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Abstract

With this research work we want to investigate the use of the state of art
implicit high-order time integration schemes to integrate in time high-order
Discontinuous Galerkin (DG) space discretization of compressible and incom-
pressible flow model equations. The final goal is to demonstrate the capabili-
ties of an high-order accurate, both in space and time, simulation of turbulent
flows. DG methods proved to be very well suited for the Direct Numerical
Simulation (DNS) and the Large Eddy Simulation (LES) of turbulent flows
thanks to good dissipation and dispersion properties. However, accurate tur-
bulent flow simulations imply long term and stiffly stable time integrations.
Explicit Singly Diagonally Implicit Runge-Kutta (ESDIRK) schemes, linearly
implicit Rosenbrock-type Runge-Kutta (Rosenbrock) schemes and linearly im-
plicit two-step peer (Peer) methods are implicit time integration schemes that
provide very high accuracy combined with excellent stability properties. Nev-
ertheless, since they are implicit schemes they entail the solution of several
systems on linear or non-linear equations by means of iterative methods and
thus can require an high computational cost. In order to reduce this cost we de-
veloped, implemented and validated the automatic step-size control, the initial
guess approach and the stopping criterion for iterative methods. Furthermore,
we derived a new starting procedure able to preserve the accuracy order of non
self-starting multi-step Peer schemes. The potential of the proposed high-order
coupling between DG method and implicit temporal schemes has been exhaus-
tively examined on compressible and incompressible benchmark test cases and
demonstrated by computing the implicit Large Eddy simulation of massively
separated compressible flows over periodic hills at Re = 10595, a challenging
and deeply analysed turbulent test case that is part of the test case repository
defined inside the EU project TILDA (Towards Industrial LES/DNS in Aero-
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nautics - Paving the Way for Future Accurate CFD) at which the Computational
Fluid Dynamics group of Universit degli Studi di Bergamo is engaged.

In this work we present, in addition, a high-order Discontinuous Galerkin
approach for the simulation of variable density incompressible (VDI) flows
developed inside the International Research Training Group project DROPIT
(Droplet Interaction Technologies). The purpose of this project is the develop-
ment of an high accurate and efficient method for the thorough investigation
of interface problems for incompressible flows. The method is fully implicit
and applies to the VDI NavierStokes equations. More in particular, the density
is treated as a purely advected property tracking possibly multiple (more than
two) fluids. Furthermore, the fluids interface is captured in a diffuse fashion
by the high-degree polynomial solution thus not requiring a geometrical re-
construction and preserving the mass conservation. Density over/undershoots,
spurious oscillations at flows interfaces and Godunov numerical fluxes at inter-
element boundaries are numerical issues investigated during the development
of the present approach. Promising results on numerical experiments involving
high-density ratios (water-air) and the possible interaction of more than two
fluids have been obtained using a very high-order polynomial representation of
the solution on relatively coarse grids.
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Summary

Discontinuous Galerkin methods are a class of numerical methods for solving
partial differential equations that combine features of the Finite Volume meth-
ods (FVM) and of the standard (conforming) Finite Element Methods (FEM).
Firstly introduced by Reed and Hill in [56], DG methods have been developed
gradually by several authors [1, 10, 11] and nowadays represent a very active
field of research [8, 12, 38].

DG discretization approximates the problem solution with piecewise contin-
uous polynomial functions inside mesh elements without imposing continuity
constraints between nearby elements. Very high order accurate approximation
can be achieved by simply increasing the order of polynomial functions. Fur-
thermore, high geometrical flexibility and numerical compactness are peculiar
features of DG that make these schemes very appealing to deal with problems
with complex geometries and high parallelization level.

Thanks to its favourable dissipation and dispersion properties, the DG method
proved to be very well suited for the Direct Numerical Simulation (DNS)
[19, 22, 65], and the Large Eddy Simulation (LES) [62, 63] of turbulent flows.
Moreover the application of DG methods to the simulation of multicomponent
flows characterized by multiple temporal and physical scales, and where low-
order methods often produce a cut-off of the short length scales, seems hence
pretty natural as well.

High-order accurate turbulent flow simulations imply long term and stiffly
stable time integration. For this reason the choice of the time integration
method is crucial for controlling the accuracy of simulations and for enhancing
their efficiency. Standard time integration schemes, like explicit Runge-Kutta
and implicit backward differentiation formula (BDF2) schemes, do not guar-
antee high accuracy and stability at the same time. Implicit high-order time
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integration schemes, instead, can provide very high accuracy without loosing
stability. Therefore, in order to enhance the computational efficiency of DG
simulations for turbulent flows, high-order implicit time integration schemes
have been recently considered, e.g. Modified Extended Backward Differen-
tiation Formulae (MEBDF) [21, 51] A-stable up to order four, Two Implicit
Advanced Step-point (TIAS) [50, 55] A-stable up to order six, Explicit Singly
Diagonally Implicit Runge-Kutta schemes (ESDIRK) [43, 52] A-stable up to
order five, linearly implicit Rosenbrock-type Runge-Kutta schemes (Rosen-
brock) [5,37] A-stable up to order six and linearly implicit two-step peer meth-
ods (Peer) [34, 48] A-stable up to order eight.

Despite the advantages in accuracy and stability and the improved efficiency
with respect to standard ones, the high order implicit schemes can still remain
expensive in terms of computational cost since at each time step they entail
the solution of several systems of non-linear or linear equations by means of
iterative methods, e.g. quasi-Newton method or Generalized Minimal Residual
(GMRES) method.

In this work we focused on the implementation of the high-order implicit
ESDIRK, Rosenbrock and Peer schemes inside a solver based on a DG finite
element method. Moreover, in order to enhance the robustness and the ef-
ficiency of the above mentioned temporal schemes we developed, improved,
implemented and validated three numerical strategies: the automatic step-size
control, the initial guess approach and the stopping criterion of iterative meth-
ods. On the one hand, the automatic step-size control [58,59] is one of the most
adopted strategies to increase both robustness and efficiency of the time inte-
gration. Indeed, the variable time step approach minimizes the computational
effort by adapting the step-size to achieve a user-defined accuracy. Moreover,
the time step adaptation limits at each step the local truncation error thus im-
proving the time integration robustness. On the other hand the initial guess
approach and the stopping criterion of iterative methods greatly reduce the cost
of linear and non-linear system solutions since the former gives a more suit-
able initial value thus reducing the overall number of iterations and the latter
minimises the system over-solving while preserving the local accuracy of the
temporal scheme.

Furthermore, in this work we derived a new starting procedure able to pre-
serve the theoretical order of accuracy for multi-step Peer methods.

The potential of the proposed high-order coupling between DG method
and implicit temporal schemes and the efficiency of the proposed numerical
strategies have been exhaustively examined on compressible and incompress-
ible benchmark test cases and finally demonstrated by computing the implicit
Large Eddy simulation of the massively separated compressible flow over pe-
riodic hills. This test case has been deeply analysed in the literature [17,32,49]
since it offers a number of important features challenging from the point of
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view of both turbulence modelling and simulation. Indeed, it is characterized
by the formation of a large recirculation area behind the hill crest followed by
a post-reattachment-recovery region. These features are difficult to simulate
being strongly sensitive to numerical and modelling issues.

The turbulent flow over periodic hills is part of the test case repository de-
fined inside the EU project TILDA (Towards Industrial LES/DNS in Aeronau-
tics - Paving the Way for Future Accurate CFD) at which the Computational
Fluid Dynamics group of Universit degli Studi di Bergamo is engaged.

In addition, in this work we investigated a high order Discontinuous Galerkin
approach applied to the variable density incompressible (VDI) flow model for
the simulation of interface problems. The VDI flow model [36, 47, 66] has
very attractive features when dealing with multicomponent flow simulations.
Indeed, the model includes the constant density incompressible NavierStokes
equations equipped by an overall continuity equation governing the evolution
of the density distribution. In particular, thanks to the divergence free con-
straint, the density is treated as a purely advected property and thus it allows to
track possibly multiple (more than two) fluids preserving the mass conserva-
tion. Moreover, following a diffuse interface approach, the fluid interface can
be handled by means of high-degree polynomials like any other point of the
flow without requiring geometrical reconstructions.

Nevertheless, several challenging numerical issues must be taken into ac-
count when applying high-order DG methods to multicomponent flows. Above
all the density positivity, the proper treatment of the discontinuities of fluid
properties across the interface and the opportune definition of interface fluxes
are required.

In order to ensure the density positivity we proposed a proper choice of the
working variables able, besides, to limit over/undershoots. Furthermore we
handled spurious density oscillations at interfaces by adding a local artificial
viscosity term to the DG discretization. Finally we derived a new Riemann
solver based on the artificial compressibility approach for the inviscid interface
flux treatment.

In order to demonstrate the potential of the presented DG approach for the
solution of interface problems, several numerical experiments of free surface
flows involving also high-density ratios (water-air) and the possible interac-
tion of more than two fluids using a very high-order polynomial representation
of the solution on relatively coarse grids have been performed. Results ob-
tained represents the first step of one task of the International Research Train-
ing Group project DROPIT (Droplet Interaction Technologies).
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CHAPTER1
Governing equations

In this chapter will be reported the set of equations used in this thesis work for
compressible and incompressible flows.

1.1 Compressible flow model

Using Einstein notation, the continuity and Navier-Stokes equations read

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (1.1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+
∂τij
∂xj

+ ρgi, (1.2)

where ρ is the density, p the pressure, ui=1,...,d the i-th component of the veloc-
ity, gi=1,...,d the i-th component of the body acceleration, τij the stress tensor
defined as

τij = 2µ

[
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3

∂uk
∂xk

δij

]
, (1.3)

µ the dynamic viscosity and d the problem dimension, i.e. d = 1, 2, 3 for one-,
two- and three-dimensional problems respectively. Eqs. (1.1) and (1.2) define
a system of d+ 1 equations in d+ 2 unknowns.
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Chapter 1. Governing equations

For compressible flows the problem closure is achieved by adding the en-
ergy equation

∂

∂t
(ρE) +

∂

∂xj
(ρHuj) =

∂

∂xj
[uiτij − qj] + ρujgj, (1.4)

and a relation between state variables named equation of state (EoS). For an
ideal gas this equation is called ideal gas law and writes

p = ρRT, (1.5)

where E is the total energy, H the total enthalpy, qj the j-th component of the
heat flux vector, R = R0 the gas constant, T the temperature and

E = e+
u2i
2
, H = h+

u2i
2
, (1.6)

e =
1

γ − 1
RT, h =

γ

γ − 1
RT, (1.7)

qj = − µ

Pr

∂h

∂xj
, µ = µ0

(
T

T0

)α
(1.8)

with γ the gas specific heats ratio, Pr the molecular Prandtl number and µ0,
T0 the dynamic viscosity and the temperature at reference conditions. The
body acceleration is typically set constant |g| = g = g0, e.g. the gravitational
acceleration. Hereinafter, compressible flows are always referred to an ideal
gas.

