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Abstract

Gene tree correction has recently gained interest in phylogenomics, as it gives insights in understanding the
evolution of gene families. Following some recent approaches based on leaf edit operations, we consider a
variant of the problem where a gene tree is corrected by inserting leaves with labels in a multiset M . We
show that the problem of deciding whether a gene tree can be corrected by inserting leaves with labels in M
is NP-complete. Then, we consider an optimization variant of the problem that asks for the correction of a
gene tree with leaves labeled by a multiset M ′, with M ′ ⊇ M , having minimum size. For this optimization
variant of the problem, we present a factor 2 approximation algorithm.
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1 Introduction

The understanding of genome evolution is related to the identification of which

evolutionary events (mainly speciations, duplications and losses, in some models

lateral gene transfers) lead to the evolution of a genome [23,16]. The evolution of a

gene family (a set of genes that originate through duplications from an ancestral

gene) for a given set of species is usually represented by a gene tree. Once a gene tree

is computed, usually via methods that rely on sequence similarity, it is compared

with a species tree (a tree that represents the evolution of the set of species analysed)
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in order to identify which evolutionary events occurred in the evolution of the

considered gene family [24,26]. Species trees are phylogenetic trees that are based

only on speciation events, thus the evolutionary histories represented by a gene tree

and a species tree can be different. The reconciliation of a gene tree and a species

tree [7,8,9,18,25,27,31,14,3] compares the two trees, in order to infer the evolutionary

events represented in the gene tree.

A related problem is the inference of the species tree, starting from a set of poten-

tially discordant gene trees. This problem has been intensively studied under different

models (see for example [10,22,2,30]) and it is known to be intractable [6,22,12,4,20].

One of the main drawbacks of reconciliation is that gene trees usually con-

tain errors that alter the resulting evolutionary scenario [19,28]. Thus several

approaches [11,15,17,29,13,21,5] have been proposed to correct gene trees before the

reconciliation.

In this paper, we consider an approach that aims to remove a special kind of

duplications, called Non-Apparent Duplications (NAD). NAD nodes can be related

to errors in the gene trees [10,29], since they represent a disagreement between a

gene tree and a species tree that is not directly related to a gene duplication. Thus,

some recent approaches to gene tree correction aim to modify the structure of a

given gene tree so that it does not contain NAD nodes, via polytomy refinement [21]

or by edit operations (removal and modification) on misplaced leaves/labels [29,13,5].

More precisely, the approaches considered in [29,5] introduced two edit operations

on leaves (leaf deletion and leaf modification). Here, following a similar approach,

we introduce a third edit operation on leaves, leaf insertion, and we consider a

combinatorial problem, called LeafIns, that aims to remove NAD nodes by inserting

leaves associated with a given multiset M of labels. The multiset M represents a

set of candidate missing leaves in the gene tree, due to errors in the reconstruction

process. We consider the computational complexity of the LeafIns problem, and we

show in Section 3 that it is NP-complete. Then, we consider a natural optimization

version of this problem, called MinLeafIns, that aims at correcting a given gene tree

by inserting the minimum number of leaves labeled by a multiset M ′ ⊇ M . For this

optimization problem (which is NP-hard by the previous result), we give in Section 4

a polynomial time approximation algorithm of factor 2.

The paper is organized as follows. In Section 2, we give some preliminary

definitions and properties of gene trees and species trees, and we formally introduce

the two combinatorial problems we are interested in. In Section 3, we show that

the LeafIns problem is NP-complete, while in Section 4 we give an approximation

algorithm of factor 2 for MinLeafIns. Finally, we conclude the paper with some open

problems.

2 Preliminaries

In this section, first we introduce some preliminary concepts, and we give the formal

definitions of the two combinatorial problems we are interested in.

Let Λ = {l1, l2, . . . , lm} be a set of labels, where each label represents a different
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Fig. 1. A gene tree G and a species tree T . A dashed arrow from an internal node of G to an internal node
of T represents its lca mapping.

species. Given a generic rooted tree U , we denote by L(U) the set of its leaves, by

Λ(U) the set of labels associated with L(U), and by r(U) the root of U . Consider

an internal node y of tree U , we denote by yl (yr, respectively) the left child (the

right child, respectively) of y; yr and yl are called sibling. Moreover, U [y] denotes

the subtree of U rooted at node y. As a consequence Λ(U [y]) denotes the set of

labels associated with leaves of U [y]. A node x on the (unique) path that connects

the root of U to a node y of U is called an ancestor of y; y is called a descendant of

x. The parent z of y is the ancestor of y such that (z, y) is an arc of U .

Given an ordered set L = 〈l1, l2, . . . , lp〉, a caterpillar U on L is a binary rooted

tree with p leaves, each one associated with a distinct label of L, and internal nodes

r(U), v1, . . . , vp−2 such that: (1) there exists a path that connects r(U), vp−2, . . . , v1
(in this order); (2) node v1 is adjacent to exactly two leaves, labeled by l1, l2, node

vi, with 1 ≤ i ≤ p− 2, is adjacent to a single leaf, labeled by li+1, r(U) is adjacent

to a single leaf, labeled by lp.

