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Abstract

Day after day, vendors of manufacturing machineries are chal-

lenged with the need of flexibility and reconfigurability of their

products. Being able to rapidly provide various variants and con-

figurations of the products in response to customers requests is

an important asset for every company in the nowadays compe-

tition. Nevertheless, most of the automation software for spe-

cial machines is still built in a monolithic way which does not

support rapid reconfigurability to reflect hardware modifications.

And once the machine is delivered to the customer site, the main-

tenance process begins. Maintenance costs are increasing with the

globalized market due to travel costs for sending service person-

nel to the customer plants. In some cases, the issue would have

been easily solved if only the technichian had been able to be on

the site. This makes remote diagnosis, debugging and repair an

obvious advantage.
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This thesis presents two approaches to solve the aforementioned

issues. A modular and reconfigurable approach to software devel-

opment for the automation to support rapid reconfigurations of

the software, and a remote maintenance methodology that uses

wireless and mobile technology to record and transmit video and

machine operational parameters together for remote viewing and

analysis.
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Chapter 1

Introduction

1.1 The need of an integrated method-

ology

Every day, producers of manufacturing systems are challenged

with the need of flexibility and reconfigurability of their products.

The ability of rapidly provide various configurations of products in

response to customers demand is an important asset in the ever

growing competition of nowadays. Competition is about speed

and costs, which means that being able to respond fast and con-

tain costs is crucial to gain new customers. Nevertheless, most

of the automation software for special machines is developed in a

monolithic way which does not support rapid reconfigurability to
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CHAPTER 1. INTRODUCTION

reflect hardware changes. Several solutions have been proposed

for supporting rapid reconfiguration of production lines, but the

field of custom machines is still fertile about improvements in

this area. Due to the increasing of globalization, machineries are

shipped all over the world. This growth of exportation of manu-

facturing systems increased costs of maintenance in case of failure

or malfunctioning of the machine, which can become really ex-

pensive due to the need of sending a technichian to the customer

site. And many times service personnel is moving just for issues

that can be solved with simple steps if only the technician could

have seen it directly. Considering that each intervention is just a

cost for the company, vendors need to find a way for managing the

maintenance efficiently, even when machines are far away. Addi-

tionally, if the company is able to offer rapid maintenance because

it can leverage remote support techniques, it can guarantee short

downtimes in case of failure. It is evident that such short times of

recovery could be achieved only if specialized personnel is avail-

able on the customer site, or if the technicians from the vendor

site could somehow resolve the issue remotely.
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CHAPTER 1. INTRODUCTION

1.2 Contributions

This thesis aims at exploring and proposing solutions for the two

main challenges identified above. The first challenge is the de-

velopment of a support system for the software generation and

provisioning of a custom machine [43]. This thesis presents an

approach based on the concept of module, which can be used by

manufacturers of these machines to support the automatic gener-

ation of software depending on the components which are loaded

on the custom machine. Additionally, other artifacts related to

the software are automatically generated, allowing developers to

concentrate on the integration of the various components, more

than the development of the software for the components itself.

The second challenge is to provide remote maintenance techniques

for debugging issues remotely for semi-automated machines [44].

If on a fully automated system the machine log is most of the

times enough to understand what conditions are triggering an

issue, in the case of semi-automated machines the human inter-

action is valuable. It’s sometime hard to understand what the

operator of the machine is doing, or how he is interacting with

the system when the wrong behavior manifests. This thesis pro-

vides a solution based on everyday mobile internet devices, which

3



CHAPTER 1. INTRODUCTION

tries to augmentate the information gathered from the machine

with a audio/video stream acquired by a device to record the

interaction that the user is having with the machine. This al-

lows technichians on the vendor service center to audit the data

having an idea of what the user was doing when the data was ac-

quired. The work described in this thesis, has been carried out in

the context of two research projects: the first is the ADAPTIVE

project promoted by “Cluster Tecnologico Nazionale Fabbrica In-

telligente” and funded by MIUR. The ADAPTIVE project aims

at developing technologies and solutions to enhance the ability

of modern factories to be flexible and efficient, appropriately re-

sponding to unpredictable changes in market requests. The second

project is “Touchplant”, a project funded by Regione Lombardia

and Fondazione Cariplo. This has the objective of “Developing

innovative maintenance techniques for industrial machineries and

plants, leveraging modern communication technologies and mobile

terminals”.

1.3 Thesis structure

This thesis is structured as follows: Chapter 2 explores the state

of the art for the fields of software development in manufacturing

4
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and remote maintenance. The most meaningful research contribu-

tions on these areas are highlighted and described, to provide an

idea of the current status of the research. Chapter 3 describes the

methodology for the proposed solution, highlighting the structure

and the expected outputs. Once the general approach is defined,

Chapter 4 describes the application of the proposed solution on

a real machine, with details about the implementation and the

achieved results. To complete the thesis, Chapter 5 draws conclu-

sions and highlights strenghts and areas of improvement for the

discussed approaches.

5





Chapter 2

State of the art

Producers of manufacturing machines and lines are faced day by

day with the recurring problem of supporting a wide range of

variants of their products to fulfill the ever increasing requirement

of customization of their customers. Even if this thesis does not

deal with customization directly, the modularization techniques

described are one of the enabling factors of the customization.

Additionally, the ability to answer in short time to market shifts

and being able to reconfigure and redesign productive processes

accordingly is a crucial asset in the globalized competition. This

competition is the starting point of the current work, which tries

to address this issue leveraging two main concepts:

• Modularization and automatic generation of automation soft-
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ware and related artifacts

• Integrated remote maintenance systems

2.1 Modularization and modeling

Modularization and automatic generation of automation software

and related artifacts increases development speed decreasing de-

velopment costs, which means being able to respond fast and con-

tain costs, crucial for gaining new customers. It introduces flexi-

bility in the development and production process. Flexibility is a

keyword in this context, and it allows to rapidly react to changes,

whether predicted or unpredicted. First instances of flexibility

in production were introduced by Toyota, as reported in [58] by

Womack, Jones and Roos that revealed Toyota’s lean manufactur-

ing system. In that system, instead of relying on linear product

lines, a paradigm involving self-coordinating work teams was the

core of the production, while tools and procedures were put in

place to support daily human work. Information sharing among

the coworkers was the key point.

Despite this first introduction of lean manufacturing concepts,

usual development in many companies is still carried out with a

sequential approach, represented in Figure 2.1.

8
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Figure 2.1: Sequential approach

This approach is mainly due to the specialization of engineers

that work on product design and development. In a first instance,

accountants or management defines the specifications of the prod-

uct to be built, then a first high level architecture is designed.

Once this is ready, mechanical engineers focus on materials and

mechanical design, electrical engineers focus on control boards im-

plementation, wiring and connection with electromechanical com-

ponents, while control software designers concentrate on software

implementation.

All these activities are often carried out in parallel but the lack

of interaction between the various areas of knowledge is the main

drawback of this approach. Every choiche made by a team has

impact on the others and thus communication is crucial. Addi-

9
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tionally, making a design change late in the process can have a

huge impact on other designs, because other teams have to imple-

ment that same change in their domain and be sure to not forget

to address any issue related to that modification.

[4] highlights the main challenges of mechatronic design:

• Sharing of design documents Due to the high degree of

interconnection between domains typical of mechatronic de-

sign, a complex system is often separated in smaller sub-

systems. This subsystems will be integrated into one single

design later in the process, then communication and clear

information flow between different working groups is critical

to achieve a perfect integration.

• Multi-discipline modeling Modeling of mechatronic sys-

tems involves multiple disciplines, and thus, quitting a single-

domain approach is crucial to favorite knowledge sharing be-

tween designers and improve the overall design. This be-

cause every specialized designer can take decisions and make

choiches knowing what can be better for the other domains,

facilitating their work and preventing changes late in the de-

sign process.

• Early testing and verification Early testing and verifica-

10
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tion is primary to be able to verify the design in every stage

of the process, before proceding to the next phases. Frequent

verification is another technique to prevent late changes.

• Support in control software design Usage of modern

computer aided control system design tools such as Matlab or

dSPACE [8] allow to develop the control software as block di-

agrams, providing a clearer and immediate representation of

the control software, reducing development errors and bugs.

In the following sections, state of the art techniques to address

these challenges are presented.

2.1.1 Modularization attempts

With the purpose of promoting modularization and code reuse in

modern control software design for manufacturing systems the In-

ternational Electrotechnical Commission (IEC) created the IEC

61499 [22] standard, that defines an open architecture to promote

modularization and code reuse in modern control software design

for the design of distributed control applications. The architecture

of IEC 61499 is meant to be independent from the programming

language trying to favour the reuse of software modules over multi-

ple platforms. IEC 61499 has the core concept of Function Block,

11
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inherited by a previous standard, defined in 1993 and published

by IEC with the name of 61131-3 [19]. This concept of func-

tion block is basically a software structure that defines Event in-

puts and Event outputs for interacting with other function blocks,

Data inputs and Data outputs for exchanging data with other func-

tion blocks, Execution control chart (ECC) to manage the internal

state of the block depending on incoming events, and finally Algo-

rithms that can be invoked by ECC to execute actions and update

internal state. Every block implements its own logic, and thus

a control application is obtained by an interconnection of those

blocks, resulting in a network of function blocks [34]. The main

difference between this standard and the previous IEC 61131-3

is the event-driven nature of the function block, which gets exe-

cuted only upon receival of an event. A review of the standard

was needed because the previous version did not address the new

requirements of today’s complex industrial systems, missing key

concepts like portability and reusability despite its wide adoption

in the past [50]. Although IEC 61499 has been designed to over-

come these lacks, it has scarcely been adopted by the industry,

probably because of the lack of development tools that support

this standard combined with the low interest by automation con-

trollers manufacturers to support it.

12
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2.1.2 Software product lines

Software product lines engineering [6] was introduced in 80’s to in-

crease economy of scale in products that had multiple versions or

customization of components. The concept is similiar to the prod-

uct line concept typical of factories: given a pool of pre-designed

components and customizations, a product line can realize mul-

tiple versions of the product by assembling those components.

Most versions of products that come from a single factory in fact

have most of the components in common, and only customiza-

tions or optionals are changing between them. The same concept

is replicated in software development using Software product lines

(SPL). [52] defines this concept: ”A software product line is a

set of software-intensive systems sharing a common, managed set

of features that satisfy the specific needs of a particular market

segment or mission and that are developed from a common set of

core assets in a prescribed way”.

The purpose of this methodology is to reduce the time of devel-

opment of different versions of software, creating variation points

in the software to be able to choose what software component load

depending on the hardware version of the product this software is

installed on. SPL are based on four concepts:

• Software assets These are: (i) the main software with vari-
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ation points and (ii) all the possible alternatives of software

that can be loaded at those points to support specific alter-

natives of the product.

• Feature model The feature model [45], [3] is a tree repre-

sentation of all the possible alternatives that can be achieved

with the product line. It defines which components are op-

tionals and which not, which alternatives are available for

every component and whether a component requires other to

be present. An example of a feature model is represented in

Figure 2.2. In that model, a Manipulator is made up of a

Motor, which can be either of Type A or Type B, a gripper

which can be Mechanical or Pneumatic (or both), and a Bal-

ancer, which is not a mandatory component (note the empty

circle in the connection line).

