includes also the class of Mixed Integer Linear Programming
(MILP) problems, that are LP problems in which only a subset of variables has integer

values. Here is an example of MILP problem:

max ch+dTy
s.t. Ax+Dy <b

x>0,yeZ

Branch and Bound

There are different algorithms to find the solution of an IP (or MILP) problem, one
of the principals is the Branch and Bound that uses linear programming relaxation to find
the optimal solution. This is the basic algorithm used by all commercial codes for solving
MILP problem. Here, for simplicity of notation, is reported the presentation of IP. The
idea is solving an IP in linear relaxation and finding an optimal solution zg. If zg is integer
the algorithm stops, otherwise, let us take one of the variables that has a fractional value,
e.g. x; = xj, where x; € Q\ Z, and consider |x]] and |x] | + 1. The initial IP problem is

split now in two other sub-problems 1 and 2, that correspond respectively to the initial IP
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problem plus constraint x < | x} | and to the initial IP problem plus constraint x > [x] | +1,

as shown in Figure 1.3.

Figure 1.3: Branching on the initial IP problem.
Now, on problems 1 and 2 it is possible to solve a linear relaxation and restart with
the algorithm. It is possible to proceed branching each node and pruning it if:

e The relaxation on the node gives an optimal solution that is integer.
e The relaxation on the node doesn’t give any feasible solution.

e The relaxation on the node gives an optimal solution that is lower than an optimal

integer solution obtain on another node.
Let us consider the general integer programming problem in the form
zip =max{c x:x € §} where S={xeZ :Ax<b}
The general branch-and-bound algorithm is the following [14]:
Step 1 (Initialization): . = {IP}, $° =S, 7" = 4o and z,, = —o.

Step 2 (Termination test): If . = 0, then the solution x° that yielded z p= cx¥ is opti-

mal.

Step 3 (Problem selection and relaxation): Select and delete a problem IP' from .Z.
Solve its relaxation RP'. Let Zée be the optimal value of the relaxation and let )cj'e be

an optimal solution if one exists.

Step 4 (Pruning): a. If z < z,,, g0 to Step 2.
b. If x, € §', go to Step 5.
C. Ifx}} € S'and cxﬁe > Zps let zp = cx}}. Delete from .Z all problems with 7' < Zp-

If cxje = z;p» 0 to Step 2; otherwise go to Step 5.
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Step 5 (Division): Let (S%/ )’J‘: | be a division of §'. Add problems {IP"/ }’]‘.:1 to ., where
7 :Zég for j=1,...,k. Goto Step 2.

1.2 Forecasting Models

Forecasting means predict the future considering past and present data and analysis
of trends. Many different methods have been proposed for forecasting framework. It is

possible to take a classification of groups of models as follows [15][16][17]:

e Game-theory models, which simulate the operation of a system of heterogeneous

agents interacting with each others.

e Simulation models, which describe the dynamics by modelling the impacts of phys-

ical factors.
e Stochastic models, which characterize the statistical proprieties over time.

e Regression models, based on the theorized relationship between a dependent vari-

able and a number of independent variables that are known or can be estimated.

e Artificial intelligence models, which combine elements of learning, evolution and
fuzziness to create approaches that are capable of adapting to complex dynamic

system.

In this section all the forecasting methods used in the thesis will be shown. Firstly,
the Principal Component Analysis (PCA) are introduced since they are used in Chapter 2

before using the forecasting methods.

1.2.1 Principal Component Analysis

A Principal Component Analysis (PCA) models the variation in a set of variables in
terms of a smaller number of independent linear combinations (principal components) of
those variables. PCA is a way of identifying patterns in data, and expressing the data in

such a way as to highlight their similarities and differences. Since patterns can be hard to
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find in data of high dimension, PCA is a powerful tool for analysing data. Furthermore,
with PCA is possible to reduce the data dimension, without loss of information.

Let us suppose to have two variables x| and x, as in [18], plotted in Figure 1.4, highly
correlated with one another. It is possible to pass a vector through the long axis of the
cloud of points and a second vector perpendicular to the first, with both vectors passing
through the centroid of the data.

Now, it is possible to find the coordinates of all the data points relative to these two
perpendicular vectors and replot the data, as shown in Figure 1.5.

In this new reference frame, the variance is greater along axis 1 than on axis 2. Fur-
thermore, the spatial relationships of the points are unchanged; this process has merely

rotated the data.

x2

x1

Figure 1.4: Example of observable variables. The red arrows indicate the directions of the ei-

genvalues of the correlation matrix.

Formally, given a data matrix X with p variables and n samples, the data are first
centred on the means of each variable, i.e. the mean is subtracted from each of the data
dimension. This will insure that the cloud of data is centred on the origin of the prin-
cipal components, but does not affect the spatial relationships of the data nor the vari-
ances along the variables. The second step is compute the covariance matrix of data, and
compute the eigenvalues and eigenvector of this matrix. The eigenvectors, also called
loadings, are perpendicular to each others (as the red arrows in Figure 1.4) and provide
information about the patterns in the data. To obtain the principal components, it is suffi-
cient to multiply the data X by the matrix of eigenvectors.

Up to now, the original data have been transformed in principal components, each of
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2nd Axis

X * X X XX
X x £ % X Xy 1st Axis

Figure 1.5: Object transformation in the new Cartesian System.

them non-correlated with the others, but the dimension is the same of the original data.

To reduce the dimension from p to m, it is sufficient to take only the first m principal

components.

In the literature three methods [19] have been introduced to choose the dimension p:

1. Cumulative percentage of total variation: only those components representing the

80% — 90% of the total variance are retained, i.e.,

}Ll‘f’"'lp
—— = x~ 80% — 90% 1.7
A+ Aoy ¢ ° (1.7)

where A; is the i-th eigenvalues of the correlation matrix; the numerator represents
the variance of the first p principal components, whereas the denominator represents

the variance of all the main components.

. The so-called Kaiser rule (proposed by Kaiser [20]) takes only those components

having an eigenvalue greater than one.

. Doing a "Scree Plot" where the number of principal components corresponds to the

change of slope in the Scree Plot.

1.2.2 Linear Regression

Linear regression (LR) allows to compute the linear dependence between one or more

independent variables and a dependent variable, following the formula:

y=PBo+) Bi-xi+u
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where i varies between the predictors, y is the dependent variable, x; are the independent
variables, By + Y.;c; Bi - xi + u is the regression line, B is the regression intercept, f; is the

angular coefficient of x; and u is the statistical error.

1.2.3 Neural Network

A Neural Network (NN) is a system of interconnected group of nodes, called neurons
since they remember the neurons of a human brain. They are able to link some input
variables to one or more output variables, as shown in [21][22][23]. The neurons are
connected by links and they interact with each other. The nodes can take input data and
perform simple operations on them. The result of these operations is passed to other

neurons. The output at each node is called activation or node value.

INPUT HIDDEN OUTPUT

Figure 1.6: Representation of a general Neural Network.

To this end, each neuron assigns a weight to the input signal and with a learning
process performed through different iterative cycles it learns how to associate the right
output to each input.

Given the input x1, x>, ...,x, the output term is given by
hw (x) = f(Wx)

where f: R — R is called the activation function and W are the weights. One of the
possible activation functions is given by the Hyperbolic Tangent f(x) = tanh(ax” + c)

[24].
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There are two Neural Network types: Feed-Forward and Feed-back. In the Feed-
Forward NN the information flow is unidirectional. A unit sends information to other
units from which it does not receive any information, this means that there are no feedback
loops. An example of Feed-Forward NN is shown in Figure 1.6.

