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Abstract

Service-oriented computing is playing an important role in several domains. To-
day the biggest shift in mainstream design and programming is toward service-
oriented applications. However, the service paradigm raises a bundle of problems
that did not exist in traditional component-based development where abstrac-
tion, encapsulation, and modularity were the only main concerns. Due to their
distributed, dynamic, and heterogeneous nature, service-oriented software ap-
plications require us to discover, document, and share new design patterns at
the service- and architecture- level. Moreover, service-oriented applications are
hard to design and validate, and demand for new foundational theories, model-
ing notations and analysis techniques.

In line to such a vision, this article presents a framework, called SCA-
PatternBox, to design and prototype service-oriented applications with design
patterns. The framework relies on the OASIS standard Service Component Ar-
chitecture (SCA) and on SCA component implementation types, such as SCA-
Java, for supporting an “implementation-oriented” approach to service-oriented
architecture modeling and to the definition and instantiation of design patterns.
Moreover, in order to provide formally verified design patterns, SCA-PatternBox
allows the formal specification and analysis of the functional behavioral aspects
of a design pattern using a formal service specification language called SCA-
ASM (Service Component Architecture - Abstract State Machine). As major
evaluation of the framework, two case studies and lessons learned are presented.
A final comparison of existing design pattern languages is also reported.
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1. Introduction

Today the biggest shift in mainstream programming and design is toward
service-oriented applications. Service-oriented applications are playing so far
an important role in several domains (e.g., information technology, health care,
robotics, defense and aerospace, to name a few). Cloud service providers, in par-
ticular, are expanding their offerings to include the entire traditional IT stack,
ranging from foundational hardware and platforms to application components,
software services, and whole software applications.

Service-oriented Computing (SoC) is a paradigm for developing loosely-
coupled, interoperable, dynamic systems relying on the basic unification prin-
ciple that “everything is a service”. Services are intended as loosely-coupled
autonomous and heterogeneous' computational components that are offered by
service providers in a distributed environment via publish/discovery protocols.
The architectural foundation for SOC is provided by the Service-Oriented Ar-
chitecture (SOA), which states that applications expose their functionality as
services in a uniform and technology-independent way such that they can be
discovered and invoked over a network and clouds.

Such a paradigm shift relies on interface-based design, composition, and
reuse; but, differently from traditional component-based design where abstrac-
tion, encapsulation, and modularity were the only main concerns, the service
paradigm raises a bundle of problems which did not exist previously. Early de-
signing, prototyping, and testing of the functionality of such assembled service-
oriented applications is hardly feasible since services are discoverable, loosely-
coupled, and heterogeneous components that can only interact with others on
compatible interfaces. Moreover, this paradigm shift requires us to discover,
formally define, document, and share new design patterns. A SOA design pat-
tern provides a solution in support of successfully applying service orientation
and establishing a quality service-oriented architecture. SOA patterns describe
common architectures, implementations, and their areas of application to help
in the planning, implementation, deployment, management, and maintenance
of complex systems. According to the SOA principles[1], design patterns play a
fundamental role to support the engineering of service-oriented applications and
the attainment of the strategic goals of SoC. In particular, a special emphasis
has been put so far on the development of a catalog of SOA design patterns?.

In line to such a vision, this article proposes a framework, SCA-PatternBox,
for modeling service-oriented applications with design patterns. The framework
relies on the OASIS open standard Service Component Architecture (SCA) [2]
as modeling language for heterogeneous service assembly in a technology ag-
nostic way, and on the Java implementation for SCA. A supporting prototype
tool based on the Eclipse environment is also available at [34]. It was devel-
oped by extending the Eclipse plug-in PatternBozx [3], an existing design pat-

IServices are in general, heterogeneous, i.e. they differ in their implementation/middleware
technology.
2http:/ /www.soapatterns.org/



tern editor for Java code, and by integrating it with the Eclipse-based SCA
Composite Designer and the SCA runtime platform Tuscany [4]. Through an
XML template-based mechanism, SCA-PatternBox allows the definition of de-
sign patterns and their instantiation from a scratch SCA design to be further
customized depending on the application needs, or from an SCA component as-
sembly of an existing service-oriented application to generate automatically the
corresponding compound SCA component assembly and the SCA-Java skeleton
code (indeed, Java classes and interfaces with appropriate annotations for SCA).
The template-based approach for the pattern instantiation and code generation
makes SCA-Patterbox higher usable than wizard-based approaches where you
have to complete the whole design pattern instance at once. Moreover, SCA-
PatternBox can be easily extended. New design patterns and code generators
can be introduced by defining new XML templates depending on the target
implementation platform and application domain.

Since patterns have two complementary aspects (structural and behavioral),
for patterns that have a significant behavioral aspect, it is necessary to under-
stand how service components collaborate to achieve the expected behavior.
To this purpose, in addition to a Java-like implementation of design patterns,
SCA-PatternBox allows also the formal specification and analysis of the func-
tional behavioral aspect of design patterns using a formal service specification
language called SCA-ASM [6, 7]. SCA-ASM is based on the formal method Ab-
stract State Machine [8] that allows the definition of executable and state-based
specifications of systems behavior. The main goal is to provide formally verified
design patterns by producing precise and unambiguous functional descriptions
of design patterns in SCA-ASM and then to validate and verify these formal
specifications (e.g. through simulation and model checking).

The proposed framework offers several advantages with respect to the cur-
rent state of art (see Sect. 6 for a detailed comparison with related works). In
the literature, design patterns are typically described using a combination of
natural language, UML class and sequence diagrams, and program code (see
related work in Sect. 6.1). Such descriptions lack design pattern-specific visual
formalisms, leading to pattern descriptions that are hard to understand, hard
to incorporate into tool support, and therefore hard to be machine-processable
in order to automate their instantiation and application in the current design
and then in the software code. The proposed framework was conceived instead
with automation in mind and to this purpose a template-based approach was
adopted. The purpose of this work is to facilitate the construction of a service-
oriented application and to help engineers understand alternative means for
achieving alternative architectures in the applications design and code. More-
over, existing approaches are specific to object-oriented system design and do
not address SOA design patterns. Instead, our approach addresses also design
patterns related to the SOA domain. Finally, some existing approaches that use
a mathematical formalism for defining design patterns formally require strong
mathematical background to the user and lack of good tool support. Based
on the practical and scientifically well-founded ASM formal method, SCA-ASM
models are instead executable and without mathematical overkill. SCA-ASM



allows modeling both structure and behavior of service components in a unique
framework integrating architectural and behavioral views. By exploiting the
prototyping/validation environment for SCA-ASM [7], patterns and components
can be executed already at high level of formalization, without caring about im-
plementation details. Early validation by model simulation is a great means
for evaluating architectural choices and alternative designs with limited imple-
mentation effort. The mathematical foundation of the method also facilitates
reasoning about component behavior in order to guarantee their correctness.

A first prototype of the SCA-PatternBox environment was presented as a
tool demo at the Eclipse Italian workshop [9], while a preliminary overview of
the framework was presented in [10]. This article extends these preliminary
works in several aspects. First, this article provides a more accurate description
of the pattern definition language adopted by the SCAPatternBox framework
and its use through concrete patterns examples. Formal analysis techniques sup-
ported by SCAPatternBox for validating and verifying the functional behavioral
aspects of patterns and applications are presented. The article introduces also a
supporting methodology for a general and agile prototyping of a service-oriented
application with the SCA-PatternBox framework, and illustrates the methodol-
ogy through two case studies — the Order system and the Stock Trading System
(STS). Lessons learned that we gained through our experience in developing
the case studies and that should be retained for future use are also reported.
Moreover, a comparison of existing design pattern languages is also presented
according to some specific criteria.

The remainder of this article is organized as follows. Section 2 provides back-
ground concepts on SCA, SCA-Java and SCA-ASM. Section 3 introduces the
SCA-PatternBox language and alternative notations for editing design patterns
and instantiating them automatically. Section 4 describes the SCA-PatternBox
framework and a supporting design/development methodology for prototyp-
ing service-oriented applications with design patterns. Section 5 illustrates the
methodology with two case studies and provides some lessons learned during the
development of the framework and its use for the case studies. Section 6 surveys
the main existing design pattern languages and provides a comparison of them
and of our proposed SCA-PatternBox language. Finally, Section 7 concludes
the article and sketches some future directions of our work.

2. Background concepts

Service Component Architecture (SCA) [2] is an XML-based component
model used to develop service-oriented applications independently from SOA
platforms and middleware programming APIs. SCA is also endowed with a vi-
sual notation and supported by an Eclipse-based design tool and runtime plat-
forms (like Apache Tuscany, FRAscaTI, IBM WebSphere Application Server
V7, ete.) for the development and deployment of service-oriented applications.

Fig. 1 shows an SCA composite (or assembly) as a composition of SCA
components. An SCA component is a piece of configured software that provides
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Figure 2: SCA-Java component shape

business functions (operations) for interaction with the outside world. This in-
teraction is accomplished through: services that are externally visible functions
provided by the component; references (functions required by the component)
wired to services provided by other components; properties allowing for the
configuration of a component implementation and bindings that specify access
mechanisms used by services and references according to some technology /pro-
tocol (e.g., WSDL binding to consume/expose web services, JMS binding to
receive/send Java Message Service, etc.). Services and references are typed by
interfaces. An interface describes a set of related operations (or business func-
tions) which as a whole make up the service offered or required by a component.
The provider may respond to the requester of an operation with zero or more
messages. Message exchange may be synchronous or asynchronous.

The SCA-Java Component Implementation [2] defines how to implement an
SCA component using Java. Fig. 2 shows the SCA component A of Fig. 1 and its
Java implementation class AImpl. Java annotations (6Property,@service,etc.)
are used to augment Java classes with SCA concepts.



The SCA-ASM specification type [6, 7] complements the SCA component
model with the ASM model of computation to provide ASM-based formal and
executable description of services internal behavior, orchestration and interac-
tions. An open framework, the ASM toolset ASMETA (ASM mETA-modeling)
[11, 12], based on the Eclipse/EMF platform and integrated with the SCA run-
time Tuscany, is also available for editing, simulating, validating, and potentially
model checking SCA-ASM models [6, 7].