Next, we consider two kinds of (rooted) binary trees leaf-labeled by Λ (that is

each leaf of such trees is associated with a label in Λ): species trees and gene trees

(see Fig. 1). The two kinds of trees differ for the allowed leaf labeling. In a species

tree T labeled by Λ, each label in Λ is associated with exactly one leaf. In a gene

tree G labeled by Λ, each label in Λ can be associated with at least one leaf.

An insertion of a leaf x with a label l in an arc e = (u, v) of a gene tree G

consists of: (1) defining a new node w of G, (2) removing arc e and (3) adding the

three arcs (u,w), (w, v), (w, x).

In the comparison of a gene tree G and species tree T (both leaf-labeled by

Λ), we consider the well-known LCA mapping (Least Common Ancestor mapping),

denoted by lcaG,T (see Fig. 1). Given a node x of G, lcaG,T (x) = y, where y is the

farthest node of T from the root such that Λ(T [y]) ⊇ Λ(G[x]).

Given a species tree T , a node x of G is defined a duplication node, when there

exists a node z ∈ {xl, xr} (a child of x), such that lcaG,T (x) = lcaG,T (z). In this case

we say that a duplication occurs in x. A node of G, which is not a duplication node,

is called a speciation node. Moreover, we can distinguish two kinds of duplication

nodes (see Fig. 1 for an example of the two kind of duplications).

A duplication node x is an Apparent Duplication node (AD node), if Λ(G[xl]) ∩
Λ(G[xr]) �= ∅. Notice that an AD node is a duplication node for any species tree.

If a duplication node is not an AD node, it is called a NAD node. A gene tree G
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is said to be consistent with a species tree T when it does not contain NAD nodes

(hence each node is either a speciation or an AD node).

As observed in [10,29], NAD nodes are considered to be related to errors in the

gene tree. Here, we consider two combinatorial problems that aim to modify the

gene tree by inserting leaves. First, we consider a decision problem that asks if a

gene tree can be made consistent by inserting leaves having labels in a multiset M .

Problem 1 Leaf Insertion Problem[LeafIns]

Input: A gene tree G and a species tree T , both leaf-labeled by Λ, a multiset M of

labels in Λ.

Output: A gene tree G∗ consistent with T such that G∗ is obtained from G by

inserting |M | leaves each one labeled with a label in M .

Moreover, we consider an optimization problem that asks if a gene tree can be

made consistent by inserting leaves labeled by a minimum multiset M ′ that contains
M . In fact, since LeafIns will be shown to be NP-complete, we define an optimization

problem in which the constraint on the cardinality of the label multiset is relaxed.

Problem 2 Minimum Leaf Insertion Problem[MinLeafIns]

Input: A gene tree G and a species tree T , both leaf-labeled by Λ, a multiset M in

Λ.

Output: A gene tree G∗ consistent with T such that G∗ is obtained from G by

inserting leaves labeled by a multiset M ′ of labels in Λ, with M ′ ⊇ M , and |M ′| is
minimum.

We conclude this section proving some properties on NAD nodes.

Lemma 2.1 Consider a gene tree G and a species tree T , and let x be a NAD node

in G. Then, in a gene tree G∗ obtained by inserting leaves in G, x is either a NAD

node or an AD node.

Proof. Since x is a NAD node, it follows that at least one of its children, w.l.o.g.

xr is mapped to y = lcaG,T (x). It follows that each leaf insertion in G[xr], does not

change x to a speciation node. Moreover, notice that xl is mapped to a node of the

subtree T [y].

Now, consider some leaves inserted in G∗[xl] and in the arc (x, xr) of G, so that

x∗r and x∗l are the children of x in G∗. Let z = lcaG∗,T (x), where z is an ancestor of

y. It follows that at least one of x∗r and x∗l is mapped to z, thus making x either a

NAD or an AD node. Indeed, by construction, x∗r is mapped to node on the path

from y to z, while x∗l is mapped to a node of T [y] or to a node on the path from

y to z. If both x∗r and x∗l are mapped to a proper descendant of z, then the same

property holds for x and this concludes the proof. �

A consequence of Lemma 2.1 is that a NAD node of a gene tree G can only be

transformed to an AD node of a consistent gene tree G∗ obtained from G by leaf

insertions.

Lemma 2.2 Consider a gene tree G and a species tree T , and let x be a NAD node

in G. Then, for each p ∈ Λ(G[x]), it is possible to make x an AD node by inserting
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a leaf labeled by p in G[x], so that G[x] is consistent with T .

Proof. Let x be a NAD node of G. Consider the subtrees G[xl] and G[xr] and let

p be a label in Λ(G[x]). Since x is a NAD node, it holds Λ(G[xr]) ∩ Λ(G[xl]) = ∅.
Consider w.l.o.g. a leaf g of Λ(G[xr]) labeled by p. We insert a leaf having label p

in G[xl], so that the internal node added by the leaf insertion is not a NAD node,

while x becomes an AD node.