In the Feed-back NN loops are allowed, as shown in Figure 1.7. In this case, units can

send information in both directions.

INPUT HIDDEN OUTPUT

@

Figure 1.7: Representation of a Feed-back Neural Network.

NN are capable of learning and they need to be trained. There are several learning
strategies, those used in this thesis is the Supervised Learning. This strategy needs a
training period in which the NN learns how to associate to each input the correspondent
output. This is done passing to the NN the input and the correspondent measured output

in the training period.

1.2.4 Analog Ensemble

The Analog Ensemble (AnEn) method builds an ensemble forecast whose members
are made by past observations (analogs) appropriately selected across a historical dataset
of deterministic forecasts. An extended literature can be found for example in [25][26]
and [27].

The AnEn method as proposed in [28] is a technique to generate an uncertainty fore-
cast from a purely deterministic prediction. The uncertainty information is estimated
using a set of M past verifying observations that correspond to the M past forecasts

(analogs), which are most similar to a current deterministic forecast. Since this approach
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Figure 1.8: AnEn is based on building an ensemble forecast whose members are past observa-

tion.

directly uses the verifying observations as ensemble members, the AnEn method automat-
ically accounts for observational errors in the verification. The metric used to estimate the
degree of analogy between the current forecast and past predictions from a historical data

set is defined as

N, =T
Fal =Y 2 Y (= i)’ (1.8)
i=1 %% \ j=—7
where F; is the current forecast at time ¢ at a certain location, A7 is an analog forecast
at time 7 before F; was issued and at the same location, N, and w; are the number of
physical variables and their weights, o, is the standard deviation of the time series of
past forecasts of a given variable at the same location; 7 is an integer equal to half width
of the time window over which the metric is computed, and A, 7, ; and F;; ; are the values
of the analog and the forecast in the time window for a given variable.

The goal is to find past forecasts of the variables (chosen among those with the high-
est correlation with the quantity to be predicted) that were predicting similar values and
temporal trend compared to the current forecast. The assumption is that if these forecasts
are found, their errors will likely be similar to the error of the current forecast, which can
be inferred from theirs. The main steps of the algorithm can be summarized as follows

[25]:

1. Retrieve an historical dataset of predictions.

2. Retrieve the correspondent historical dataset of measurements.
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3. Choose the physical variables from the model to be used as predictors in Equation

(1.8) for the predictand variable.

4. For each lead time of the current forecast compute the distance (i.e., Equation (1.8))

from every past forecast issued at the same lead time.

5. For each lead time, rank all the past forecasts from the lowest distance and keep the

n closest.

6. The concurrent n past measurements are the » members that constitute the current

analog ensemble forecast for the lead time considered.

The AnEn provides probability density functions (PDF) from which the likelihood of
future events can be estimated. The PDF of the power forecast is estimated using a set of
n past verifying observations corresponding to the n best analogs (past model predictions)
to a current deterministic model forecast. The verifying observation for each analog is

thus a member of the AnEn.

1.2.5 Support Vector Regression

Support Vector Regression (SVR) is based on Support Vector Machine (SVM), a new
and promising technique for data classification and regression, introduced by Vladimir N.
Vapnik [29][30].

Let S = {(x1,y1),---,(%m,ym)} be a set of m training vectors. Each vector x; is drawn
from a domain 2~ C R” and each label y; is an integer from the set {—1,1}. The idea is
to find an hyperplane that separates the points x; with label y; = —1 from points x; with
label y; = 1. This hyperplane represents the largest separation, or margin, between the
two classes. So we choose the hyperplane so that the distance from it to the nearest data

point on each side is maximized, as shown in Figure 1.9.

Linearly separable case.

Definition 1.1. The set S is said linearly separable if there exist ® € R" and b € R such
that
yilolx;+b)>1  i=1,....m (1.9)
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Figure 1.9: Hyperplane HI does not separate the classes. Hyperplane H2 does, but only with a

small margin. Hyperplane H3 separates them with the maximum margin. Source: Wikipedia

The pair (w,b) defines a hyperplane of equation
o'x+b=0
named separating hyperplane.

In [31][32] is shown that to find the optimal hyperplane (i.e. the hyperplane with
maximum separating margin), or equivalently, to determine a linear SVM, the following
problem must be solve:

N B
LETP 1.10
min_ ||| (1.10)

9

s.t.yi(@ x;+b)—1>0 i=1,....m

In order to solve problem (1.10) the dual formulation is introduced:

m 1 um
IIEHZ)L,'—EZ Zyiyjliljx,-xj (111)
i=1 i=1j=1
m
S.t. Z?Liy,- =0
i=1

Ai>0 i=1,....m

The optimal solution A* of dual problem (1.11) allows to find the optimal hyperplane, as

*

o = 7Li*y,~x,-.

™

i=1
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To find the scalar b* the following KKT conditions must be considered:
A yi((@) xi+b)—1]=0 i=1,....m
and choosing a variable A" # 0 it is possible to compute b* from:
yi((@*) x;4+b)—1=0.

The vectors x; closest to the optimal hyperplane (and correspondent to the dual variables

A7 different from zero) are called support vectors.

Linearly non-separable case. If the set S is not linearly separable it is possible to in-

troduce m non-negative slack variables &; such that
vl xi+b)>1-&  i=1,....m

It is possible to modify the objective function of (1.10) such to penalize the slack variables

different from zero:

. 1 2 m
min —||®||“+C j 1.12
mins ol +c )& (1.12)
st.yi(@ xi+b)—1+E>0 i=1,...,m

&>0 i=1,....m

where C is a positive constant used as a regularization parameter, since the generalized
optimal hyperplane tends to maximize the separating margin for small C and minimize
the number of misclassified points for large C. The dual of this new formulation is similar

to the previous one:

m 1 m
minZl,- - = Z Zy,-yjl,-/ljx,-xj (113)
A3 203

m
S.t. )uiyi:()

i=1

0<A<C i=1,....m

The difference is that the dual variables are now limited by C. To find the optimal ®* and

b* it is possible to proceed in a similar way as in the separable case.
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Non-linearly SVM. The previous solution for linearly non-separable case does not
guarantee usually good performances since a hyperplane can only represent dichotomies
in the space. For this reason, when the case is non linearly separable, the following strat-

egy is used:
1. The input data are mapped into a higher dimensional space (called feature space).
2. The optimal hyperplane is computed (with the slack variables) in the feature space.
Formally, given the set S, let us consider the function
o:R"—>F

where F is the feature space, with dimension larger than m. The problem now is to
determine the optimal hyperplane in the feature space F by substituting any occurrence

of x; with ¢ (x;) in the dual problem (1.13), that become

lm m

mmZA——ZZy,y,AA i), 0(x;)) (1.14)
i=1j=
s.t. Zliyi:()
i=1
OSAISC i=1,...,m

It is possible to define a function K (-, ), called kernel such that

K(xixj) = (9 (xi), ¢ (x)))-

If the kernel function satisfies Mercer’s theorem [33] then it can represent a scalar product

in the feature space, and the objective function of dual problem (1.14) can be rewritten as

mmZ?L ——Z Zy,yjll K (xi,x).