1.2 Constant density incompressible flow model

For constant density incompressible (CDI) flows the problem closure is typi-
cally realised considering the density as a constant value at reference conditions

ρ = ρ0. (1.9)

This assumption allows to rewrite the continuity equation (1.1) as the so called
divergence free constraint

∂uj
∂xj

= 0, (1.10)

that means the velocity is a solenoidal field. Therefore, the set of the constant
density Navier-Stokes equations is

∂uj
∂xj

= 0,

∂ui
∂t

+
∂

∂xj
(uiuj) = − ∂

∂xi

(
p

ρ0

)
+

∂

∂xj

(
τij
ρ0

)
+ gi,

(1.11)

where the dynamic viscosity µ = µ0 and the body acceleration |g| = g = g0
are typically set constant.
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1.3. Variable density incompressible flow model

1.3 Variable density incompressible flow model

It is possible to derive a more general model for incompressible flows. Indeed,
Eq. (1.9) represents only a particular case of the more general incompressible
flow assumption

Dρ

Dt
= 0, (1.12)

that reads the material density is constant. Combining Eq. (1.12) with the con-
tinuity equation (1.1), the divergence free constraint (1.10) is derived again.
Therefore, the set of equations for variable density incompressible flows is

∂uj
∂xj

= 0,

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+
∂τij
∂xj

+ ρgi,

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0,

(1.13)

where the divergence free constraint and the continuity equation must be solved
together in order to verify Eq. (1.12). Notice that considering the condition
(1.9) the continuity equation collapse to the divergence free constraint and the
system (1.11) is recovered. Here the dynamic viscosity can be defined as a
suitable function of the density µ = µ(µ0, ρ, ρ0) while the body acceleration is
typically set constant |g| = g = g0, where subscripts 0 denotes again quantities
at reference conditions.

Since the density is treated as a purely advected property, the system (1.13)
is a very appealing model to deal with multicomponent flow problems, e.g. free
surface flows. In particular the density allows to capture the interface between
two or more fluids in an implicit way via the diffuse interface approach which
has different advantages:

• interfaces are handled like any other point of the flow,

• mass conservation is ensured by the presence of the continuity equation,

• it allows to deal with multicomponent flows, i.e. multi-density flows,
without the need of interface reconstruction.

However, this approach has some drawbacks:

• interfaces can be excessively diffused,

• interfaces are not explicitly defined in the sense that the system (1.13)
does not provide explicitly the position of the interface,

• the model (1.13) deals only with incompressible flows.
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Chapter 1. Governing equations

Table 1.1: Principal reference quantities for compressible flows

reference quantity symbol
length lr
density ρr
pressure pr
gas constant Rr

Table 1.2: Principal reference quantities for incompressible flows

reference quantity symbol
length lr
density ρr
velocity ur

1.4 Non-dimensionalization of governing equations

In the present work the dimensionless form of governing equations is obtained
considering the set of principal reference quantities reported in Tab. 1.1 and
Tab. 1.2 for compressible and incompressible flows respectively. Basing on
principal reference quantities all remaining reference quantities can be derived
through relations reported in Tab. 1.3 and Tab. 1.4.

Non-dimensional equations are obtained substituting the generic dimen-
sional property φ with its non-dimensional value φ∗ by means the relation

φ = φ∗φr, (1.14)

where φr is its reference quantity. Defining with φ0 the quantity at reference
conditions (e.g. experimental conditions), non-dimensional form of governing
equations reads

• for compressible flows

∂ρ∗

∂t∗
+

∂

∂x∗j
(ρ∗u∗j) = 0,

∂

∂t∗
(ρ∗u∗i ) +

∂

∂x∗j
(ρ∗u∗iu

∗
j) = −∂p

∗

∂x∗i
+
∂τ ∗ij
∂x∗j

+ ρ∗g∗i ,

∂

∂t∗
(ρ∗E∗) +

∂

∂x∗j
(ρ∗H∗u∗j) =

∂

∂x∗j

[
u∗i τ

∗
ij − q∗j

]
+ ρ∗u∗jg

∗
j ,

(1.15)

with
p∗ = ρ∗R∗T ∗, (1.16)

lr = l0, ρr = ρ0, pr = p0, Rr = R0, (1.17)

4



1.4. Non-dimensionalization of governing equations

Table 1.3: Reference quantities relations for compressible flows

reference quantity symbol relation
time tr lrρ

1/2
r p

−1/2
r

velocity ur ρ
−1/2
r p

1/2
r

temperature Tr ρ−1
r prR

−1
r

dynamic viscosity µr lrρ
1/2
r p

1/2
r

body acceleration gr l−1
r ρ−1

r pr
internal energy er ρ−1

r pr
enthalpy hr ρ−1

r pr

Table 1.4: Reference quantities relations for incompressible flows

reference quantity symbol relation
time tr lru

−1
r

pressure pr ρru
2
r

dynamic viscosity µr lrρrur
body acceleration gr l−1

r u2r

and

l∗ =
l

l0
, (1.18)

ρ∗ =
ρ

ρ0
, (1.19)

p∗ =
p

p0
, (1.20)

R∗ = 1, (1.21)

t∗ =

√
Eu

St

t

t0
, (1.22)

u∗ =
1√
Eu

u

u0
, (1.23)

T ∗ =
T

T0
, (1.24)

µ∗ =
1√

Eu Re

(
T

T0

)α
, (1.25)

g∗ =
1

Eu Fr2
, (1.26)

e∗ =
1

γ − 1

T

T0
, (1.27)

h∗ =
γ

γ − 1

T

T0
, (1.28)
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Chapter 1. Governing equations

• for constant density incompressible flows

∂u∗j
∂x∗j

= 0,

∂u∗i
∂t∗

+
∂

∂x∗j
(u∗iu

∗
j) = − ∂

∂x∗i

(
p∗

ρ∗

)
+

∂

∂x∗j

(
τ ∗ij
ρ∗

)
+ g∗i ,

(1.29)

with

lr = l0, ρr = ρ0, ur = u0, (1.30)

and

l∗ =
l

l0
, (1.31)

ρ∗ = 1, (1.32)

u∗ =
u

u0
, (1.33)

t∗ =
1

St

t

t0
, (1.34)

p∗ = Eu
p

p0
, (1.35)

µ∗ =
1

Re
, (1.36)

g∗ =
1

Fr2
, (1.37)

• for variable density incompressible flows

∂u∗j
∂x∗j

= 0,

∂

∂t∗
(ρ∗u∗i ) +

∂

∂x∗j
(ρ∗u∗iu

∗
j) = −∂p

∗

∂x∗i
+
∂τ ∗ij
∂x∗j

+ ρ∗g∗i ,

∂ρ∗

∂t∗
+

∂

∂x∗j
(ρ∗u∗j) = 0,

(1.38)

with

lr = l0, ρr = ρ0, ur = u0, (1.39)
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1.4. Non-dimensionalization of governing equations

and

l∗ =
l

l0
, (1.40)

ρ∗ =
ρ

ρ0
, (1.41)

u∗ =
u

u0
, (1.42)

t∗ =
1

St

t

t0
, (1.43)

p∗ = Eu
p

p0
, (1.44)

µ∗ =
1

Re
f(ρ∗), (1.45)

g∗ =
1

Fr2
, (1.46)

where

St =
l0
t0u0

, Re =
ρ0u0l0
µ0

,

Fr =
u0√
g0l0

, Eu =
p0
ρ0u20

,
(1.47)

are the Strouhal, Reynolds, Froude and Euler numbers respectively. We re-
member for compressible flows that from the ideal gas law (1.5) follows

Eu =
1

γM2
, (1.48)

where M = u0/
√
γR0T0 is the Mach number.

All non-dimensional quantities have been here derived imposing that prin-
cipal reference quantities (Tab. 1.1 and 1.2) are equal to respective quantities at
reference conditions (subscript 0). However, for some flow problems it could
be useful considering other values of principal reference quantities. For this
purpose we define the generic ratio

αφ =
φr
φ0

, (1.49)

and therefore obtain

• for compressible flows

αl =
lr
l0
, αρ =

ρr
ρ0
, αp =

pr
p0
, αR =

Rr

R0

, (1.50)
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Chapter 1. Governing equations

with, from relations in Tab. 1.3

αt =
tr
t0

=
St√
Eu

αl

√
αρ
αp
, (1.51)

αu =
ur
u0

=
√
Eu

√
αp
αρ
, (1.52)

αT =
Tr
T0

=
αp
αραR

, (1.53)

αµ =
µr
µ0

=
√
Eu Re αl

√
αραp, (1.54)

αg =
gr
g0

= Eu Fr2
αp
αlαρ

, (1.55)

αe =
er
e0

= (γ − 1)
αp
αρ
, (1.56)

αh =
hr
h0

=
γ − 1

γ

αp
αρ
, (1.57)

• and for (both constant and variable density) incompressible flows

αl =
lr
l0
, αρ =

ρr
ρ0
, αu =

ur
u0
, (1.58)

with, from relations in Tab. 1.4

αt =
tr
t0

= St
αl
αu
, (1.59)

αp =
pr
p0

=
1

Eu
αρα

2
u, (1.60)

αµ =
µr
µ0

= Re αlαραu, (1.61)

αg =
gr
g0

= Fr2
α2
u

αl
. (1.62)

Finally, combining Eq. (1.14) and Eq. (1.49) for all non-dimensional quantities
it follows that

φ∗ =
φ

φ0αφ
. (1.63)

Hereinafter, for clarity purpose, the superscript ∗ will be neglected and all
quantities must be considered as non-dimensional unless otherwise specified.
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CHAPTER2
Space and time discretization

The governing equations both for compressible (1.15) and incompressible (1.29),
(1.38) cases can be written in the following compact form

D
∂u

∂t
+∇ · Fc(u) +∇ · Fv(u,∇u) + s(u) = 0, (2.1)

where u ∈ Rm is the vector of them conservative variables, Fc,Fv ∈ Rm⊗Rd

are the convective and viscous flux functions, s is the source term and D ∈
Rm ⊗ Rm is

• for compressible flows the identity matrix

D = I, (2.2)

• for (both constant and variable density) incompressible flows the differ-
ence between the identity and a single-entry matrix

D = I− J11, (2.3)

where the single-entry matrix is defined as

J11 =

{
1 i = 1, j = 1

0 otherwise.
(2.4)

9



Chapter 2. Space and time discretization

In the following chapter we will show the high-order space and time dis-
cretization of Eqs. (2.1) adopted in this work by means of the Discontinuous
Galerkin finite element method and some of the state of art implicit time inte-
gration schemes. In particular, we will emphasise the challenging features re-
sulting from the application of such high-order methods to the variable density
incompressible flow model for the simulation of multicomponent flow prob-
lems.

2.1 The DG discrete setting

Denoted Th = {K} the mesh of the domain Ω ∈ Rd, d ∈ {2, 3} consisting of
non-overlapping arbitrarily shaped elements K such that

Ωh =
⋃
K∈Th

K, (2.5)

and basing on the idea to define discrete polynomial spaces in physical coor-
dinates (see [6,10,11,16, 27,33]) we consider DG approximations built on the
space

Pkd(Th)
def
=
{
vh ∈ L2(Ω) | vh|K ∈ Pkd(K), ∀K ∈ Th

}
, (2.6)

where k is a non-negative integer and Pkd(K) denotes the restriction to K of
the polynomial functions of d variables and total degree ≤ k. To build a satis-
factory basis for the space (2.6) we follow the procedure presented in [61] (see
also [4,26]) allowing to obtain orthonormal and hierarchical basis functions by
means of the modified Gram-Schmidt (MGS) algorithm. The starting set of
basis functions for the MGS algorithm are monomials defined over each ele-
mentary space Pkd(K), K ∈ Th, in a reference frame relocated in the element
barycenter and aligned with the principal axes of inertia of K.

Afterwards we introduce the set Fh of the mesh faces Fh
def
= F i

h∪F b
h, where

F b
h collects the faces located on the boundary of Ωh and for any internal face

F ∈ F i
h there exist two elements K+, K− ∈ Th such that F ∈ ∂K+ ∩ ∂K−.