• Production mechanism and process The toolchain for

composing and configuring products from the assets inputs.

Product decisions are used during production to determine

which software assets are needed and how to configure the

variation points within those assets.

• Software product outputs The results of the software

product line. It is represented by the collection of all the

14
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products that can be produced by the product line. The

scope of the product line is determined by the set of software

product outputs that can be produced from the software as-

sets and feature model.

Figure 2.2: An example of feature model

The feature model describes all the alternative products that

can be achieved using the software product line. Each feature of

the tree can be mandatory, optional, or alternative. A feature

is considered mandatory if it has to be present when the parent

feature is present: in most cases, a mandatory feature is parent

of many alternatives that can be chosen. This specifies that one

of the alternatives can be selected, and that at least one have

to be chosen. Optional features instead can be present or not

present, while with alternative features exactly one feature must

be selected when the father feature is selected. Representing all

15
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the possible alternatives using this schema has the great advan-

tage of removing ambiguities. Additionally, having a formal rep-

resentation of the model, allows to validate production requests

against the model to understand if a request is valid or not. There

could be features that are conflicting, and thus the assembly of

the software artifacts could not be possible. All those cases should

be addressed by the validation of the request against the feature

model.

An interesting comparison between a company that implemented

Software Product Lines and one that did not is presented in [28]

The main benefit of Software Product Lines is that the produc-

tion can usually scale to orders of magnitude more compared to

the traditional software engineering techniques when considering

wide ranges of product variants. Although this approach seems

promising, its implementation requires the feature model to be

well known from the very beginning to be able to design and im-

plement all the variation points within the software.

2.1.3 Model based design approach

Model driven engineering is a software development methodology

for systems engineering which exploits domain models rather than

pure computing or algorithmic concepts. It has been promoted as

16
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an approach to raise the abstraction level and better handling

the complexity of modern industrial systems. The definition of

Systems Engineering as provided by the International Council of

System Engineering (INCOSE) is as follows:

Systems engineering is an interdisciplinary approach and means

to enable the realization of successful systems.

Systems engineering is related to:

• Definition and gathering of requirements

• Design

• Development

• System testing

Systems engineering then covers the whole development pro-

cess, from the requirements to the testing, taking into account

technical and economical aspects. Systems Engineering is a broad

discipline which does not have a specific modeling language. The

overall objective of this discipline is to reach the final objective

(the working developed system) with a perfect and ideal inte-

gration of all the various aspects (from integration of technical

components to tracing of requirements into specific subsystems).

17
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The main phases of Systems Engineering as defined by IN-

COSE are [21]:

1. State the problem The problem statement starts with a

description of the top-level functions that the system must

perform: this might be in the form of a mission statement, a

concept of operations or a description of the deficiency that

must be ameliorated

2. Investigate Alternatives Alternative designs are created

and are evaluated based on performance, schedule, cost and

risk figures of merit. No design is likely to be best on all

figures of merit, so multicriteria decision-aiding techniques

should be used to reveal the preferred alternatives.

3. Model the system Models will be developed for most alter-

native designs. The model for the preferred alternative will

be expanded and used to help manage the system throughout

its entire life cycle. Many types of system models are used,

such as physical analogs, analytic equations, state machines,

block diagrams, functional flow diagrams, object-oriented mod-

els, computer simulations and mental models.

4. Integrate Systems, businesses and people must be integrated

so that they interact with one another. Integration means

18
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bringing things together so they work as a whole. Interfaces

between subsystems must be designed. Subsystems should

be defined to minimize the amount of information to be ex-

changed between them.

5. Launch the system Launching the system means running

the system and producing outputs. In a manufacturing en-

vironment this might mean buying commercial off the shelf

hardware or software, or it might mean actually making things.

Launching the system means allowing the system do what it

was intended to do.

6. Assess performance Figures of merit, technical performance

measures and metrics are all used to assess performance. Fig-

ures of merit are used to quantify requirements in the tradeoff

studies. They usually focus on the product. Technical per-

formance measures are used to mitigate risk during design

and manufacturing.

7. Re-evaluate Re-evaluate is arguably the most important of

these functions. For a century, engineers have used feedback

to help control systems and improve performance. It is one

of the most fundamental engineering tools. Re-evaluation

should be a continual process with many parallel loops.

19
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8. Variations Like all processes, the Systems Engineering pro-

cess at any company should be documented, measurable, sta-

ble, of low variability, used the same way by all, adaptive, and

tailor-able.

System Engineering requires then a collaboration of experts

from multiple domains, each of them having his own tools and

procedures. To achieve a successful result, all these dependencies

in domains should ideally be linked together and all the required

information ubiquitously shared among the team. Every domain

though has its own tools, and linking of information and compo-

nents over multiple tools is still a complex issue. That’s the main

reason why languages like AutomationML have been developed in

the last years, exactly with the purpose of facilitating exporting

information from one tool and importing into another.

In the best of its shape, model based design aims at creating

a multi-layer model which describes the system under various as-

pects. The top-level representation describes the most generic fea-

tures or components of the model, but deep diving into each com-

ponent will expand its content over multi disciplinary domains.

Ideally, this single model is used for defining requirements, then

extended linking these requirements to every component that im-

plements them. The model is integrated with a description of the

20
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composition of the system from an architectural point of view,

then expanded again for including electrical specification and de-

tails about cabling, software components, verification and valida-

tion. Various attempts have been performed to achieve automatic

software generation [10] starting from this model.

In the following sections, some of the most common model

driven engineering languages are presented.

SysML

UML is the de-facto standard language for modeling software re-

quirements. From the success of UML a language for engineering

applications called SysML [47] has been derived. It supports de-

sign phases such as requirements collection and formalization of

specifications. Hirsch [17] designed a way for linking function

block technology with SysML [16]. SysML is suitable for the top-

down design and requirement engineering, however it is less effi-

cient when it comes to the deployment of distributed embedded

targets. Additionally, legacy PLC programming is not supported

here (e.g. Ladder Diagram). SysML is based on four main con-

cepts:

• Requirements

The requirement diagram collects requirements hierarchies
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and the derivation, satisfaction, verification and refinement

relationship. The requirement diagram is the bridge between

typical requirements management tools and the system mod-

els.

• Structure

The structure of the system is developed using block defi-

nition diagrams and internal block diagrams. As seen for

other standards, the block is the basic unit used to represent

a system element, like a piece of hardware or software. The

former diagram, the block definition diagram, has the pur-

pose to describe the system hierarchy while the latter, the

internal block diagram describes the internal structure of the

system describing its interconnections (e.g. ports and con-

nectors). The organization of the model is depicted in the

package diagram.

• Behaviour

The behaviour is mainly represented using four diagrams, all

inherited from UML 2:

– Use case diagram: provides a high-level description of

functionality achieved by integrating multiple systems or

system parts.
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– Activity diagram: represents how data flows within

the system, providing an idea of the control flow between

activities.

– Sequence diagram: represents the interaction between

various parts of the system describing how they collabo-

rate.

– State machine diagram: handles the control flow of

the system, responding to external events by changing

the internal state of the system.

• Parametrics

The parametric diagram defines constraints on acceptable

system metrics such as performance, reliability and other

properties to support engineering analysis.

SysML extends/modifies UML to fill its gaps in representing

some of those concepts as depicted in Figure 2.3. The Block defini-

tion diagram is redefined by replacing the concept of classes with

blocks, and introducing flow ports which are defined in SysML as

what can go through a block whereas it is data, matter or en-

ergy. The Internal block diagram is redefined by adding support

to blocks and flow ports, while the Activity diagram has been

modified to allow disabling of actions that are already executing
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(which was not possible in UML, where control can only enable

actions to start).

The Parametric diagram is intended to support system analy-

sis (performance, reliability, etc.) by defining constraint blocks. A

constraint block expresses a mathematical equation and its param-

eters, some of which may correspond to system block properties.

Finally Requirement diagram defines a visual and graphical rep-

resentation of textual requirements, specialised associations be-

tween themselves or with other elements of the model, and how

they can be managed in a structured and hierarchical environ-

ment. [11].

Thanks to all these types of diagrams, it supports the analysis,

specification, design, verification and validation of complex sys-

tems such as hardware or software. All these diagrams provide a

representation of the system from different points of view and due

to the hierarchical structure of SysML it’s possible to extend it

through the creation of profiles and can be integrated into existing

tool environments. Secchi et al. [46] have introduced the use of

UML in automation with an example methodology of PLC code

design by refining UML specifications.
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Figure 2.3: SysML diagram taxonomy as presented on the official website
www.omgsysml.org

Petri nets

Formal models of software systems can create dependable software

with properties that can be enforced and guaranteed by design.

In automation systems in fact, the dynamics of the plant is im-

portant and must be taken into account when control software

is designed and developed. Additionally, the PLC code genera-

tion from a formal model is simple and has been investigated by

many researchers [12], [13], [35]. Petri nets in this context are

the most used tool for developing formal models. For example,

Thieme and Hanish [49] developed an appropriate modeling for-
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malism and suitable methods for automatic generation of modular

control code for Programmable Logic Controllers (PLCs). This

methodology is based on a formal model of the controlled object

(plant). First the plant model describing the physical possible be-

havior is designed using a modelling formalism that the authors

defined as Net Condition/Event systems [15] which is an exten-

sion of Petri Nets [41]. Then the same formalism is used to define

a modular structured model of the controller. These two mod-

ules are then interconnected via their interfaces to establish what

the closed loop behavior will be. After verifying that the closed

loop model works, the controller code is automatically generated

by translating modules in function blocks. These function blocks

and their interactions reflect the structure of the modules and

their interconnections with the controller model. Another similar

approach to automatically generate PLC code from Petri nets has

been developed by Music et al. [39]. An interesting comparison

between PLC ladder logic and petri nets is presented in [53]. All

these approaches of formal models which are theoretically promis-

ing, are not yet common in industrial practice among automation

and control engineers because their application is associated with

high computational complexity.
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Multi-Agent Architecture

Multi-Agent architectures offers a new alternative to design decision-

making systems. Instead of relying on a single controller which

manages all the process, multiple intelligent entities collaborate

to coordinate their functions within the overall system. Research

in this field has been subject of several surveys [32] and is gaining

practical usage in industrial applications [38].

Agent-Based Control (ABC) is often applied in the context of

Reconfigurable Manufacturing Systems (RMS) research since it

properly suits the needs of RMSs. An agent is a software com-

ponent that has a general interface to external systems, and it is

characterized by:

• Autonomy: It can perform tasks independently without in-

tervention of humans or others.

• Communication: It can interact and communicate with other

similiar entities to ask for help achieving its own goal, or

supporting others in achieving their goal. In this sense an

agent is social [42].

• Pro-activity: It can take initiative to undertake an action

without being explicitly triggered by a command from the

user.
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The idea of having multiple intelligent entities, has a good

reflection in modern software development techniques like OOP

(Object-oriented programming) where multiple objects interact

each other to fulfill a common objective. All these objects have

its own internal logic which given the provided input, and the in-

ternal status, can provide a decision as output. These applications

are useful also for cases where a remote controller does not have

enough bandwidth to transmit every single control command. In

these cases, the remote controller is just a supervisor which gives

objectives to every single entity, which can take decisions on its

own to fulfill it. Even if this architecture looks promising, existing

agent platforms do not always satisfy the real time requirements

of practical automation applications as stated by Theiss et al [48]

leading to significant overhead in respect of design effort and run-

time resources.