Consider the leaf f of T labeled by p. First, assume that there exists an internal

node y of G[xl], farthest from the root, which is mapped by lcaG,T to a node z of T

which is an ancestor of f . Since y is a node farthest from the root, it follows that the

children of y are not mapped to z. Moreover, assume w.l.o.g. that p ∈ Λ(T [zl]); it

follows that, since y is mapped to z, at least one of yr and yl (w.l.o.g. yl) is mapped

to a proper descendant of zl, while the other node (w.l.o.g. yr) is mapped to a

descendant of zr. Consider the insertion of a leaf labeled by p in the arc (y, yl) and

let w be the internal node introduced by the leaf insertion. Then w is a speciation

node, since it is mapped to zl, without modifying the mapping of yl, yr and y. Node

y becomes an AD node, due to the insertion of a leaf labeled by p in G[xl].

Assume that there is no node y of G[xl] mapped by lcaG,T to a node z of T

which is an ancestor of f . Then, consider the insertion of a leaf labeled by p in arc

(x, xl). The internal node w introduced by the leaf insertion is a speciation node,

since it is mapped by lcaG,T to an ancestor u of z, such that f ∈ Λ(T [u]), while xl
is mapped to z. Moreover, by construction the mappings of xl, xr are not modified,

and x becomes an AD node. �

3 Computational Complexity of LeafIns

In this section, we consider the computational complexity of LeafIns and we show

that it is NP-complete. We prove this result by giving a reduction from Minimum

Vertex Cover (MinVC) on Cubic Graphs. Given a cubic graph 3 G = (V,E), where

|V | = n and |E| = m, MinVC on Cubic Graphs asks if there exists a cover of G
having size at most k, that is if there exists a subset V ′ ⊆ V , with |V ′| ≤ k, such

that for each edge {u, v} ∈ E, at least one of u, v is in V ′. Notice that obviously

k ≤ n. Moreover, we can assume that 3k −m ≥ 0. Indeed, each vertex in a vertex

cover V ′ covers at most three edges and each edge must be covered by a vertex in

V ′, hence 3k −m ≥ 0.

We start by defining the instance of LeafIns, that is the two subtrees G and T ,

and the multiset M .

The tree T (see Fig. 2) consists of a path that connects the root r(T ) to nodes

sn, . . . , s1 that is, one for each vertex of G; each node si, with 1 ≤ i ≤ n, is connected

to a subtree T (vi), and the root r(T ) is connected to a subtree T (γ).

Each subtree T (vi), with 1 ≤ i ≤ n, consists of two subtrees: a left subtree,

which is a caterpillar on the ordered set 〈αi, βi, xi,3, xi,4〉, and a right subtree, which

has exactly two leaves labeled by xi,1, xi,2.

3 We recall that in a cubic graph every node has degree three.
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Fig. 2. The species tree T associated with an instance of MinVC on Cubic Graphs.
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Fig. 3. The gene tree G associated with an instance of MinVC on Cubic Graphs. Speciation nodes are
represented as circles, NAD nodes as white diamonds, and AD nodes as black diamonds.

The subtree T (γ) is a caterpillar on the ordered set 〈γ, γ1, γ2, γ3, γ4, γ5〉.
The tree G (see Fig. 3) consists of a left path and a right path. Informally, the

left path has one tree for each vertex of G and for each edge of G, and the leaf

insertions in these subtrees are related to the cover of the graph; on the other hand,

the right path and the subtrees connected to it are built so that the overall number

of leaf insertions is exactly |M |. More precisely, the left path connects the root r(G)
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to nodes gp,q, . . . g1,x, gn, . . . , g1, g0, (we assume that the edges of G are ordered so

that {v1, vx} is the first edge and {vp, vq} is the last edge according to some ordering

of the edges of G). Each node gi, with 1 ≤ i ≤ n, is connected to a subtree G(vi),

each node gi,j , with {vi, vj} ∈ E, is connected to a subtree G(ei,j).

Subtree G(v0) is a caterpillar on the ordered set 〈β1, . . . , βn, γ〉. The subtree

G(vi), with 1 ≤ i ≤ n, is a caterpillar on the ordered set 〈xi,2, xi,3, xi,1, αi, xi,4, γ〉.
The subtree G(ei,j), with ei,j = {vi, vj} ∈ E, is a caterpillar on the ordered set

〈γ, xi,3, xj,3〉.
The right path of G connects the root r(G) to nodes a3k−m+(n−k), . . . , a1. W.l.o.g.

we assume that n is even. Each node ai, with 1 ≤ i ≤ 3k−m+(n− k), is connected

to a subtree G(ai).

For each i with 1 ≤ i ≤ 3k − m, G(ai) is a copy of a tree consisting of two

caterpillars: a left caterpillar on the ordered set 〈x1,3, x3,3, . . . , xn−1,3〉 and a right

caterpillar on the ordered set 〈x2,3, x4,3, . . . , xn,3〉.
For each i with 3k−m+1 ≤ i ≤ 3k−m+(n−k), G(ai) is a copy of a caterpillar

on the ordered set 〈γ5, γ4, γ3, γ2, γ1〉.
Finally, we define the multiset M . M contains three occurrences of label xi,3, for

each i with 1 ≤ i ≤ n, and four occurrences of label βi, for each i with 1 ≤ i ≤ n.