llj

It is possible to use different kernel functions [34]:

e Linear Kernel: it is given by the product plus a constant c:
K(x,y)=x"y+c

e Polynomial Kernel:

K(x,y) = (axTy +c)?
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e Gaussian Kernel (or radial kernel): it maps samples into a higher dimensional space,
so, unlike the linear kernel, it can handle the case when the relation between class

labels and vectors is non linear

e Hyperbolic Tangent kernel:

k(x,y) = tanh(ax" y 4 c)

Support Vector Regression (SVR)

€-SVR. In &-SVR the goal is to find a function f(x) that has at most a deviation of €
from the actually obtained targets y; for all the training data and at the same time is as flat
as possible. In other words we do not care about errors as long as they are less than € but

will not accept any deviation larger than this value.

i
\
)
+€
X
o
Figure 1.10: e-SVR.
The related primal problem for this formulation is given by
min Lol Y (& +£) (115
in — i+ Gi .
(D7b7€i7$i2 =1 l l
st. ol o(x)+b—yi<e+& i=1,...,m
vi—o ¢(x)-b<e+ i=1,....m
&,6>0 i=1,....m
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The dual formulation of problem (1.15) is the following convex quadratic problem:

Z Z (A=) (A = 2K (xi,x) = Y (i = Ai)yi+€ Y (Ai+ A)
i=1j=1 i=1 i=1
i = i=1,....m

0<AA<C i=1,....m

m|~

(1.16)

One difficulty with the e-SVR is the selection of € itself, which can become a hard work

in absence of additional information about the noise contained in the training set, that is

in general not available.

v-SVR. To overcame with the problem of the selection of &, in [35][36] has been intro-

duced the v-SVR formulation, which includes an additional term in the primal problem, a

constant v > 0, which lets one control the number of support vectors and training errors.

To be more precise, V is an upper bound on the fraction of margin errors and a lower

bound of the fraction of support vectors.

The primal formulation of the problem is

min —||a)||2+C ve+ Z §,+§ )

0.b& .62 i1
st. ol g(x;)+b—yi<e+§& i=1,...,m
yi— o ¢p(x)—b<e+é i=1,....m
£,&>0 i=1,....m
e>0

while its dual has the following formulation

1 A A

mlp—z Z(ﬂ,i—ll’)otj—}tj)lf(xi,xj') i(l l yl+€Z )L —f-l

(1.17)

(1.18)
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The advantage of the v-SVR is that v can be chosen without prior knowledge of the
noise present in the training data, and after the selection, the regression will chose € to
best fit this error, based on the requirements v makes of the fraction of training-errors and

support vectors.
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Chapter 2

Post-processing Techniques and
Principal Component Analysis for
Regional Wind Power and Solar

Irradiance Forecasting

2.1 Introduction

In recent years, the development of wind and solar energy combined with their large-
scale integration is creating a growing interest for predictions of the overall power pro-
duction over large areas. In particular, Transmission System Operators (TSO) can benefit
from such predictions to satisfy different purposes (e.g., overloads management or reserve
estimation). The energy market operators need accurate predictions to reduce penalties,
which are usually proportional to the unbalances, defined as the difference between pre-
dicted and observed power. Individual electricity producers are also interested in accurate
predictions. Some of them have now penalties when they produce less than forecasted or
have to manage storage in batteries to ensure a smoother export to the grid as part of their
contract. Predicting renewable energy at large scale means aggregating the forecasts of
the individual power plants located in a geographical area of interest. Such areas can be

defined by a TSO, or they can correspond to energy market regions.
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The purpose of this study is to test a forecasting approach for large areas with two
different test cases. First, the approach is tested on all the wind farms located over Sicily
(one of the Italian energy market regions). The hourly data of wind speed are available
over 2 years (2011 and 2012). The installed capacity (IC) during this period is 1746 MW.
The second test includes 98 Oklahoma Mesonet solar monitoring stations. In this case, the
period considered is from January 2000 to December 2007, and the dataset is composed

of the daily data of the aggregated solar radiation energy output.

Large-scale wind power and solar irradiance forecasts have been the subject of several
studies [1][2]. The most straightforward method to predict the power generated over an
entire area is to sum the individual forecasts of each power plant. To do that, the locations
and characteristics of each plant must be known. In this chapter, an alternative method is
proposed, which only requires historical time-series of power measurements produced by
all the plants located within the area. In this study a Principal Component Analysis (PCA)
technique is applied. PCA [3][4][5] is widely used in multivariate statistics and allows re-
ducing the dataset size, retaining only the most relevant information. PCA is applied on
the correlation matrix of the original forecasted variables over all the grid points inside
the area, by computing its eigenvalues and eigenvectors. The eigenvalues allow establish-
ing the optimal number of principal components, whereas the corresponding eigenvectors
are used to transform the data, reducing the number of dimensions. A similar methodol-
ogy was implemented to evaluate the performance of an analogous model on day-ahead

forecasting of wind power production over large European regions in [6].

A Neural Network (NN) and an Analog Ensemble (AnEn) are applied on the PCA-
transformed forecasts to obtain deterministic and probabilistic predictions of total wind
power or total solar radiation energy. Probabilistic forecasting is useful to provide knowl-
edge about uncertainty (e.g., a forecast of the PDF of power) in addition to a single-valued
power prediction. For example, probabilistic predictions can be used by the day-ahead
electricity markets for trading future energy production, obtaining higher results then
those obtained by using deterministic forecasts alone, as shown in [7][8]. Indeed, by
using probabilistic forecasting, it is possible to optimize the revenue for a producer in an
economic model depending for example on the specific penalties for forecast errors valid

in that market. The proposed method, AnEn [9][10], produces probabilistic power pre-
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dictions from historical deterministic predictions and observations of the quantity to be
predicted, as in [11][12][13][14][15]. It is possible to obtain a probabilistic power predic-
tion also from Numerical Weather Prediction (NWP) ensembles [16][17][18]. The AnEn
method was originally proposed in [19] for probabilistic meteorological forecasting. It
searches for the past forecasts most similar to the current one and keeps the correspondent
past observations to form an ensemble. From any probabilistic prediction, it is possible to
obtain a single-valued deterministic prediction by computing the mean or the median of
the n analog members.

In literature [20][21] it is possible to find different methods for deterministic power
forecasting, that consists in a single value for each time in the future for the variable to
be predicted. Reviews of the state-of-the-art are reported in [22][23]. A deterministic
forecast can be generated with an artificial NN [24][25][26]. Given one or more inputs,
e.g., the principal components, the NN produces a response variable (which in the present
application consists in wind power or solar irradiance) through neural interconnections.
The NN is initialized with numeric weights and its neurons can be trained to make them
able to learn how to associate to each input the correspondent output. In this context, a
single-layer feed-forward NN with a back-propagation algorithm is used.

The chapter is organized as follows: section 2.2 reports the observational and me-
teorological forecast data of Sicily and Oklahoma. The PCA technique is illustrated in
section 2.3, within the post-processing methods AnEn and NN. Section 2.4 thoroughly
describes the verification framework. Results of the application are given in section 2.5

and conclusions are illustrated is section 2.6.

2.2 Observational and meteorological data description

Hourly wind speed forecasts are generated over the area of Sicily using the Regional
Atmospheric Modeling System (RAMS)[27] limited-area meteorological model. Ini-
tial and boundary conditions are obtained from the European Centre for Medium-Range
Weather Forecasts (ECMWF) deterministic model [28].