The proposed approach in this thesis tries to take the benefits

of all the aforementioned methodologies, and apply such bene-

fits into a new method specifically meant for custom machines,

which software is programmed on microcontrollers and integrated

circuits. All the process described, is meant to be used across

domains, from the design of the machine, through the assembly,

to the software development and deploy, providing a single point
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where all the various engineers can work on, sharing the design of

the machine and working on it along the whole process.

2.2 Remote maintenance

The main idea of remote maintenance is that, by leveraging infor-

mation, wireless and internet technologies for communication and

transport, technichians can remotely log into machineries to ana-

lyize their behavior and reading operation configurations, other

than performing set-ups and configurations [18]. This allows to

reduce the manufacturer’s manpower retained on the customer’s

site, allowing remote analyisis of issues, and progressive improve-

ments on the preventive maintenance algorithms thanks to the

machine-performance monitoring.

2.2.1 E-Technologies for maintenance improve-

ments

The combination of modern processing techniques and communi-

cation tools offers the technical support for remotely accessing in-

formation and process. Such technologies allow to transfer system

and environment knowledge to maintenance specialists remotely

located in order to operate together through remote exchange [26].
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First and major enabling technology for this sector is the Web.

With all its open standards and support for different platforms, it

enables easy communication, messaging, and networking between

devices and operators [55]. Database technologies allow to store

data, which can be collected by legacy systems, for offline analysis

or monitoring.

Next, wireless technology allows in some cases to reduce the

wiring, reducing costs, and allowing more flexibility and availabil-

ity of information on the factory floor. This allows data reading

from machines with mobile terminals, and data sharing and ma-

chines control from anywhere in the world. The Internet in this

case provides a great transport layer for communication between

the factory and the remote controller [40].

These e-technologies increase the possibilities to utilize data

from several sources and of various kind, to process large amount

of data to support decision making and production prediction and

to share information between machines for implementing collabo-

rative activities.

These technologies are also enabling factors for cooperative/-

collaborative maintenance [27]. An information infrastructure can

in fact connect geographically dispersed systems or actors like

suppliers, clients, support engineers, leveraging the Internet net-
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work. E-maintenance introduces a great level of transparency in

the whole organization, drastically reducing interfaces between

personnel, departments, or IT systems. It allows synchronization

between maintenance and production, buyers and sales, minimiz-

ing downtime costs. All this transparency, facilitates the bidi-

rectional flow of data from the factory floor to decision levels,

automating the retrieval of information that decision makers re-

quire to schedule maintenance activities in an optimized fashion

[51].

All the data collected thanks to these technologies, can be used

for developing predictive maintenance [37] algorithms and progres-

sively improve on them. E-maintenance provides companies with

intelligence tools to monitor their machineries anticipating poten-

tial breakdowns. Product’s performance can be monitored over

time, allowing the company to focus on degradation monitoring

instead of discovering and recovering faults [25].

2.2.2 E-maintenance

Remote maintenance in literature has been explored mostly under

the concept of e-maintenance [33]. E-maintenance is a wider field

where all the E-technologies explained in the previous section are

used for supporting maintenance operations. Various standards
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have been developed for supporting e-maintenance platforms/ar-

chitectures. The main are:

• IEC 62264 (enterprise control system integration) [20]

• ISO 15745 (industrial automation application integration frame-

work) [24]

• MIMOSA (Machinery Information Management Open Sys-

tem Alliance) [36]

• ISO 13374 (condition monitoring and diagnostics of machines)

[23]

2.2.3 Web technologies as enabling factors for

remote maintenance

The ease of access to the Internet, through standard communi-

cation protocols that provide the transfer of data throughout the

world, represents the basics of the ability to perform maintenance

and monitoring on a remote machine. One of the first articles

introducing the concept of remote maintenance for globally inte-

grated manufacturing facilities is [29] which proposes functional

requirements for remote maintenance systems:
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• Multi-sensor Integrated Monitoring and Control Sys-

tems Monitoring requires multiple sensory devices to acquire

data from the plant

• Communications and Integration A multimedia infor-

mation network is a basic requirement for transferring and

sharing information among geographically dispersed partici-

pants.

• Data Abstraction Data transmission is the key concept,

and performance of transmission matters. Data has to be

compressed and possibly aggregated to provide useful real

time insights.

• Tele-Maintenance and Collaborative diagnostics Multimedia-

based tools are the mean to support remote users for mainte-

nance assistance. Interactive and collaborative tools enables

technical personnel to operate diagnostics from a remote lo-

cation.

In [31] standardized and distributed measurement and control

frameworks are illustrated, while in [30] an approach to web en-

abled e-maintenance systems is presented. A literature review of

web and agent technologies in condition monitoring the review
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shows that Web and agent technologies are being used for mon-

itoring and maintenance in manufacturing, power, and chemical

industries. It is used to integrate geographically distributed sys-

tems, processes and heterogeneous data for asset management. In

[54] an Internet based monitoring system to monitor the perfor-

mances of distributed power stations is presented. The idea to

use mobile devices as support tool on the factory floor in the field

of maintenance was already explored in [5] with an interesting ex-

ample of a mobile maintenance support system based on web and

mobile device technologies, i.e., personal digital assistant. Mo-

bile devices are also considered in [9] within an application for

engineering asset and maintenance management.

In [1] is presented an approach to integrate Internet technolo-

gies in maintenance processes in a project called PROTEUS [2],

with the objective to improve maintenance processes efficiency by

connecting the operator to the expert via the Internet. Another

example of using the Web as a maintenance portal is described in

[57] where two implementation examples for a web maintenance

portal are presented.

In [14] the design choices of a flexible E-maintenance platform

are discussed. The platform is then built based on a combination

of web services and statistical analysis to obtain an agile integra-
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tion of maintenance activities with the production process.

Finally, [56] presents a good example implementation of a re-

mote maintenance system based on XML documents, which pub-

lishes data on the web and alarms upon specific values, by send-

ing messages to engineers mobile devices. On the same stream,

a condition monitoring system is presented in [7] describing how

a monitoring system can be used to constantly check the status

of components that work in harsh environments and that can-

not be visually inspected. The system presented augmentates the

condition data with risk information to improve the maintenance

activity.

Despite the efforts spent in this wide field of the remote main-

tenance, the analysed literature didn’t show any specific approach

for semi-automated machines. The usage of a smart device as the

primary tool for remote maintenance of industrial machinery and

plants is one of the main innovations that this thesis brings: these

terminals, in fact, provide in a single device the latest technolo-

gies in human-user communication and localization at a very low

price. Currently, monitoring and remote maintenance systems are

essentially based on dedicated hardware; this choice, although nec-

essary in the past (due to the lack of integrated devices as MID),

at this time is increasingly inefficient, largely because of the rapid
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obsolescence of dedicated devices.

36



Chapter 3

Integrated

methodology

In this chapter, the two methodologies, contributions of this thesis

are presented. In the first section, the focus is on how to support

reconfigurability and multiple variants in software development

for industrial machines. The concept of module will be the key

to support a fast reconfiguration and regeneration of the entire

software artifacts. In the second section, later in the chapter, the

integrated approach for remote maintenance using modern smart

devices is described.
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3.1 Automation software development

method for semi-automated machines

Considering that a large part of manufacturing systems are re-

alized assembling various mechatronic objects on the shelf it is

quite straightforward to think about having a similiar concept of

pre-assembled objects for automation software too. This is what

this development method for software development aims at.

A manufacturing system in fact (as done in most of the com-

panies) can be considered as an agglomeration of already built

mechatronic blocks with infrastructural and interconnection com-

ponents that allow physical and logical communication between

them. The introduced approach aims at replicating this modular-

ity in the automation software with the purpose of having a perfect

corresponding between hardware modules and software modules.

The rationale behind this choice is that considering that mecha-

tronic modules are not changing, it does not make sense to write

the automation software from scratch each time. It is a wiser

investment instead to rethink the way the software is developed

once, and take advantage from modularity from then on. If every

mechatronic object is packed with a software modules that allows

an high level interaction with the hardware by implementing low
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level hardware functions, is then easy to build the automation

software for the entire system just by assembling those modules.

The proposed methodology (as depicted in Figure 3.1) de-

scribes how to structure a software module, which process to follow

for allowing an easy assembly of such modules, and how to auto-

mate some operations that are linked to software development and

that deconcentrate the developer from his main job: writing good

software.

3.1.1 The concept of module

The main idea of the software module is to provide encapsulation

and information hiding, concepts typical of high level software

languages by exposing a defined interface for invocation and com-

munication with it, without exposing the internal implementation

of the module. The development of black box modules, facili-

tates testing and verification because the software engineer can

rely on already tested and validated modules. This allows the

developer to concentrate on a smaller but important part in soft-

ware development: the machine working cycle. This core part of

the software is obviously different from machine to machine and

describes how each module interacts with the other ones, and it

is the most valuable and critical part of the machine automation
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Selection of
modules that
compose the
mechatronic

system

Design of the
state machine

that controls the
system

Collection of the
metadata from
the modules
database

Auto-generation of the
control software by
joining the modules’
source code with the

state-machine

Model summary

Source code of
the control
system

Auto-generation
of the HMI’s
source code

HMI’s source
code

Auto-generation
of the

documentation

System’s
documentation

and risk
assessment

Figure 3.1: Helicopter view of the proposed methodology

software. Still with the purpose of simplyfing the work of the

developer and making it less error prone, other parts of the de-
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velopment can be automated too. Depending on what modules

are loaded on the machine, the user documentation of the system

will have certain sections, the testing checklist will have specific

constraints to be met, HMI (Human Machine Interface) will have

dedicated menus to allow configuration of those components. To

automate the generation of these artifacts, all this information has

to be associated to the module itself. The identified minimal set

of information chunks needed for the process is:

• Versioning information Each module release is marked

with a specific version number. This is useful to keep track

of features and issues associated with each module. When

trying to understand if a specific machine is affected by a

bug just discovered, is sufficient to check if the version of

the module that the machine runs is the one affected by the

defect or not.

• Description A brief description that states what the module

does, and which hardware component it maps to

• Documentation The pieces of the user manual that have to

be included in the documentation if this module is used on a

specific machine. These documentation parts are in multiple

languages to allow automatic generation of multi-language
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user manuals.

• Interfaces The definition of how it is possible to interact

with the module, what are the actions that the module can

be asked to accomplish, and how to read data from it. These

interfaces are the interconnection point between the machine

cycle and the black box module internals. Interfaces of the

module can be either physical or logical. Pysichal interfaces

are the physical pins that the module exposes for wiring. Log-

ical interfaces instead are software interfaces that are used

to make the module interact with the rest of the automa-

tion software. The connection between logical interfaces and

physical interfaces is depending on the wiring made by the

electricians.

• Configurable properties Configuration values that can be

set when instantiating the module to parameterize its work.

For example there can be values like maximum torque, max-

imum load, etc. that can depend on the specific machine

structure, so the software should be parametric to allow these

values to be taken into account during execution. These

properties, are set once the module is instantiated, and are

not configurable at runtime. It’s the vendor parameterization
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of the machine.

• Risks Some mechatronic modules can be dangerous for hu-

mans during their operation. The risks associated with a

specific modules are listed here, with a description of each.