We start by stating some properties of trees G, T (see Fig. 2 and Fig. 3).

Remark 1 Let G be a cubic graph and let (G, T,M) be the associated instance of

LeafIns. Then, there exist three NAD nodes in each G(vi), with 1 ≤ i ≤ n, one

NAD node in each G(ei,j), with {vi, vj} ∈ E, one NAD node in each G(ai), with

1 ≤ i ≤ 3k−m, three NAD nodes in each G(ai), with 3k−m+1 ≤ i ≤ 3k−m+(n−k).

Each node gi, with 1 ≤ i ≤ n, is an AD node, each node gi,j, with {vi, vj} ∈ E,

is an AD node, each node ai, with 2 ≤ i ≤ 3k −m, is an AD node (a1 is a NAD

node). Each node ai, with 3k−m+ 2 ≤ i ≤ 3k−m+ (n− k), is an AD node, while

node a3k−m+1 is a speciation node.

The main idea of the reduction is to insert leaves with labels in M so that the

NAD nodes in G become AD nodes. Each subtree G(vi), with 1 ≤ i ≤ n, can be

made consistent with T essentially in two possible ways (see Lemma 3.1): either

by inserting three leaves labeled by xi,3 (this corresponds to the case that vertex

vi is not in the vertex cover of G) or by inserting four leaves labeled by βi (this

corresponds to the case that vi is in the vertex cover of G). The single NAD node of

G(ei,j) (see Lemma 3.2 and Lemma 3.5) becomes an AD node by inserting a leaf

labeled either by xi,3 or by xj,3 (depending on the fact that vi or vj is in the vertex

cover of G).
Each subtree G(ai), with 1 ≤ i ≤ 3k−m, is made consistent with T by inserting

a leaf labeled by xj,3, with 1 ≤ j ≤ n, where xj,3 is not used to label any inserted leaf

of G(vj) or of G(ej,h). Each subtree G(ai), with 3k−m+ 1 ≤ i ≤ 3k−m+ (n− k),

is made consistent with T by inserting four leaves labeled by βj , with 1 ≤ j ≤ n,

where βj is not used to label any inserted leaves of G(vj).

Now, we are ready to prove the details of the reduction. Next, we give some

properties of subtrees G(vi), and G(aj).
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Fig. 4. A subtree G(vi) made consistent with T by inserting three leaves labeled by xi,3.

AD
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βi xi,3

βi xi,1

βi αi

βi xi,4

γ

G(vi)

Fig. 5. A subtree G(vi) made consistent with T by inserting four leaves labeled by βi.

AD

AD

AD

γ5 γ4

β j β j γ3

β j γ2

β j γ1

G(ai)
3k − m + 1 ≤ i ≤ 3k − m + (n − k)

Fig. 6. A subtree G(ai), with 3k −m+ 1 ≤ i ≤ 3k −m+ (n− k), made consistent with T by inserting four
leaves labeled by βj .

Remark 2 Let G be a cubic graph and let (G, T,M) be the associated instance of

LeafIns. Then:

• G(vi), with 1 ≤ i ≤ n, can be made consistent with T by inserting three leaves

labeled xi,3 (see Fig. 4) or by inserting four leaves labeled by βi (see Fig. 5).

• G(ai), with 1 ≤ i ≤ 3k −m, can be made consistent with T by inserting a leaf

labeled by xj,3, with 1 ≤ j ≤ n.

• G(ai), with 3k−m+ 1 ≤ i ≤ 3k−m+ (n− k), can be made consistent with T by

inserting four leaves labeled by βj, with 1 ≤ j ≤ n (see Fig. 6).

Moreover, we can prove the following property for subtrees G(vi), with 1 ≤ i ≤ n.

Lemma 3.1 Given a vertex vi ∈ V , let G(vi) be the corresponding subtree of G.

Then a subtree G∗(vi) consistent with T is obtained either by inserting three leaves
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labeled by xi,3 or by inserting at least four leaves.

Proof. By Remark 2, it follows that, starting from G(vi), it is possible to compute

a subtree G∗(vi) consistent with T by inserting three leaves labeled by xi,3. It is easy

to see that if a subtree G∗(vi) consistent with T is computed by inserting only leaves

labeled by y, with y ∈ M and y �= xi,3, then G∗(vi) can be computed by inserting

four leaves, since y /∈ Λ(G(vi)).

Finally, assume that a subtree G∗(vi) is obtained by inserting in G(vi) at least

one leaf (and at most two leaves) labeled by xi,3, and at least one leaf labeled by

y, with y ∈ M and y �= xi,3. Now, consider the three NAD nodes of G(vi) (see

Remark 1). Since at most two inserted leaves are labeled by xi,3, there must exist a

node of G∗(vi) whose left and right subtrees both contain leaves labeled by y. For

each other NAD node of G(vi), at least one leaf must be inserted (labeled by xi,3 or

by a label different from xi,3) and the lemma follows. �

Next, we prove a property of subtrees G(ei,j).