ASMs [8] are an extension of FSMs where states are arbitrary complex data
(multi-sorted first-order structures) and the transition relation is specified by
rules describing how functions change from one state to the next. The basic
rule has the form of guarded update “if Cond then Updates” where Updates is
a set of function updates of the form f(¢1,...,¢,) := ¢ which are simultaneously
executed when Cond is true. Rule constructors express parallel actions (par), se-
quential actions (seq), iterations (iterate, while, recwhile), non-determinism (ex-
istential quantification choose) and unrestricted synchronous parallelism (uni-
versal quantification forall). Distributed computation is modeled by means
of multi-agent ASMs: multiple agents interact in a synchronous/asynchronous
way, each executing a program specified by an ASM rule.

In SCA-ASM, a service-oriented component is an ASM endowed with (at
least) one agent (a business partner or role). Components’ agents interact with
other agents by providing and requiring services. The service behaviors en-
capsulated in an SCA-ASM component are captured by ASM transition rules.
Fig. 3 shows the shape of the SCA-ASM component A of Fig. 1 and the cor-
responding ASM modules for the provided interface AService (on the left) and
the skeleton of the component itself (on the right) using the textual notation
ASMETA /AsmetaL, and the @annotations to denote SCA concepts. ASM rule
constructors and predefined ASM rules (i.e., named ASM rules in a model li-
brary) are used as SCA-ASM behavioral primitives. These rules are recalled in
Table 1 by separating them according to the separation of concerns computa-
tion, communication and coordination. In particular, communication primitives
provide both synchronous and asynchronous interaction styles (corresponding,
respectively, to the request-response and one-way interaction patterns of the
SCA standard). Communication relies on a dynamic domain Message that rep-
resents message instances managed by an abstract message-passing mechanism:
components communicate over wires according to the semantics of the com-
munication commands reported above and a message encapsulates information
about the partner link and the referenced service name and data transferred.
We abstract, therefore, from the SCA notion of binding®. Rules for fault/com-
pensation handling are also supported [7].

3Indeed, we adopt the default SCA binding (binding.sca) for message delivering, i.e. the
SOAP/HTTP or the Java method invocations (via a Java proxy) depending if the invoked
services are remote or local, respectively.



/* ASM module for interface
AService */

module AService

import STDL/StandardLibrary
... //other imports (if any)
signature:

/*Agent type and business

module A /¥ ASM module for component A */
//@Provided services (interface)

import AService

//@Required services (interface)

import BService

... //other imports (if any)

signature: //Properties and references decl.
//@Property

shared pA: Agent -> D //D generic data type
//@Reference

shared b: Agent -> Bservice

//@Backref to the requestor agent

shared client: Agent -> Agent

definitions:

locations declarations */ cenvi

domain AService subsetof Agent //I@ er\ncles in A o

out opl: Agent -> D rule r_op1(Sain Aservice) =
seq

... //Do something for the client
opl(Sa):=... //setting of the out business location
endseq
... //other services
ruler_A() = ... //Component’s agent program
rule r_init($a in AService) = ... //Constructor rule

Figure 3: SCA-ASM component shape

3. The SCA-PatternBox pattern language

This section describes the SCA-PatternBox language supporting the specifi-
cation of architectural design patterns and their instantiation into SCA assem-
bly models of service-oriented applications. The section also provides concrete
examples of design patterns.

The SCA-PatternBox language consists of a metamodel (the abstract syn-
tax) providing a set of modeling constructs to define and reuse design patterns,
and of XML-based notations (the concrete syntazx) for modeling design pattern
solutions and solution instances within SCA models. The XML-based concrete
notations are both human- and machine- comprehensible.

The SCA-PatternBox language can be used as a stand-alone modeling no-
tation for design patterns or in conjunction with SCA to model design pattern
instances within SCA assembly models of service-oriented applications. A de-
sign pattern instance describes the relationships between the design pattern
elements modeled in the SCA-PatternBox language and the design elements
(service-oriented components and interfaces) in the SCA assembly of a specific
application.

The proposed language is intended to be used only to model the generalized
solutions proposed by design patterns and facilitate their application and reuse.
Further details, such as when the solution should be applied and consequences
of using the pattern, are not included. The SCA-PatternBox language has been



Table 1: SCA-ASM rule constructors for computation, coordination, communication
COMPUTATION AND COORDINATION

Skip rule skip do nothing

Update rule flti,...,tn) =t update the value of f at t1,...,tn to t

Call rule Rlz1,...,Tn] call rule R with parameters z1,...,Tn

Let rule let x =tin R assign the value of ¢ to  and then execute
R

Conditional it ¢ then R; else Ry if ¢ is true, then execute rule Ry,

rule endif otherwise Ra

Iterate rule while ¢ do R execute rule R until ¢ is true

Seq rule seq R;1 ... R, endseq rules R; ... R, are executed in sequence
without exposing intermediate updates

Parallel rule | par R; ... R, endpar rules R; ... R, are executed in parallel

Forall rule forall z with ¢ do R(z) forall = satisfying ¢ execute R
Choose rule choose z with ¢ do R(z) | choose an z satisfying ¢ and then execute

R
Split rule forall n € N do R(n) split N times the execution of R
Spawn rule spawn child with R create a child agent with program R
COMMUNICATION
Send rule wsend|Ink, R,snd| send data snd to Ink in reference to rule R
(no blocking, no acknowledgment)
Receive rule | wreceive|lnk,R,rcv] receive data rcv from Ink in reference to
R (blocks until data are received, no ack)
SendReceive | wsendreceive send data snd to ink in reference to R
rule [Ink,R,snd,rcv] waits for data rcv to be sent back (no ack)
Reply rule wreply|[lnk, R, snd| returns data snd to Ink, as response of R

request received from Ink (no ack)

designed with automated tool support in mind. It is relatively easy to learn,
particularly in conjunction with SCA.

8.1. Design pattern specification

Typically, an architectural design pattern describes components and details
their roles and interactions. All components together solve the problem that
the pattern addresses.

Fig. 4 shows the SCA-PatternBox language’s metamodel capturing the very
essence of a design pattern independently of its domain. A design pattern in
SCA-PatternBox is to be intended as an instance of this metamodel. Essen-
tially, a design pattern (the class Pattern) defines roles (the class Role), role
dependencies (the class Dependence), and an informal description (the attribute
comment) in natural language. Roles are played by the participants of a pattern
solution. A role has, among other things, an attribute type to tailor the type
of architectural design elements (a component or interface) that can play the
role, a multiplicity (the attributes min and max) that constrains the number
of elements that can play the role, an attribute property to denote a set of
mandatory properties, and an attribute operation to denote a set of manda-
tory service operations. The default multiplicity interval (min,max) in the class
Role is 1..*, specifying that there must be at least one element playing the role.
Dependencies are typically between a component role and a provided/required
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Figure 4: SCA-PatternBox design pattern metamodel

interface role, but not necessarily. There can be also dependencies between
components themselves to denote, for example, wires connecting a composite
component with a sub-component. In this last case the attribute type of the de-
pendence is not present. This is enforced by the following OCL invariant (i.e.,
a constraint that must always be met by all instances of a class) introduced
within the context of the class Dependence:

context Dependence

inv targetRoleType: not self.type.isNull implies self.role.type=interface
Some other OCL constraints not reported here have been defined to constrain
the number of valid instances of this metamodel. These constraints are embed-
ded in the SCAPatternBox editor and checked during pattern instantiation.

As concrete textual syntax associated to the metamodel, a pattern is de-
fined in an XML file conforming to a DTD manifest.dtd. Code 1 reports
the XML file for the definition of a service interaction micro-pattern? called
Request-Response. In this interaction schema, a component ClientRequest-
Response invokes a service of the component Server and waits for the result
to be returned before continuing with its processing. Request-response is the
default mode of invoking a service in a synchronous way.

As complementary concrete syntax, a pattern can be also defined in terms
of an SCA assembly model thus exploiting the SCA graphical notation. This
SCA assembly consists of service components and reference-to-service wires cor-
responding, respectively, to roles and role dependencies. Exploiting the SCA
(graphical) notation provides a much higher expressive power, but it is tied to
a specific design language. Fig. 5 shows the SCA assembly for the Request-
Response micro-pattern.

4Micro-patterns are prime candidates of “units of design” to look for and are the “basis”
of more complex SOA patterns.
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Code 1: Request-Response micro-pattern

<IDOCTYPE pattern SYSTEM " manifest.dtd” >
< pattern id="requestresponse” name="RequestResponse”
topCategorie="SCA" subCategorie="Micro Pattern" >
<role name="RequestResponseService” min="1" max="1" type="Interface” operation="request” >
<comment>
<li>defines a service interface.</li>
< /comment>< /role>
<role name="Server" min="1" max="1" type="Component” >
<comment>

<li>implements the RequestResponseService interface.</li></comment>
<dependence role="RequestResponseService” / type="provided” > < /role>
<role name="ClientRequestResponse” min="1" max="1" type="Component” >
<comment>
<li> maintains a reference to a RequestResponseService; < /li>
<li> makes a request to a RequestResponseService and waits for the result. </li></comment>
<dependence role="RequestResponseService” type="required” />< /role>
< /pattern>

RequestResponse
Service

Figure 5: Request-Response micro-pattern in SCA

3.2. Design pattern instantiation

Instantiating a design pattern means creating a new piece of design called
“design pattern instance” by mapping the design elements and relationships of
the design pattern with elements and relationships of the domain (application)
knowledge. After applying (instantiating) a pattern into an existing design,
the resulting software architecture should include a particular structure that
provides for the roles specified by the pattern, but adjusted and tailored to the
specific needs of the problem at hand.