This risk information can be used to automatically generate

a risk assessment document.

• Runtime configurable parameters Each module can have

associated configuration values that should be allowed to

change during normal machine operation through the system

HMI. This can be required for example to set the force that

a gripper has to use to pick up components, or the distance

that the machine has to keep from the object it’s painting.

All these modules are stored in a database that can be accessed

each time a module is needed for development. It’s a library of pre-

built software modules that can be used to assembly the machine

software. Such a database guarantees:

• The usage of the latest validated and verified version of the

module. This allows the user to use a component that has

already been tested, instead of relying on copy-paste tech-

niques widely used in the industry. Having components fully

tested gives the overall machine automation software a high
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test coverage score by default, leaving to the developer the

responsibility of only the integration tests.

• An high traceability of software defects. When an issue is

identified in a specific module version, it is straightforward

to find all the systems that uses that specified buggy version

and ship an update for fixing it. Updating all the fleet of

machines that have that defect is easy with modules, because

of the concept of incapsulation. The software that interacts

with the module sees it as a black box, and relies just on

its interfaces. If the interfaces are not changed, the internal

software of the module can be changed anyhow and replaced

in a plug and play fashion. This is way easier compared

to what would have meant to correct the defect in many

machines where the code is not so well structured.

• An increase of hierearchy levels in software development. The

engineer that develops the software module is different from

the one that implements the machine working cycle. This

allows developers to focus on smaller parts of software, in-

creasing the simplicity of the software and the reliability of

the code.

This database is developed and maintained by the module soft-
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ware engineers who are responsible that the mechatronic module

is correctly managed by its software counterpart. They will be re-

sponsible of maintaining and improving the software, and releasing

periodical updates that can be simply integrated by maintaining

the interfaces unchanged.

The language chosen for the module definition is XML. The

schema that the definition has to adhere to is:

1 <xs:schema attributeFormDefault="unqualified" elementFormDefault="

qualified" xmlns:xs="http ://www.w3.org /2001/ XMLSchema">

2 <xs:simpleType name="io_type">

3 <xs:restriction base="xs:string">

4 <xs:enumeration value="DINPUT" />

5 <xs:enumeration value="DOUTPUT" />

6 <xs:enumeration value="AINPUT" />

7 <xs:enumeration value="AOUTPUT" />

8 </xs:restriction >

9 </xs:simpleType >

10 <xs:element name="module">

11 <xs:complexType >

12 <xs:sequence >

13 <xs:element type="xs:string" name="parent_node"/>

14 <xs:element type="xs:float" name="version"/>

15 <xs:element type="xs:string" name="description"/>

16 <xs:element name="properties">

17 <xs:complexType >

18 <xs:sequence >

19 <xs:element name="property" maxOccurs="unbounded"

minOccurs="0">

20 <xs:complexType mixed="true">

21 <xs:sequence >

22 <xs:element type="xs:string" name="value"

maxOccurs="unbounded" minOccurs="0"/>

23 </xs:sequence >

24 <xs:attribute type="xs:string" name="name" use="

optional"/>

25 <xs:attribute type="xs:string" name="type" use="

optional"/>

26 </xs:complexType >

27 </xs:element >

28 </xs:sequence >

29 </xs:complexType >

30 </xs:element >
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31 <xs:element name="warnings">

32 <xs:complexType >

33 <xs:sequence >

34 <xs:element name="warning" maxOccurs="unbounded"

minOccurs="0">

35 <xs:complexType >

36 <xs:simpleContent >

37 <xs:extension base="xs:string">

38 <xs:attribute type="xs:string" name="

linked_property" use="optional"/>

39 <xs:attribute type="xs:string" name="

property_value" use="optional"/>

40 <xs:attribute type="xs:string" name="symbol"

use="optional"/>

41 <xs:attribute type="xs:string" name="id" use="

optional"/>

42 </xs:extension >

43 </xs:simpleContent >

44 </xs:complexType >

45 </xs:element >

46 </xs:sequence >

47 </xs:complexType >

48 </xs:element >

49 <xs:element name="risks">

50 <xs:complexType >

51 <xs:sequence >

52 <xs:element name="risk" maxOccurs="unbounded"

minOccurs="0">

53 <xs:complexType >

54 <xs:simpleContent >

55 <xs:extension base="xs:string">

56 <xs:attribute type="xs:string" name="

linked_property" use="optional"/>

57 <xs:attribute type="xs:string" name="

property_value" use="optional"/>

58 <xs:attribute type="xs:string" name="id" use="

optional"/>

59 </xs:extension >

60 </xs:simpleContent >

61 </xs:complexType >

62 </xs:element >

63 </xs:sequence >

64 </xs:complexType >

65 </xs:element >

66 <xs:element name="checks">

67 <xs:complexType >

68 <xs:sequence >

69 <xs:element name="check" maxOccurs="unbounded"

minOccurs="0">

70 <xs:complexType >

71 <xs:sequence >

72 <xs:element type="xs:string" name="item"
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maxOccurs="unbounded" minOccurs="0"/>

73 </xs:sequence >

74 <xs:attribute type="xs:string" name="

linked_property" use="optional"/>

75 <xs:attribute type="xs:string" name="

property_value" use="optional"/>

76 </xs:complexType >

77 </xs:element >

78 </xs:sequence >

79 </xs:complexType >

80 </xs:element >

81 <xs:element name="io_symbols">

82 <xs:complexType >

83 <xs:sequence >

84 <xs:element name="io_symbol" maxOccurs="unbounded"

minOccurs="0">

85 <xs:complexType >

86 <xs:simpleContent >

87 <xs:extension base="xs:string">

88 <xs:attribute type="io_type" name="type"/>

89 <xs:attribute type="xs:string" name="help"/>

90 </xs:extension >

91 </xs:simpleContent >

92 </xs:complexType >

93 </xs:element >

94 </xs:sequence >

95 </xs:complexType >

96 </xs:element >

97 <xs:element name="app_symbols">

98 <xs:complexType >

99 <xs:sequence >

100 <xs:element name="app_symbol" maxOccurs="unbounded"

minOccurs="0">

101 <xs:complexType >

102 <xs:simpleContent >

103 <xs:extension base="xs:string">

104 <xs:attribute type="xs:string" name="type"/>

105 <xs:attribute type="io_type" name="connection"

/>

106 <xs:attribute type="xs:string" name="help"/>

107 </xs:extension >

108 </xs:simpleContent >

109 </xs:complexType >

110 </xs:element >

111 </xs:sequence >

112 </xs:complexType >

113 </xs:element >

114 <xs:element name="parameters">

115 <xs:complexType >

116 <xs:sequence >

117 <xs:element name="parameter" maxOccurs="unbounded"

minOccurs="0">
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118 <xs:complexType mixed="true">

119 <xs:sequence >

120 <xs:element type="xs:short" name="value"

maxOccurs="unbounded" minOccurs="0"/>

121 </xs:sequence >

122 <xs:attribute type="xs:string" name="type"/>

123 <xs:attribute type="xs:string" name="

linked_property"/>

124 <xs:attribute type="xs:string" name="

property_value"/>

125 <xs:attribute type="xs:string" name="var_name"/>

126 <xs:attribute type="xs:string" name="position_code

"/>

127 <xs:attribute type="xs:short" name="value_max"/>

128 <xs:attribute type="xs:short" name="value_min"/>

129 </xs:complexType >

130 </xs:element >

131 </xs:sequence >

132 </xs:complexType >

133 </xs:element >

134 <xs:element name="documentation">

135 <xs:complexType >

136 <xs:simpleContent >

137 <xs:extension base="xs:string">

138 <xs:attribute type="xs:string" name="id"/>

139 </xs:extension >

140 </xs:simpleContent >

141 </xs:complexType >

142 </xs:element >

143 </xs:sequence >

144 <xs:attribute type="xs:string" name="name"/>

145 </xs:complexType >

146 </xs:element >

147 </xs:schema >

Listing 3.1: Schema of a Module definition

The selected environment is Matlab Simulink due to its graphi-

cal workspace which intrinsically implements the concept of Block

and due to its ability to automatically generate code which is sup-

ported by several manufacturing systems. Each module is devel-

oped into a Simulink block with the same interfaces defined in the

XML document. These modules are then stored in a Simulink
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library. Once the library is built, the developer can select blocks

from the library each time the same mechatronic module is present

on the machine to compose the machine software, and concentrate

on the development of the machine working cycle.

3.1.2 The process

Once the various software modules have been developed and stored

in the software database, software engineers specialized in machine

working cycle development can use them for their programs. The

process designed for the development is the following:

Selection of software modules

During the design of the machine, electrical and mechanical en-

gineers work together to identify which hardware modules are

needed for building the machine for the client. Once the selec-

tion is completed, they start to put on stage on a computer ap-

plication those modules. This allows them to track easily which

modules and modules versions are required. All the used mod-

ules are stored on a file (from now on Project file) that will be

passed on to the electricians that will be responsible of wiring the

machine. This file in fact, will be carried on during the whole

development process and will serve as a tracking archive for the
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whole process.

Wiring of the machine

Once the design has been completed, the mechatronic assembly

takes place. Electricians connects various modules physical inter-

faces with the central processing unit. When wiring the modules,

the Project file is updated to reflect the connections made on the

physical machine. As said, every module has both physical and

logical interfaces. As an example, a gripper module can have two

software interfaces (motor forward, motor backwards) that can be

connected to two physical interfaces depending on where the grip-

per motor is soldered. This association between logical interfaces

and physical pins is made by electricians that are wiring the ma-

chine. This is not designed upfront, because most of the time the

wiring is made depending on how the various components are po-

sitioned and can be changed during setup depending on the space

available. Thanks to this connection of logical/physical instances,

when a software variable is set, an high voltage level is sent to

that specific pin.
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Design of the working cycle automation software

The design of the automation software for defining the machine

working cycle is the place where the developer effort is best spent.

The working cycle in fact is the real only part that changes in each

developed machine, and this is where the focus of the developer

should be. The software for controlling modules is already avail-

able within the modules, so the only part remaining to develop

is the behavior of the machine. The proposed approach for de-

signing a working cycle is to develop it as a state machine. Every

state represents a machine working condition and in that state

machine actuators can be controlled by interaction with the mod-

ules. Transition conditions can depend on values read from the

modules and internal states. The developer can start working on

the file provided by the electricians after they wired the machine.

This file already contains all the modules with the correct link on

the hardware modules interfaces. The developer has to develop

the state machine reading values and sending commands to the

modules to invoke actions on them. The state machine is designed

using Matlab Stateflow, which allows to represent state machines

and wire inputs and optputs to external simulink blocks. The

main features of Stateflow are listed here:

• Modeling environment, graphical components, and simula-
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tion engine for modeling and simulating complex logic.

• Deterministic execution semantics with hierarchy, parallelism,

temporal operators, and events.

• State diagrams, state transition tables, and state transition

matrices representing finite state machines.

• Flow charts, MATLAB functions, and truth tables for repre-

senting algorithms.

• State diagram animation, state activity logging, data log-

ging, and integrated debugging for analysing the design and

detecting runtime errors.

• Static and run-time checks for transition conflicts, cyclic prob-

lems, state inconsistencies, data-range violations, and over-

flow conditions.