Lemma 3.2 Consider an edge {vi, vj} ∈ E and the corresponding subtree G(ei,j)

in G. Then a subtree G∗(ei,j) consistent with T is obtained by inserting in G(ei,j)

either one leaf with label in {xi,3, xj,3}, or at least two leaves.

Proof. Notice that G(ei,j) contains one NAD node (see Remark 1) that can be

made an AD node by inserting a leaf labeled by xi,3 (xj,3, respectively) as a sibling of

the leaf of G(ei,j) labeled by xj,3 (xi,3, respectively). Finally, since Λ(G(ei,j))∩M =

{xi,3, xj,3}, if no leaf with label in {xi,3, xj,3} is inserted in G(ei,j), then a subtree

G∗(ei,j) consistent with T is obtained by inserting in G(ei,j) at least two leaves. �

Next, we prove a bound on the number of leaves that has to be inserted by a

solution of LeafIns over instance (G, T,M) in the subtrees G(vi), with 1 ≤ i ≤ n,

and G(ei,j), with {vi, vj} ∈ E.

Lemma 3.3 Given a cubic graph G and the corresponding instance (G, T,M) of

LeafIns, a solution G∗ of LeafIns over instance (G, T,M) inserts at most 3(n− k) +

4k +m leaves in the subtrees G(vi), with vi ∈ V , and G(ei,j), with {vi, vj} ∈ E.

Proof. Let G∗ be a gene tree consistent with T obtained by inserting leaves labeled

by M . First, notice that each subtree G(ai), with 1 ≤ i ≤ 3k −m + (n − k), can

be made consistent by inserting at least 4(n − k) + 3k − m leaves. Indeed each

subtree G(ai), with 1 ≤ i ≤ 3k −m, contains one NAD node and requires at least

one leaf insertion, while each subtree G(ai), with 3k−m+1 ≤ i ≤ 3k−m+ (n− k),

contains four NAD nodes and requires at least four leaf insertions. Since |M | = 7n,

the subtrees G(vi), with 1 ≤ i ≤ n, and G(ei,j), with {vi, vj} ∈ E, must be made

consistent with T by inserting at most 7n− (3k −m+ 4(n− k)) = 3n+m+ k =

3(n− k) + 4k +m leaves. �

Lemma 3.4 Given a cubic graph G and the corresponding instance (G, T,M) of

LeafIns, a solution G∗ of LeafIns over instance (G, T,M) contains at least (n− k′)
subtrees G∗(vi), with 1 ≤ i ≤ n and k′ ≤ k, where at most three leaves are inserted,
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and at most (k − k′) subtrees G∗(ei,j), with {vi, vj} ∈ E, where at least two leaves

are inserted.

Proof. Consider a solution G∗ of LeafIns over instance (G, T,M). Notice that

(n − k′) ≥ (n − k) else, by Lemma 3.3, G∗ cannot be a solution of LeafIns over

instance (G, T,M).

Assume that there exist m′ subtrees G∗(ei,j) in G∗, with {vi, vj} ∈ E, where at

least two leaves are inserted. It follows that the number of leaves that have been

inserted in subtrees G∗(vi), with 1 ≤ i ≤ n, and G∗(ei,j), with {vi, vj} ∈ E, are at

least 3(n − k′) + 4k′ + m + m′. Since by Lemma 3.3 at most 3(n − k) + 4k + m

leaves are inserted in subtrees G(vi), with 1 ≤ i ≤ n, and in subtrees G(ei,j), with

{vi, vj} ∈ E, it follows that 3(n− k′) + 4k′ +m+m′ ≤ 3(n− k) + 4k +m, which

implies 3n+ k′ +m+m′ ≤ 3n+ k +m, hence m′ ≤ (k − k′). �

In the next lemma, we prove that in a solution of LeafIns over instance (G, T,M)

each subtree G(ei,j), with {vi, vj} ∈ E, is essentially modified by inserting a single

leaf labeled either by xi,3 or by xj,3.

Lemma 3.5 Given a cubic graph G and the corresponding instance (G, T,M) of

LeafIns, consider a solution G∗ of LeafIns over instance (G, T,M). Then, there exists

a solution G+ of LeafIns over instance (G, T,M) such that, for each {vi, vj} ∈ E, a

single leaf labeled either by xi,3 or by xj,3 has been inserted in G+(ei,j).

Proof. Let G∗ be a solution of LeafIns over instance (G, T,M).

Consider the k′ subtrees G∗(vi), with 1 ≤ i ≤ n, where exactly three leaves are

inserted. Assume that there exist two subtrees G∗(vi) and G∗(vj), with 1 ≤ i < j ≤ n

and {vi, vj} ∈ E, where three leaves are inserted. By construction and by Lemma 3.2,

it follows that subtree G∗(ei,j) is obtained by inserting at least two leaves. We

compute a solution G+ of LeafIns over instance (G, T,M) such that if two subtrees

G+(vi) and G+(vj) are obtained by inserting exactly three leaves, then {vi, vj} /∈ E.