Moreover, for all F ∈ F b
h, nF denotes the unit outward normal to Ωh, whereas,

for all F ∈ F i
h, n−

F and n+
F are unit outward normals pointing to K+ and K−,

respectively. Since a function vh ∈ Pkd(Th) is double valued over an internal
face F ∈ F i

h, we also introduce the jump [[·]] and average {·} trace operators,
that are

[[vh]]
def
= vh|K+n+

F + vh|K−n−
F , {vh}

def
=
vh|K+ + vh|K−

2
, (2.7)

and consider them to act componentwise when applied to vector functions.
Finally, the DG discretization of second-order viscous terms employs the

lifting operators rF and r. For all F ∈ Fh, we define the local lifting operator

10



2.2. DG discretization of governing equations

rF : [L2(F )]
d → [Pkd(Th)]d, such that, for all v ∈ [L2 (F )]

d,∫
Ω

rF (v) · τhdx = −
∫
F

{τh} · vdF ∀τh ∈ [Pkd(Th)]d. (2.8)

The global lifting operator r is then defined as

r (v)
def
=
∑
F∈Fh

rF (v) . (2.9)

2.2 DG discretization of governing equations

The system (2.1) can be written in terms of a generic set of variables, e.g.
conservative variables or primitive variables or another set of variables suitably
defined to reach a desired property, named working variables w

DP(w)
∂w

∂t
+∇ · Fc(w) +∇ · Fv(w,∇w) + s(w) = 0, (2.10)

where matrix P(w) takes into account of the transformation from conserva-
tive to working variables. The choice of the set of working variables will be
analysed in Sec. 2.3.

By multiplying Eq. (2.10) by an arbitrary smooth test function v = {v1, . . . , vm},
and integrating by parts, we obtain the weak formulation∫

Ω

v ·
(
DP (w)

∂w

∂t

)
dx−

∫
Ω

∇v : [Fc (w) + Fv (w,∇w)] dx

+

∫
∂Ω

v ⊗ n : [Fc (w) + Fv (w,∇w)] dσ +

∫
Ω

v · s(w)dx = 0, (2.11)

where n is the unit vector normal to the boundary.
To discretize Eq. (2.11) we replace the solution w and the test function v

with a finite element approximation wh and a discrete test function vh, respec-
tively, where wh and vh belong to the space Vh

def
= [Pkd(Th)]m. For each of

the m equations of system (2.11) and for any element K, without loss of gen-
erality we choose as the set of shape and test functions the set {φ} of NK

dof

orthogonal and hierachical basis functions in that element. With this choice
each component wh,j , j = 1, . . . ,m, of wh ∈ Vh can be expressed, in terms of
the elements of the global vector W of unknown degrees of freedom (DoF), as
wh,j = φlWj,l, l = 1, . . . , NK

dof , ∀K ∈ Th. Therefore, the DG discretization of
the governing equations consists in seeking, for j = 1, . . . ,m, the elements of
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Chapter 2. Space and time discretization

W such that∑
T∈Th

∫
T

φiDj,tPt,k (wh)φl
dWk,l

dt
dx

−
∑
T∈Th

∫
T

∂φi
∂xn

[Fc,j,n (wh) + Fv,j,n (wh,∇hwh + r ([[wh]]))] dx

+
∑
F∈Fh

∫
F

[[φi]]n

[
F̂c,j,n

(
w±
h

)
+ F̂v,j,n

(
w±
h , (∇hwh + ηF rF ([[wh]]))

±)] dσ
+
∑
T∈Th

∫
T

φisj (wh) dx = 0, (2.12)

for i = 1, . . . , NK
dof . Repeated indices imply summation over ranges k =

1, . . . ,m, l = 1, . . . , NK
dof , n = 1, . . . , d. Moreover, integrating again by parts

the inviscid flux we obtain the strong formulation (at least for the convective
term)∑

T∈Th

∫
T

φiDj,tPt,k (wh)φl
dWk,l

dt
dx

+
∑
T∈Th

∫
T

φi
∂

∂xn
Fc,j,n (wh) dx

−
∑
T∈Th

∫
T

∂φi
∂xn

Fv,j,n (wh,∇hwh + r ([[wh]])) dx

+
∑
F∈Fh

∫
F

[[φi]]n

[
F̂c,j,n

(
w±
h

)
− Fc,j,n

(
w±
h

)]
dσ

+
∑
F∈Fh

∫
F

[[φi]]n F̂v,j,n
(
w±
h , (∇hwh + ηF rF ([[wh]]))

±) dσ
+
∑
T∈Th

∫
T

φisj (wh) dx = 0. (2.13)

Weak and strong formulations are mathematically equivalent but computation-
ally different [39]. To the authors’ knowledge there is not jet a clear way to
define a priori what kind of formulation is more advisable. Basing on our ex-
perience in this work we use the strong formulation for variable density incom-
pressible flows because it showed to be more robust with respect to weak one
when dealing with incompressible multicomponent problems with very high
density ratios. Conversely, since for compressible and constant density incom-
pressible flows no differences in robustness are found for the two formulation,
the weak one is implemented.
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2.2. DG discretization of governing equations

The DG discretization of the viscous fluxes is based on the BR2 scheme,
proposed in [11] and theoretically analyzed in [18] and [1]. Following this
scheme, the viscous numerical flux is given by

F̂v

(
w±
h , (∇hwh + ηF rF ([[wh]]))

±) def
= {Fv (wh,∇hwh + ηF rF ([[wh]]))}

(2.14)
where the stability parameter ηF is defined accordingly to [1].

The convective numerical flux is computed from the solution of local Rie-
mann problems in the normal direction at each integration point on elements
boundaries. For compressible flows, the exact Riemann solver of Gottlieb and
Groth [35] is used. For CDI flows, the approach proposed in [6] is employed,
whereby the convective numerical flux is computed from the exact solution
of local Riemann problems modified by means of an artificial compressibility
perturbation. Finally, for VDI flows, following the approach of the artificial
compressibility perturbation we define a new local Riemann problem able to
take into account of density contributes to interface inviscid fluxes. This new
approach is reported in detail in Sec. 2.5.

2.2.1 DG boundary condition treatment

The DG discretization is very well suited to weakly enforce boundary condi-
tions, [7, 11]. This can be achieved by properly defining at each integration
point on boundaries the state wb and its gradient ∇wb which are used to com-
pute the numerical convective and viscous fluxes and the lifting operators for
all F ∈ F b

h.
At inflow, outflow, and farfield boundaries the state wb, defined using pre-

scribed boundary data and the Riemann invariants related to the outgoing char-
acteristics, enters in the Riemann solver and allows to compute, together with
the internal state w−

h , the numerical convective flux. For these types of bound-
aries, the gradient is defined as

∇wb = ∇w−
h + ηF rF

(
[[w]]b

)
, (2.15)

where rF ([[w]]b) is the lifting associated to the jump between wb and w−
h .

For solid wall boundaries, the state wb and its gradient ∇wb are defined
exactly at the wall. In particular, the state at the wall has zero velocity relative
to the boundary and its pressure is determined from the analytical solution of
the Riemann problem for a flow moving towards (or away from) the wall with
the normal velocity component of the internal state. For compressible flows,
the energy conservation equation requires a boundary condition either for the
wall temperature, which is set in the state wb, or for the wall heat flux, which is
proportional to the normal component of the temperature gradient ∇wb at the
wall.
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Chapter 2. Space and time discretization

2.3 Working variables

The transformation matrix P(w) in Eq. (2.10) allows to solve the system of
governing equation for a set of working variables that differs from the con-
servative ones u. More in particular for each possible set of w for which
u = u(w) the matrix verifies

∂u

∂t
= P(w)

∂w

∂t
. (2.16)

Thus we define

P(w) =
∂u

∂w
. (2.17)

2.3.1 Compressible flows

For compressible flows, the set of primitive variables (p, ui, T ) is widely used
especially when dealing with low Mach number [23, 66] and recently it also
proved to be effective in the context of high-order DG approximations [9].
Primitive variables allow an easier and more efficient computation of the con-
tributions to the Jacobian matrix related to the viscous terms discretization and
to the implicit treatment of boundary conditions. Furthermore, they offer the
possibility to ensure the positivity of all thermodynamic variables at the dis-
crete level. For this purpose it is sufficient to apply the DG polynomial approx-
imation for logarithms of pressure and temperature [3, 5]

p̃ = ln(p), T̃ = ln(T ). (2.18)

Indeed, pressure and temperature values computed as

p = ep̃, T = eT̃ , (2.19)

are always positive. Therefore, defining the set of working variables for com-
pressible flows as

w = [p̃, ui, T̃ ]
T , (2.20)

and writing the set of conservative variables as

u = u(w) =

 ρ

ρui

ρE

 =


exp (p̃− T̃ )

exp (p̃− T̃ )ui
exp (p̃)

γ − 1
+ exp (p̃− T̃ )

u2i
2

 , (2.21)
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2.3. Working variables

the transformation matrix between u and w reads

P (w) =


ρp̃ 0 0 0 ρT̃
ρp̃u1 ρ 0 0 ρT̃u1

ρp̃u2 0 ρ 0 ρT̃u2

ρp̃u3 0 0 ρ ρT̃u3

ρp̃E ρEu1 ρEu2 ρEu3 ρT̃E + ρET̃

 , (2.22)

where

ρp̃ =
∂ρ

∂p̃

∣∣∣∣
ui,T̃

= ρ, ρT̃ =
∂ρ

∂T̃

∣∣∣∣
p̃,ui

= −ρ, (2.23)

Eui =
∂E

∂ui

∣∣∣∣
p̃,T̃

= ui, ET̃ =
∂E

∂T̃

∣∣∣∣
p̃,ui

=
exp (T̃ )

γ − 1
. (2.24)

2.3.2 Constant density incompressible flows

For constant density incompressible flows it is quite natural to use the set of
primitive variables

w = [p, ui]
T , (2.25)

since from condition (1.9) u = w. Therefore, the transformation matrix is
simply the identity matrix

P = I. (2.26)

2.3.3 Variable density incompressible flows

In order to define the set of working variables for VDI flows it could be use-
ful considering two important issues. The first one is that here the density is
no more constant and thus it must be ensured its positivity. The second one
concerns density under/overshoots deriving from the discretization of disconti-
nuities inside density field, i.e. density interfaces when dealing with multicom-
ponent flow problems.

In this work we handle both issues by discretizing and evolving in time a
new density variable ρ̃ which is defined in such a way that

ρ =
ρ+ + σlρ−

2
(1 + tanh (σsρ̃)) +

ρ− − σlρ−
2

(1− tanh (σsρ̃)) =

= ρ+
rρ + 1 + (rρ − 1 + 2σl) tanh(σsρ̃)

2rρ
,

(2.27)

and thus

ρ̃ =
1

2σs
ln

 rρ
ρ

ρ+
− 1 + σl

−rρ
ρ

ρ+
+ rρ + σl

, (2.28)
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Chapter 2. Space and time discretization

where ρ+ (resp. ρ−) is the user-defined maximum (resp. minimum) density
field value, rρ = ρ+/ρ− is the maximum density ratio and σl ∈ R+, σs ∈
R\ {0} are respectively the limiter and the scaling factors.

The limiter factor σl defines the infimum and the supremum of the hyper-
bolic transformation (2.27) as

inf (ρ) = ρ− − σlρ−, sup (ρ) = ρ+ + σlρ−. (2.29)

By choosing σl = 0 it is clear that density under/overshoots are avoided since
inf (ρ) = ρ− and sup (ρ) = ρ+. However from Eq. (2.28) this choice implies
that inf (ρ̃) → −∞ and sup (ρ̃) → +∞ thus making difficult to handle the ρ̃
discretization. Therefore, in order to reduce as much as possible the magnitude
of ρ̃ meanwhile preserving the density positivity, we impose σl = 1 so that

inf (ρ) = 0, sup (ρ) = ρ+ + ρ−. (2.30)

As a consequence, under/overshoots are admitted during simulations still being
restricted to ρ− value.