The gridded wind field is obtained by interpolating data from the closest vertical

model levels at 80 m a.g.l. which is the average hub height in Sicily. The whole compu-
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tational domain is made of 900 grid points with 20 km horizontal grid increments. The
RAMS simulation covers the period January 2011-December 2012, for which the hourly
data of aggregated wind power produced in Sicily are made available by Terna, the Italian
Transmission Operator (TSO) [29]. The average installed capacity (IC) during this period
is equal to 1746 MW. We have applied a correction factor to account for an increasing IC
during the overall period.

The first year of the dataset (2011) is used as a training period, whereas the second
year (2012) is kept as an independent verification period. The training period is split into
two sub-periods, of six months each; the first is used to choose the optimal number of
principal components. We test this choice over the second part of the training dataset.
Each forecast run is initialized at 12 UTC and covers the period from 0 to 72 hours ahead.
We use a Geographic Information System (GIS) [30] to select from the whole domain

only the 89 grid points within the territory of Sicily, as shown in Figure 2.1.

38.0 5 39.0
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12 13 14 15 16

Longitude East

Figure 2.1: Grid points by the RAMS model computational domain over Sicily (Italy), used for

wind power predictions.

The solar dataset was provided for a Kaggle competition [31]. Input NWP data for
the contest are retrieved from the National Oceanic & Atmospheric Administration —
Earth System Research Laboratory (NOAA/ESRL) Global Ensemble Forecast System

(GEFS) Reforecast Version 2 [32]. Data include 11 ensemble members with three-hour
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time resolution from 12 to 24 hours ahead. Each forecast run is initialized at 00 UTC.
Locations of the Mesonet sites relative to the GEFS data (1°x 1° of spatial resolution) are

shown in Figure 2.2.

Latitude North

GEFS
® Mesonet

T T T T T
-102 -100 98 96 04

Longitude East

Figure 2.2: NOAA/ESRL Global Ensemble Forecast System (GEFS) Reforecast Version 2 (big

grey points) and Mesonet stations (small black points, see text for additional details) used for

solar irradiance prediction.

The total daily incoming solar radiation energy per square meter (referred as energy
density, Jm~2 measured at 98 Oklahoma Mesonet sites is available since 1-January 1994.
Solar radiation energy was measured by a pyranometer at each Mesonet site every five
minutes and integrated from sunrise to 23:55 UTC of each day. For this work, only
data of the period January 2000-December 2007 are considered. The maximum observed
radiation energy density (MED) is equal to 22 x 10® Jm~2 in winter, 29 x 108 Jm~2 in
spring and summer, and 21 x 108 Jm~2 in autumn. In this study we use only forecasts
of the downward short-wave irradiative average flux at the surface cumulated on a daily
basis (Jm~2) to be consistend with the observations. These data are provided on 9 x 16
points grid covering Oklahoma, for a total of 144 points. Homogeneity across the different
seasons is obtained by normalizing solar data on a daily basis. The normalization has been
carried out by subtracting the mean and dividing by the standard deviation computed over

the eight values corresponding to the same Julian day of the eight years in the dataset.
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This is performed for both forecasted and measured data. The dataset is split into two
parts of four years each: a training period (2000-2003) and a test period (2004-2007).
The training period is split into two sub-periods of two years each with the same purpose

as for the wind case.

2.3 Prediction methods

Principal component analysis (PCA)

PCA is a variable reduction procedure useful in case of datasets with a large num-
ber of correlated information. Principal components are linear combinations of observed
variables, ordered according to a criterion of relevant information which is expressed by
their variance: the first component extracts the maximum amount of information from
the data and the other ones optimize the leftover information under the constraint of non-
correlation with the other components. The primary purpose of this technique is to re-
duce the number of variables. This is achieved through a linear transformation of the m
observed variables that are projected by the eigenvectors of the correlation matrix on a
Cartesian system. The eigenvectors are sorted by descending order with respect to the
amount of information; therefore, the variable with greater variance is projected on the
first axis, the second on the second axis, and so on. To reduce the dataset dimension, the
first p < m components are taken.

To perform a PCA on a dataset, it is necessary to normalize the data by their mean and
standard deviation to have more homogeneous distributions. Moreover, PCA constructs
orthogonal, mutually uncorrelated, linear combinations that explain as much common
variation as possible. PCA can be performed on both the covariance and the correlation
matrix. Scaling the data matrix such that all variables have zero mean and unit variance
(i.e., normalizing them) makes the two approaches identical. Let X be a n x m matrix of
the normalized data, where n is the number of total forecast events used for the study,
and m is the number of different grid points where the forecasts are available. In these
applications m = 89 in the case of Sicily and m = 144 for Oklahoma.

The second step is to compute the eigenvalues and eigenvectors of the correlation
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matrix. Let A denote the eigenvectors matrix. It is now possible to transform the original

variables into new variables without information redundancy (uncorrelated) as follows:
Xpca =AN-X 2.1

After this operation, the original data are transformed in new uncorrelated data, without
reducing the dimensionality. To reduce the data to a p—dimensional space, the original
matrix X is multiplied by only the first p eigenvectors (called loadings). Each column of
the resulting matrix, X, is a principal component, also known as score. In the literature

three methods [3] have been introduced to choose the dimension p:

1. Cumulative percentage of total variation: only those components representing the

80% — 90% of the total variance are retained, i.e.,

M+--A
VTP 80% —90% (2.2)
Al + - )Lm

where A; is the i-th eigenvalues of the correlation matrix; the numerator represents
the variance of the first p principal components, whereas the denominator represents

the variance of all the main components.

2. The so-called Kaiser rule (proposed by Kaiser [33]) takes only those components

having an eigenvalue greater than one.

3. Doing a "Scree Plot" where the number of principal components corresponds to the

change of slope in the Scree Plot.

Since the first and the third methods depend on an arbitrary choice of the eigenvalues (i.e.,
there can be several choices of the number of eigenvalues), the second method is used in
this work. In this study, the PCA is applied to wind speed gridded forecast data for the
wind case and to the predicted gridded downward short-wave irradiative average flux at
the surface for the solar case.

Starting from the 89 dimensions corresponding to the number of forecast grid points
considered in Sicily, the PCA shows that only the first 6 principal components have ei-
genvalues greater than one; a sensitivity analysis on the number of components over the
second part of the training dataset confirms this choice. For the solar case, the optimal

number of principal components is 17.
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Analog Ensemble (AnEn)

The AnEn method builds an ensemble forecast whose members are made by past
observations appropriately selected across a historical dataset of deterministic meteoro-
logical forecasts. For these applications, the historical data-sets of forecasts are made by
gridded data, the output of meteorological models. For the wind case, wind speed data
from 89 points of RAMS simulation are used (see section 2.2 for more details). For the
solar case, solar irradiance data from 144 points are provided by GEFS simulations.