Define now the following three sets of subtrees, FI , FC , FE , such that FI contains

all the subtrees G∗(vi) where three leaves have been inserted, FC is initially empty

and FE contains the subtrees G∗(ei,j) such that G∗(vi) and G∗(vj) are both in FI .
Starting from FI , FC , FE , we compute three sets FI,Q, FC,Q, FE,Q with an

iterative procedure that, while FE is not empty, picks a subtree G∗(ei,j) in FE ,
puts one of the trees G∗(vi) and G∗(vj) in FC and removes it from FI . Then, the
procedure updates FE , that is, it removes those subtrees G∗(ei,j) such that at most

one of G∗(vi) and G∗(vj) belongs to FI .
Consider now the sets FI,Q, FC,Q, FE,Q obtained from FI , FC , FE when the

procedure terminates. Notice that by construction FE,Q is empty. Since at each step

at least one tree is removed from FE and exactly one subtree is added to FC (and

removed from FI), the following claim holds.

Claim 3.6 |FC,Q| ≤ |FE | and |FI | − |FI,Q| ≤ |FE |.
Since by Lemma 3.4 the subtrees in |FE | are at most k−k′, it follows by Claim 3.6

that |FI |−|FI,Q| ≤ |FE | ≤ k−k′. This implies that |FI,Q| ≥ (n−k′)−(k−k′) = n−k.
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Without loss of generality we assume that |FI,Q| = n− k (otherwise some subtrees

can be deleted from FI,Q).
Now, we are able to define the solution G+ of LeafIns as follows:

• for each subtree G∗(vi) in FI,Q, compute G+(vi) by inserting three leaves labeled

by xi,3, so that G+(vi) is consistent with T (see Remark 2);

• for every other subtree G∗(vi), compute G+(vi) by inserting four leaves labeled

by βi, so that G+(vi) is consistent with T (see Remark 2);

• for each subtree G(ei,j), compute G+(ei,j) by inserting one leaf labeled either

by xi,3, if G
∗(vj) is in FI,Q, or by xj,3, if G

∗(vi) is in FI,Q, so that G+(ei,j) is

consistent with T (see Lemma 3.2). Notice that by construction at most one of

G∗(vi), G∗(vi) belongs to FI,Q;
• for each subtree G(ah), with 1 ≤ h ≤ 3k−m, insert one leaf xi,3, with G∗(vi) not in
FI,Q, and such that one occurrence of xi,3 has not been associated with an inserted

leaf in a subtree G+(ei,j) or a different subtree G(aq), with 1 ≤ q ≤ 3k−m, so that

the resulting subtree G+(ah) is consistent with T (see Remark 2). This is possible

since 3(n − k) +m labels xi,3 are used for leaf insertions in subtrees in G+(vi)

and G+(ei,j), while M contains 3n labels xi,3, for some i with 1 ≤ i ≤ n; hence

3n−(3n−3k+m) labels can be used for trees G(ah), with 1 ≤ h ≤ 3k−m, and since

in a cubic graphm = 3n
2 , it follows that there exist 2m−2m+3k−m = 3k−m labels

xi,3, each one used for a leaf insertion in subtrees G+(ah), with 1 ≤ h ≤ 3k −m;

• for each of subtree G(ah), with 3k −m+ 1 ≤ h ≤ 3k −m+ (n− k), insert four

leaves βi, for some G∗(vi) in FI,Q, and not already associated with inserted leaves

in some subtree G(ap), with 3k − m + 1 ≤ p ≤ 3k − m + (n − k), so that the

resulting subtree G+(ah) is consistent with T (see Remark 2). This is possible

since |FI,Q| = n− k, hence there exist four occurrences of (n− k) labels βi, used

for leaf insertions in subtrees G+(aj), with 3k −m ≤ j ≤ 3k −m+ (n− k).

Since G+ is consistent with T , the lemma holds. �

Now, we are ready to present the main result of the reduction.

Lemma 3.7 Let G be a cubic graph and let (G, T,M) be the corresponding instance

of LeafIns. There exists a solution of MinVC on Cubic Graphs of size k if and only

if there exists a solution G∗ of LeafIns over instance (G, T,M).