The scaling factor σs is a free parameter that can be set in order to limit the
initial range ∆ρ̃ = ρ̃(ρ+) − ρ̃(ρ−) of the working variable ρ̃ to the maximum
value ∆iρ̃

σs = max

[
1

∆iρ̃
ln

(
rρ − 1 + σl

σl

)
; 1

]
. (2.31)

Hereafter we simply consider ∆iρ̃ = 1.
The set of working variable is thus

w = [p, ui, ρ̃]
T , (2.32)

and starting from conservative variables u = [p, ρui, ρ]
T , the transformation

matrix reads

P (w) =


1 0 0 0 0

0 ρ 0 0 ρρ̃u1

0 0 ρ 0 ρρ̃u2

0 0 0 ρ ρρ̃u3

0 0 0 0 ρρ̃

 , (2.33)

where

ρρ̃ =
∂ρ

∂ρ̃

∣∣∣∣
p,ui

= σsρ+
rρ − 1 + 2σl

2rρ cosh
2 (σsρ̃)

. (2.34)

We remember that, conversely to compressible flows, the (both constant
and variable density) incompressible flow solution does not require to verify
the positivity of pressure field at discrete level.

16



2.4. Discontinuities treatment for incompressible multicomponent problems

2.4 Discontinuities treatment for incompressible multicomponent
problems

In the previous section we introduced for variable density incompressible flows
the working variable ρ̃ with the goal to ensure the positivity of density and to
limit the oscillations on ρ arising from higher order DG approximations of
density discontinuities when dealing with multicomponent problems. How-
ever, it must be clear that this strategy does not numerically control Gibbs-type
phenomena. Therefore, a proper treatment of density oscillations must be in-
troduced in order to enhance the robustness of the discretization.

For this purpose we decide to use the treatment of jumps proposed by Pers-
son and Peraire [53] and based on shock capturing strategies inspired by early
artificial viscosity methods [64]. For the sake of simplicity we can consider the
generic conservation law for the variable q

∂q

∂t
+∇ · F(q) = 0, (2.35)

with F(q) the fluxes vector. If the conserved variable q shows discontinuities
inside the domain, higher order approximations lead to oscillations of the so-
lution which can generate strong instabilities. The key idea of the shock cap-
turing strategy is to add an artificial viscosity term inside the original equation

∂q

∂t
+∇ · F(q) = ∇ · (ε∇q) . (2.36)

The parameter ε controls the amount of the viscosity and, as suggested in [53],
when attempting to resolve jumps it should be defined as a function of the ratio
between the element dimension (h) and the DG polynomial order (p = k + 1)

ε ∝ O(h/p). (2.37)

Away from discontinuities instead it should be set null (ε = 0). This strat-
egy fits very well with DG approximation since introduces a small quantity
of viscosity which decreases with higher polynomial order allowing to capture
discontinuities as thin layers with continuous sharp gradients inside a single
mesh element.

The choice of the smoothness sensor that detects discontinuities inside the
domain (and thus defines ε value) is obviously a critical element of this ap-
proach. Persson and Peraire proposed a sensor based on the modal decay of
the coefficients ql in the DG polynomial expansion

qh = φlql, (2.38)

where φl=1,...,NK
dof

are hierarchical and orthogonal basis functions and qh ∈
Pkd(T ). When the solution is smooth these coefficients are expected to decay
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Chapter 2. Space and time discretization

quickly. If we represent approximately the decay as an asymptotic behaviour

|ql| ∝ c l−s, ∀l = 1, . . . , NK
dof , (2.39)

this means that the exponent s, that can be found through least-squares fitting,
has very high values (s� 1). Conversely for non smooth solutions, i.e. jumps
on variable q, the decay shows an exponent s ≈ 1. More in detail, in analogy
with Fourier modal decay, it is expected that s ≈ 1 for discontinuous solutions
inside the element (u /∈ C0), s ≈ 2 for u ∈ C0 \C1, s ≈ 3 for u ∈ C1 \C2 and
so on. However, Klöckner et al. showed in [44] that due to even-odd effects,
i.e. non monotone decays, a direct use of parameter s as smoothness sensor can
lead to misleading results in jumps detection. For this reason they proposed a
new procedure to define s, termed skyline pessimization, that defines a new set
of modal coefficients

qn = max
i=min (n,k−1),...,k

(q̂i), (2.40)

where n ∈ {1, 2, . . . , k} is the mode number and

q̂i = max
l=li,...,li+1−1

|ql|, (2.41)

with [li, . . . , li+1 − 1] the DoFs associated to the i-th mode. Then, basing on
the asymptotic behaviour

qn ∝ c m−sn , ∀n = 1, . . . , k, (2.42)

where m ∈ [min (n, k − 1), k] is the mode for which q̂m = qn, they compute
each exponent

sn =
ln (qn)

ln

(
1

m

) , (2.43)

and define the smoothness sensor as the minimum of all exponent values

s = min
n

(sn) . (2.44)

Once computed the smoothness sensor inside a mesh element, following the
choice of Perrson and Peraire the artificial viscosity is set as

ε =


ε0 if s < s0 −∆s

ε0
2

[
1− sin

(
π
s0 − s

2∆s

)]
if s0 −∆s ≤ s ≤ s0 +∆s

0 otherwise,

(2.45)

where ε0 ∝ O(h/p) is the maximum value of the artificial viscosity, s0 is the
user-defined threshold value of the smoothness sensor and 2∆s is the range of
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2.4. Discontinuities treatment for incompressible multicomponent problems

smoothness sensor value for which the viscosity assumes intermediate values
between 0 and ε0.

The approach above described is here applied to VDI equation in order to
control density oscillations when dealing with incompressible multicomponent
flow problems. The artificial viscosity modified set of equations for VDI flows
reads

∂uj
∂xj

= 0,

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+
∂τij
∂xj

+ ρgi + ui
∂

∂xj

(
ε
∂ρ

∂xj

)
,

∂ρ

∂t
+

∂

∂xj
(ρuj) =

∂

∂xj

(
ε
∂ρ

∂xj

)
.

(2.46)

Notice that we added the artificial viscosity term not only to the continuity
equation, which rules the evolution of the density, but also to the momentum
equation. With this particular choice we take into account of the effects of the
artificial viscosity term on the density evolution on both equations. An interest-
ing consequence is that the non-conservative form of the momentum equation
is maintained independent from the artificial viscosity term. Indeed, combin-
ing the momentum equation with the continuity equation written in Eq. (2.46)
we get

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

1

ρ

∂τij
∂xj

+ gi. (2.47)

We point out that all simulations performed without the additional artificial
viscosity term to the momentum equation led to meaningless solutions.

The smoothness sensor s is here defined on the modal decay of the working
variable ρ̃ and the parameters used for the shock capturing technique are set

s0 = 1, ∆s = 0.75, ε0 = c
h

p
, (2.48)

where the constant c is considered unitary unless otherwise specified.
The introduction of the artificial viscosity term however requires the dis-

cretization of second order derivatives that must be opportrunely treated from
the Godunov numerical fluxes point of view. In order to avoid this issue we
follow the idea proposed by Jaffre et al. in [42] which treat the artificial vis-
cous term as a source term. Therefore, only the volume contribute is consider
and reads ∑

T∈Th

∫
T

bε,j
∂φi
∂xn

Fε,j,n (∇hwh) dx, (2.49)
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where, from Eq. (2.46)

bε =

 0

ui

1

 , Fε(∇w) =

 0

ε∇ρ
ε∇ρ

 . (2.50)

Finally, we point out that the mass conservation is still preserved since the
artificial viscosity is applied only to the density gradient and thus does not
affect the mean value inside the element.

2.5 Riemann solver for variable density incompressible flows

In order to compute Godunov numerical fluxes for VDI flows, in this work
we define a new Riemann solver based on the artificial compressibility method
following the previous works of Elsworth and Toro [31] and Bassi et al. [6] for
CDI flows.

The local planar VDI set of equation modified by means of the artificial
compressibility term is

1

ρc2
∂p

∂t
+
∂qn
∂x

= 0

∂ρqn
∂t

+
∂(ρq2n + p)

∂x
= 0

∂ρθ

∂t
+
∂(ρθqn)

∂x
= 0

∂ρ

∂t
+
∂(ρqn)

∂x
= 0,

(2.51)

where the hyperbolic nature of equations is restored by adding the artificial
compressibility term to the the divergence free constraint. Here c ∈ R \ {0}
is the artificial compressibility coefficient and qn and θ are the normal and
the tangential velocities to the element edge, respectively. x denotes a locally
defined axis oriented as the normal vector pointing out of the element K+ with
origin at point P (see Fig. 2.1).

The problem (2.51) can be written in a conservative form by considering
the density ρ that appears in the divergence and the momentum equations as
a constant quantity ρ̂. This simplifying assumption allows to decouple the
velocity and the pressure evolutions from the density field. Moreover, θ can be
now considered as a generic conserved property, i.e. both density and tangential
velocity. Therefore, the local planar artificial compressibility VDI system of
equations becomes

∂w

∂t
+
∂F(w)

∂x
= 0, (2.52)
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P

f
x

y

K−

K+

Figure 2.1: Local frame at quadrature point P on edge f .

with

w =


p

qn

θ

 , F (w) =


ρ̂c2qn

q2n +
p

ρ̂

θqn

 . (2.53)

The Jacobian matrix is given by

A =
∂F (w)

∂w
=


0 ρ̂c2 0

1

ρ̂
2qn 0

0 θ qn

 , (2.54)

and eigenvalues vector λ and left and right eigenvector matrices L and R are

λ =


qn − a

qn

qn + a

 ,

L =



1

ρ̂
qn − a 0

−1

ρ̂
−qn

a2

θ
1

ρ̂
qn + a 0

 ,

R =
1

2a


ρ̂ (qn + a) 0 −ρ̂ (qn − a)

−1 0 1

θ

a

2θ

a

θ

a

 ,

(2.55)
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L R

∗
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contact discontinuity

Figure 2.2: Structure of the Riemann problem.

where
a =

√
q2n + c2. (2.56)

By definitions of c and a is clear that λ1 < 0, λ3 > 0 and λ1 < λ2 < λ3.
Starting from the piece-wise constant initial datum

w0 =

{
wL x < 0

wR x > 0,
(2.57)

the exact solution of the local problem (2.52) can be found following the pro-
cedure described in [6, 31]. The Riemann problem solution entails four states
separated by two centered waves, hereafter called left (L) and right (R) waves
and associated with the eigenvalues λ1 and λ3 respectively, and a contact dis-
continuity referred to the eigenvalue λ2 (see Fig. 2.2). Left and right waves
can be either rarefaction or shock waves depending on w0 and across them
all the unknowns w can change. Instead, in the region between waves, called
star region (?), pressure and normal velocity are constant and only the con-
served property θ can vary. Since the star region holds the Riemann solution
on x/t = 0 line which is used for the computation of the Godunov numerical
fluxes, in the following we describe in detail the procedure to obtain w?.

2.5.1 Rarefaction waves and Riemann invariants

The solution across a rarefaction wave can be obtained by means of Riemann
invariants Γ. Indeed, invariants are conserved inside this kind of wave. In
particular Riemann invariants assume constant values along the caracteristic
curves

Ci (x, t) = x+ λit. (2.58)
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2.5. Riemann solver for variable density incompressible flows

By definition, the gradients of Riemann invariants are the left eigenvectors Li
of matrix A, where i = 1, 2, 3 is the row number of matrix L. It follows that

dΓ1 = L1 · dw =
1

ρ̂
dp+ (qn − a) dqn = 0 on C1

dΓ2 = L2 · dw = −1

ρ̂
dp− qndqn +

a2

θ
dθ = 0 on C2

dΓ3 = L3 · dw =
1

ρ̂
dp+ (qn + a) dqn = 0 on C3.