SCA-PatternBox instantiates a pattern by generating from scratch an SCA-
assembly and a skeleton SCA-Java code to be further re-factored and refined to
the specific application needs. The generation process is template-based: there
must exist a template for each design pattern supported. Such a template is
an XML file conforming to a DTD called templates.dtd in SCA-PatternBox.
Code 2 shows an example of SCA-Java template for the Request-Response
micro-pattern.

Similarly, to support the generation of SCA-ASM formal specifications from
patterns, we defined a grammar module ASM templates.dtd for the definition
of SCA-ASM pattern templates. The goal is to precisely define the intended
execution semantics of a pattern (which is typically expressed in a quite informal
way by graphical notations like SCA or UML) using the ASM formalism. SCA-
ASM offers a more accurate description of the principles involved in a design

10
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Code 2: SCA-Java template for RequestResponse

<?xml version="1.0" encoding="iso—8859—1" 7>
<IDOCTYPE templates SYSTEM " templates.dtd” >
<templates id="Request—Response” version="1.0" >
<role name="RequestResponseService” type="linterface” modifiers="public" >
<import type="org.osoa.sca.annotations.*” />
<method modifiers="public” return="java.lang.Object” name="request” >
<comment> The request service operation </comment>
<param type="java.lang.Object” name="item"” />
< /method> < /role>
<role name="Server" type="class”" modifiers="public” >
<import type="org.osoa.sca.annotations.*" />
<annotation>@Service(RequestResponseService.class) < /annotation>
<interface type="$RequestResponseService$" />
< constructor modifiers="public” >
<comment>Default constructor</comment>
<code> super();</code> < /constructor>
<method modifiers="public” return="java.lang.Object” name="request” >
<comment>Method implementing the service operation
of the RequestResponseService interface. </comment>
<param type="java.lang.Object” name="item" />
<code> // TODO Write your code here ...
return item; </code> </method> </role>
<role name="ClientRequestResponse” type="class”" modifiers="public" >
<import type="org.osoa.sca.annotations.*" />
<annotation>®@Service(Runnable.class) < /annotation>
<interface type="java.lang.Runnable” />
<field modifiers="protected” type="3$RequestResponseService$”
name="fRequestResponseService" >
<comment>reference to a RequestResponseService</comment>
<annotation>@Reference< /annotation>
< /field>
< constructor modifiers="public” >
<comment>Constructor< /comment>
<param type="$ClientRequestResponse$”’ name="requestresponse”’ />
<code> super(); </code>
< /constructor>
<method modifiers="public” return="void" name="run" >
<code> Object item = fRequestResponse.request(item);
// TODO Write your code here ... </code> </method> </role>
< /templates>

11




pattern and offers a more sophisticated insight into the pattern behavior for
those familiar with formal notations like ASM.

Code 3 shows the SCA-ASM template for the request-response micro pat-
tern, namely the SCA-ASM definition of the interface RequestResponse and of
the ClientRequestResponse and Server component roles.

Code 4 shows the resulting ASM specification after instantiating the micro
pattern from a scratch design. The ASM module RequestResponseService
corresponds to the RequestResponseService interface. It contains only decla-
rations of the business agent type RequestResponseService and of the business
function (ASM out function) request. The ASM module ClientRequestRe-
sponseComponent imports the ASM module of the required service interface
RequestResponseService of the component, annotated with @Required. The
signature of the component contains declarations for a reference (shared func-
tion annotated with @Reference) as abstract access endpoint to the RequestRe-
sponse service, and declarations of ASM functions used by the component for
internal computation only. In particular, the function items represents data as-
sociated to the request made to the server. The ASM module ServerComponent
imports the ASM module of the provided service interface RequestResponseSer-
vice of the component, annotated with @Provided. The annotation @MainService
on the import clause for the RequestResponseService interface denotes the
main service (read: main component’s agent) that is responsible for initializing
the component’s state (in the predefined r_init rule). The signature of the
component contains declarations for: a back reference to requester agent (the
shared function client annotated with @Backref), and declarations of ASM
functions used by the component for internal computation only. This resulting
SCA-ASM specification is directly executable within the SCA-ASM execution
environment (see Sect. 4) for formal validation.

8.8. Design patterns examples

We defined and collected different types of design patterns. First, we con-
sidered micro-patterns for service interaction. Table 2 summarizes the SCA
micro-patterns for service interactions. Further semantics details can be found
in the SCA assembly specification model [2].We inspired to the SCA standard
and defined all these service oriented micro-patterns in SCA-PatternBox.

We then started to work with conventional architectural patterns and with
SOA patterns (like FIFO, Replicator, Ping-Echo, Publish-Subscribe, Router-

Table 2: Service Interaction Micro-patterns

Micro-Pattern | Communication Annotation
Local pass-by-reference -

Remote pass-by-value @Remotable
Request-response | Synchronous -

Oneway Asynchronous @oneway
CallBack Asynchronous Bidirectional | @QCallback

12
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Code 3: SCA-ASM template for RequestResponse

<?xml version="1.0" encoding="iso—8859—1" 7>
<!DOCTYPE templates SYSTEM " templates.dtd” >
<templates id="Request—Response” version="1.0" >
<role name="RequestResponseService” type="module” />
<import type="STDL/StandardLibrary” />
<delimiter type="signature” />
<domain name="RequestResponseService” /> <subsetof name="Agent" />
<function modifier="out” name="response” >
<domain>Agent</domain> <codomain>D</codomain>
< /function>
< /role>
<role name=""ClientRequestResponseComponent” type="module” />
<comment> <li>//@Required interface</li> </comment>
<import type="RequestResponseService” />
<comment> <li>//@Reference to the agent RequestResponseService< /li>< /comment>
<function modifier="shared” name="fRequestResponse” >
<domain>Agent< /domain> <codomain>RequestResponseService< /codomain>
< /function>
<function modifier="controlled” name="items” >
<domain>Agent< /domain> <codomain>D< /codomain>
< /function>
<delimiter type="definitions” />
<rule name="r_ClientRequestResponseComponent” >
<body> //Make the request in a synchronous manner by send—receive
r_wsendreceive[fRequestResponse(self),” r_request(Agent,D)" items(self),result(self)] < /body>
</rule>
<rule name="r_init" >
<param type="ClientRequestResponseComponent” name="%a" />
<body> //Complete this rule body for the startup of the component
status($a) := READY < /body>
</rule>
</role>
<role name="_ServerComponent” type="module" />
<comment> <li>//@Provided interface</li> </comment>
<import type="RequestResponseService” />
<comment> <li>//@Backref to the client agent</li> </comment>
<function modifier="shared” name="client” >
<domain>Agent</domain> <codomain>Agent< /codomain>
< /function>
<function modifier="controlled” name="params” >
<domain>Agent</domain> <codomain>D</codomain>
< /function>
<delimiter type="definitions” />
<comment> <li>//@Service</li> </comment>
<rule name="r_request” >
<param type="Agent" name="%$a" /> <param type="D" name="$params” />
<body> skip //Replace this rule body with your ASM rule scheme < /body>
</rule>
<rule name="r_ServerComponent” >
<body>
let($r = nextRequest(self)) in//Select the next request (if any)
if isDef($r) then seq //Handle the request $r
r_wreceive[client(self),” r_request(Agent,D)" ,params(self)]
if (isDef(params(self))) then r_request[self,params(self)] endif
r-wreply(client(self),” r_request(Agent,D)" ,response(self))
endseq endif endlet
</body>
</rule>
<rule name="r_init" >
<param type="RequestResponseService” name="%$a" />
<body> //Complete this rule body for the startup of the component
status($a) := READY < /body>
</rule>
< /role>
< /templates>
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Code 4: SCA-ASM specification of the request-response micropattern

//@Remotable

module RequestResponseService

import STDL/StandardLibrary

import STDL/CommonBehavior

export *

signature:

domain RequestResponseService subsetof Agent
out request: Prod(Agent,D) —> Rule

module ClientRequestResponseComponent
import STDL/StandardLibrary
import STDL/CommonBehavior
//@Required service
import RequestResponseService
export
signature:
//@Reference
shared fRequestResponse : Agent —> RequestResponseService
controlled items: Agent —> D
controlled result: Agent —> D
definitions:
rule r_ClientRequestResponseComponent =
//Make the request in a synchronous manner by send—receive
r-wsendreceive[fRequestResponse(self),” r_request(Agent,D)" ,items(self), result(self)]
rule r_init($a in ClientRequestResponseComponent) =
//Complete this rule body for the startup of the component
status($a) := READY

module ServerComponent
import STDL/StandardLibrary
import STDL/CommonBehavior
//@MainService
import RequestResponseService
export
signature:
//@Backref to the client agent
shared client : Agent —> Agent
controlled params: Agent —> D
definitions:
//@Service
rule r_request($a in Agent,$params in D)=
skip //Replace this rule body with your ASM rule scheme
rule r_ServerComponent =
let($r = nextRequest(self)) in//Select the next request (if any)
if isDef($r) then seq //Handle the request $r
r_wreceive[client(self),” r_request(Agent,D)" ,params(self)]
if (isDef(params(self))) then r_request[self,params(self)] endif
r_wreply(client(self),” r_request(Agent,D)" ,response(self))
endseq endif endlet
rule r_init($a in RequestResponseService) =
//Complete this rule body for the startup of the component
status($a) := READY

14
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Code 5: Ping-echo tactic

<!DOCTYPE pattern SYSTEM "manifest.dtd” >

<pattern id="pingecho” name="PingEcho" topCategorie="SCA" >

<comment>

One component issues a ping and expects to receive back an

echo, within a predefined time, from the component under

scrutiny.