The state machine, can then be tested on its own in a separate

test harness which can simulate inputs and outputs to the state

machine itself, and verify that the outputs are as expected. This

test harness has to be set up for every state machine as the ex-

pected behavior is different every time. This can help to verify

that the machine responds correctly, verify deadlock conditions,
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and can be used to generate Condition Coverage/Decision cover-

age reports to see if the test environment validated all the possible

cases and branches of the state machine or not. Once the state

machine is validated, the code can be generated using MATLAB

Coder. The generated code wasn’t verified as part of this work,

but it never demonstrated inconsistencies in behavior compared

to the Stateflow implementation. A potential improvement of this

approach can be to derive tests from the state machine according

to coverage criteria, and then executed on the generated code to

validate the compliance of the code with the model.

Automatic generation of automation software

Once the development of the machine working cycle is complete,

the code generation can be started. This is achieved using code

generation tools that allow to generate source code from the state

machine, and join it with the modules source code. The resulting

code is then compiled together with a base firmware that is shared

among all the machines and realizes the abstraction layer that

allows linking between hardware interfaces defined in the modules

and the physical pins on the electronics.
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Collection of Metadata from the modules database

The modules database is read looking for definitions of the mod-

ules loaded in the current project, and the corresponding module

metadata are loaded. This metadata contains all the information

needed for automatically building the documentation, risk assess-

ment documents, and HMI source code. Since these features are

implemented by external tools, we need to export a document

that describes the system designed in Simulink. This descriptor is

called model summary and it is generated by a script that is able

to read from the designed system model and generates this file

in a text format (XML has been selected for this purpose). The

schema of this XML model summary is represented below:

1 <xs:schema attributeFormDefault="unqualified" elementFormDefault="

qualified" xmlns:xs="http ://www.w3.org /2001/ XMLSchema">

2 <xs:element name="modules">

3 <xs:complexType >

4 <xs:sequence >

5 <xs:element name="module">

6 <xs:complexType >

7 <xs:sequence >

8 <xs:element name="property">

9 <xs:complexType >

10 <xs:sequence >

11 <xs:element type="xs:string" name="value"/>

12 </xs:sequence >

13 <xs:attribute type="xs:string" name="name"/>

14 </xs:complexType >

15 </xs:element >

16 </xs:sequence >

17 <xs:attribute type="xs:string" name="name"/>

18 </xs:complexType >

19 </xs:element >

20 </xs:sequence >

21 </xs:complexType >
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22 </xs:element >

23 </xs:schema >

Listing 3.2: Schema of the model summary

This XML contains all the modules which are currently loaded

within the model along with the values of their properties that

has been set by the engineer. These properties values are impor-

tant because depending on the properties there may be different

documentation to show, different checks to be performed in the

security checklist or more or less risks to be reported. This file is

the starting point for the execution of the next steps.

Automatic generation of the HMI software

Depending on the modules that are available on the machine, user

menus are automatically generated with the information provided

by the module definition. These menus contain all the visualiza-

tion and configuration parameters corresponding to the included

modules. Through the HMI, the operator of the machine will

be able to set the configuration parameters that were previously

defined in the modules metadata. The parameters setting and

reading interfaces are all built automatically starting from the

definition in the modules metadata. Figure 3.2 represents the

composition of the machine automation and HMI software.

At the end of the process, the packed automation software is
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Figure 3.2: The composition of machine automation software

installed on the machine, and documentation is ready for manual

refinement and additions, before delivering it to the customer.

Figure 3.3 describes the flow of artifacts from the model to the

final software and documentation.

Figure 3.3: The process for generation of the machine software

56



CHAPTER 3. INTEGRATED METHODOLOGY

Automatic generation of documentation

The last step of the proposed process is the generation of the doc-

umentation. As stated before, each module contains also informa-

tion related to the documentation and risk assessment, providing

a way for automatically composing the base structure and con-

tent of the documentation, again in a modular way. This allows

the development team to focus on specific additional information

that need to be inserted in the documentation, without worrying

about all the warnings and instructions related to the modules.

Additionally, each time a module behavior is changed for fixing

issues, or just for improving its performances, an update of the

documentation can be easily released too, just by updating the

module specific information in the database, and rebuilding the

whole documentation. The documentation generator tool devel-

oped reads the model summary and generates all the documen-

tation source code in the Doxygen format. This format can be

parsed by the Doxygen tool to generate PDFs or other documen-

tation formats. The data for generating these documents is taken

again from the modules definition, and can support multilanguage

if the modules are defined in more than one language.
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3.2 Development of a remote mainte-

nance system for semi-automated

machines

The proposed solution aims at providing a way to debug issues on

remotely located semi-automated machines, based on the acquisi-

tion of both data and video streams of the running machine. In

most of the cases, especially when talking about fully automated

machines, the machine log is enough to be able to monitor and de-

bug issues or wrong behaviors that the machine manifests. In the

case of semi-automated machines instead, there is an additional

noise source, which is the human interaction. This interaction

can sometimes be seen in the machine logs, but sometimes there

aren’t enough sensors on the machine to be able to trace or iden-

tify the human intervention in the mis-behavior manifested by the

machine. This can be the case especially when the reduction of

costs policy requires a reduced amount of sensors to be availble

on the manufacturing system, a reduced capacity processor, mem-

ory, I/Os. This may lead to have semi-automated machines where

the user interaction can not be identified on the logs, requiring

additional information to be captured in the debugging process.

When an issue manifests, and the operator is able to reproduce
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it, this system will allow to capture the user interaction together

with the machine data stream, allowing engineers to understand

when, and in which conditions, the machine manifests the wrong

behavior. This is mostly the case where the human interaction is

not purely digital (buttons or commands from the UI) but is also

physical and analog. In this case the user is part of the machine

movement, and interacts with items that the machine works with,

altering the environment from the outside, with or without the

machine knowing it.

The presented approach can be applied in cases where the ma-

chine manifests a wrong behavior in particular conditions, where

the operator is able to reproduce the machine misbehavior. When

this happens, the machine interaction can be recorded with this

system while the data stream from the machine is acquired and

sent along with the video to the service center of the vendor. A

further development of the proposed system may be considering

a setup for monitoring purposes, where the system continuously

acquires a video stream of the machine usage so that a video/data

log is always available also for issues that manifests only once but

can’t be reproduced because the triggering conditions are not yet

identified. This further development can bring concerns about

privacy because it entails a continuous video recording of opera-
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tors on their work conditions, which have to be considered and

evaluated, but are outside of the topic of the present work.

3.2.1 System architecture

The system architecture for this remote maintenance system has

been designed to be modular. This will allow its application on

a number of different machines as well as its retrofit on machines

already in service. The proposed approach has one component

that is needed to be developed ad-hoc for every machine, in order

to make the data acquisition from the machine easy and abstract

the specific acquisition logic behind a transmission protocol over

Wi-Fi that this piece has to expose. This setup can be easier on

certain machines (esepcially where a broadcast bus is available to

probe) or more complex on some other machines, where the in-

ternal machine commuincation is not achieved through broadcast

bus, but requires additional probing to be instrumented on the

system.

The overall architecture is presented in Figure 3.4 and it is

composed of the following components:

• Machine The machine that needs to be monitored. This

machine has its own control electronics and interfaces. It

can be a modern machine or a legacy one.
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Figure 3.4: The architecture of the remote maintenance system

• Gateway Hardware The piece of hardware that allows

streaming of the machines operating parameters over a wire-

less connection. It has the task of acquiring signals from the

machine (in whatever format they are available) and trasform

those signals in digital ones that can be streamed over Wi-Fi.

This component is the only part of the system that has to be

machine specific. A smart device connects to it for gathering

this data;

• Smart device The smart device can be any smartphone or

tablet which has enough computational power to download

data and record video simultaneously. Its main tasks are:
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1. Connect and disconnect to the Gateway;

2. Send start and stop commands to the Gateway to enable

or disable the streaming of data;

3. Acquire live data from the machine, through the wireless

gateway;

4. Record a video of the operator interacting with the ma-

chine, and store it together with all the acquired data;

5. Package and route the synchronized video and operating

data from the remote customer location to the machine

manufacturers headquarters;

6. Serve as a smart HMI to reconfigure the machine and

change its behavior, once a solution has been devised;

• Smart device app The application that runs on the smart

device for acquiring and sending data; This is installed on the

smart device and it depends on the smart device operating

system.

• Network infrastructure A suitable network is required to

send the acquired data to the manufacturer. In the most

common case, the suggested method is the Internet;

• Service center server The server at the machine manufac-

turer’s headquarters that accepts all the data from remote
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machines storing it in a structured way, accessible by diag-

nostic technicians. This server is connected to the Internet

and it’s the main endpoint for the connection of the Smart

Device.

• Service center PC A diagnostic technician will get the

recorded data on his/her PC in the service center. This PC

displays the data together with a recording of the operator

interacting with the machine, allowing the technician to an-

alyze and try to debug the problem.

• Service center PC app The application that allows the

diagnostic technician to review the acquired data in a syn-

chronized way.

3.2.2 Remote assessment process

Figure 3.5 represents the process of recording data and video of

the machine usage.
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Figure 3.5: The data acquisition process

64



CHAPTER 3. INTEGRATED METHODOLOGY

First, the user scans wireless networks for available gateways

through the application on his smart device. Once he found the

machine he wants to connect to, he can activate the connection.

The application then interacts with the gateway to establish a Wi-

Fi communication channel. Once the channel is setup, the user

can start the recording of a video of an operator interacting with

the machine. When he starts a video recording, the mobile appli-

cation comunicates with the gateway asking it to start acquiring

data from the device.

When the gateway receives the start message, it starts acquir-

ing data from the machine bus and sending to the mobile device

until it receives a stop message. The device in the meanwhile

starts to recording a video using the smart device video camera.

All these information (both video and data) are stored on the

smart device internal memory.

Once the user is satisfied with the recording, he stops the data

acquisition and the stop message is sent to the gateway. After

the acquisition is complete, the user can review the acquired data

using the smart device, and if satisfied with that he can send it to

the machine manufacturer service centre. To send the package, the

application compresses it, disconnects from the gateway, connects

to the corporate network to gain Internet access, and delivers the
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package uploading it to the service centre server.

Once the package has been uploaded to the server, service cen-

ter technicians can download it and analyze the data while seeing

the recorded video. If the issue can be solved by a software change,

the technicians corrects the bug and releases a firmware upgrade

for the machine, and the upgrade process is started as depicted in

Figure 3.6.
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Figure 3.6: The firmware upgrade process 67
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The mobile device receives a notification regarding an upgrade

available for the machine. When the user opens the notification,

he is asked to select a gateway connection among the discovered

one. The user selects the machine that needs the software upgrade.

Once the gateway is selected, and the connection established, the

smart device starts uploading the firmware data towards the gate-

way. When the upload is complete, the gateway installs the up-

grade by replacing the old firmware with the new firmware. The

gateway then reboots the machine, and notifies the smart device

about the completed upgrade.

3.2.3 Smart device app

The presented approach is based on a simple application Android-

based. The reason for choosing Android as operating sysyem com-

pared to other alternatives has been the more openness of the

platform, which allows low level access to the hardware. This is a

requirement for the application because it has to be able to man-

age the wireless connection (connect and disconnect to and from

the gateways) as well as close control on the camera to ensure

syncing between the recorded video and the data stream.

The selected communication network is Wi-Fi because of its

wide usage and availability on modern smart devices.