Specifically, given a historical dataset of predictions and corresponding observations,
for each lead-time of the current forecast, distances from every past forecast issued at
the same lead-time are computed. All these distances are sorted from the lowest and
the first n correspondent past forecasts are chosen. The concurrent n past measurements
(wind power or solar radiation density in this work) are the n members that constitute the
current analog ensemble forecast for the lead-time considered. It is important to underline
that the AnEn, by selecting past power measurements which become the current forecast,
naturally takes care of transforming meteorological predictions into power (or energy)
predictions. The metric used to assess past forecasts similarity to the current forecasts is

defined as follows [10][19][34]:

\Ft,Atr—Z Z’L Fiej—Aizr)) 2.3)

J—f’C
where F; is the current forecast at time t at a certain location, A7 is an analog forecast at
time 7 before F; was issued and at the same location, A, is the i-th eigenvalue coming from
the PCA, p is the dimension of the subspace in which the data are projected, 7 is an integer
equal to half width of the time window over which the metric is computed, and A; 7, ; and
Fi ;4 j are the values of the analog and the forecast in the time window for a given variable.
In this context, the forecast F' and A are the arrays resulting from the PCA analysis. To
assign different weights to each principal component, the eigenvalues A; are introduced
in (2.3). Equation (2.3) differs from the metrics already used in [9] and [10]. In fact,
in those works the forecasts F and A were not transformed by the PCA and represented
arrays of different meteorological variables (predictors) extracted in one location. Also,
A; were referred as the weights assigned to the different p meteorological predictors. In

this work we just use one meteorological predictor (wind speed or solar irradiance) and
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p represents the number of principal components selected. When the AnEn is applied
without the PCA dimension reduction (see section 2.3), p is the number of grid points (89
for the wind case, 144 for the solar case) and A; is kept constant equal to 1.

The AnEn provides probability density functions (PDF) from which the likelihood
of future events can be estimated. The PDF of the power or energy density forecast is
estimated using the set of the n members from the analog ensemble forecast. On the other
hand, computing the mean or the median of the n analog members allows obtaining a

deterministic forecast as well.

Neural Network (NN)

A NN links the input variables and one or more output variables through an intercon-
nected group of nodes called neurons. The back-propagation algorithm used in this work
is based on the programming language R [35], and allows minimizing an error function
depending on the different weights associated to the different interconnections. Each neu-
ron assigns a weight to the input signals, and through an activation function, it produces
an output term. The learning procedure of each neuron is performed through different
iterative cycles, each making up a training phase for the network. At each iteration, the
input signals in are multiplied by an appropriate value w representing the signal weight,
usually within the range (—1,1). This operation produces the resultant net; = Y. ; w;jin;.
The term net; — 6;, where 0; is an arbitrary value, forms the activation function argument
and generates the output. The NN input is usually normalized to values between 0 and 1,
to adapt the activation function to the weight values.

The strength of the learning phase is evaluated by the difference between the forecast
output signal and the measured value; this difference represents the error. It is not pos-
sible to define a priori the optimal number of neurons, but in literature it is possible to
find different rules [36][37]. The advantage of using an NN is that different types of data
and variables, e.g., lead-time, wind speed and wind direction, can be combined. Also,
being the training carried out using observed power data, it allows the NN to perform
the conversion into power after getting meteorological variables as input. An indepen-
dent iterative training is performed starting from different random weights: the NN that

provides the minimum Root Mean Square Error (RMSE, see section 2.4), compared to
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the observations over a subset of the training period, is selected and applied over the test
period. In this work we have applied the NN using between 6 and 8 neurons depending
on the different number of input data determined by each approach (see section 2.3). A
sensitivity analysis (not shown) carried out on the training period has indicated the best

NN configuration for each application.

Reference Methods

To better understand the PCA contribution to the overall forecast system’s perfor-
mance, we introduce a simpler dimension reduction technique as a baseline reference; we
apply the AnEn and NN using the mean, the maximum, the minimum values and the stan-
dard deviation (MMMY) of the gridded forecast data as input. Also, we apply the AnEn
and NN using the forecasts data from all the grid points as predictors. To summarize, we
compare six approaches: NN after PCA (PCA+NN), AnEn after PCA (PCA+AnEn), NN
after MMMS (MMMS+NN), AnEn after MMMS (MMMS+AnEn), and finally NN (NN)
and AnEn (AnEn) without any dimension reduction.

We also want to understand the contribution of NN and AnEn as post-processing
techniques to convert meteorological data into power data minimizing the BIAS. To do
that, we compare the NN and AnEn after the PCA to a less sophisticated post process-
ing method, i.e. a linear regression (PCA+LR). In Table 2.1 the computational time of
PCA+NN, NN, PCA+AnEn and AnEn for both wind and solar cases are compared. The
work has been implemented in R [35] and run on a single processor Intel® Core©)i7-

45100, CPU 2.00 GHz.

Table 2.1: Computational time for four different methods in both wind and solar case.

PCA+NN NN PCA+AnEn AnEn
Wwind | 3741" | 6h3944"” | 1h50’6" | 28h4’' 35"
Solar 157" 187" 207 31" 3h 8 52"

The improvement computational time reduction lead by PCA application is evident.
When applied with the AnEn the reduction is of about 90% for both the wind and the
solar case and when applied with the NN the reduction is of about 98% for the wind case

and of about 88% for the solar case.
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2.4 Forecast evaluation

Deterministic forecast evaluation

RMSE, Mean Absolute Error (MAE), bias and Pearson correlation indices are used
to assess the performances of the different prediction systems. Bias is defined as the
difference between the arithmetic mean of observed and forecasted values. It is obtained

by the formula

1
N;

M=

(fi —oi) 2.4)

bias =
1

where f; represents the forecasted data and o; the measured one. The bias evaluates the
systematic error and its optimal value is 0; a positive (negative) value indicates a tendency
to overestimate (underestimate) the observations, respectively.

MAE is given by the formula

1 N
MAE:]T[ZM—oiy (2.5)
i=1

1.e., it is the average absolute error between the forecasts and the observations. Lower
MAE values indicate greater forecast accuracy.

RMSE is the squared root of the residual variance: it is given by the formula

RMSE = (2.6)

1.e., it is the quadratic average of the errors and it indicates how much the forecasted
data are far from the observed data. Similarly to MAE, a lower RMSE indicates greater
accuracy.

The Pearson correlation index is a coefficient that assesses the linearity between the
covariance of two random variables and the product of their standard deviation, based on

the formula

cor — _cov(oi fi) (2.7)

sd(o;)sd(fi)
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The range of this coefficient is [—1, 1]. It evaluates how the forecast and the measurement
temporal trend are similar. A correlation equal to 1 indicates a perfect forecast.

Bias, MAE and RMSE are normalized with respect to IC and MED.

Probabilistic forecast evaluation

The quality of probabilistic predictions can be evaluated by assessing several key at-

tributes, some of which are described below.

Reliability and sharpness diagram

A reliability diagram allows visualizing the similarity between forecasts and observa-
tions in a probabilistic framework. The class intervals of forecast probabilities are plotted
against the observed frequencies [38][39][40]. A probabilistic system is reliable if, for
any given level of probability, the rate of occurrence of an event (i.e., its observed relative
frequency) is equal to its forecasted probability. In other words, if an event is predicted
with a certain probability, such event should occur in the same percentage of cases. A
perfect probabilistic system would correspond to a reliability diagram with a 1 : 1 diago-
nal line. Together with reliability it is also useful to show the sharpness of a probabilistic
system, i.e., the ability to issue forecasts with both low and high probabilities [41]. By
plotting the relative frequency (i.e., the number of cases) in each probability class interval,
it is possible to assess how sharp the system is. Forecast systems with low sharpness ex-
hibit a flat frequency line. For reliable forecasts sharpness leads to better resolution (i.e.,
predictive skill). Reliability diagrams, for each probabilistic system, are produced using
a threshold equal to 50% of IC in the case of wind forecast and equal to 50% of seasonal
MED in the case of solar forecasts, i.e., for each season the threshold is equal to 50% of
maximum energy density of that season. Therefore four different thresholds are used for

solar forecasts.