< /comment>

<role name=""PingService” min="1" max="1" type="Interface” operation="ping" >

<comment>

<li>Defines an interface for the Ping sending service.</li>

< /comment>< /role>

<role name="EchoService" min="1" max="1" type="Interface” operation="echo" >

<comment>

<li>Defines a callback interface for the Echo sending service.</li>

< /comment>< /role>

<role name="PingSender" min="1" max="1" type="Component
property="timelnterval maxWaitingTime " >

<comment>

<li>Maintains a reference to one or more Receiver services.</li>

<li>Sends a Ping to a Receiver component. </li>

< /comment>

<dependence role="PingService”" type="required" /></role>

<dependence role="EchoService” type="provided” /> < /role>

<role name="PingReceiver’ min="1" max="1" type="Component” >

<comment>

<li>Maintains a reference to a Sender service.</li>

<li>Receives a Ping from a sender and reply to it with an Echo.</li>

</comment>

<dependence role="PingService" type="provided" /> < /role>

<dependence role="EchoService” type="required” /></role>

</role>

< /pattern>

Filtering, etc.) related to the service level of abstraction (rather than the busi-
ness process or orchestration level). Some of them are to be considered as tactics,
i.e., architectural patterns providing a generic solution to issues pertaining to
extra-functional quality attributes (such as performance, availability, etc.). For
example, a design concern for availability is “Fault Detection”. Since services
and their service providers can be discovered at run time, new service providers
may be brought into existence at any time and existing service providers may
fail or stop operating entirely. To make the application more robust to these
kind of faults, two well-known tactics for fault detection are Ping/echo and
Heartbeat.

As an example of design pattern, Fig. 6 shows the SCA diagram for the
Ping/Echo tactic. Ping-Echo is a tactic for monitoring and checking the avail-
ability of a component by sending ping messages to the component (the re-
ceiver) regularly every timeInterval units. If the receiver component does not
send back an echo to the sender component within the maximum waiting time
(property maxWaitingTime), the sender considers the receiver component failed.
Code 5 shows the XML file defining the Ping/Echo tactic in more general terms
for people not familiar with SCA. The Ping/Echo tactic can be intended as a
refinement of the call-back micro-pattern.

Fig. 7 shows the Heartbeat design pattern in SCA as another example of
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Figure 6: Ping/Echo tactic in SCA

tactic for availability. It detects a fault by listening to heartbeat messages
from monitored components periodically. A sender sends a heartbeat mes-
sage to a receiver (operation imAlive) every specified time interval (property
timeInterval). The receiver updates the current time when it receives the
heartbeat message. The aliveness of the sender is checked by the receiver reg-
ularly every specified time interval (property timeInterval) by comparing the
latency time between the current time and the last time of a heartbeat message
is received from the server. If the heartbeat message is not received within a cer-
tain time (property maxWaitingTime) the sender is considered to be unavailable.
Code 6 shows the XML file defining the Heartbeat tactic.

The Ping/Echo tactic and the Heartbeat tactics can be combined to make
more efficient and bidirectional the fault detection mechanism. The result of
this tactic composition is shown in Fig. 8 using SCA. Technically it has been
obtained by applying the Heartbeat tactic to the SCA asssembly of the Ping-
Echo tactic. Property re-naming is necessary to avoid ambiguities. For example,
property timeInterval of the role HeartBeatSender of the Heartbeat tactic is
renamed in beatTimeInterval. The result of this pattern composition can be
saved and reused as new compound design pattern.

4. SCA-PatternBox framework

SCA is supported by an Eclipse-based design tool and runtime platforms for
the development of service-based applications. Based on the ideas of model-
based development, the proposed framework SCA-PatternBox is Eclipse-based
and complements the SCA design environment by the use of a collection of
models to specify and configure architectural design patterns and the auto-
mated application of them in the development of SCA models of service-oriented
applications. SCA aims to encompass a wide range of target implementation
technologies for SCA service components and for the access methods which are
used to connect them. In our work, we focused on the SCA-Java implementation
type and on the SCA-ASM formal specification type.

In the following, we provide an overview of the SCA-PatternBox framework,
a general methodology for application designers to develop service-oriented com-
ponent architectures using SCA-PatternBox and design patterns, and a descrip-
tion of the supported formal analysis techniques.
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Code 6: Heartbeat tactic

<IDOCTYPE pattern SYSTEM " manifest.dtd” >
< pattern id="heartbeat” name="Heartbeat” topCategorie="SCA" >
<comment> One sender component sends a heart beat message to a receiver periodically.
The aliveness of the sender is checked by the receiver regularly every specified time interval.
If the heartbeat message is not received within a certain maximum waiting, the sender is
considered to be unavailable.
< /comment>
<role name="HeartbeatService” min="1" max="1" type="Interface” operation="imAlive" >
<comment>
<li>Defines an interface for the heart beat sending service.</li>
<role name="HeartbeatSender" min="1" max="1" type="Component”’ property= "timelnterval’ >
<comment> <li>Maintains a reference to one or more Receiver services.</li>
<li>Sends an heartbeat message to a Receiver component. </li> </comment>
<dependence role="HeartBeatService” type="required” /></role>
<role name="HeartbeatReceiver’ min="1" max="1" type="Component”

property= "timelnterval maxWaitingTime" >
<comment> <li>Maintains a reference to a Sender service.</li>
<li>Receives an heart beat from a sender periodically.</li></comment>
<dependence role="HeartbeatService” type="provided” /> < /role>
< /role>
< /pattern>

Figure 7: Heartbeat tactic in SCA

Figure 8: SCA composition of the Ping/Echo and HeartBeat tactics
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4.1. Framework architecture

Fig. 9 shows the SCA-PatternBox architecture using a free-style notation,
while Fig. 10 shows a screenshot of the Eclipse view of SCA-PatternBox. SCA-
PatternBox includes a design pattern editor, code generators for producing SCA-
Java code and SCA-ASM specifications, and a pattern composer. It also exploits
an external formal analysis environment for SCA-ASM specifications.

Pattern editor. The pattern editor adopts a template-based approach that al-
lows you to insert new pattern definitions (file Mypattern.xml in Fig. 9, and
appropriate templates (file Mytemplate.xml in Fig. 9) for the generation of
SCA-Java code and of SCA-ASM formal specifications. A design pattern is
defined in an XML file within a predefined directory pattern.mf and must be
conforming to the DTD manifest.dtd within the same directory.

Code generator. There exists an XML-based template files within the prede-
fined directory template.java and within template.asm of SCA-PatternBox
for each design pattern to support the generation of the corresponding SCA-Java
code and SCA-ASM specification, respectively. For the SCA-Java code genera-
tion, we extended the existing PatternBox XML grammar templates.dtd to al-
low the use of Java annotations for SCA into the code templates, and the source
code of PatternBox (CodeTemplateXmlHandler. java and MemberCodeGenera-
tor.java) to generate Java code from the pattern code templates with the ap-
propriate SCA annotations. The code generator makes intensive use of Eclipse’s
Java development tooling (JDT) and the Plug-in Development Environment
(PDE). It creates Java classes and interfaces according to the code templates
and generates also an SCA XML assembly file corresponding to it. Fragments
of SCA assembly files and the associated Java skeleton code can be therefore
produced from scratch from a pattern definition.
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Pattern composer. The composer supports the composition and application of
design patterns on existing SCA assemblies (and on the corresponding Java
or ASM implementation). Currently, the composition is carried out in an in-
teractive manner, indeed the designer has to specify the names of the elements
(components or interfaces) from the SCA assembly that play specific roles of the
design pattern. The composition strategy is incremental, i.e., the application of
design patterns to an existing SCA assembly is made through a sequential chain
of adaptation actions of the SCA assembly and of the associated components
implementation according to the pattern definitions.

Formal specification and analysis environment. The formal analysis environ-
ment allows for an early and formal validation of the design of a service-oriented
application. It consists of the Eclipse-based SCA-ASM design and execution
framework for the simulation of SCA-ASM components within an SCA assem-
bly (exploiting the SCA Tuscany runtime platform), and of the ASM analysis
toolset ASMETA [11, 12]. An SCA-ASM specification of a service-oriented com-
ponent (or of a component assembly), possibly not yet implemented in code or
available as off-the-shelf, can be: (i) simulated and possibly formally verified
(by model checking techniques) offline, i.e., in isolation from the other compo-
nents, by the use of the ASM toolset ASMETA; (ii) configured in place within
the SCA Tuscany runtime platform as abstract implementation (or specifica-
tion) of a “mock” component and then executed with the other components
implementations according to the chosen SCA assembly.

This toolkit allows to study the behavior of some “critical” components in a
formal way before the final transformation into a specific implementation code.
The same consideration also apply to component assemblies representing design
patterns that can be therefore specified formally in SCA-ASM as abstract and
partially complete specifications. Moreover, once these patterns are instantiated
into the current SCA design and their specification in SCA-ASM is completed,
the structural and behavioral conformance of the component assemblies to de-
sign patterns can be (potentially) checked formally.

4.2. Framework methodology

A general and agile development of an SCA service-oriented component ar-
chitecture (or SCA assembly) with SCA-PatternBox can be organized in the
following steps (see also Figure 11).

Step 1: Sketch an outline of the application’s architecture. Define an SCA
assembly of the service-oriented application with the SCA Composite Designer
by determining the ground services and components required according to the
main requirements and use cases from the user perspective.

Step 2: Refine the architecture. Identify the main ways in which the com-
ponents will interact and the interfaces between them. Decide how each piece
of data and functionality will be distributed among the various components.
Choose among the various service-oriented design patterns. Instantiate and
compose them within the SCA assembly.
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Figure 10: A screenshot of the SCA-PatternBox framework

Step 3: Finalize the interfaces. Consider each use case and adjust the archi-
tecture to make it realizable trying to finalize the interface of each component.
Refine components properties in the SCA assembly.

Step 4: Map design to implementation. Finalize the architecture as you de-
fine the final implementation classes for components and interaction protocols
according to the (possibly many and different) target implementation technolo-
gies. Determine if you can re-use existing components implementations before
implementing them from scratch. You may implement, for example, some SCA
components in SCA-Java and adopt Java-based standard communication bind-
ings — such the Java API for RESTful Web Services (JAX-RS) or the Java
Message Service (JMS) — for specifying how SCA services and references enable
a component to communicate with other components/applications.

Step 41: Map design to formal specification. Optionally, you can specify
formally the behavior of some “critical” components using the SCA-ASM im-
plementation type.