68



CHAPTER 3. INTEGRATED METHODOLOGY

3.2.4 Headquarters server application

In order to allow remote maintenance operations the headquarters

server has to support the following features:

• Storage for machine video and data acquisitions

• Storage for firmware upgrades

• API for allowing connections from the smart device

• Web UI for allowing service personnel interaction

To allow easy access to the application, the solution is based on

a Web accessible application that can be used through a common

browser.

The architecture of the portal is represented in Figure 3.7. The

architecture is based on two data sources: a database and a NFS

(Network File System) based on a NAS (Network Attached Stor-

age). These two data points are managed by the storage manager

component that makes the storage technology invisible to all the

other components that need to read and write data, by provid-

ing an interface that allows access through defined functions. All

the main services that need data access are then connected to

the storage manager. The synchronization system manages the
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Figure 3.7: The headquarters server application architecture

API used by smart device app for downloads and uploads of files

(acquisitions, configurations and software).

Service centre application

The service centre application is a Windows application that is

meant for usage by the service trained personnel. Once a pack-

age (video and data recorded by the smart device application) is

downloaded, this app can open it and visualize its contents. The
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main features of the application are:

• Plotting of acquired signals

• Reproduction of recorded video (synchronized with the data

plotting)

• Automatic mapping of signal to labels depending on the ma-

chine configuration

• Slow motion and sample by sample stepping

The application has been developed for the Windows operating

system.
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Implementation and

use case

With the purpose of outlining the implementation of the presented

system, a use case where the methodology has been applied is pro-

vided. The selected use case device is an industrial manipulator,

see Figure 4.1, composed of a vertical body, a motor, an arm and

a rope linked to the motor at one end, and to an end effector on

the other end. The motor is used to lift the load by compensating

its weight. With this mechanism the operator can lift and move

the load without any effort because all the weight is compensated

by the motor power.

The described part is the standard, common part of all the
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versions of the device. The part that changes and is available in

lots of configurations is the end effector. Depending on the spe-

cific application the manipulator is built for, the end effector can

have vacuum pumps, grippers, joints, and any other component

that is needed for the specific purpose is achieving. This system

is suitable for an application of the method described in this the-

sis because the majority of the automation software is common,

regardless of the specific end effector configuration. Thus, each

time a new machine is required, the most of the software can be

reused, and the only part that needs to be changed is the end

effector related software. In the specific configuration of the ma-

nipulator where the method has been applied, the end effector is

composed by a gripper, buttons for closing and opening the grip-

per, a sensorized handle for moving the load and a load balancer

that moves back and forth for keeping the center of gravity of the

load aligned with the rope.
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Figure 4.1: The manipulator used in the use case

4.1 Software development

The following sections go through the software development pro-

cess with references to the introduced manipulator.
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4.1.1 Definition and selection of modules

Following the described process the first phase is the definition

and selection of modules that compose the machine. Compared

to the monholitic approach, where some modules presence would

mean just to copy and paste some lines of code from a previous

set up, this of course introduces some overhead due to the en-

capsulation of the features within the blocks, and the definition

of interfaces to access the internal functionality. This, on top of

having to define the module metadata for every component adds

of course additional effort on the first application of this approach,

but can save a lot of time later on, whenever any of the defined

modules will be reused as this will guarantee to have a properly

tested, versioned and reusable module that can be added to the

machine software in a similiar way compared to the addition of

a mechanical module on the machine structure. Within the use

case manipulator the following have been identified:

• handle: the handle has sensors for reading the force applied

by the operator. It is an input module, the block has only

one output interface that provides the read value.

• load balancer : the load balancer is basically composed of a

gear connected to a rack. When the gear rotates the rack
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moves back or forth. It is used for keeping the load center

of gravity aligned with the rope. This device can be found

in two versions, one with two end switches for detecting if

the gear reached the end of the rack, and another one with

a potentiometer that gives the absolute position of the gear.

Depending on the version mounted on the physical device,

a parameter of the module has to be set to switch between

the two software implementations in the block. The load

balanced used in the real case has two end switches

• gripper : the gripper is used to hang the load. It has two

end switches for determining if it is fully open or fully closed.

The relative module has an input to receive the command for

the gripper, and two outputs to provide the value of the two

end switches.

• input button: the input buttons are used to open and close

the gripper. These are just buttons that the operator can

press, so they have only one output, the status of the button

(pressed / not pressed).

• load cell: the load cell is a sensor for reading the load at-

tached to the manipulator. The software module has only

one output which gives the value of the attached weight.
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• display: the display represents the main HMI of the manip-

ulator. The relative software block has only one input, that

allows to set the displayed text.

• lamp: an output lamp that can be turned on or off. It has

only an input to provide the status.

• motor : the motor is used for compensating the load hung on

the end effector. This module has three inputs: the torque

needed for compensating the weight, a maximum speed for

lifting, and a maximum speed for dropping (meant for safety

reasons).

• load cell: the load cell is used for measuring the load of the

lifted object. It has basically just one output, the measured

weight.

Each module has been described using eXstensible Markup

Language (XML) with a scheme defined to contain all the required

metadata. The metadata contained is related to versioning, inter-

faces, documentation and parameters. All these information will

be used for HMI and documentation generation. After defining

the XML metadata, the real development of the module software

takes place.
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1 <?xml version ="1.0" encoding ="utf -8"?>

2 <module name="Balancer">

3 <parent_node ></parent_node >

4 <version >1.0</version >

5 <description >Balancer of load on the end -effector </description >

6
7 <properties >

8 <property name="with_potentiometer" type="boolean">

9 </property >

10 <property name="max_load_weight" type="enum">

11 <value >40</value >

12 <value >50</value >

13 <value >60</value >

14 </property >

15 <property name="drive" type="enum">

16 <value >electric </value >

17 <value >pneumatic </value >

18 </property >

19 </properties >

20
21 <warnings >

22 <warning linked_property="drive" property_value="electric"

symbol="symbols/balancer/elettric.jpg" id="balancer_electric"></

warning >

23 <warning linked_property="drive" property_value="pneumatic"

symbol="symbols/balancer/pneumatic.jpg" id="balancer_pneumatic"><

/warning >

24 </warnings >

25
26 <risks >

27 <risk linked_property="max_load_weight" property_value="60" id="

balancer_weight60"></risk>

28 <risk linked_property="drive" property_value="all" id="

balancer_drive"></risk>

29 </risks >

30
31 <checks >

32 <check linked_property="drive" property_value="electric">

33 <item>attach electic danger sign</item>

34 <item>test the safety of the cables </item>

35 </check>

36 <check linked_property="drive" property_value="pneumatic">

37 <item>test air pressure </item>

38 </check>

39 <check linked_property="max_load_weight" property_value="all">

40 <item>attach load danger sign</item>

41 </check>

42 <check linked_property="with_potentiometer" property_value="true

">

43 <item>check the right reading of middle positions </item>

44 </check>

45 </checks >
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46
47 <io_symbols >

48 <io_symbol type="AOUTPUT" help="command to the balancer motor">

49 balancer_motor_command

50 </io_symbol >

51 <io_symbol type="DINPUT" help="digital input for limit -switch

back">

52 limitSwitchB

53 </io_symbol >

54 <io_symbol type="DINPUT" help="digital input for limit -switch

forward">

55 limitSwitchF

56 </io_symbol >

57 </io_symbols >

58
59 <app_symbols >

60 <app_symbol type="boolean" connection="AOUTPUT" help="The

current position of the balancer">

61 current_position

62 </app_symbol >

63 <app_symbol type="enum" connection="AINPUT" help="The desired

position">

64 desired_position

65 </app_symbol >

66 </app_symbols >

67
68 <parameters >

69 <parameter type="enum" linked_property="drive" property_value="

electric" var_name="max_I" position_code="20.10.1" value_max="0"

value_min="0">

70 <value>1000</value >

71 <value>1300</value >

72 <value>1800</value >

73 <value>2500</value >

74 </parameter >

75 <parameter type="numeric" linked_property="drive" property_value

="all" var_name="max_vel" position_code="20.20.0" value_max="3500

" value_min="700">

76 </parameter >

77 <parameter type="graphic" linked_property="with_potentiometer"

property_value="true" var_name="SB160" position_code="20.30.0"

value_max="0" value_min="0">

78 </parameter >

79 </parameters >

80
81 <documentation id="bar_doc">

82 Lorem ipsum dolor sit amet..

83 </documentation >

84 </module >

Listing 4.1: Example of XML Module
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Figure 4.4 represents the internal implementation in Simulink

of the Balancer block (which XML representation is listed above)

as an example. The block reads two end switches from the hard-

ware and then, given the position setpoint, commands the motor

to move the rack. The output CurrentPosition is updated at each

movement to provide the current position value as an output of the

block. As defined in the XML description, there is two logical in-

terfaces (DesiredPosition, CurrentPosition) which can be used by

the state machine to interact with the module, and three physical

interfaces (LimitSwitchForward, LimitSwitchBack and Balancer-

MotorCommand) which are linked to physical interfaces using two

Input Read and one Output write blocks. These blocks are imple-

mented in the firmware, and they are needed to read and write

values on the Electronic Control Unit (ECU) pins. The function-

alities provided by those blocks is implemented in the so called

Base firmware that is the shared basic software that is merged

with the machine-specific code at deployment.

4.1.2 Design of the control software

The machine working cycle is implemented using a Stateflow block

for implementing the finite state machine (see Figure 4.2). This

stateflow block uses signals coming from the blocks to trigger tran-
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sitions between states of the state machine, and provides output

signals to the blocks depending on its internal state (see Fig-

ure 4.3). Matlab Stateflow has been selected as tool for repre-

senting state machines because it supports static and run-time

checks for cyclic problems and state inconsistencies for validation

of the developed working cycle.

Each of the blocks (except for the central one) represented in

Figure 4.3 internally implements the control logic for the corre-

sponding mechatronic component like the one described in Fig-

ure 4.4. The logical inputs and outputs of the module are con-

nected to the main state machine which handles the machine work-

ing cycle. This allow to keep the implementation of the working

cycle separate from the modules implementation. The machine

working cycle is the piece of software that is most of the times

different from machine to machine while the software blocks of

the components are not changing between different machines.

4.1.3 Exporting of a model of the system

The process described until now has provided the control algo-

rithm of the manufacturing system, through the design of a finite

state machine and the auto-generation of the corresponding source

code in Simulink through MATLAB Coder. The remaining part
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Figure 4.2: The working cycle designed in Stateflow

is the automatic generation of documentation and HMI code.
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Figure 4.3: The connection between software modules and the state machine

4.1.4 Automatic generation of HMI interface

This step aims at auto-generating HMI interfaces by filling a pre-

defined structure with menus and items provided by the loaded

modules. It’s obviously impossible to automatically generate a

completely general HMI, but once the type of machine is defined

(like in this example) an interface pattern can be identified, and

the place where the module-dependant items have to fit can be
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Figure 4.4: The internal implementation of the balancer module

defined. This HMI program is automatically generated by a tool

developed for this application. The tool collects all the meta-

data of the used modules (the used modules list is taken from the

model summary described in the previous section) and prepares

the HMI menus composing them with all the items that need to

be displayed as specified in the XML definition of the modules.