(2.59)

Therefore, Riemann invariants are

Γ1 =
p

ρ̂
+

1

2

[
qn (qn − a)− c2 ln (qn + a)

]
= const. on C1

Γ2,1 =
θ

qn + a
= const. on C2 ∩ C1

Γ2,3 = θ (qn + a) = const. on C2 ∩ C3

Γ3 =
p

ρ̂
+

1

2

[
qn (qn + a) + c2 ln (qn + a)

]
= const. on C3.

(2.60)

For solution purposes it must be pointed out that a left rarefaction is crossed by
C3 and C2 lines and a right rarefaction by C1 and C2 lines.

2.5.2 Shock waves and Rankine-Hugoniot jump conditions

Jumps ∆w = w2 −w1 and ∆F = F (w2)−F (w1) across a shock are related
to each other by means of Rankine-Hugoniot conditions

∆F = s∆w, (2.61)

where here s is the shock speed. Apply (2.61) to (2.53) gives

ρ̂c2∆qn = s∆p

∆q2n +
∆p

ρ̂
= s∆qn

∆(θqn) = s∆θ.

(2.62)

It follows that
p2 − p1
ρ̂

=
c2 (qn2 − qn1)

s
θ2
θ1

=
qn1 − s

qn2 − s
,

(2.63)

with the shock speed computed combining the first two relations of (2.62)

s± =
qn2 + qn1

2
±

√(
qn2 + qn1

2

)2

+ c2, (2.64)
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where s− < 0 and s+ > 0 are the left and right shock speed respectively. No-
tice that Rankine-Hugoniot conditions can be applied only because the problem
(2.52) is written in the conservative form.

2.5.3 Star region solution

The Riemann solution in the star region can be obtained as a function of the ini-
tial datum w0 exploiting Riemann invariants and Rankine-Hugoniot conditions
across rarefaction (superscriptR) and shock (superscript S) waves respectively.

• If the left wave is a rarefaction then Γ3 and Γ2,3 Riemann invariants are
preserved

Γ3? = Γ3L

Γ2,3? = Γ2,3L,
(2.65)

that means
p? = pL + fRL (qn?, qnL)

θ?L = θL f
R
θL(qn?, qnL),

(2.66)

with

fRL (qn?, qnL)
def
=

1

2
ρ̂
[
qnL (qnL + aL) + c2 ln (qnL + aL)

−qn? (qn? + a?)− c2 ln (qn? + a?)
]

fRθL(qn?, qnL)
def
=
qnL + aL
qn? + a?

.

(2.67)

• If the left wave is a shock then from relations (2.63) it follows that

p? = pL + fSL (qn?, qnL)

θ?L = θL f
S
θL(qn?, qnL),

(2.68)

with

fSL (qn?, qnL)
def
= ρ̂

c2 (qn? − qnL)

s?L

fSθL(qn?, qnL)
def
=
qnL − s?L
qn? − s?L

(2.69)

where

s?L =
qn? + qnL

2
−

√(
qn? + qnL

2

)2

+ c2. (2.70)

• If the right wave is a rarefaction then Γ1 and Γ2,1 Riemann invariants are
conserved

Γ1R = Γ1?

Γ2,1R = Γ2,1?,
(2.71)
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that is
p? = pR + fRR (qnR, qn?)

θ?R = θR f
R
θR(qnR, qn?),

(2.72)

with

fRR (qnR, qn?)
def
=

1

2
ρ̂
[
qnR (qnR − aR)− c2 ln (qnR + aR)

−qn? (qn? − a?) + c2 ln (qn? + a?)
]

fRθR(qnR, qn?)
def
=

qn? + a?
qnR + aR

.

(2.73)

• If the right wave is a shock then relations (2.63) can be applied to get

p? = pR + fSR(qnR, qn?)

θ?R = θR f
S
θR(qnR, qn?),

(2.74)

with

fSR(qnR, qn?)
def
= ρ̂

c2 (qn? − qnR)

sR?

fSθR(qnR, qn?)
def
=
qnR − sR?
qn? − sR?

(2.75)

where

sR? =
qnR + qn?

2
+

√(
qnR + qn?

2

)2

+ c2. (2.76)

Comparing Eqs. (2.66), (2.68), (2.72) and (2.74), it is an easy matter to
derive the following equation

F (qn?) = pR − pL + fR(qnR, qn?)− fL(qn?, qnL) = 0, (2.77)

where fR(qnR, qn?) and fL(qn?, qnL) must be set according to the nature of
centered waves. In particular

fR(qnR, qn?) =

f
S
R(qnR, qn?) qnR < qn?

fRR (qnR, qn?) otherwise,

fL(qn?, qnL) =

f
S
L (qn?, qnL) qn? < qnL

fRL (qn?, qnL) otherwise,

(2.78)

where the qnR < qn? and qn? < qnL inequalities satisfy the entropy condition
for the right and left shock respectively, i.e. shocks are always compressive (see
first relation of (2.63)).
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The solution of the nonlinear Eq. (2.77) gives the normal component of
the velocity qn? in the star region and is performed using an iterative Newton
method 

qk+1
n? = qkn? −

F (qkn?)

F ′(qkn?)

q0n? =
qnR + qnL

2
.

(2.79)

At each iteration k the function F must follow the correct wave pattern defined
by Eq. (2.78). Typically, a relative convergence tolerance of 10−14 is achieved
in 4 or 5 iterations. For the sake of completeness, derivative functions with
respect to qn? are reported

f
′R
L (qn?) = −ρ̂ (qn? + a?)

f
′S
L (qn?, qnL) =

2ρ̂c2 (qn? − s?L)

s?L (qn? + qnL − 2s?L)

f
′R
R (qn?) = −ρ̂ (qn? − a?)

f
′S
R (qnR, qn?) =

2ρ̂c2 (qn? − sR?)

sR? (qn? + qnR − 2sR?)
,

(2.80)

reminding that
F ′(qn?) = f

′

R(qn?)− f
′

L(qn?). (2.81)

Known qn? from (2.79) and basing on (2.78), the pressure p? in the star
region can be computed as

p? = pR + fR(qnR, qn?) = pL + fL(qn?, qnL). (2.82)

Finally, the conserved property θ? on the space-time line x/t = 0 is obtained
by means of Eqs. (2.66), (2.68), (2.72) and (2.74) and the position of the
contact discontinuity, i.e. the sign of qn?

θ? =

θR fθR qn? < 0

θL fθL otherwise,
(2.83)

where

fθR(qnR, qn?) =

f
S
θR(qnR, qn?) qnR < qn?

fRθR(qnR, qn?) otherwise,

fθL(qn?, qnL) =

f
S
θL(qn?, qnL) qn? < qnL

fRθL(qn?, qnL) otherwise,

(2.84)
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2.5. Riemann solver for variable density incompressible flows

in order to satisfy the entropy condition on shock waves.
The solution in the star region is so far considered as a function of a generic

reference density ρ̂. Since no particular conditions are defined on its value, in
this work we impose to be unitary in all situations (ρ̂ = 1).

2.5.4 Wave speeds

As seen previously, the Riemann problem solution entails four states separated
by two external centered waves, i.e. rarefaction or shock waves, and a contact
discontinuity (see Fig. 2.2). Nevertheless, even if the eigenvalue λ2 associated
with the contact discontinuity verifies the condition λ1 < λ2 < λ3, for the local
system (2.52) it is not at all ensured that the contact discontinuity lies between
centered waves.

This can be easily proved considering that the speed of the contact SC is the
normal velocity in the star region

SC = qn?, (2.85)

and the left and right speeds of rarefactions SR and shocks SS are

qnL − aL ≤ SRL ≤ qn? − a?, qn? + a? ≤ SRR ≤ qnR + aR, (2.86)

and
SSL = s?L, SSR = s?R. (2.87)

From the definition (2.56) it follows that the contact discontinuity always lies
between rarefactions

SRL < SC < SRR . (2.88)

In general this is not true with shocks. Indeed, it is an easy matter to verify for
the left shock that

SSL > SC ⇐⇒


qnL > 0

qn? < − c2

qnL
,

(2.89)

and for the right shock that

SSR < SC ⇐⇒


qnR < 0

qn? > − c2

qnR
,

(2.90)

or in other words find a critical condition for which the contact discontinuity is
faster than the shock. Notice furthermore that this behaviour is independent of
the density and thus can be found also in the original Riemann solver of [6,31],
even for constant density flows.
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Since these conditions are more difficult to obtain for c→ ∞, it seems that
such behaviour derives from the introduction of the artificial compressibility
term inside the system (2.51) in order to restore the hyperbolic nature of equa-
tions allowing to locally couple pressure and velocity. However, our experience
suggests that the effects of critical conditions (2.89) and (2.90) are negligible
even for small values of the compressibility coefficient, i.e. c ∈ [0.01, 100], as
shown in several numerical experiments [6, 24].

2.6 Time integration

Numerical integration of Eqs. (2.12) and (2.13) by means of suitable Gauss
quadrature rules leads to a system of nonlinear ODEs, or DAEs for incom-
pressible flows, that can be written as

MP (W)
dW

dt
+R (W) = 0, (2.91)

where R (W) is the vector of residuals and MP (W) is the global block diago-
nal matrix arising from the discretization of the first term in Eq. (2.12). Thanks
to the use of orthonormal basis functions defined in the physical space, with
the set of conservative variables w = u the matrix MP reduces to the identity
matrix for compressible flows and to a modified identity matrix with zeros in
the diagonal positions corresponding to the pressure degrees of freedom for
the incompressible flows. However, for a set of working variables that differs
from the conservative one, the transformation matrix P couples the degrees
of freedom of variables wh within each block of MP hence making the global
mass matrix dependent from the solution and no longer diagonal at the element
level.

In this work we advance in time the DG discretized equations (2.91) by us-
ing high-order implicit time integration schemes. Before analysing in detail the
formulation of each scheme we want to point out the effects resulting from the
use of a solution dependent block diagonal matrix MP(W). For this purpose
we apply the well known non-linear backward Euler (BE) implicit scheme to
advance in time the global system (2.91)

Wn+1 = Wn −∆tn
(
M−1

P R
)n+1

, (2.92)

where ∆tn = tn+1 − tn is the step-size, Wn ≈ W(tn) is the numerical ap-
proximation of the exact solution at time tn and W0 = W(t0) is the initial
condition. The dependence on W is omitted for notational convenience.

By solving the non-linear system (2.92) through the iterative Newton-Krylov
method we get for each k-th iteration the linear system(

I

∆tn
+M−1

P JP

)
k

(Wk+1 −Wk) = −Wk −Wn

∆tn
−
(
M−1

P R
)
k
. (2.93)
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2.6. Time integration

where the Jacobian matrix JP, which is computed analytically, must take into
account of the solution dependent matrix MP

JP = J− ∂MP

∂W
M−1

P R, (2.94)

with

J =
∂R

∂W
,

∂M−1
P

∂W
= −M−1

P

∂MP

∂W
M−1

P .