Relative Operating Characteristic Skill Score

The relative operating characteristic (ROC) skill score (ROCSS) index is based on

the ROC curve [42], which is particularly useful in decision-making. The decision to
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undertake actions about the occurrence of a particular event can depend on the forecasted
probability of the same event exceeding a certain threshold. The ROC curve is produced
by plotting the false alarms divided by the total number of non-occurred event against the
hit rate (i.e., the correct forecast divided by the total occurrences of the event). A lower
curvature corresponds to a higher number of false rates, showing a lower ability of the
forecast system to discriminate. The ROC (as well as the ROCSS) thus depends upon
resolution and not upon reliability. ROCSS translates the ROC score into a standard skill
score estimating the resolution of probabilistic predictions, for which a value equal to 1
denotes a perfect forecast and a ROCSS lower than O indicates a system that performs

worse than climatological forecasts.

Continuous Ranked Probability Score

The continuous ranked probability score (CRPS) compares a full probability distri-
bution with the observations, when they are both represented as cumulative distribution

functions (CDFs) [43]. It is given by the formula
Ly [T (ot ory)
CRPS = N,.Z;/m (Fi (x) — F; (x)> dx 2.8)

where Fif (x) is the CDF of the probabilistic forecast for the i-th values and F(x)is the
CDF of the observations. The CRPS is a proper score and it is expressed in the same
unit as the observed variable. A lower value of CRPS indicates better performance. The
CRPS generalizes the mean absolute error [44] and therefore it provides a direct way of

comparing various deterministic and probabilistic forecasts by using a single metric.

Rank histogram

Rank histogram is a diagnostic tool to evaluate the calibration and the consistency of
an ensemble distribution, indicating how the ensemble spread represents the observation
uncertainty [45]. The ensemble members are ranked to delineate ranges of the predicted
variable; in a perfect ensemble the probability of occurrence of the observation within
each range is equal. A calibrated system should have a flat distribution, in which the veri-

fication analysis ranks approximately with the same frequency in each interval. However,
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in operational situations it is more frequently to observe different shapes of the distribu-
tion. When the distribution takes a U-form, it indicates an over-confident prediction: this
means that most of the observations fall outside the extremes of the probability distri-
bution, the ensemble members are not well calibrated and the spread is not sufficient to
include all measurements. Conversely, an inverted U-shape indicates an under-confident
estimate, in which the spread of the forecasts is excessively large: even in this case the
members do not appear properly calibrated, since the observations fall mostly close to the

center and not close enough to the extremes.

In the rank histograms, the horizontal line represents the frequency for a perfectly uni-
form distribution. Vertical confidence bars can be calculated with a quantile function for
a binomial distribution, to show a range in which a deviation from the perfect distribution
is still consistent with reliability. The bars delimit the 90% confident interval. The miss-
ing rate error (MRE), which is the fraction of observations lower (higher) than the lowest
(highest) ranked prediction above or below the expected missing rate of 1/(n+ 1), is also
shown. A larger positive (negative) MRE reveals a more underdispersive (overdispersive)

ensemble.

Binned Spread/Skill Diagram

A binned-spread/skill diagram assesses the relationship between the ensemble spread
and the RMSE of the ensemble mean over small intervals (i.e., bins) of spread, instead
of considering its overall average; it assesses the ability of a probabilistic prediction to
quantify its uncertainty [46][47][48]. Each bin has the same number of data points, which
results in bins of different width. If the observations and the ensemble members are
samples from the same distribution, it can be shown that the ensemble spread and the
RMSE of the ensemble mean should be equal. This requirement becomes a necessary
condition if the ensemble members and the ensemble mean errors do not have a Gaussian
distribution. In this case, a good level of consistency is reached if the ensemble spread
and the RMSE match at all values, resulting in a trend lying on the plot 1 : 1 diagonal. In

this case the ensemble system is able to forecast its own error.
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2.5 Results

Wind power results

The different methods are first compared in a deterministic framework. Figure 2.3
shows examples of the times series for PCA+NN, PCA+AnEn probabilistic forecasts,
and the measured wind power. The PCA+AnEn quantile ranges are consistent with the

wind power observations variability and, as expected, they increase for larger lead times.
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Lead Time (h)

Figure 2.3: PCA+NN, PCA+AnEn and measured wind power times series for 2 January 2012 for
the wind case. The shadings correspond to the 25-75 (lighter) and 10-90 (darker) quantiles.

Figure 2.4 shows RMSE (a), MAE (b), BIAS (c) (all normalized by IC) and corre-
lation (d). Only lead-times from 36 to 59 hours ahead (i.e., the day-ahead) are shown
(considering that lead time O corresponds to 12 UTC). All the forecast methods’s perfor-
mances deteriorate for lead times between 48-59 h.

This is a typical pattern caused by the presence of more variability in wind speed
(hence less predictable conditions) due to stronger turbulent convection in the afternoon
hours (i.e., lead times 48-59h). Using the PCA-reduction procedure instead of all the
89 grid points improve the results, in particular when the NN is applied. This is due to
the high number of input that prevent the NN from working properly. In fact, with an
increased number of degrees of freedom, it’s more difficult to reach a convergence dur-
ing the NN training. The AnEn can work with a high number of predictors (the results

of PCA+AnEn, MMMS+AnEn and AnEn are comparable), but the advantage of using a
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Figure 2.4: RMSE (a), MAE (b), BIAS (c) and correlation (d) of PCA+NN, PCA+AnEn,
MMMS+NN, MMMS+ AnEn,NN, AnEn and PCA+LR as a function of forecast lead time
for 36-59h ahead for the wind case. The arrows to the left of each plot represent the boot-
strap confidence intervals of each index obtained grouping data over the different lead times

together.
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PCA relies in the significant computational time reduction (Table 1). When comparing
the three different post-processing methods (NN, AnEn and LR), the simple LR performs
worse than the NN and the AnEn. For the remaining part of the chapter we have com-
pared only the NN and AnEn methods applied on the PCA-reduced data (i.e. PCA+NN,
PCA+AnEn, MMMS+NN and MMMS+AnEn).. Using PCA instead of MMMS allows
achieving better performances. PCA+NN shows generally slightly better performance in
terms of RMSE, BIAS and correlation, whereas PCA+AnEn shows better performance in
terms of MAE. NN performs slightly better than AnEn in terms of RMSE and correlation
but, as shown by the confidence intervals in proximity of the left vertical axis (computed
with all the lead times pulled together), the difference is not statistically significant. AnEn
shows lower BIAS than NN.

Regarding the probabilistic evaluation, Figure 2.5 reports the reliability diagrams cal-
culated using a threshold equal to 50% of IC corresponding to an observed frequency
around 40% (see horizontal dashed line). The use of the PCA leads to a slightly more
reliable forecast, in fact its forecast probabilities appear more similar to the observed fre-
quencies in the range between 0.4 and 0.8. Regarding sharpness, both methods show
similar results (i.e., the majority of cases occurs in the 0 —20% and 90 — 100% range).
The vertical bars in the diagrams are consistency intervals showing the range of empirical
probabilities that could be observed even for perfect probabilistic forecast, due to sam-
pling effects. They are derived from binomial distribution with the same probability as
the corresponding class [49]. Bars are calculated using the 5% and 95% quantiles of this
distribution. The horizontal dashed line is the climatological frequency (i.e., the mean of

the observed frequencies).