Step 5: Formal validation. Optionally, once specified formally the behavior
of some components or of a component assembly in SCA-ASM (Step 4/), you
may validate such components or assembly separately (in an offline manner)
using the ASM analysis toolset ASMETA.

Step 6: Overall design validation. Execute and validate the overall SCA
assembly of the application within an SCA runtime platform (like Tuscany).

More sophisticated development processes can be adopted as well. SCA-
PatternBox has been used, for example, to support a design exploration process
[15] involving more automation and combining meta-heuristic search techniques
with design patterns to produce and evaluate different design alternatives.

20



- Step 1 Step 2 Step 3 [not satisfied]
=
g Sketch the Eﬂ‘:ggﬁe Finalize the
(] I’-:Il1rcsh(l:ticture through design interfaces [satisfied]
patterns
=
=]
g ;
E Step 4 Step 4
E Implement Imol t
5 components in éggnegnlsel;ts in
E SCA-Java SCAASM
[no formal iidlati
validation [formal validation required] V(al;_ﬁ-a“?”
required] aliime,
5 ¥ .
E [no issue to resclve]
=
o
=
Step 6
Execute and [no issues to resolve] —.
validate the overall !)
SCA assembly
Issues to resolve]

Figure 11: Model development steps with SCA-PatternBox

4.8. Formal analysis techniques

We here describe the SCA-ASM model analysis activities we can perform
offline for validating and verifying the functional behavior of design patterns,
and getting early feedback (already at system design time) of their functional
correctness before applying them in concrete systems implementations.

Validation is the process of investigating a model with respect to the user
perceptions in order to ensure that the model really reflects the user needs and
statements about the application. On the SCA-ASM models of design patterns
and their concrete instantiations, formal validation can be carried out in terms
of model simulation and construction of execution scenarios — scenario-based
validation — through the execution platform for SCA-ASM [7] and the ASM
simulator AsmetaS [14] and validator AsmetaV [13] provided by the ASMETA
framework [11, 12]. Fig. 12 shows the validation process: the user can directly
simulate an ASM-based specification in an interactive way or write a scenario
that automatizes the simulation and the checking of the produced output. Early
validation by model simulation is a great means for evaluating architectural
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choices and alternative designs with limited implementation effort, and usually,
though not in an exhaustive manner, it permits to detect faults in the specifi-
cation with limited effort w.r.t. more sophisticated analysis techniques such as
property verification through model checking.

Model simulation and Scenario-based validation. AsmetaS permits to perform
either interactive simulation, where required inputs are provided interactively
by the user during simulation, and random simulation, where inputs values
are chosen randomly by the simulator itself. The simulator, at each step, per-
forms consistent updates checking to check that all the updates are consistent:
in an ASM, two updates are inconsistent if they update the same location to
two different values at the same time [8]. In preliminary versions of our pat-
terns specifications, by simulation we found some consistency violations due
to a wrong order scheduling of the send-receive operations of the participants
agents. Moreover, the Asmeta$S simulator also permits to check if some invari-
ants are satisfied during simulation. Obviously, by simulation we can verify
only the states covered by the executed runs, whereas model checking (see next
paragraph) gives the assurance that the invariants hold in each model state.

A more advanced way to simulate and inspect ASMs is by specifying a
scenario representing a description of the actions of an external actor and the
corresponding reactions of the system. There are two kinds of external actors:

e a user interacts with the system in a black box manner, by setting the
values of the external environment (e.g., asking for a particular service),
waiting for a step of the machine as reaction to his/her request, and check-
ing the output values;

e an observer, instead, can also inspect the internal state of the system (i.e.,
values of machine functions) and check the validity of possible invariants
of a certain scenario.

Scenarios are described in an algorithmic way using the textual language Avalla [13].
A scenario is as interaction sequence consisting of actions of the external actor
(user or observer) and activities of the machine as reaction to the actor ac-
tions. The Avalla language provides constructs to set the environment (i.e.,
the values of input/shared functions), to check the machine state, to ask for
the execution of certain transition rules, and to force the machine itself to make
one step (or a sequence of steps by step until).
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scenario request—response
load mainRequestResponse.asm

//for the startup of the client and server agents

set status(c) := READY;

set fRequestResponse(c) :=s;

set items(c):= ...;

set ...

exec r_wsendreceive[fRequestResponse(c),” r_request(Agent,D)"” items(c),result(c)];
step

check isDef(response(fRequestResponse(c))) and isDef(result(c));

Code 7: Request-response validation scenario in Avalla

The tool AsmetaV reads scenarios written in Avalla and executes them using
the simulator AsmetaS; during simulation, AsmetaV captures any check violation
and, if none occurs, it finishes with a PASS verdict (see Fig. 12).

As an example, the excerpt of the scenario reported in Code 7 describes
the interactions among the client ¢ and server agents s in the pattern request-
response from the client side. Appropriate assertions control that the result
message is sent. This scenario has to be used as a template and therefore it has
then to be instantiated according to the real services and components involved
in the pattern instance. An example of its instantiation will be given for the
case studies presented in Sect. 5.

Model verification. Model checking is an automated formal verification tech-
nique based on state exploration of the system to be checked. AsmetaSMV [5]
is a tool of the ASMETA framework that translates ASM specifications into
models of the NuSMV model checker. It allows the verification of Computation
Tree Logic (CTL) and Linear Temporal Logic (LTL) formulae expressing desired
behavioral properties of the system under verification.

Behavioral properties related to interactions among the participants (agents)
can be obtained from a pattern definition and then expressed and configured
in terms of CTL formulae within the SCA-ASM model itself of the pattern
instance. This last is then validated against the behavioral properties by using
the AsmetaSMV model checker. Thereafter the state space of the SCA-ASM
model to be checked is searched by the model checker to verify or falsify (by
generating counterexamples) the CTL properties.

For our purposes, CTL can be used to express a temporal ordering between
send and receive messages in a sequence of interactions among agents or also
general properties such as reactivity and liveness. For example, the following
CTL property can be checked to validate the reactivity of the behavior of an
instance of the Request-Response micro-pattern:

ag(isDef(nextRequest(server)) implies af(isDef(result(client(server)))))

Tt specifies that whenever there is a request, eventually the server (agent server
of type RequestResponseService) will reply producing a result for the client.
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The formula has then to be instantiated according to the real services of the
components involved in the pattern instance.

Liveness properties (informally, liveliness means that some actions will be
executed infinitely) can be expressed and verified by giving explicit fairness
requirements. For example, for the Ping-echo tactic, used to test the reachability
of a host, the following property can be checked for a timed confirmed sender.
Property: A ping message is always followed by an echo confirmation message
or timeout:

ag( ping(sender,receiver) implies af( (maxWaitingTime(sender) and not(echo(receiver,sender)))
or (not(maxWaitingTime(sender)) and echo(receiver,sender))) )

where we assumed the following atomic propositions: ping(sender,receiver) = a
ping request has been sent from the sender to the receiver, echo(receiver,sender)
= an echo request has been sent back from the receiver to the sender, and
maxWaitingTime(sender) = the ping request is not answered with the echo
reply within the given time.

Invariants, i.e. properties that must hold in all the states, can be also
checked. For example, for a Request-Response micro-pattern we can verify that,
after making the request in a synchronous manner by a send-receive action, the
client effectively remains blocked until it receives back the result:

ag( isDef(awaitingRespMsg(client)) implies status(client) = BLOCKED)

where client is the client component’s agent and the controlled function await-
ingRespMsg, that is set within the predefined rule send-receive [7], stores the
message for which the client agent is waiting to receive the corresponding re-
sponse message. Invariants are useful, for example, for guaranteeing certain
safety properties (informally, that nothing will go wrong with the system) by
verifying that invariants’ formulae are effectively true at all states of the system.

Currently, the derivation of CTL formulae from a pattern definition is car-
ried out by hand. We postpone as future work the automatic generation of
CTL formulae and their configuration with information from concrete pattern
instances. Moreover, verification of properties on large SCA-ASM models is
possible, but it would require the use of some model slicing and model abstrac-
tion techniques in order to avoid the well-known problem of state explosion of
the model checking, and make the verification feasible.

5. Illustrative case studies and lessons learned

This section presents two case studies as illustrative examples of the proposed
framework. In the first example, we designed and validated a service-oriented
architecture model for the Order system case study [24]. As second example, we
considered the Stock Trading system originally presented in [16]. Finally, the
section reports our lessons learned as gained by our experience in developing
these case studies.
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5.1. The Order System

The Order system is essentially an exercise of requirements capture, noto-
riously a difficult and error prone activity that requires a formalization task.
To this purpose, we show how the SCA-ASM method allows one to capture
informal functional requirements of a system architecture, including both the
structural and behavioral aspects of services.

The main service of the system is that of invoicing orders. Every order refers
to a product for a certain quantity (greater than zero). The same product can be
referenced by several different orders. Every product is in the stock in different
quantity. Invoicing requires to check if the order can be satisfied, i.e. if the
ordered quantity of products is less than or equal to the quantity in stock. If
so, the stock is updated and the order state changes from the state pending to
the state invoiced. If the order cannot be satisfied, it is left pending.

Two additional services offered by the system are: cancel orders and add
new quantities of products in the stock. A customer can only cancel his or her
personal orders. The order is cancelled if it is still pending. When the order is
already invoiced, the conflict must be resolved manually by the user. For the
third functionality of adding a quantity of product in the stock, the product
must be already registered in the system because the system does not consider
entries of unreferenced products. So for each product entry, the supplier must
specify the product provided and its quantity.

5.1.1. Step 1 — Sketch an outline of the application’s architecture

According to Step 1 of the design methodology presented in Sect. 4.2, we
modeled the initial SCA architecture of the system based (see Fig. 13) on the
main service of invoicing orders, and the additional services for order cancella-
tion and supply new products quantity. Essentially, we consider the following
application scenarios.
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Order management (order entry/cancellation). For an order entry scenario, the
user requirements specify that an order is made by sending (the service opera-
tion sendOrder (ref, qty, customerID)) a reference to the desired product, a
quantity, and a customer identifier to the system. So the methodology leads us
to define a service-oriented component namely OrderManagement, which takes
into account this entry and is in charge of saving internal orders. For an order
cancellation, we assume that a customer must identify the order he wants to
cancel and invokes the service operation cancelOrder (orderID, customerID)
also offered by the component OrderManagement. This last checks that the cus-
tomer can cancel the order (a customer can cancel only one of his or her orders,
not the order of another customer) and if it is the case, cancels the order.