(2.95)

Notice that the linear system (2.93) can not be solved for CDI and VDI flows
since the global mass matrix is singular. In order to avoid matrix inversions
(M−1

P ) we multiply the linear system (2.93) by the global mass matrix and get(
MP

∆tn
+ JP

)
k

(Wk+1 −Wk) = −MPk

∆tn
(Wk −Wn)−Rk. (2.96)

where we clearly considered

MPkM
−1
P k = I. (2.97)

despite the matrix singularity.
More in general, for CDI and VDI flows we can prove that the product be-

tween the solution dependent global mass matrix and its inverse, also computed
at different instants tn and tn′ , gives always real values. Indeed, remembering
that MP arises from the discretization of the first term in Eq. (2.12), it must be
verified at each Gauss point that

DP(wn)
[
DP(wn′

)
]−1

∈ Rm×m. (2.98)

By writing the singular matrix D = I− J11 and its inverse as

D = lim
c→∞



1

c
0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 , D−1 = lim
c→∞


c 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 , (2.99)

and applying the limit only after matrix products, for CDI flows we obtain

DP(wn)
[
DP(wn′

)
]−1

= I, (2.100)
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since P = I, and for VDI flows

DP(wn)
[
DP(wn′

)
]−1

=



1 0 0 0 0

0
ρn

ρn′ 0 0
(ρρ̃)

nun
1

(ρρ̃)n
′ − ρnun′

1

ρn′

0 0
ρn

ρn′ 0
(ρρ̃)

nun
2

(ρρ̃)n
′ − ρnun′

2

ρn′

0 0 0
ρn

ρn′
(ρρ̃)

nun
3

(ρρ̃)n
′ − ρnun′

3

ρn′

0 0 0 0
(ρρ̃)

n

(ρρ̃)n
′


, (2.101)

where P is defined by (2.33) (notice that if tn = tn
′ than (2.101) becomes the

identity matrix). Moreover, by applying the limit in (2.99) only after matrix
products, it can be proved also that the additional term (∂MP/∂W)M−1

P R
inside the Jacobian matrix always assumes real values.

High order implicit time integration schemes used in this work are the non-
linear Explicit Singly Diagonally Implicit Runge-Kutta (ESDIRK) schemes
[43] up to order five, the linearly implicit Rosenbrock-type Runge-Kutta (Rosen-
brock) schemes [37] up to order five, and the linearly implicit two-step peer
(Peer) methods [54] up to order six. One of the advantages in using these tem-
poral schemes is that they can be designed to preserve their accuracy also with
DAEs, i.e. incompressible flows. Moreover, Peer schemes proved to be able to
avoid order reduction typical of one step methods when dealing with very stiff
problems or problems with time-dependent boundary conditions as shown by
Podhaisky et al. [54].

Since all considered schemes are implicit they entail the solution of sev-
eral systems of non-linear or linear equations. Non-linear systems are solved
using Newton-Krylov method and linear systems using Generalized Minimal
Residual (GMRES) method. The GMRES method is here applied by means the
algorithm available inside PETSc library [2] with a preconditioning of the iter-
ative solver based on the block Jacobi method with one block per process, each
of which is solved with ILU(0), or on the Additive Schwarz Method (ASM).
We pointed out that thanks to the peculiar treatment of incompressible convec-
tive numerical fluxes (see [6] and Sec. 2.5) the Jacobian matrix has non null
pressure degrees of freedom so that the global matrix arising from the implicit
time discretization is non singular and the system (2.96) can be solved with
standard algorithms also for CDI and VDI flows.

2.6.1 Explicit Singly Diagonally Implicit Runge-Kutta schemes

ESDIRK schemes are a class of one-step multi-stage implicit Runge-Kutta
schemes that can be constructed to be A− and L−stable for any temporal
order of accuracy. Starting from a given initial solution W0 = W(t0) and
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omitting the dependence on W for notational convenience, an s−stages ES-
DIRK scheme applied to the system (2.91) is written as

Wn+1 = Wn −∆tn
s∑
i=1

bi
(
M−1

P R
)i
, (2.102)

where each stage i = 1, . . . , s requires the solution of the non-linear system

Wi = Wn −∆tn
i∑

j=1

aij
(
M−1

P R
)j
, (2.103)

with Wi ≈ W(tn + ci∆t
n) the stage solution. The non-linear system (2.103)

can be solved by means of an iterative Newton-Krylov method whose k-th
non-linear iteration entails the solution of the linear system(

MP

aii∆tn
+ JP

)i
k

(
Wi

k+1 −Wi
k

)
= − MP

i
k

aii∆tn
(
Wi

k −Wn
)

−
i−1∑
j=1

aij
aii

MP
i
k

(
M−1

P R
)j −Ri

k, k ≥ 0, (2.104)

where Wi
0 is a suitable initial guess for the Newton-Krylov method at the i-th

ESDIRK stage. After solving at each stage the non-linear system (2.103) we
can simply invert the relation in order to get

(
M−1

P R
)i

=
Wi −Wn

aii∆tn
+

i−1∑
j=1

aij
aii

(
M−1

P R
)j
, i = 1, . . . , s, (2.105)

thus avoiding a costly evaluation of the right hand side.
For ESDIRK schemes the embedded solution is defined as

Ŵn+1 = Wn −∆tn
s∑
i=1

b̂i
(
M−1

P R
)i
. (2.106)

Nevertheless, when dealing with incompressible flows no product MPM
−1
P

can be recovered in this definition in order to avoid mass matrix inversion and
thus it is impossible to compute the embedded solution for pressure field. In
order to overcome this issue for such flows we simply impose the embedded
solution of the pressure field equal to the embedded solution for the velocity
component u1 field.

Real coefficients aij , bi, b̂i and ci, with i, j = 1, . . . , s, uniquely define an
s−stages ESDIRK scheme and all its stability and accuracy properties. These
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coefficients have in general the following features
aii = 0 i = 0

aii = const. i ≥ 1

bi = asi ∀i
ci =

∑i
j=1 aij ∀i.

(2.107)

It is an easy matter to see that the first stage is explicit and thus an s−stages
ESDIRK scheme requires the solution of only s−1 non-linear systems (2.103).
Moreover, the solution of the last stage is the step solution Ws = Wn+1.

In this work we consider the third order of accuracy - four stages (ES-
DIRK34), the fourth order - six stages (ESDIRK46) and the fifth order - eight
stages (ESDIRK58) ESDIRK schemes designed by Kennedy and Carpenter
in [43].

2.6.2 Linearly implicit Rosenbrock-type Runge-Kutta schemes

The time integration of Eq. (2.91) by means of one-step multi-stage Rosen-
brock schemes, omitting the dependence on W, can be written as

Wn+1 = Wn +
s∑
i=1

biK
i, (2.108)

with W0 = W(t0) as initial solution. The vector Ki = −∆tn
(
M−1

P R
)i

=

−∆tnR̃(Wi) is computed at each stage i = 1, . . . , s by solving the linear
system

Ki = −∆tnR̃

(
Wn +

i−1∑
j=1

αijK
j

)
−
(
∆tM−1

P JP

)n i∑
j=1

γijK
j, (2.109)

where the Jacobian matrix is computed only once per step on the solution Wn.
The embedded solution is defined as

Ŵn+1 = Wn +
s∑
i=1

b̂iK
i. (2.110)

This Rosenbrock formulation entails the cumbersome matrix-vector product
Jn
P

∑i−1
j=1 γijK

j . In practice this can be avoided by means of the following
transformation [37]

i∑
j=1

γijK
j = Yi, i = 1, . . . , s, (2.111)
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and thus

Ki =
1

γii
Yi −

i−1∑
j=1

cijY
j, i = 1, . . . , s, (2.112)

for which Eqs. (2.108) and (2.109) can be reduced to the equivalent formula-
tion

Wn+1 = Wn +
s∑
j=1

mjY
j,

(
MP

γii∆t
+ JP

)n
Yi = −Mn

P

[
R̃

(
Wn +

i−1∑
j=1

aijY
j

)
+

i−1∑
j=1

cij
∆tn

Yj

]
,

(2.113)
with the embedded solution

Ŵn+1 = Wn +
s∑
i=1

m̂iY
i. (2.114)

Real coefficients αij , γij , bi, b̂i, aij , cij , mi and m̂i of the two formulations
uniquely define the Rosenbrock scheme and are related by the equations

(cij) = diag(γ−1
11 , . . . , γ

−1
ss )− Γ−1,

(aij) = (αij)Γ
−1,

(m1, . . . ,ms) = (b1, . . . , bs)Γ
−1,

(m̂1, . . . , m̂s) =
(
b̂1, . . . , b̂s

)
Γ−1,

(2.115)

where Γ
def
= (γij) and γii = γ 6= 0.

Rosenbrock schemes considered in this work are the second order - two
stages IB scheme of Iannelli and Baker [41], the third order - four stages
ROS3PL of Lang and Teleaga [46], the fourth order - six stages RODASP of
Steinebach [60] and the fifth order - eight stages Rod5 1 of Di Marzo [25]. All
schemes are designed to be A-stable and preserve their accuracy with DAEs.

2.6.3 Linearly implicit two-step Peer methods

Peer methods are multi-stage implicit temporal schemes with two steps that
compute solution approximations Wi,n ≈ W(tn + ci∆t

n), with i = 1, . . . , s,
of the Eq. (2.91) by means of s linear systems(

Ms,n−1
P

γ∆tn
+ Js,n−1

P

)(
Wi,n −Wi

0

)
= −Ms,n−1

P

(
R̃i,n

0 +
Yi −Wi

0

γ∆tn

)
(2.116)
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Chapter 2. Space and time discretization

Table 2.1: List of γ values and corresponding θ angles of A (θ)-stability and L (θ)-stability
for each Peer method used in this work

s γ θ
peer3A 3 2.165162598341552E + 00 90◦

peer4A 4 1.038881828680110E + 00 90◦

peer5A 5 5.614731292097847E − 01 90◦

peer6A 6 3.476356828221134E − 01 90◦

with

Yi =
i−1∑
j=1

aij
γ

(
Wj,n −Yj

)
+

s∑
j=1

uij(σ
n)Wj,n−1, (2.117)

Wi
0 =

i−1∑
j=1

a0ij
γ

(
Wj,n −Yj

)
+

s∑
j=1

u0ij(σ
n)Wj,n−1, (2.118)

where s is the number of stages and the Jacobian matrix of the DG space dis-
cretization Js,n−1

P is computed only once per step with the last stage solution of
the previous step Ws,n−1. At each step, the embedded solution is given by

Ŵs,n =
s−1∑
i=1

αiW
i,n. (2.119)

Notice that like any other multi-step scheme Peer methods are non-self-starting.
Indeed, in order to compute step n = 1 of the formulation (2.116), starting so-
lutions Wi,0, with i = 1, . . . , s, at times ti,0 = tst + ci∆t

st must be available,
where superscript st denotes the starting step. The algorithm proposed in this
work to compute Wi,0 will be described in detail in Sec. 3.6.

A = {aij}, U = {uij}, A0 =
{
a0ij
}

and U0 =
{
u0ij
}

are s × s matri-
ces of real coefficients and αi, ci and γ are real parameters. Matrices U and
U0 depend on the step size ratio σn = ∆tn/∆tn−1 between the current and
the previous step in order to ensure accuracy and stability properties for vari-
able step sizes. More in general, matrices A, U, A0 and U0 and parameters
γ and ci uniquely define accuracy and stability properties of an s-stages Peer
method. Consistency and zero stability conditions that ensure an order of ac-
curacy equal to s − 1 for all Peer stages and for all step size ratios σ > 0
are provided in [34, 54]. These conditions are derived independently from the
Jacobian matrix which thus can be computed numerically, e.g. by means of fi-
nite differences. Since all stage solutions have the same accuracy and stability
properties a continuous output of high-order is available with no extra-cost.

As proposed by Podhaisky et al. [54], matrices A, U, A0 and U0 are func-
tions of parameters ci and γ, where coefficients ci are chosen to be stretched
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2.6. Time integration

Chebychev nodes in the interval [−1, 1]:

ci = −
cos
((
i− 1

2

)
π
s

)
cos
(
π
2s

) , i = 1, . . . , s. (2.120)

Following this choice it is clear that cs = 1 and thus

Wn+1 = Ws,n and Ŵn+1 = Ŵs,n. (2.121)

The last free parameter γ specifies the θ angle of the A (θ)- and L (θ)-stability.
Moreover, as demonstrated in [54] only for constant time-steps, particular val-
ues of γ can guarantee an additional order of accuracy which thus becomes
equal to the number of stages s. Finally, coefficients αi, i = 1, . . . , s − 1, are
only function of nodes ci and are computed such that the order of accuracy of
the embedded solution is equal to s− 2 (see [34]).