Figure 2.6 (a) shows ROCSS values as a function of forecast lead time. The indices are
computed using a threshold corresponding to 50% of IC. PCA+AnEn and MMMS+AnEn
show a similar level of performance with values around 0.9 and always greater than 0.8
except for lead time 51-h. PCA+AnEn reaches higher values than MMMS+AnEn, in
particular for lead time range 1-20. For all other lead times the two approaches are com-
parable. In Figure 2.6 (b) CRPS as a function of forecast lead-time is plotted. PCA+AnEn
shows lower CRPS values for all of the lead times, indicating better performance. A daily

cycle is also clear, with lower performances in early afternoon hours, when lower ROCSS
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Figure 2.5: Reliability (orange/green line) and sharpness (grey squares) diagrams for proba-
bilistic forecasts of IC greater than 0.5, for PCA + AnEn (a) and MMMS + AnEn (b) for the
wind case. The vertical bars indicate the potential range for perfectly reliable forecasts. The

dashed horizontal line is the climatological frequency of the event.

and higher CRPS values are observed.
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Figure 2.6: ROCSS (a) as a function of forecast lead time (event forecasts greater than 0.5 IC)
and CRPS (b) as a function of forecast lead time for the wind case. The orange line represents
PCA + AnEn whereas the green one MMMS + AnEn. The arrows to the left of each plot
represent the bootstrap confidence intervals of ROCSS and CRPS obtained by grouping data

over the different lead-times together.

Figure 2.7 shows the rank histogram produced for PCA+AnEn (a) and MMMS+AnEn

(b). The horizontal line in the diagrams represents the frequency of a perfectly uniform
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Figure 2.7: Rank histogram, PCA + AnEn data (a), and MMMS + AnEn (b) for the wind case.

distribution. The vertical bars delimit the 90% confidence interval. Both methods appear
slightly overdispersive with very similar rank histograms, with small MRE values and a
good statistical consistency.

We perform an additional assessment of statistical consistency by compiling binned
- spread/skill diagrams as in Figure 2.8. The two different approaches show a good dis-
tribution of their values along the diagonal, even if they are both slightly overdispersive.
The two approaches are both adequately able to represent forecast uncertainty, since their

spread reflects the deterministic error variance.

Solar irradiance results

Figure 2.9 shows time series of forecasted solar irradiance for PCA+NN and PCA+AnEn
and the observed values. The forecasted values look in good agreement with the observa-
tions.

As shown in Figure 2.10, for deterministic predictions, a reduction procedure (PCA or
MMMYS) leads to better results than the use of the entire dataset, in particular for the NN.
The AnEn also performs worse when applied to all the 144 grid points exhibiting worse
BIAS values. Concerning the post-processing methods, the NN and the AnEn perform
better than the LR. As for the wind case, in the remaining part of the chapter we have

tested the PCA+NN and the PCA+AnEn only. The PCA approach leads to better results
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Figure 2.8: Binned ensemble spread versus standard deviation of the ensemble mean error for
the probabilistic forecasts: PCA + AnEn (orange line) and MMMS + AnEn (green line) for

the wind case. The bars delimit the 90% bootstrap confidence interval.
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Figure 2.9: PCA+NN, PCA+AnEn and measured solar irradiance times series for April 2004 for
the solar case. The shadings correspond to the 25-75 (lighter) and 10-90 (darker) quantiles.

than MMMS in terms of RMSE (a), MAE (b), BIAS (c¢) (normalized by the maximum
energy density) and correlation (d). The trends are similar for all four cases, showing
good results during winter and autumn seasons and lower performances during spring
and summer. Indeed, prediction errors are proportional to the solar radiation energy that
is lower during winter [34]. NN leads to slightly better results than AnEn, both coupled to
PCA and MMMS. RMSE and MAE follow the same trend, showing higher performance
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for NN, in particular for PCA+NN. BIAS shows a tendency to underestimate the forecasts

in spring summer and autumn. Looking at the bootstrap intervals (in proximity of the

left vertical axis computed with all the lead times pulled together), the improvement in

correlation on PCA+NN and PCA+AnEn is closer to be statistically significant than for

other metrics.
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Figure 2.10: RMSE (a), MAE (b), BIAS (c) and correlation (d) of PCA+NN, PCA+AnEn,
MMMS+NN, MMMS+ AnEn,NN, AnEn, PCA+LR as a function of the seasons for the solar
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In Figure 2.11 PCA+AnEn (a) and MMMS+AnEn (b) are compared by plotting re-

liability diagrams, where the threshold is set to a value equal to 50% of MED. The two

models show the same level of reliability and sharpness. The horizontal dashed line is the
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climatological frequency around 55%.
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Figure 2.11: Reliability (orange/green line) and sharpness (grey squares) diagrams (event fore-
cast greater than 0.5 MED), for PCA + AneEn (a) and MMMS + AnEn (b) for the solar
case. The vertical bars indicate the potential range for perfectly reliable forecasts. The

dashed horizontal line is the climatological frequency of the event.

Figure 2.12 shows ROCSS (a) and CRPS (b) diagrams, where the corresponding val-
ues are reported as a function of the season. In the ROCSS diagram the indices are com-
puted for a threshold corresponding to 50% of MED. PCA+AnEn shows a level of perfor-
mance with values always greater than 0.9, whereas MMMS+AnEn shows lower values,
with a minimum around 0.7 in summer. The bootstrap intervals indicate that the differ-
ences are statistically significant only during summer. This means that PCA+AnEn per-
forms statistically significantly better than MMMS+AnEn only during summer. PCA+AnEn
model shows lower CRPS values than MMMS+AnEn during all the seasons. The rank
histograms and binned spread-skill diagrams (not shown) for both PCA+AnEn and MMMS+AnEn

show an optimal and similar level of statistical consistency.
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Figure 2.12: ROCSS (a) as a function of seasons for the probabilistic forecasts of forecasted
energy density greater than 0.5 MP and CRPS (b) a function of seasons for the solar case.
The orange line represents PCA + AnEn whereas the green one MMMS + AnEn. The arrows
to the left of each plot represent the total value of each index computed on the entire dataset

with the bootstrap confidence interval.

2.6 Conclusions

We test different approaches to predict the hourly/daily wind power or solar irradi-
ance produced by several plants spread over a vast geographic region on two separate
datasets: Sicily (South of Italy) for wind power and Oklahoma for solar irradiance. These
approaches are based on using gridded forecast data from Numerical Weather Prediction
(NWP) models over the geographic region of interest after a Principal Component Anal-
ysis (PCA). We use the PCA to reduce the size of the forecast gridded data. After the
PCA, starting from the dimensionally reduced datasets, we apply the Analog Ensemble
(AnEn) technique and a Neural Network (NN) algorithm to generate deterministic and
probabilistic predictions of the regional power output.