Stock Management. We assume that all products are already referenced in
the system. So, when a supplier sends a new quantity of product to the
StockManagement component (by invoking the service operation productEntry
(productID, qty)), the product quantity is updated.

Invoicing Management (order invoicing). The OrderManagement component
only registers in the database that there are new orders to invoice (i.e., orders
initially pending), while the component InvoicingManagement is in charge of
effectively invoicing orders. This last component does not expone any puplic
service. It executes the order invoicing functionality in background. Essentially,
it selects a set of orders which are invoicable, i.e. they are pending and refer to
a product in the stock in enough quantity, it simultaneously changes the state
of each order in this set from pending to invoiced, and updates the stock by
subtracting the total product quantity in orders to invoice. The system keeps
to invoice orders as long as there are orders which can be invoiced. The system
guarantees that the state of an order is always defined and the stock quantity
is always greater or equal to zero.

5.1.2. Steps 2 and 3 — Refine the application’s architecture and finalize the in-
terfaces

The second step of the methodology suggests to refine the architecture by
introducing new components and using design patterns.

First, we decided to organize the overall system architecture according to the
three-layer architectural pattern® by introducing the components GUI, Application,
and Data. The component Data represents the data layer of a classical three-
layer-architecture so it hides details of the database and provides data access
to the application layer represented by the component Application. The
component Application contains the application logic. It uses the services
QueryService and PersistenceService defined by the component Data in
order to send queries or changes to the database, and provides the interface
StoreService to deliver results of database queries to the component GUI. This
last acts like an interface for the user and the Application component.

5The templates definition and SCA assembly of such patterns are available online at [34].
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Figure 14: SCA Order system refined (Step 2 - GUIApplicationData design pattern)

We identify the OrderSystem composite component introduced in the pre-
vious step as the component Application. So according to the three-layer
architectural pattern, we have to refine the OrderSystem component to allow
the interaction with two other external components: the OrdersDBComponent
(the Data component) and the GUIComponent (the GUI). These last are left in
abstract. The result of such refinement is shown in Fig. 14.

According to the user requirements, the InvoicingManagment component
can adopt different selection strategies of orders to invoice: single-order, all-
or-none, max-orders, and default. Single-order strategy means that per step at
most one order is invoiced, with an unspecified schedule (thus also not taking
into account any arrival time of orders). In case all orders for one product
are simultaneously invoiced or none if the stock cannot satisfy the request, a
all-or-none strategy can be expressed. To further maximize a product quantity
invoiced at the time, a new strategy (strategy max-orders) consists in choosing
a maximal invoicable subset of simultaneously invoiced pending orders for the
same product. If the user requests a selection strategy which is not driven
by a first choice of a product, another possible strategy consists in choosing
a set of pending orders, with enough referenced products in the stock, to be
simultaneously invoiced. This last strategy matches the intended behavior of
the system better than the previous ones, so it is the default strategy. For
supporting one of this mode of operation, we added to the InvocingManagement
component the property OrderPolicy (see Fig. 14) whose value range in the
set {single-order, all-or-none, max-orders, or default}. By default, this property
is initialized to the value default.

As further refinement, we applied the router pattern® to enable different in-
voicing strategies as implemented by different business components: SingleOrder-
BComponent, Al110rNoneBComponent, MaxOrdersBComponent, and DefaultB-
Component (see Fig. 15). The router component, i.e. the InvoicingManagment
component, is responsible for sending the pending orders to a certain business
component for invoicing them according to a specific strategy (the routing cri-

6The templates definition and SCA assembly of such patterns are available online at [34]
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Figure 15: SCA Order system refined (Step 2 - Router design pattern)

Code 8: ASM module of the InvoiceOrdersService interface

module InvoiceOrdersService

import STDL/StandardLibrary

import Order //Interface of the Order data type

signature:

// the domain defines the type of the provider component’s agent
domain InvoiceOrdersService subsetof Agent

out invoiceOrders: Prod(Agent, Powerset(Order)) —> Powerset(Order)

teria) as reflected by the current value of the property OrderPolicy.

The third step of the methodology is to finalize the interfaces and properties
of each component in the SCA assembly. So we added the service operations to
the interfaces and properties types.

5.1.3. Steps 41 and 5 — Map design to formal specification and formal validation

Being a design from scratch, before implementing components in Java we
preferred specifying the behavior of the business components for invoicing or-
ders formally using SCA-ASM. The complete SCA-ASM implementation of such
components is also available at [34].

The default invoice strategy (the InvoiceOrdersService service) is pro-
vided by the business component DefaultBComponent. The ASM definition
for the interface InvoiceOrdersService is reported in Code 8. It is an ASM
module containing only declarations of a business agent type (the subdomain
InvoiceOrdersService of the predefined ASM Agent domain) and of a busi-
ness function used as temporary location to store service computation results
(i.e., the orders to invoice) to return back to the service caller.

The behavior of the DefaultBComponent is formalized in SCA-ASM as re-
ported in Code 9. The service rule invoiceOrders uses a predicate invoicable
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Code 9: The behavior of the DefaultBComponent

asm DefaultBComponent

import STDL/StandardLibrary

import STDL/CommonBehavior

import InvoiceOrdersService

signature:

//@Backref

shared client: Agent —> Agent

// orders to invoice

controlled orders: Agent —> Powerset(Order)
definitions:

rule r_DeleteStock($p in Product ,$q in Natural) = stockQuantity($p):= stockQuantity($p) — $q
//@Service Choose subset of orders

rule r_invoiceOrders($a in Agent, $orders in Powerset(Order)) =
choose $orderSet in Powerset($orders) with invoicable($orderSet) do

par
forall $order in $orderSet with true do orderState($order) := INVOICED
forall $product in referencedProducts($orderSet) with true do
r_DeleteStock[$product, totalQuantity($orderSet,$product)]
invoiceOrders(self,orders(self)) := $orderSet //setting of the out business function
endpar

rule r_DefaultBComponent =
if nextRequest(self)="r_invoiceOrders(Agent, Powerset(Order))” then

seq
r-wreceive[client(self),” r_invoiceOrders(Agent, Powerset(Order))” orders(self)]
if (isDef(orders(self))) then r_invoiceOrders|self, orders(self)] endif
r_wreply[client(self),” r_invoiceOrders(Agent, Powerset(Order))” ,invoiceOrders(self orders(self))]
endseq
endif

rule r_init($a in InvoiceOrdersService) = status($a):=READY

that is true on a set of pending orders with enough quantity of requested prod-
ucts in the stack, and a function refProducts which yields the set of all products
referenced in a set of orders. Note that the non-deterministic selection of the
orders to invoice could be performed by a input function which would formalize
the user selection of a set of orders or the results of a particular scheduling.

A single-order strategy is realized by the service invoiceSingleOrder as
provided by the SingleOrderBComponent. This service’s behavior is formalized
in SCA-ASM as reported in Code 10. Per step at most one order is invoiced,
with an unspecified schedule (by the choose rule contructor).

The InvoiceAl1l0rNone service of the A110rNoneBComponent for the all-or-
none strategy can be specified in SCA-ASM as reported in code 11. The service
rule makes use of a function pendingOrders yielding the set of pending orders
for a certain product, and of a (static) function totalQuantity returning the
total quantity of a set of orders.

Finally, the service InvoiceMaxOrders can be formalized in SCA-ASM as

shown in code 12. For this rule we need to define a static function maxQuantitySub-

sets which, given a set of set of orders, returns the set of all the sets having a
maximum quantity.
The Order system case study was essentially a requirements formalization
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Code 10: The behavior of the invoiceSingleOrder service

//@Service Invoice an order at a time.
rule r_invoiceSingleOrder($a in Agent, $orders in Powerset(Order)) =
choose $order in orders with orderState($order) = PENDING do
if(orderQuantity($order) <= stockQuantity(referencedProduct($order))) then
par
orderState($order) := INVOICED
r_DeleteStock|[referencedProduct($order),orderQuantity($order)]
invoiceSingleOrder(self,orders(self)) := $order //setting of the out business function
endpar
endif

Code 11: The behavior of the InvoiceAll0rNone service

//@Service All orders for one product are simultaneously invoiced or none.
rule r_invoiceAllOrNone($a in Agent, $product in Product) =

let ( $pending = pendingOrders($product) ) in

let ( $total = totalQuantity($pending) ) in

seq

if $total > 0 and $total <= stockQuantity($product) then

par

forall $order in $pending do orderState($order) := INVOICED
r_DeleteStock[$product, $total]
endpar

endif

invoiceAllOrNone(self,product(self)) := $pending //setting of the out business function
endseq

endlet

endlet

Code 12: The behavior of the InvoiceMaxOrders service

//@Service Invoice maximum orders for one product.
rule r_InvoiceMaxOrders($a in Agent, $product in Product) =
let ($pending = pendingOrders($product)) in
let ($invoicablePending = {$o in $pending | totalQuantity($0) <= stockQuantity($product) : $o}) in
choose $orderSet in maxQuantitySubsets($invoicablePending) do
par
forall $order in $orderSet do orderState($order) := INVOICED
r_DeleteStock[$product, totalQuantity($orderSet)]
invoiceMaxOrders(self,product(self)) := $orderSet //setting of the out business functi
endpar
endlet
endlet

pn
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scenario DefaultinvoicingManagement
load main.asm

//for the startup of the client and server agents

set status(c) := READY;

set fRequestResponse(c) :=s;

set orders(c):= ...;

set ...

exec r_wsendreceive[fRequestResponse(c),” r_invoiceOrders(Agent,Powerset(Order))” ,orders(c),result(c)];
step

check isDef(invoiceOrders(fRequestResponse(c),orders(c))) and isDef(result(c));

Code 13: Validation scenario in Avalla for the InvoicingManagementComponent — default strat-
egy

task and we have shown how the SCA-ASM method allowed us to capture
informal functional requirements of systems services by constructing a consis-
tent and unambiguous, simple and concise, abstract and complete models of
service-oriented components, including behavioral aspects of services. These
models can be understood and checked (for correctness and completeness) by
both domain experts and system architects/designers. For example, Code 13
reports a simulation scenario in Avalla (instantiated from the one reported in
Code 7) for checking the orders invoicing. It checks the interactions among the
OrderDeliveryComponent (the client ¢) and the default business component
(the server agent s) in the pattern request-response from the client side. Ap-
propriate assertions control that the result message (the set of orders to invoice
as chosen by the default strategy) is sent.