Peer methods used in this work have three, four, five and six stages and
are referred as peer3A, peer4A, peer5A and peer6A, where the capital ”A”
points out the fact that they are derived in order to be A-stable and L-stable,
i.e. θ = 90◦. Parameter γ values adopted for each scheme are reported in Tab.
2.1. For these values, Peer methods show an order of accuracy equal to s for
constant time-steps.
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CHAPTER3
Robustness and efficiency enhancement of

high order linear/non-linear implicit time
integration schemes

ESDIRK, Rosenbrock and Peer time integration schemes are implicit schemes
and therefore entail the solution of several systems of linear/non-linear equa-
tions that represent one of the main sources of computational cost. In order to
reduce this cost, an efficiency enhancement of iterative methods that compute
system solutions is required. Nevertheless, despite any advantage in terms of
efficiency it must be clear that the time integration robustness remains of ut-
most importance.

In this chapter we firstly show how to improve the time integration robust-
ness by means of the adaptive time step approach. Successively, we describe
strategies for both the initial guess setting and the stopping criteria definition
that we apply to iterative methods. Moreover, we provide some useful tricks
adopted in this work for the efficiency enhancement of the non-linear Newton-
Krylov method. Finally, a new starting procedure able to preserve the accuracy
of Peer methods is derived. The norm symbol ‖ · ‖ used in this chapter is al-
ways referred to the euclidean norm although a generic user-defined norm can
be used without any restriction.

The authors would like to underline that all the reported strategies can be
used independently on the nature of the ODE/DAE systems on which the time
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Table 3.1: List of global, local and estimator constants and orders of ESDIRK, Rosenbrock
and Peer schemes obtained for the model ODE. The global error is computed at the final
step while the LTE and the local estimator are computed after the first step.

ψNg ψ1
l ψ1

r qg ql qr
BE 2.71E− 01 2.00E + 00 2.71E− 01 1 2 1
CN 9.02E− 02 6.67E− 01 2.71E− 01 2 3 2
ESDIRK34 5.61E− 02 4.14E− 01 2.56E− 03 3 4 3
ESDIRK46 3.67E− 03 2.70E− 02 4.84E− 04 4 5 4
ESDIRK58 9.92E− 04 7.24E− 03 1.15E− 04 5 6 6
LBE 2.71E− 01 2.00E + 00 2.71E− 01 1 2 1
IB 4.38E− 02 3.24E− 01 1.12E− 01 2 3 2
ROS3PL 5.61E− 02 4.14E− 01 2.24E− 02 3 4 3
RODASP 3.77E− 03 2.78E− 02 8.45E− 03 4 5 4
Rod5 1 4.42E− 04 3.23E− 03 2.46E− 03 5 6 5
peer3A 1.45E + 01 2.51E + 01 5.41E− 01 3 3 2
peer4A 3.42E + 00 1.33E + 01 2.99E− 01 4 4 3
peer5A 8.21E− 01 5.64E + 00 1.12E− 01 5 5 4
peer6A 1.93E− 01 2.05E + 00 3.12E− 02 6 6 5

integration is applied.

3.1 Asymptotic model

As first step we introduce three quantities that will be used in next sections.

• The global error at time tn+1 represents the numerical error of the time
integration and is defined as the difference between the exact and the nu-
merical solution

errn+1 = W(tn+1)−Wn+1. (3.1)

• The Local Truncation Error (LTE) is the numerical error introduced by
the temporal scheme at the single step level and is defined as

LTEn+1 = W(tn+1)−Wn+1
? . (3.2)

Wn+1
? is the solution approximation computed applying one step of the

prescribed temporal scheme starting from the exact solution W(tn) (or
W(tn−1 + ci=1,...,s∆t

n−1) for Peer methods). Since the exact solution
W(t) is in general not available for complex problems except for the
initial condition W0 = W(t0), the LTE can be computed only at the
first step with the exact solution W(t1) replaced by a reference numerical
solution W1

r more accurate than W1 = W1
?

LTE1 = W(t1)−W1
? ≈ W1

r −W1. (3.3)
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3.1. Asymptotic model

Figure 3.1: Convergence analysis of the global error at the end time tN = 1 and of the LTE
after the first step for ESDIRK, Rosenbrock and Peer schemes.
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• the local estimator is defined by means of the temporal scheme embedded
solution Ŵ as

rn+1 = ‖Wn+1 − Ŵn+1‖. (3.4)

Notice that, conversely to the LTE, the local estimator can be cheaply
computed at each time step.

Each quantity above mentioned can be represented by means of the asymp-
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Figure 3.2: Convergence analysis for the local estimator after the first step of ESDIRK, Rosen-
brock and Peer schemes.
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totic model

‖errn+1‖ = ψn+1
g (∆t)qg , (3.5)

‖LTEn+1‖ = ψn+1
l (∆tn)ql , (3.6)

rn+1 = ψn+1
r (∆tn)qr , (3.7)

where ψg, ψl, ψr are the global, local, estimator constants and qg, ql, qr are the
global, local, estimator order of convergence. ∆t is defined as the arithmetic
mean of the step sizes during the time integration

∆t =
1

N

N∑
k=1

∆tk−1, (3.8)

with N the number of performed steps at time tn+1.
For the sake of clarity, in Fig. 3.1 and 3.2 we show as exemplary case the

asymptotic behaviour of the global error, the LTE and the local estimator for
ESDIRK, Rosenbrock and Peer schemes applied to the test ODE

∂y(t)

∂t
= λy(t), (3.9)
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3.2. Adaptive time-step strategy

where λ = 2, tN = 1 is the end time, y(0) = 1 is the initial condition and
y(t) = exp (λt) the exact solution.

Backward Euler (BE) and Crank-Nicolson (CN) time integration schemes
are here included inside the ESDIRK class since they can be considered as a
particular formulation of ESDIRK schemes (s = a11 = b1 = c1 = 1 and
b̂1 = 0 for BE and s = 2 with a11 = c1 = b̂1 = 0, a21 = a22 = b1 = b2 = 1/2

and c2 = b̂2 = 1 for CN). For the same reason the Linearised Backward Euler
(LBE) scheme is included in Rosenbrock class (s = γ = m1 = 1 and a11 =
c11 = m̂1 = 0).

In Tab. 3.1 are reported error constants ψ and orders q computed for each
scheme with the smallest time-step used. Notice that Peer methods show higher
values of the constants. Moreover, temporal schemes verify in general qg =
qr = ql − 1. Exceptions are the ESDIRK58, for which qr = ql, and all Peer
methods, where qg = ql thanks to the particular choice of γ parameter that
allows to obtain for constant step-sizes an order of convergence equal to the
number of stages.

3.2 Adaptive time-step strategy

The automatic step-size control is an important feature to increase the effi-
ciency and robustness of a time integration scheme. A constant time step may
result in a large number of small steps, increasing computational costs of a
simulation. A variable time step instead can enhance the efficiency of time
integration by minimizing the computational effort to achieve a user-defined
accuracy. Moreover, the time step adaptation limits at each step the local trun-
cation error thus improving the time integration robustness.

The approach consists in adapting the step-size in order to control the local
truncation error of the scheme, i.e. keeping it constant during the time integra-
tion. However, as shown in Sec. 3.1, when the analytic solution is unavailable
the LTE can be computed only at the first step. In order to overcome this issue
we impose that the LTE is a function of the local estimator (3.7) only

LTEn+1 = LTE(rn+1). (3.10)

This hypothesis allows to build the adaptive algorithm on the local estimator
knowing that if we are able to maintain r as much as possible constant during
the integration in time then the LTE will be constant as well.

The standard step-size algorithm [58, 59] requires at each time step that

rn+1 < ζaη (3.11)

where η is a properly defined threshold value and ζa is a user-defined safety
factor, here set ζa = 2/3. If the condition (3.11) is verified than the solution
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Wn+1 is accepted and the next step-size is defined requiring rn+2 = η and
exploiting the asymptotic behaviour (3.7)

∆tn+1 =

(
η

ψn+2
r

) 1
qr

; (3.12)

otherwise, Wn+1 is rejected and the step is redone imposing

∆tn =

(
η

ψn+1
r

) 1
qr

, (3.13)

where the constant ψn+1
r is computed by means the available local estimator at

the time step rejected ∆t
n

ψn+1
r =

rn+1(
∆t

n)qr . (3.14)

The adaptive step-size algorithm is here applied to control the LTE of only
one of the working variables w. In particular we control the second velocity
component u2 for compressible and constant density incompressible flows and
the working density ρ̃ for variable density incompressible flows. Other choices
can be done without any restriction. Hereinafter in this section the reference to
the chosen variable is omitted for notational convenience.

3.2.1 Prediction of the estimator constant

The unknown estimator constant ψn+2
r in Eq. (3.12) must be properly predicted

in order to maximise the efficiency of the adaptive algorithm, i.e. reduce as
much as possible the number of rejected steps.

In this work we propose to extrapolate the required value from estimator
constants at previous steps by means of high order Lagrangian polynomials.
Therefore, considering the logarithmic transformation

ψ̃r = ln (ψr), (3.15)

we apply the approximation

ψ̃r
n+2

≈ ψ̃r
n+2

z =
z∑
j=1

lzj(t
n+2)ψ̃r

n+2−j
, (3.16)

where lzj(tn+2) are the Lagrange basis polynomials

lzj(t
n+2) =


1 z = 1∏z

i 6=j,i=1

tn+2 − tn+2−i

tn+2−j − tn+2−i otherwise,
(3.17)
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3.2. Adaptive time-step strategy

thus obtaining

ψn+2
r =

z∏
j=1

(
ψn+2−j
r

)lzj(tn+2)
. (3.18)

Notice that due to the logarithmic approach the predicted estimator constant is
always positive regardless of the Lagrangian basis values.

Since the time tn+2 needed for the definition of Lagrangian basis is unknown
(see Eq. (3.12)), first we set an attempt value of tn+2 using Eq. (3.12)) and
(3.18) with z = 1

tn+2
? = tn+1 +

(
η

ψn+1
r

) 1
qr

, (3.19)

and then we impose

ψn+2
r =

z∏
j=1

(
ψn+2−j
r

)lzj(tn+2
? )

. (3.20)

The parameter z ∈ [1, zmax], with zmax = 4 the number of stored past
estimator constants, is here set at each time step in such a way to minimise the
approximation error |ψ̃r

n+1
− ψ̃r

n+1

z | at the actual step.

3.2.2 Tolerance proportionality and calibration

The threshold value η used in Eq. (3.11) is defined as

η = τcτ, τ = max
(
τr‖Wn+1

wj
‖, τa

)
, (3.21)

where τc is a scaling factor, τr and τa are the prescribed relative and absolute
adaptive tolerances, respectively, and Wn+1

wj
are the DoFs related the the work-

ing variable wj controlled by the adaptive algorithm.
Söderlind and Wang [59] suggest that an adaptive algorithm should work

in a tolerance proportional mode. This implies that if τr or τa are changed of
one order of magnitude, then also the global error should change by one order
of magnitude. Moreover, it should desirable to calibrate the threshold value in
such a way to obtain a global error equal to the prescribed tolerance τ . Here
we achieve both goals by properly defining the scaling factor τs.