Typically, in this example, the HMI generated contains menus

for setting operational parameters, or to display values provided

by the machine modules. The current implementation of the HMI

generator supports multiple languages if translations are defined in

the module XML files. Thanks to this feature, the developer can

select which languages should the specific machine support and

automatically generate the HMI for just those languages. This

is a key feature in the case of this example because the memory
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that the controlling unit has available is limited and not all the

languages translations can fit in it.

4.1.5 Automatic generation of documentation

Documentation is composed by all the documents that describe

the features of the machine, the user manual, the risk assessment

document, the menu navigation document (see Figure 4.5 for an

example) and the testing checklist. All these documents strictly

depend on which modules are loaded on the machine. The script

developed specifically for this purpose parses the required mod-

ules and generates the doxygen documentation files. Once the

Doxygen format is ready, developers can edit its content (it is

still a text file) before ultimately generate the PDF version of the

document. This could be needed because there can be parts of

the documentation which are not modules-related, and have to be

modified or created manually. Once the manual editing is done,

the Doxygen tool can be invoked to generate the final version of

the documents.
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Figure 4.5: An example of the generated documentation for menu navigation

4.2 Remote maintenance

The same use case, has been used to apply the remote maintenance

approach. As stated in the previous section, the machine where

this method has been applied to is an industrial manipulator. In

this section some details about the technical implementation of

communication on the device are described with the purpose of

explaining how the remote maintenance system can be applied

to an existing machine. After the manipulator architecture is

introduced, the connection to the gateway is explained and a closer

view to the current implementation for this device described.
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4.2.1 The manipulator architecture

The machine is composed of three electronic boards that commu-

nicate through a CAN backbone. This makes the device perfect

for this application because the gateway can be installed on the

CAN backbone and it is allowed to read all the data that runs

inside it. The three boards of the machine are:

• Power supply board

It manages the power supply for the machine, rectifying the

voltage network to get 24 V DC for the electronic components

and 65 V DC for the main motor of the machine

• Motor control board

It manages, controls and monitors the main motor of the ma-

chine, in order to perform the optimal movement depending

on the speed set-point generated by the control board. This

board is also necessary to control the safety devices of the

machine;

• Command board

This board implements all the algorithms to implement the

HMI and controls all machine operations. In particular the

main activity is to acquire from the operator the desired

movements and speeds in order to generate the speed set-

88



CHAPTER 4. IMPLEMENTATION AND USE CASE

point.

4.2.2 The gateway

The gateway is required to route information coming from the

machine fieldbus to a wireless network; therefore two interfaces

are needed. The interface for the machine’s fieldbus obviously de-

pends on the bus that is available on the machine. The connection

for the wireless network instead is based on the standard IEEE

802.11b/g protocol. Other communication protocols have been

considered, such as Bluetooth, but that would limit the number

of suitable smart devices that can be used for communication. iOS

devices in fact have limitations imposed by the Apple on Bluetooth

connections that would require a certification of the gateway (for

more details on these limitations see Apple MFi Program). Using

Wi-Fi, the gateway is compatible with a wide range of available

smart- phones, guaranteeing a high standard of performance in

the communication.

• Analog input (0-3.3V)

• Digital input (24V)

• Digital output (24V)

• Serial communication interface (RS-232)
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The selected module for the wireless connection is a Wi-Fi Rov-

ing Networks RN-131G/C, directly connected to the controller

through a serial port. This module supports multiple working

modes:

• Infrastructure

The module is connected to an existing Wi- Fi network

• Ad Hoc

A point-to-point communication channel can be created (be-

tween the module and the smartphone)

• Soft-AP

The behavior of the radio module is equivalent to an access

point (with a maximum number of seven clients)

The configuration used in this work is Soft-AP: with this config-

uration, each gateway exposes a network where the smart device

can connect to debug the machine.

The data acquired from the machine is necessary to determine

the real functioning status and, consequently, to define the mainte-

nance interventions and how to manage these operations remotely.

The logs collected can be sent to the manufacturer for further anal-

ysis by skilled personnel who will determine if the machine is in

good shape or if something is not working correctly. With this
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purpose, the main data acquired in this applicative example are

related to:

• Motor current

• Motor voltage

• Motor speed

• Operator commands

• Handling times

• General I/O

• Alarms and warning messages

Currents and voltages can be analyzed to see if the electrical

components are functioning properly. Through these signals and

the speed, it is possible to diagnose the motor - the main actu-

ator of the machine - to determine its condition and whether it

is malfunctioning and, if so, what type of failure is present. I/O

signals and alarms can be used for understanding if the control

logic is working properly and if the status of the electromechan-

ical components is good. The movement speed and the handling

time can be used to detect problems in the motion system, espe-

cially regarding the lift cables, the system of pulleys and the grasp

system.
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Once the gateway is turned on, it announces the SSID of the

wireless access point, and waits for a connection from a mobile in-

ternet device. The smartphone can then see the wireless network

available and connect to it. Once the wireless connection is estal-

ished, the smartphone opens a TELNET socket to the gateway,

which waits for commands.

Commands that the gateway accepts are two simple commands,

one for starting the transmission of the data stream and one for

stopping it:

• gotp: Starts the transmission of the data stream acquired

from the machine CAN from the gateway.

• stoptp: Stops the transmission of the data stream.

The structure of the data packet sent from the gateway is rep-

resented in Figure 4.6. This basic ASCII protocol is enough for

the specific application this demo is being applied on.

The data packet is a 40 bytes packet with the structure defined

in Figure 4.7:

All the variables are sent one after the other, with two initial

bytes set to 0xF0 to determine the beginning of the message. The

end of the message is represented by two bytes set to 0x2A, fol-

lowed by the checksum of the message itself for validation and

92



CHAPTER 4. IMPLEMENTATION AND USE CASE

Figure 4.6: Message protocol structure

from other two bytes set to 0x0F to determine the end of the

packet.

4.2.3 Smartphone app

The layout of the smart device application is represented in Fig-

ure 4.8.

The application is Android-based written in Java: in the An-

droid architecture each screen of the application is a so called

activity. Figure 4.8 depicts the flow between the application ac-

tivities with the typical workflow as follows

• Main screen The main screen of the application, where the

menu with all the possible actions is presented. The user

here can select the option to connect to a machine.

• Options The options section allow the user to configure the
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Var 01: packetCounter Var 02: Mess UdC Feeder

Var 03: Commands Var 04: Deltal

Var 05: DeltaVelMax Var 06: Signal

Var 07: VelMaxD Var 08: VelMaxS

Var 09: CAN Alarm Var 10: I2TMot

Var 11: Imot Var 12: Mess Feeder UdC

Var 13: VelMot Var 14: DigitalInputTC1

Var 15: Motor1TCStatus Var 15: Motor2TCStatus

Figure 4.7: The data packet structure

quality of the video and its framerate. This is useful on

older devices that do not have enough computational power

to record high-quality video while receiving data or when the

network connectivity is not reliable for sending large files.

Other options that can be configured in this view are the

server address for the upload and the wireless password for

the gateway.

• Machine selection From this screen, the user can select

which machine he/she wants to connect to. The list of ma-

chines is generated by scanning wireless Soft-AP gateways

and listing the devices found. Each wireless SSID is called
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Figure 4.8: The architecture of the smart device application
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with the serial number of the machine. Once the user selects

the device, the connection is made and maintenance opera-

tions are enabled.

• Machine connection Once the connection is started, the

app shows on the screen the log of the connection attempt it

is performing. Once the connection is completed a message

is displayed and the user can go back to the main screen.

• Recording The user can then select the option to start a

new recording acquiring data from the machine is connected

to. Once the acquisition is started, the user can frame the

operator while interacting with the machine, and stopping

the recording when is completed.

• Save After the completion of the acquisition, the user is re-

quested to enter a name for saving the video and data col-

lected. The package is saved as a compressed file on the

smart device internal storage.

• Review After saving the package, the user can review it by

reproducing the video on the smart device screen. An overlay

is displayed with some of the data collected. Touching the

items on the overlay, the user can hide and show other data

previously acquired from the gateway.
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• Sending When the user is happy with the content of the

recording, he can proceed sending it to the manufacturer ser-

vice center.

The remote transmission of video and operational data is cur-

rently sent via e-mail with a package attached. The app automat-

ically disconnects from the gateway when the sending is requested

to allow the smartphone to connect to another Wi-Fi connection

that allows access to the Internet. The format of the transmitted

package consists in a zip archive, containing:

• An mp4 video: the recorded audio/video using the camera

compressed with an mp4 codec.

• A TXT file: the ASCII text file containing all the data col-

lected from the gateway.

The text file has three header lines that precede the lines of ac-

quired data. The header is structured as follows:

• First row Serial number of the machinery, date and time of

recording (E.g. “SN:2015245455;2015-04-15;15:30:25”)

• Second row Name of the variables as semicolon separated

list (E.g “TimeStamp;PcktNmbr;MessUDCFeeder;Commands;DeltaI;

DeltaVelMax;Signal;VelMaxD;VelMaxS;CANAlarm;
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I2TMot;Current;MessFeederUDC;MotSpeed;DITC1;

M1TC1St.;M2TC1St.;Mass;Speed;Position;Mass2;

Speed2;P osition2;SpeedRef;HumanInput;MachineState;

SpeedRef2;HumanInput2;MachineState2;-;-;-”)

• Third row Units of measure of the variables listed in the

second row (E.g. “(sec);(-);(-);(-);(A);(rpm);(- );(rpm);

(rpm);(-);(-);(A);(-);(rpm);(-);(-);(-);(kg);(rpm);(-);(kg);

(rpm);(-);(rpm);(-);(-);(rpm);(-);(-);(-);(-);(-)”)

4.2.4 Windows app

In order to diagnose, debug and maintain a remote machine, a

PC application has been developed to review and analyze the

transmitted information. Maintenance services usually work with

standard PCs, so this program was written for use in the Windows

environment. The application consists of a simple one-form soft-

ware (see Figure 4.9) developed in Visual C# using .NET frame-

work version 4. This version has been preferred in comparison to

the latest available because it would allow wider support and cov-

erage for currently available industrial PCs, allowing the software

to run on Windows XP.
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Figure 4.9: The developed Windows application

Starting from the file menu it is possible to open the received

files (using a local path or a network URL. Once the file is open it

is possible to watch the acquired video while the acquired signals

are plotted on a time chart.

The user interface is represented in Figure 4.10

Various sections are:

1. Menu bar

2. Tools bar

3. Video player and controls

4. Plotting options: (number of plots to display, which variables

to plot, zoom settings)
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Figure 4.10: The sections of the Windows application

5. Plots

6. Istantaneous variables values

7. Status bar

The plotting area can be populated with 1-4 plots, which can be

activated or hidden using the plotting options. Hiding some plots

will increase the size of the remaining ones automatically. Every

plot can show up to 6 variables, thus the entire application allows

to plot 24 variables on the 4 plots.

Once a package is opened in the application, a technician can

analyze the signals syncronized with the video stream. The video
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player timeline is linked with the plots timeline, allowing the en-

gineer to see the signals status for every operation performed in

the video. This allows a remote support engineer to understand

what is happening on the machine control unit, while having an

immediate idea of how the machine has been used, and what was

the context where the machine was working. In the case of semi-

automated machines where the interaction with the operator is

a key factor, having an idea of how the operator was interacting

with the machine is crucial to identify issues and areas of improve-

ment. This is mostly the case where the interaction of the human

with the machine is not purely achieved through digital inputs,

but is also a physical interaction, where the human alters the en-

vironment that the machine expexts around it. In this case the

user is part of the machine movement and interaction and all this

working context is interesting at the debugging stage.