In both the solar (Oklahoma) and wind power (Sicily) applications, the PCA-based
reduction procedure leads to better results than those obtained by applying the NN and
AnEn directly over the entire gridded prediction data. The improvements rely both on the
forecast accuracy (lower Root Mean Squared Error, RMSE) and on consistent computa-
tional time reduction (between 88% and 98% depending on the application). Also, AnEn

and NN both outperform a simpler bias reduction method as a linear regression.
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We also compared the PCA with a less sophisticated dimension reduction procedure,
as taking the minimum the maximum and the mean values of the gridded forecast data
(MMMS) For Sicily, PCA leads to better results than MMMS, particularly when cou-
pled with NN. RMSE, MAE, BIAS, and correlation show that PCA performs better than
MMMS, which leads to a lower performance possibly caused by a loss of information.
Indeed, the selected principal components contain a large portion of the available infor-
mation (described by the variance) of the original data. Thus, they are a valid proxy of
the entire dataset.

For probabilistic wind power predictions over Sicily, the MMMS and PCA are al-
most similar,even though MMMS shows a tendency to overestimate the forecasts and to
be less reliable than PCA. The benefit of using a PCA-based approach is more evident
for the Oklahoma dataset. When NN s applied after PCA, it provides the most accu-
rate deterministic forecast, particularly during summer. PCA+AnEn is more reliable than
MMMS+AnEn when used to generate probabilistic solar power predictions. Also, lower
values of CRPS and higher values of relative operating characteristic skill score (ROCSS)

indicate a higher quality of the PCA-based probabilistic forecasts.

Notes

This chapter has been published as article on Solar Energy 134, 2016, pages 327-338.
Received 27 January 2016, received in revised form 7 April 2016, Accepted 28 April
2016. The co-authors are Stefano Alessandrini (NCAR), Simone Sperati (RSE), Luca
Delle Monache (NCAR), Davide Airoldi (RSE), Maria Teresa Vespucci (University of
Bergamo). NCAR is National Centre for Atmospheric Research, Boulder, CO, USA.
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Chapter 3

Forecasting Italian electricity market
prices using a Neural Network and a

Support Vector Regression

3.1 Introduction

Electricity price forecasting has always been an important tool in a competitive mar-
ket. Participants in deregulated electricity market can use price forecasting to develop
their bidding strategies to maximize the profit obtained by trading energy. In bilateral
contracts the agreed price of buyer and seller is based on market clearing price predic-
tions. On the other hand, the market behaviour can be analysed by the market operators
using accurate price forecasts.

Price forecasting has been the subject of several studies (see e.g. [1] and [2] for a
review), and a lot of different methods have been proposed for price and load forecast-
ing, such as linear regressions [3], stochastic processes [4], ARMA models [5], and also
weighted nearest neighbours techniques [6], quantile regressions [7][8] or hybrid correc-
tion method [9]. To obtain excellent results in price forecasting it is not sufficient to have
good methods for deriving such forecasts: it is very important to have accurate infor-
mation. Indeed, electricity demand (and therefore electricity prices) strictly depends on
weather (e.g., temperature, wind speed, precipitation) and on the peak differences during

a day or a week. Furthermore, since electricity is non-easily storable and power systems
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require a constant balance between production and consumption, it is important to have
information more precisely as possible. The problem is that this information is rarely

available to individual market participants.

The purpose of this study is to test the role of different predictors, in particular those
easy achievable (e.g., on websites of Power Exchange Operators - PEO, or Transmission
System Operators - TSO). Furthermore, we want to test the role that each predictor has
in different price forecasting approaches. In particular the study is conducted over 2
years (2014 - 2015) for the Italian day ahead electricity market prices, where supply
orders, pumping demand orders and export demand orders are driven by the zonal prices,
while all the other demand orders are driven by an Uniform Purchase Price (Prezzo Unico
Nazionale or PUN) [10]. We test our predictors and methods both on PUN and on some
zonal prices, in particular those of zones called Nord, Centro-Nord, Centro-Sud and Sud,
to try to understand which factors are crucial in price forecasting and which are not so
decisive. The decision to forecast both PUN and zonal prices is due to the fact that PUN is
the price at which most of the Italian demand orders are subject and it is unique for all the
Italian electricity market; zonal prices, instead, differ from a zone to another when there
is a congestion between these two zones (the zones Nord and Centro-Nord have had a
different price in the 20% of the hours in 2015, the percentage rises to 34% comparing the
zones Nord and Sud). Therefore it is important to classify the most important information
between zones. We forecast the prices of the day-ahead electricity market, that means

that, if we are in day D, we forecast hours of day D+ 1.

Since we want to work with a big variety of data, in this chapter we proposed two
different approaches able to work with a high number of different predictors: a Neural
Network (NN) and a Support Vector Regression (SVR).

The NN has been adopted thanks to its ability to learn how to associate to each input
the correspondent output, and in literature is possible to find different examples (see,
e.g., [11] [12][13]). Given different predictors, the NN produces the forecasted PUN
(or forecasted zonal prices) through neural interconnections. To achieve this purpose the
neurons of the NN must be trained.

SVR has been used for regression and time series prediction, as in [14][15], and it

is based on Support Vector Machine (SVM), a machine learning method that has been
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recently introduced in the framework of statistical learning theory (developed by Vapnik
[16][17]) for data classification. SVM are usually used for time series forecasts in partic-
ular in presence of non-linearity. The strength of SVM is that it maps the input data into a
high dimensional space and then uses simple linear functions to create linear constraints
in the new space. For these reasons we thought that SVR can be a good method for our
purposes.

The novelty proposed in this chapter is that we tried to apply NN and SVR to a big
number of different and easily achievable predictors.

The chapter is organized as follows: Section 3.2 reports a description of all the avail-
able data that have been used in the model. The predictions methods NN and SVR are
illustrated in Section 3.3. Results of the application (both for PUN and zonal prices) are

given in Section 3.4 and conclusions are illustrated in Section 3.5.

3.2 Data Description

Hourly prices data cover the period January 2014 — December 2015. We chose to start
the dataset from January 2014 and not to use the years before since the Italian electricity
price has changed during the last years, in particular prices of current days are lower than

prices before 2014, as is shown for PUN in Figure 3.1 (the same holds for zonal prices).
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Figure 3.1: Hourly mean of PUN as function of the hours for five different years.

PUN is defined as the hourly price that equals the total incomes with the total revenues
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in the system in each hour, and therefore is strictly linked with the zonal prices. One of the
difference in price forecasting between PUN and zonal prices is that zonal events (e.g., a
rainy day in the north of Italy while in south it’s a sunny day) affect especially the zonal
prices, while PUN is not directly affected. Hourly prices are made available by the Italian
PEO (Gestore dei Mercati Energetici, GME [10]). There are more than 40 variables
that can be used as predictors [1], but we investigated the relation between prices and
other variables or information selecting only those that are normally already collected
by the PEO, or by TSO. In the following are reported only considerations about PUN.
Concerning zonal prices, the relations with the variables are analogous. In the squared

brackets are reported the letters we adopted in the study to indicate each predictor.

1. Historical Prices [P]: as historical data set we used the price of the day before for
days from Tuesday to Friday, and the price of the week before for the remaining

days, since the trend of the price in the week-end is different from the trend during

the week.

2. Forecast load [L]: in price forecasting the estimated demand has always played an
important role [18] and it seems to be the variable that most influence the price, see

Figure 3.2. The hourly data of forecast load have been made available by GME.
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Figure 3.2: Variation in percentage from one hour to another of PUN (black line) and forecast

load (red line)

3. Wind and Solar Power Production [W]: an high production of renewable energy

can decrease the price since it is sold at a price close to zero. For this reason we
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