Through the requirements capture we have introduced several assumptions
to fill missing information. We introduced some assumptions directly in the
specification by means of invariants and used the AsmetaS simulator to check
them during simulation. For example, the assumption that the quantity in every
order must be greater than 0 is formalized as:

invariant over orderQuantity:
forall $o in Order with orderQuantity($0) > 0

We have also stated the following desired properties which express state invari-
ants and correctness conditions. The first one states that the stock quantity is
always greater than 0.

invariant over stockQuantity:
forall $p in Product with stockQuantity($p)>=0

The second property is that the state of every order is either pending or invoiced,
but never undefined.

invariant over orderState:
forall $o in Order with orderState($o) != undef

For other more complex properties, which are not state invariants but they
refer to execution paths, the model checker can be used, although assumptions
about the finiteness of the domains are necessary and uninterpreted domains are
not allowed. For example, one may want to express that an order o is eventually
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invoiced if it refers to a product available in the stock in enough quantity. In
CTL, this can be expressed as:

AF( AG( orderState(o) = INVOICED or
orderQuantity(o) > stockQuantity(referencedProduct(o)))

5.1.4. Steps 5 and 6 — Mapping design to implementation and overall design
validation

In a further iteration of the methodology, we implemented in Java (Step 4)
the components OrderManagement, InvoicingManagement, and StockManagement
as mock components, and then execute and validate the overall SCA assembly
of the application within the SCA runtime platform (Step 6). We did not
effectively implemented all the system in Java since, being an example of re-
quirements elicitation, our main goal was to develop a ground model showing
how the SCA-ASM formal method allows one to capture informal behavioral
requirements of components’ services. So, for validation we used orders collec-
tions and customers identifiers with fixed values to avoid at this design phase
the implementation of a real database component.

5.2. The Stock Trading System

The goal of such a case study is to embody non-functional requirements
(NFRs) using architectural tactics. We chose such a case study as major evalua-
tion of the SCA-PatternBox language and tool and as a comparative benchmark
because our work is on the spirit of the approach in [16] for design pattern speci-
fication and application (see related work in Sect. 6.1), but instead of extending
UML diagrams like the approach in [16] does, we preferred just to specify what
is really needed to express a design pattern for facilitating pattern instantiation
and code generation.

Our case study was adopted in the adaptation exploration process presented
in [15]. It consists of an optimization process with respect to different archi-
tectural configurations of the system for multiple adaptation scenarios (e.g., a
user claims a new level of reliability and response time, or the monitor raises
the violation of the minimum level of required availability).

Figure 16 shows the initial SCA assembly of the STS obtained by carrying
out Step 1 of the design methodology presented in Sect. 4.2. Briefly, an STS
user, through the OrderWebComponent interacting with the OrderDelivery-
Component, can check the current price of stocks, placing buy or sell orders
and reviewing traded stock volume. Moreover, he/she can know stock quote
information through the StockQuoteComponent. STS interacts also with an
external Stock Exchange system.

By executing steps 2 and 3 of the methodology, architectural tactics are
selected, composed and instantiated based on a given set of NFRs to refine the
initial architecture of the application into one that meets the desired NFRs.
We here show, in particular, how availability and performance tactics can be
used to embody NFRs into the SCA architecture of the STS application. Let
us assume the following NFRs (as taken from [16]):
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Figure 16: SCA assembly of the Stock Trading System

— NFR1. The STS should be available during the trading time (7:30 AM — 6:00
PM) from Monday through Friday. If there is no response from the system for
30 s, the STS should notify the administrator.

— NFR2. The system should be able to process 300 transactions per second,
400,000 transactions per day. A client may place multiple orders of different
kinds (e.g., stocks, options, futures), and the orders should be sent to the system
within 1 s in the order they were placed.

We support NFR1 by applying the Fault Detection tactics Ping/Echo and
Heartbeat through a monitoring component playing the role of PingHeartbeat-
Receiver. NFR2 is supported by combining the tactics FIFO and Introduce
Concurrency. The FIFO tactic allows clients to place each type of orders (e.g.,
stocks, options, futures) to a dedicated queue for immediate processing. The
Introduce Concurrency tactic allows the concurrent dispatching of the same
kind of orders thus reducing the blocking time of transactions on 1/0. Fig-
ure 17 shows the new SCA assembly obtained by composing these tactics: the
assembly is extended to add the new component Monitoring (for the Fault De-
tection tactics) and to refine the existing components OrderWebComponent and
OrderDeliveryComponent. These last two components are to be intended as
subsystems, indeed they are composite components with a hierarchical design
not further reported here. In particular, the OrderDeliveryComponent is re-
fined for adding a queue sub-component for the FIFO tactic, a sub-component
for the functionality of a PingHeartbeatReceiver role and for the concurrent
consuming of different kinds of orders placed into the queue sub-component.
Similarly, the OrderWebComponent is refined by adding a sub-component for con-
currently producing orders to place into the queue of OrderDeliveryComponent.
Of course, this refinement implies a change of the components shape (i.e., in the
required /provided interfaces) and of their behavior.

Some components were implemented in SCA-ASM (Step 4/). As an example,
Code 14 shows a fragment of an SCA-ASM specification of the OrderDelivery-
Component. The main service of this component (the rule r_place annotated
with @service) is to place buy or sell orders when requested (see the blocking
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Figure 17: SCA assembly of the STS after applying tactics for NFR1 and NFR2

Code 14: The behavior of the OrderDeliveryComponent

module OrderDeliveryComponent

Q@Service
rule r_place($client in Agent,$o in Order)= ... //to place buy or sell orders

rule r_OrderDeliveryComponent=
seq
r-wreceive(client(self),” place” ,order(self))
r_place(client(self),order(self))
r_wreply(client(self),” place” ,place(self,order(self)))
endseq

receive action and the reply action preceding and following, respectively, the ser-
vice invocation within the component’s main rule r_OrderDeliveryComponent).
The ASM definition for the provided and required interfaces of the OrderDeli-
veryComponent are reported in Code 15. They are ASM modules containing
only declarations of business agent types (the subdomains OrderDelivery and
StockExchange of the predefined ASM Agent domain) and of business func-
tions (parameterized ASM out functions) used as temporary locations to store
service computation results.

Code 16 reports a simplified fragment of a simulation scenario (instantiated
from the one reported in Code 7) for checking the order placement executed by
the OrderDeliveryComponent.

The SCA-ASM specification of some components behavior were further re-
fined to reflect at behavioral level the Introduce Concurrency tactic. The behav-
ior, for example, of the OrderDeliveryComponent was further refined in ASM
as shown in the fragment reported in Code 17: the consuming and sending of
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module OrderDeliveryService

import ... //Other module imports

signature:

// the domain defines the type of the provider component’s agent
domain OrderDelivery subsetof Agent

// business function value

out place: Prod(Agent,Order) —> Order

//@Remotable

module StockExchangeService

import ... //Other module imports
signature:

domain StockExchange subsetof Agent

out sendOrder: Prod(Agent,Order) —> Rule

HO OO U kR WN -

= =

scenario OrderPlacement
load main.asm

//for the startup of the client and server agents

set status(c) := READY;

set fRequestResponse(c) :=s;

set order(c):= ...;

set ...

exec r_wsendreceive[fRequestResponse(c),” r_place(Agent,Order)” ,order(c),result(c)];
step

check isDef(place(fRequestResponse(c),order(c))) and isDef(result(c));

Code 16: Validation scenario in Avalla for OrderDeliveryComponent

different kind of orders (stock, option, or future) are executed concurrently by
the par rule. The availability of such pattern specified in abstract terms by
ASM allowed us to formally validate early in the design the benefits provided
by such a tactic (Steps 5 and 6).

5.8. Lessons Learned

We found the modeling approach to the definition of design patterns and
their instantiation in SCAPatternBox particularly useful. First, exploiting the
existing PatternBox tool for Java allowed us to develop a large and sophisticated
tool for SCA in a very short period of time. The ability to work with design
patterns in conjunction with SCA and supporting implementation types was
the major benefit. We found it very sympathetic to the implementation of the
skeleton code of the application that is obtained automatically from an SCA
assembly model and through pattern instantiation.

SCA-ASM allows modeling both structure and behavior of service compo-
nents in a unique framework integrating architectural and behavioral views.
Moreover, SCA-ASM gives us an avenue for the formal validation of the pattern
and of the application model to which the pattern is applied. ASM rigorous-
ness, expressiveness, and executability allowed us to reason and validate some
services interaction patterns in a formal way but without mathematical overkill.
Formal validation can be carried out on SCA-ASM specification fragments re-
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Code 17: The refined behavior of the OrderDeliveryComponent

module OrderDeliveryComponent

rule r_OrderDeliveryComponent=
... seq
par //Queue consuming
r-wsendreceive[queue(self),” dequeue” (" Stock” ,stockorder(self))]
r-wsendreceive[queue(self),” dequeue” (" Option” ,optionorder(self))]
r-wsendreceive[queue(self),” dequeue” (" Future” futureorder(self))]
endpar
par //Order sending to the Stock Exchange system
r-wsend(stockExchange(self),” sendOrder” , (self,stockorder(self)))
r-wsend(stockExchange(self),” sendOrder” , (self,optionorder(self)))
r_-wsend(stockExchange(self),” sendOrder” (self, futureorder(self)))
endpar
endseq ...

sulting from the instantiation from scratch of single design patterns or from the
composition of two or more patterns, or on an entire SCA-ASM specification
resulting from the application of one or more design patterns on an existing
SCA assembly (partially) implemented in SCA-ASM.