If further investigation with more advanced tools and algo-

rithms is required, the Windows application provides a feature to

export all the data variables to a MATLAB “.mat” file, which is

a data format that can be imported within the Mathworks MAT-

LAB tool. This tool has several features for data analyisis and

great plotting abilities.

The main features of the diagnostic program are:
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Figure 4.11: The MATLAB exported file

• Manage the video stream as a typical video player (play,

pause, forward, rewind, stop, etc.)

• Define and change which signals are plotted on the four avail-

able axes, with a maximum of 6 signals per plot

• Move the video display and use drag and drop to change the

signals plotted

• Verify all the acquired signals

In order to customize the acquired signals for each machine,

before each connection to a machine, a JSON configuration file is
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loaded from the service center server. With this arrangement, it

is also possible to change the number of acquired signals remotely

and assign, for each one, a meaningful name.

4.2.5 Synchronization

In order for this system to be useful, a good synchronization be-

tween data and video stream is required. Having delays between

such two streams in fact can prevent the technichian to identify

issues in the signals running on the machine, or identifying causes

for specific conditions. For example, if unexpected data is identi-

fied in the data stream, this may be due to some action performed

by the user, which can be identified only if the video stream is syn-

chronized with the data itself.

Given the importance of the synchronization of these two streams,

an investigation has been carried out to verify to what extent the

presented solution is robust.

The details about acquisition for the streams are:

• Audio/video stream acquired with a sample rate of 30

Hz, with the support of the smartphone digital camera and

microphone.

• Data stream acquired with a sample rate of 10 Hz, through
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a Wi-Fi connection between the Gateway and the smart-

phone.

With the objective of minimizing the transmission time be-

tween the mobile device and the gateway, the connection is always

established as a single-hop connection via a wireless network, with

the Gateway acting as an access point. In this way, the two devices

are always directly connected one another.

To make sure to not introduce delays or misalignments between

the two streams due to the architecture of the application itself,

some expedients have been used.

When the user wants to start the acquisition, a socket con-

nection to the gateway from the application is opened. Based on

the operating system behavior, there can be an undefined delay

between the request by the user to enable the camera, and the

actual readiness of the peripheral, depending on the availability

of the resource, and on other tasks running at that time. For this

reason, before sending the start message to the gateway which will

trigger the acquisition of data, the camera access is requested to

the operating system. Once the response from the operating sys-

tem is received, and thus the camera is ready, the start message

is written on the gateway socket.

Two different threads, take care of handling the two different

104



CHAPTER 4. IMPLEMENTATION AND USE CASE

Figure 4.12: The phases of a recording

streams separately. The video stream is acquired by the video

manager, that writes it on an mp4 file on the device, while the

data-stream manager writes an ASCII file containing the received

data. Every time an entry is written within the data file, informa-

105



CHAPTER 4. IMPLEMENTATION AND USE CASE

tion about elapsed time for that entry is stored as well, to allow

synchronization when reproducing the streams together.

The gateway continuously sends packets until a stop message

is received by the mobile device. A scheme of the transmission

operation is depicted in Figure 4.13.

Figure 4.13: Transmission scheme

To be able to evaluate the performances of the synchronization

process, some terms have to be defined:
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• TOF (Time of Flight) This is the time that a packet re-

quires to move from one point to another within a network.

In our case, it represents the time a data packet takes for be-

ing transferred from the gateway to the device. This Time of

Flight is considered constant and symmetric after validating

this assumption experimentally.

• CT (Computation Time) It represents the time for the

elaboration of the received package by the gateway.

• TS (Sample Time) This is the time between two consecu-

tive samples.

The experiment carried out aims at computing the value of

the sum of TOF and CT by sending a package from the mobile

device to the Gateway onboard the machine and configuring it

to respond to each received package with a simple confirmation

package. This operation is repeated several times and all the

timing results logged to derive statistical data from them. The

duration of CT has been measured by changing the value of a

digital output at the beginning and end of the evaluation of the

acquisition algorithm and measured with external equipment. A

scheme of the test set up is represented in Figure 4.14.

Results of the experiment are reported in Table 4.1
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Figure 4.14: Test scheme

Table 4.1: Test results

The mean Time of Flight for the transmission is 4.51 ms, while

the average for Computation Time is 0.73 ms. Considered that

the sampling rate Ts is 0.1 s, the Time Of Flight + Computation

Time is less than 6% which makes this delay neglectable.
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Chapter 5

Conclusions and

future work

In this thesis, an automation software development method and

an integrated remote maintenance platform for semi-automated

machines have been presented. Chapter 2 has given a review of

the state of the art on software development in automation and

on systems engineering techniques in general. Additionally, cur-

rent status of remote maintenance and e-maintenance literature

is introduced. Chapter 3 explained the features of the proposed

approach for modularization of the automation software, and for

remote maintenance using mobile internet devices. The main ob-

jectives of the proposed approaches are:
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• Decompose mechatronic systems into modules, encouraging

reusability and reducing costs in terms of money and time.

• Provide a “user friendly” (possibly graphical) environment

for control software design and development.

• Allow automatic generation of control algorithm source code,

starting from the model of the system.

• Allow automatic generation of Human Machine Interface source

code and enable automatic writing of product documenta-

tion, such as user’s manual.

• Leverage widely available mobile internet devices for acquir-

ing debugging data from machines, while recording video for

remote technicians.

• Retrofit old machinery for supporting transmission of data

to mobile internet devices.

• Allow technicians to review the recorded packages using a

player which enables the contemporaneous visualization of

video and data.

The approaches presented in Chapter 3, are then applied to a

real case in Chapter 4. The selected machinery is an industrial
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manipulator which constitutes a good test bench given its cus-

tomizability and its interaction with humans during its operation.

5.1 Limits and strenghts

A rapid excursus of the limits and strengths of both the ap-

proaches presented as a contribution of this thesis are detailed

in this section.

5.1.1 Automation software development method:

limits and strengths

The presented solution for organizing software into modules and

optimize the customization and the automatic generation of soft-

ware and other artifacts proved to be a valid solution during its

implementation on the test bench manipulator. The main area

of improvement of this work is supporting automated verification

and validation of the developed software state machine. Having

the state machine already developed within Simulink environment

allows to perform these activities, but this support has not been

investigated as part of this work. The potential expressed in the

metadata associated to every module, opens horizons to integrate

even more data. So far, just documentation and risk information
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has been associated with every module, while in the future the

system has the potential to integrate further information, like:

• Modules pricing Which would allow the sales office to for-

malize offers faster for customers having already an idea of

the hardware costs

• Testing/assembling duration Which would allow to pro-

vide and schedule easily the duration of the assembly of every

machine

• Stock quantities Which would allow the production office

to be aware of how many modules are available, and schedule

the production accordingly

5.1.2 Remote maintenance solution for semi-

automated machines: limits and strengths

The proposed solution for remote maintenance enables the simul-

taneous acquisition of multiple streams from a running machine

while an operator is interacting with it. Collected data is:

• Video recording of the operator interacting with the machin-

ery
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• Field bus data streams, acquired directly from the field bus

on the machine

The current impementaion of the platform allows the acqui-

sition of data up to 10Hz. By using this sample rate, given the

nature of the acquired data there are no issues regarding the syn-

chronization between video and data streams and the system can

handle it with good performances. In applicative cases where a

higher sample rate is needed, issues regarding the synchronization

between data and video stream can potentially show up.

The other main limitation of the platform, is the non-real-time

nature of the operating systems on the mobile internet devices.

The performance of the acquisition demonstrated to be satisfying

in all the cases but considering that the operating system run-

ning on the devices is a multi tasking environment, there can be

cases where an overloading of the CPU from other processes can

slow down the acquisition and storage of the synchronized stream,

potentially causing synchronization issues. To address this case,

a performance monitor can be implemented on the smartphone

app, to validate if the load of the CPU is low enough for allowing

the synchronization. Another possible solution would be to val-

idate the input buffer of the TELNET connection. If the buffer

contains more than 1 packet in the queue, then it means that the
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smartphone CPU is not able to keep up with the rate of the in-

coming data, which can trigger an alarm to inform the user that

the video/data is recording are going to be out of sync. This can

suggest the user to close other running processes to free up enough

CPU time for handling these operations.

As opposed to the identified limits, the main strenght of the

proposed solution is that it allows the implementation of an inte-

grated remote maintenance system based on devices widely avail-

able on the market, which even if not optimal, provide enough

performance to fullfill the requirements of several systems like the

one presented in the applicative case in this thesis. Several im-

provements can be made on this implementation, leveraging for

example a real time operating system for the mobile internet de-

vice, which can potentially guarantee the processing of data, but

that would require the mobile internet devices to be dedicated

to this specific purpose instead of allowing a quick acquisition

on multi purpose devices that are widely spread and available in

everyday life.
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[26] Benôıt Iung, Eric Levrat, Adolfo Crespo Marquez, and Heinz

Erbe. Conceptual framework for e-maintenance: Illustration

by e-maintenance technologies and platforms. Annual Re-

views in Control, 33(2):220–229, 2009.

119



BIBLIOGRAPHY

[27] Kouroush Jenab and Saeed Zolfaghari. A virtual collabora-

tive maintenance architecture for manufacturing enterprises.

Journal of Intelligent Manufacturing, 19(6):763–771, 2008.

[28] Charles W Krueger. Introduction to the emerging practice

of software product line development. Methods and Tools, 14

(3):3–15, 2006.

[29] Jay Lee. Strategy and challenges on remote diagnostics and

maintenance for manufacturing equipment. In Reliability and

Maintainability Symposium. 1997 Proceedings, Annual, pages

368–370. IEEE, 1997.

[30] Jay Lee. A framework for web-enabled e-maintenance sys-

tems. In Environmentally Conscious Design and Inverse

Manufacturing, 2001. Proceedings EcoDesign 2001: Second

International Symposium on, pages 450–459. IEEE, 2001.

[31] Kang B Lee and Richard D Schneeman. Internet-based dis-

tributed measurement and control applications. IEEE Instru-

mentation & Measurement Magazine, 2(2):23–27, 1999.

[32] Paulo Leitão. Agent-based distributed manufacturing con-

trol: A state-of-the-art survey. Engineering Applications of

Artificial Intelligence, 22(7):979–991, 2009.

120



BIBLIOGRAPHY

[33] Eric Levrat, Benoit Iung, and Adolfo Crespo Marquez. E-

maintenance: review and conceptual framework. Production

Planning & Control, 19(4):408–429, 2008.

[34] Robert Lewis. Modelling control systems using IEC 61499:

Applying function blocks to distributed systems. Number 59.

Iet, 2001.

[35] Thomas Mertke and Georg Frey. Formal verification of plc

programs generated from signal interpreted petri nets. In Sys-

tems, Man, and Cybernetics, 2001 IEEE International Con-

ference on, volume 4, pages 2700–2705. IEEE, 2001.

[36] MIMOSA. Mimosa, website. http://www.mimosa.org/, 2016.

[37] R Keith Mobley. An introduction to predictive maintenance.

Butterworth-Heinemann, 2002.
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