Proof. (⇒) Consider a vertex cover V ′ of G consisting of k vertices (some vertex

may be added to V ′ if |V ′| < k). Then, we define a gene tree G∗ obtained from G

by inserting the leaves in M as follows:

• for each vi ∈ V ′, insert four leaves labeled by βi in G(vi), so that the resulting

subtree G∗(vi) is consistent with T (see Remark 2);

• for each vi ∈ V \ V ′, insert three leaves labeled by xi,3 in G(vi), so that the

resulting subtree G∗(vi) is consistent with T (see Remark 2);

• for each {vi, vj} ∈ E, insert one leaf labeled by xi,3 in G(ei,j), with vi ∈ V ′, so
that the resulting subtree G∗(ei,j) is consistent with T (see Lemma 3.2);

S. Beretta, R. Dondi / Electronic Notes in Theoretical Computer Science 322 (2016) 35–50 45



• for each of subtree G(ai), with 1 ≤ i ≤ 3k −m, insert one leaf labeled by xh,3,

with vh ∈ V ′, not associated with a leaf already inserted in some G(eh,j) or in

a subtree G(ap), with 1 ≤ p ≤ 3k − m, so that the resulting subtree G∗(ai) is

consistent with T (see Remark 2);

• for each of subtree G(ai), with 3k −m + 1 ≤ i ≤ 3k −m + (n − k), insert four

leaves labeled by βh, for some vh ∈ V ′, not associated with a leaf already inserted

in some subtree G(ap), with 3k − m + 1 ≤ p ≤ 3k − m + (n − k), so that the

resulting subtree G∗(ai) is consistent with T (see Remark 2).

Then each NAD node of G becomes an AD node (see Remark 1) in G∗, hence
the constructed gene tree G∗ is consistent with T , thus it is a solution of LeafIns

over instance (G, T,M).

(⇐) Let G∗ be a solution of LeafIns over instance (G, T,M). By Lemma 3.3,

the subtrees G(vi), with 1 ≤ i ≤ n, and G(ei,j), with {vi, vj} ∈ E, must be made

consistent with T by inserting at most 7n− (3k−m+4(n− k)) = 3(n− k)+ 4k+m

leaves.

Now, given vi, vj ∈ V , with {vi, vj} ∈ E, consider the subtrees G∗(vi) and G∗(vj)
of G∗ consistent with T . Since there exist three occurrences of label xi,3 in M , it

follows by Lemma 3.5 and by Lemma 3.1 that at most one of G∗(vi) and G∗(vj) can
be made consistent with T by inserting exactly three leaves.

By Lemma 3.4, there exist at least (n− k′) ≥ (n− k) trees G∗(vi) (we assume

exactly n− k) that are made consistent by inserting three leaves labeled by xi,3. By

Lemma 3.5 each subtree G∗(ei,j), with {vi, vj} ∈ E, is obtained by inserting a leaf

labeled by xi,3 or by xj,3. Moreover, we can assume that k subtrees G∗(vi), with
vi ∈ V , consistent with T , are obtained by inserting four leaves labeled by βi, each

subtree G∗(ai), with 1 ≤ i ≤ 3k −m, is obtained by inserting a leaf labeled by xj,3
and each subtree G∗(ai), with 3k −m+ 1 ≤ i ≤ 3k −m+ (n− k), is obtained by

inserting four leaves labeled by βj .

It follows from Lemma 3.1 and Lemma 3.5 that the set

V ′ = {vi : G∗(vi) has four leaves labeled by βi }

is a vertex cover of size k, since |V ′| = k and for each {vi, vj} ∈ E at least one of vi,

vj is in V ′. �

From Lemma 3.7, the following result holds.

Theorem 3.8 LeafIns is NP-complete.

Proof. LeafIns is in NP, since given a gene tree G∗ obtained by inserting leaves

with labels in M , we can check in polynomial time that it is consistent with T .

The NP-hardness of LeafIns follows from Lemma 3.7 and from the NP-hardness

of MinVC on Cubic Graphs [1]. �

From the NP-completeness of LeafIns follows the NP-hardness of MinLeafIns.

Corollary 3.9 MinLeafIns is NP-hard.
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Proof. The result follows from Lemma 3.8, since computing if there exists a gene

tree consistent with T and obtained by inserting at most |M | leaf insertions is

NP-hard. �

4 A 2-approximation Algorithm for MinLeafIns

In this section, we show that MinLeafIns can be approximated in polynomial time

within factor 2.

Given an instance (G, T,M) of MinLeafIns, denote by �NAD the number of NAD

nodes of G w.r.t. T . The approximation algorithm is based on the following bound.

Lemma 4.1 Let (G, T,M) be an instance of MinLeafIns. Then, a gene tree G∗

compatible with T is obtained by inserting at least max(|M |, �NAD) leaves.

Proof. First, we show that at least �NAD leaf insertions are required to make G

consistent with T .

We assume that NAD nodes are sequentially transformed into AD nodes starting

from the leaves of the tree, and G is modified accordingly. Moreover, each NAD

node x is transformed into an AD node in two possible ways: with a single leaf

insertion or with at least two insertions of leaves having the same label.

Now, consider a NAD node x in G and an ancestor y of x which is a NAD node,

such that w.l.o.g. x is in G[yr]. At least one leaf must be inserted in G[x] in order

to make x an AD node. Moreover, notice that if a single leaf labeled by l is inserted

in G[x], then no other ancestor of x (hence no other node of G) can be made an AD

node (from a NAD node), due to this insertion. Indeed, since the insertion of the leaf

labeled l can make x an AD node, it follows that l ∈ Λ(G[x]), hence l ∈ Λ(G[yr]). As

a consequence, the insertion of a single leaf labeled by l does not change Λ(G[yr]).