During the development of the case studies, for example, we implemented
some components in SCA-ASM in order to have an ASM (abstract) formal speci-
fication of their behavior. We then validated the corresponding SCA-ASM spec-
ification fragments before and after the application of some formally-validated
design patterns, (such as the application of the three-layer and Router patterns
to the SCA assembly of the Order system, and of the the Ping-echo and Heart-
beat tactics to the STS SCA assembly). We experienced that ASM is a good
formalism for prototyping and simulation purposes. We have carried out model
validation through the SCA-ASM simulation environment. Model validation is
a model analysis activity to be executed from the earlier stages of the model
development before other more demanding but more sophisticated and complex
analysis techniques such as formal verification by model checking. Formal high-
level ASM specifications of SCA components can be assembled together with
other SCA components implemented in a different technology (e.g., in Java)
and the resulting heterogeneous SCA assembly can be managed and executed
within the SCA Tuscany runtime platform as. So SCA components can be early
validated at high level of formalization, without caring about implementation
details.

During the formalization task of the business components in the Order sys-
tem case study, we discovered how requirements are often incomplete and as-
sumptions must be stated in order to complete the specification. To this pur-
pose we noted how the SCA architecture (including design patterns) and the
SCA-ASM behavioral specification of a service are easy to adapt when different
interpretations of same requirements are possible (for example, to support dif-
ferent selection strategies of orders to invoice), and how the rigor of the ASM
ground model allows formal validation and verification of properties. Model val-
idation, in general, allowed us to reproduce component configuration scenarios
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with different pattern instantiations and be confident that the model behaved
as expected. We found this early validation is a great means for evaluating ar-
chitectural choices and alternative designs with limited implementation effort,
but it requires to be skilled in the ASM formal method. On this last point, it
is widely recognized that ASMs is a lightweight formal method since ASMs are
a precise abstract form of pseudo-code, generalizing (the familiar) Finite State
Machines to operate over arbitrary data structures [8].

6. Evaluation of software design pattern languages

Before starting our work, we evaluated the current state of the art. We,
in particular, analyzed existing design pattern languages and their supporting
tools. This section reports the outcome of such evaluation. In Subsection 6.1
we describe the main approaches existing in the literature, while in Subsection
6.2 we briefly compare them (including our proposal, i.e., the SCA-PatternBox
pattern language) with respect to some specific criteria.

6.1. Related work

In the literature, there are several notations and tools supporting the process
of pattern-based system design and development. Some of these languages are
based on formal mathematical notations (such as [17-21]) or ontology (such as
[22]). Other languages are based on the OMG standard UML notation [23,
25-27]. Finally, some other languages are based on XML or general purpose
programming languages [28-30]. Below, we describe some of these approaches.

The Language for Pattern Uniform Specification (LePUS) [17] is based on
mathematics and formal logic. It describes only the structure of design patterns
and provides a weak basis for integrated tool support. The language eLeLePUS
[18] tries rectify the shortcomings of LePUS.

In [19] another formal language is proposed for the behavioral specification
of the GOF design patterns. It is based on the language of temporal ordering
specification (LOTOS). This LOTOS adaptation to patterns did not yield sim-
ple and clear specifications. Distributed Co-operation (DisCo) [20] is another
specification language for design patterns based on an action system to specify
the behavioral aspects of a pattern.

The Balanced Pattern Specification Language (BPSL) [21] formally specifies
the structural as well as behavioral aspects of patterns. It was derived from Le-
PUS and DisCo, and therefore shares many of the advantages and disadvantages
of the two languages.

Conceptual Ontology Design Pattern (CODeP) [22] is based on the Web
Ontology Language (OWL) and Resource Description Framework (RDF) for
engineering ontology content over the Semantic Web.

Many semi-formal UML-based notations exist. Among the most notable
ones are the following. Archlnst [31] is a tool developed as a plug-in of the
IBM Rational Software Architect (RSA) for UML to support quality-driven de-
velopment of software architectures. It allows to configure architectural tactics
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based on quality requirements and compose the configured tactics to produce
an initial architecture of the system under development. The tool uses the
Role-Based Metamodeling Language (RBML), a UML-based pattern specifica-
tion notation presented in a previous work [23], to specify tactics. This UML
extension defines a design pattern in terms of roles and role dependencies. The
concept of ClassifierRole that RBML uses has been, however, superseded in
UML 2.x. In [16, 32], a prototype tool, called RBML Conformance Checker,
has been also presented for verifying the conformance of UML models to de-
sign patterns. This work demonstrates how instantiated elements conform to
their corresponding metamodel elements. PerOpteryz [25] is an Eclipse-based
optimization framework to improve component-based software architectures for
performance, reliability, and cost through model-based quality prediction tech-
niques and architectural tactics. It is based on the Palladio Component Model
(PCM) and a UML-like modeling notation that uses annotated UML models as
software design models. In [26] a prototype tool named DPTool is presented.
It is based on the DPML (Design Pattern Modeling Language) notation for the
specification of design patterns and their instantiation into UML design models.
However, the proposed modeling constructs are more complex than other simi-
lar UML-based modeling notations. In [27] is presented the problem to prevent
defect injection during design-patterns maintenance. A design method called
Pattern Instance Changes with UML Profiles (PICUP) has been developed to
this purpose as an improved design method for a corrective UML pattern-based
design maintenance and assessment after variations.

These are design pattern languages that are based on general purpose pro-
gramming languages. For example, a Prolog-like language called SPINE [28]
allows patterns to be defined in terms of constraints on their implementation
in Java. It makes addition of patterns and variants easier for those who have
programmed in PROLOG before, rather than creating an entirely new syntax.
These patterns can then be processed using a proof engine called Hedgehog.
Hedgehog reads the SPINE definitions, along with Java source code, and at-
tempts to automatically prove whether or not the class correctly realizes the
design pattern. In [29], AspectJ (aspect-oriented extension to the Java pro-
gramming language) is used to provide some improvements to the GoF OO
design patterns. These improvements allow several advantages like better code
locality, reusability, and composability, but are at code level. No abstract mod-
eling notation for pattern specification is supported.

Finally, the Design Pattern Definition Language (DPDL) [30] allows to spec-
ify both the structural and behavioral aspects of design patterns. It is a text-
based pattern description language purely based on XML, but it is endowed also
with a graphical representation through an automated transformation of DPDL
descriptions into UML class and sequence diagrams.

6.2. A comparison of design pattern languages

To compare existing design pattern languages, we revised and extended the
comparison framework originally presented in [30]. The criteria adopted for
comparing the languages reflect the main and generally agreed objectives in
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proposing a language for defining, sharing and applying design patterns into
concrete system designs. Essentially, a design pattern language should be:

e Easy to understand and use: The language should be easily understand-
able by the designers/developers and thus easy to use.

e Unambiguous: The language should have a clear semantics enabling its
sharing among design/development teams without any ambiguity.

e Extensible: Because technology is progressing, the language should be
capable of being extended.

e Based on existing technology/languages: The language should be based
on existing and common technology /languages so that it gains wider and
faster acceptance.

e Able to support also a graphical notation: A visual representation of
a design pattern and/or a pattern instance provides an intuitive and
lightweight overview for the user.

Table 3 below summarizes the results of such a comparison by reporting the
main features of the design pattern languages described in Subsection 6.1 and
of our proposed language. The main difference with respect to our proposal,
is that all the existing approaches that we considered are specific to object-
oriented system design. They do not address design patterns related to SOA.
Moreover, most of these approaches are not implementation-oriented; indeed,
they provide the needed formality in the pattern specification, for example at
UML level, but often at the expense of usability and programmaticity of the
approach because they do not aim at generating the corresponding implemen-
tation code. In particular, languages that purely use a mathematical formalism
for modeling design patterns allows to specify the behavioral aspects of a design
pattern in a rigorous and unambiguous way, but often they are considered not
easy to use because they require strong mathematical background to the user
and lack of good tool support. In conclusion, to the best of our knowledge, there
is a lack of tools supporting an “implementation-oriented” definition and use of
design patterns, especially in the SOA domain. So the experience gained with
the development of SCA-PatternBox makes us optimistic.
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7. Conclusion and future work

We presented a methodology and a supporting framework SCA-PatternBox
for the design and prototyping of service-oriented applications with design pat-
terns. The framework allows the definition and the semi-automated application
of design patterns into the design of a service-oriented software architecture. We
evaluated the usability and usefulness of the framework on the Order system
case study and on a quality-driven adaptation scenario of the Stock Trading Sys-
tem [15] where patterns and tactics required would have been difficult to apply
and combine manually without the availability of a tool like SCA-PatternBox.
We also provided a comparison of the SCA-PatternBox’s language with existing
design pattern languages.

There are a number of issues that we want to address in the future:

— Automation support for design pattern composition to create complex
pattern hierarchies through composition strategies.

— Formal strategies and techniques to check the structural and behavioral
conformance of the component assemblies to the applied design patterns.

— Transformation support for compatibility with UML component diagrams,
since UML is the standard language for system modeling.

— Definition of more sophisticated SOA patterns.

— Support for more SCA component implementation types.

Moreover, a software engineering area that is gaining importance for the
maintenance and evolution of software systems is reverse engineering [33]. A
real challenge in this context is to obtain representations of a software system
at a higher level of abstraction and to identify the fundamental components, its
constituent structures and design patterns. As future work, we want to extend
the proposed framework with a methodology for the detection of design patterns
and the reconstruction of service architecture models from the source code.

Finally, since Cloud service providers are expanding their offerings to include
cloud-native software services (other than foundational hardware and platforms
to application components), we would also like to extend our framework to
support the new standard TOSCA [35] for modeling cloud-based applications
and design patterns related to the Cloud domain.
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