Assume that x becomes an AD node due to the insertion of (at least) two leaves

having the same label l. Hence, there exists at least one leaf inserted in G[xr] and

at least one leaf inserted in G[xl]. Notice that at most one ancestor of x in G can

become an AD node (from a NAD node). Indeed, let y be the farthest NAD node

from the root of G and ancestor of x, that becomes an AD node due to the insertion

of the leaves labeled by l. Then consider an ancestor z of x and y, such that x and

y belong w.l.o.g. to G[zr]. Since y becomes an AD node by the insertion of leaves

labeled by l in G[x], it follows that l ∈ G[y] ⊆ G[zr]. Hence the insertion of leaves

labeled by l does not change Λ(G[zr]) and the mapping of nodes z and xr is not

changed by the insertion of two leaves labeled by l. It follows that the insertion of

the leaves labeled l makes at most two NAD nodes of G (namely x and y) AD nodes.

We can conclude that at least �NAD leaves have to be inserted in G.

Since at least |M | leaves must be inserted in a solution of MinLeafIns over

instance (G, T,M), the lemma follows. �

Now, we describe a polynomial time algorithm that requires at most

2max(|M |, �NAD) leaf insertions. Consider the sequence sNAD of NAD nodes in G,

visited from the leaves to the root.
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The algorithm greedily picks the first node x of sNAD and makes it an AD node

as follows:

Step 1 If there exists an occurrence of label l in M such that l is in exactly one of

Λ(G[xl]), Λ(G[xr]) (assume w.l.o.g. in Λ(G[xl])), then a leaf labeled by l is inserted

in G[xr] (from Lemma 2.2 it is possible to insert a leaf labeled by l so that the

new inserted node in G is not a NAD node); an occurrence of l is removed from

M and x is removed from sNAD.

Step 2 Else, insert a leaf associated with a label l such that l is in Λ(G[x]) (again

from Lemma 2.2 it is possible to insert a leaf labeled by l so that the new inserted

node in G is not a NAD node); x is removed from sNAD.

After the execution of Step 1 and 2, sNAD is empty, while M may not be empty.

Let Me be such a multiset of labels left after the execution of Step 1 and Step 2.

Then, the algorithm removes one occurrence of a leaf labeled by l in Me, and inserts

a leaf labeled by l as a sibling of a leaf of G that has label l. The node introduced

by the leaf insertion is an AD node, and the mapping of other nodes of G is not

influenced by this leaf insertion.

Next, we prove that the algorithm gives a 2-approximation.

Theorem 4.2 MinLeafIns can be approximated in polynomial time within factor 2.

Proof. Consider the case that Me = ∅ after the iteration of Step 1 and Step 2. By

construction, Step 1 and Step 2 insert at most one leaf for each NAD node, hence at

most �NAD leaves. By Lemma 4.1, the optimal solution inserts at least �NAD leaves,

hence in this case the result follows.

Consider the case that Me �= ∅. By construction, Step 1 and Step 2 insert

at most one leaf for each NAD node. Since |Me| ≤ |M |, the algorithm inserts

at most |M | + �NAD leaves. By Lemma 4.1 an optimal solution of MinLeafIns

inserts at least max(|M |, �NAD) leaves, thus also in this case the algorithm gives a

2-approximation. �

5 Conclusion

In this paper, we have considered a leaf edit operation, leaf insertion, for the problem

of correcting a gene tree. First, we have considered a decision variant of the problem,

called LeafIns, that, given a gene tree G, a species tree T and a multiset of labels M ,

asks if there exists a gene tree G∗ consistent with T , obtained by inserting leaves

having labels in M . We have shown that LeafIns is NP-complete. Then, we have

considered an optimization variant of the problem, called MinLeafIns, that, given a

gene tree G, a species tree T and a multiset of labels M , asks if there exists a gene

tree G∗ consistent with T , obtained by inserting leaves labeled by a multiset set M ′

of minimum cardinality such that M ′ ⊇ M . Notice that MinLeafIns is NP-hard from

the hardness result of LeafIns. We have given a polynomial time 2-approximation

algorithm for MinLeafIns.

A future direction of research is the investigation of the parameterized complexity
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of the two problems that we have considered in this paper, since the number of

corrections is usually small and thus can be considered as a parameter. Moreover, it

would be interesting to study a general variant of the gene tree correction problem,

following the approaches in [29,13,5], where different leaf edit operations (leaf

insertions, leaf deletions, leaf modifications) are considered.
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[15] Durand, D., B. Haldórsson and B. Vernot, A hybrid micro-macroevolutionary approach to gene tree
reconstruction, Journal of Computational Biology 13 (2006), pp. 320–335.

[16] Eichler, E. and D. Sankoff, Structural dynamics of eukaryotic chromosome evolution, Science 301 (2003),
pp. 793–797.

S. Beretta, R. Dondi / Electronic Notes in Theoretical Computer Science 322 (2016) 35–50 49
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