Thanks to the adaptive algorithm we can assume that

rn+1 ≈ η, ∀n = 0, . . . , N − 1. (3.22)

Basing on the asymptotic behaviours of the global error (3.5) and of the local
estimator (3.7), it follows that

∆t =

(
‖errN‖
ψNg

) 1
qg

=

(
η

ψr

) 1
qr

, (3.23)
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with ψr the weighed mean value of the estimator constant during the time inte-
gration. Therefore, imposing the tolerance proportionality

‖errN‖ ∝ τ, (3.24)

and, more in particular, the desired calibration

‖errN‖ = τ, (3.25)

and substituting the Eq. (3.21) inside the Eq. (3.23) we get

τc = τψτ
qr−qg

qg , (3.26)

where
τψ = ψr

(
ψNg
)− qr

qg . (3.27)

The constant τψ defines the calibration and can be computed noting from
Eq.(3.23) that

τψ = const. = η0
(
errN0

)− qr
qg (3.28)

with η0 a reference threshold value used in a test simulation with the adap-
tive time step algorithm and errN0 the obtained global error at output time tN .
Unfortunately, the parameter τψ is strongly case dependent. Moreover, for the
same case it assumes different values for different simulation end times tN ,
i.e. different values of errN0 . This implies that the calibration can be performed
only for simple test cases thus imposing for more complex problems the simple
choice τψ = 1.

Notice that the tolerance proportionality remains verified by Eq. (3.26) re-
gardless of the τψ value since it is constant.

3.2.3 Smooth limiter

Following the idea of Söderlind and Wang [59], in order to improve the the
robustness and the efficiency of the adaptive algorithm we limit the max step-
size increase/reduction by introducing the smooth limiter function

∆tm = ∆tn
[
1 + κ arctan

(
∆t? −∆tn

κ∆tn

)]
, (3.29)

where ∆t? is the step-size computed by either Eq. (3.12) or Eq. (3.13) in ac-
cordance with the condition (3.11) and the ∆tm is the new limited value of the
next time step.

It is an easy matter to see that until the predicted time step variations are
small (∆t? ≈ ∆tn) the effects of the smooth limiter are negligible (∆tm ≈
∆t?). Conversely large variations result in a restriction on ∆tm values. More in
detail, smooth limiter bounds are defined by means the user defined parameter
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κ. In [59] the authors suggest to use κ ∈ [0.7, 2]. However in this work we
set the κ value as a function of temporal scheme accuracy. Indeed, from the
asymptotic behaviour of the LTE (3.6) we can derive

∆tm =

(
ψn+1
l

ψm+1
l

‖LTEm+1‖
‖LTEn+1‖

) 1
ql

∆tn. (3.30)

Assuming ψn+1
l ≈ ψm+1

l in the first instance and writing

‖LTEm+1‖
‖LTEn+1‖

= 10λ, (3.31)

then the Eq. (3.29) in the limit of ∆t? → +∞ leads to the relation

κ =
2

π

(
10

λ
ql − 1

)
, (3.32)

where λ represents the admitted maximum growth of the LTE during one step
in terms of orders of magnitude. In this work we set λ = 1.

3.3 Initial guess for iterative methods

Implicit temporal schemes entail the solution of linear and non-linear systems
of equation by means of iterative methods. Natural choices for initial guesses
of such methods are

• for ESDIRK schemes (2.103)

Wi,n
0 = Wn, (3.33)

• for Rosenbrock schemes (2.113)

Yi,n
0 = 0, (3.34)

• for Peer schemes (2.116)

Wi,n
0 −Wi

0 = 0, (3.35)

where the apex n points out the time step associated.
First attempts to provide better choices and thus to improve iterative method

performances were made in the context of multi-step schemes for which a
straightforward way consists in extrapolate an high-order approximation by
means of the past solutions available from the temporal scheme (see [20, 21]).

Recently, Boom and Zingg in [15] applied the multi-step strategy to the one-
step ESDIRK schemes using Lagrange basis polynomials with up to three past
solutions as a balance between accuracy and memory usage. Moreover, Hairer
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and Wanner [37] proposed to extrapolate the initial guess for ESDRIK schemes
using stage solutions at the previous step. Attempts to provide a better initial
guess for Rosenbrock schemes, instead, are not yet available in the literature at
authors knowledge. Finally for Peer methods, relation (3.35) already represents
a very efficient choice since Wi

0 (2.118) is a high-order approximation of the
solution.

In this section we improve the Hairer-Wanner interstage approach and ex-
tend the multi-step extrapolation for ESDIRK schemes. Furthermore, we show
how to apply both approached to Rosenbrock schemes as well.

The Hairer-Wanner approach has the advantage of being very accurate with-
out requiring further memory usage but it works well only for schemes with an
high number of stages s. Conversely, the multi-step approach can be applied in-
dependently on s but needs to store past solutions. In order to maximise the ef-
ficiency we implement and activate both strategies. As a consequence a choice
between the approaches must be done. The strategy selection, performed at
each stage of each time step, is based on which approach minimizes the initial
guess error of the same stage at the previous time step. Moreover, this selection
is carried out at the mesh element level thus avoiding message-passing commu-
nication and minimising the computational cost especially when dealing with
massively parallel simulations.

We point out that, since both approaches rely on the extrapolation from past
values, for robustness purposes it would be useful to avoid their application
for large step-sizes. However, our experience suggests that no issues occur in
using such strategies until very large step-sizes are used (step-sizes for which
the time integration accuracy, even for higher order schemes, is remarkably
poor).

3.3.1 Improved Hairer-Wanner approach

The Hairer-Wanner approach extrapolate the initial guess of ESDIRK scheme
stages by means of Lagrange basis polynomials from stage solutions at previ-
ous time steps Wi,n−1, i = 1, . . . , s.

We improve this approach simply noting that at each stage i we can define
the new set of data

Wk =

{
Wk,n−1 k ≤ i

Wk,n otherwise,
tk =

{
tk,n−1 k ≤ i

tk,n otherwise,
(3.36)

that allows to use the available solutions from previous stages at the actual step
which, in general, give more suitable information for the prediction of Wi,n.
Moreover, we sort the new set of data Wk as Wj basing on the distance with
respect to the stage time ti,n

|tj − ti,n| < |tj+1 − ti,n|, ∀j = 1, . . . , s− 1, (3.37)
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reminding that for ESDIRK schemes

ti,n = tn + ci∆t
n. (3.38)

Notice that for j = k in general Wj 6= Wk and tj 6= tk .
Therefore, the initial guess for ESDIRK schemes is set as

Wi,n
0 =

z∑
j=1

lzj(t
i,n)Wj, (3.39)

where lzj(ti,n) are the Lagrange basis polynomials defined on tj sorted nodes
and z ∈ [1, s] is set as the number of solutions Wj that minimises the approx-
imation error ‖Wi,n−1 − Wi,n−1

0 ‖K of the stage at the past step. As pointed
out, the norm is performed at the mesh element K level. As a consequence, the
parameter z is also defined for each element.

For robustness purposes, when the initial guess approach is applied together
with the time step adaptation, we always impose z = 1 for ∆tn+1 > 1.2∆tn.

3.3.2 Extended multi-step approach

The multi-step approach of Boom and Zingg defines the initial guess at the i-th
ESDIRK stage as the Lagrangian extrapolation

Wi,n
0 =

z∑
j=1

lzj(t
i,n)Wn+1−j. (3.40)

where lzj(ti,n) are the Lagrangian basis defined on nodes tn+1−j .
Although this formulation provide good initial guesses, it is limited by the

fact that the accuracy of the step solutions Wn+1−j used for the extrapolation
is in general different with respect to the accuracy of the stage solution Wi,n

(notice for example that the solution of the second ESDIRK stage always cor-
responds to the solution of a second order CN scheme). For this reason we
perform the extrapolation on the past solutions of the same stage in which the
initial guess is required

Wi,n
0 =

z∑
j=1

lzj(t
i,n)Wi,n+1−j, (3.41)

where lzj(ti,n) are now defined on nodes ti,n+1−j . Indeed, using Eq. (3.41) the
initial guess is extrapolated from past solutions which have the same accuracy
of the sought stage solution.

Once again z ∈ [1, zmax] is defined for each mesh element and is set for
each stage in order to minimise the approximation error ‖Wi,n−1 −Wi,n−1

0 ‖K
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at the past step. Here we impose zmax = 10. For robustness purposes we set
z = 1 for ∆tn+1 > 1.2∆tn when the time step adaptation is activate.

It is an easy matter to see that the formulation (3.41) requires a large mem-
ory usage since one set of past solutions must be now stored for each stage.
However in our simulations this drawback is a relatively minor issue due to
the fact that we need to store the analytically computed Jacobian matrix whose
memory request can be much higher, especially for very high DG discretization
orders.

3.3.3 Initial guess for Rosenbrock schemes

Initial guess strategies defined for ESDIRK schemes can be applied with some
slight modifications to Rosenbrock schemes as well. However, the stage solu-
tion of Rosenbrock schemes Yi,n (2.111) is a linear combination of right-hand-
sides computed at different stages. Moreover it is not associated to a particular
time thus making a direct extrapolation impossible.

We overcome the issue by defining the initial guess directly on the right-
hand-side associated with the i−th stage

R̃(Wi,n
0 ) =

(
M−1

P R
)i,n
0

= −Ki,n
0

∆tn
, (3.42)

and therefore imposing from (2.112)

Yi,n
0 = −γii∆tnR̃(Wi,n

0 ) +
i−1∑
j=1

cijY
j,n. (3.43)

As a consequence, for Rosenbrock schemes the improved Hairer-Wanner ap-
proach requires that

R̃(Wi,n
0 ) =

z∑
j=1

lzj(t
i,n)R̃(Wj), (3.44)

while the extended multi-step approach reads

R̃(Wi,n
0 ) =

z∑
j=1

lzj(t
i,n)R̃(Wi,n+1−j). (3.45)

Notice that right-hand-sides at previous stages and times used for extrapola-
tions can be cheaply computed at each previous stage inverting the relation
(3.43) after the linear system solution.

In order to compute Lagrangian basis we remember that for Rosenbrock
schemes

ti,n = tn + βi∆t
n, (3.46)
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where

βi =
s∑
j=1

βij =
s∑
j=1

(αij + γij) . (3.47)

3.4 Termination criterion for iterative methods

When an implicit temporal scheme is applied to a system of ODEs/DAEs, a
linear/non-linear system of the general form

R (X) = AX+B = 0, (3.48)

must be solved, where R is the residual vector, X the unknown solution vector
and A and B are the matrix and the column vector of coefficients, respectively.
Iterative methods, such as Newton-Krylov method and GMRES method, are
able to compute only an approximated solution of the system (3.48) by means
of an iterative process. Therefore, a stopping criterion must be used in order to
achieve a properly defined accuracy τs hence reducing the computational cost
without losing the global accuracy of the time integration.

Several authors [14, 37, 59] provided different termination criteria for both
linear and non-linear iterative methods. Anyway, we can distinguish them into
two classes

• the residual criterion class, where the iterative process is stopped at the
first k−th iteration for which

‖R (Xk) ‖ < τs, (3.49)

• and the increment criterion class, for which the arrest occurs when is
verified that

‖Xk−1 −Xk‖ < τs. (3.50)

The residual criterion has the advantage to deal with the exact approxima-
tion error of the residual R (Xk) at the k−th iteration. Indeed, the residual
computed with the exact solution X? is null thus leading to

‖R (Xk)−R (X?) ‖ = ‖R (Xk) ‖, k ≥ 0. (3.51)

Unfortunately this criterion class does not provide any information about the
approximation error of the solution Xk at the actual iteration.

The increment criterion, instead, gives only an estimation of approxima-
tion error of the solution at the previous iteration k − 1 since for a convergent
iterative process we can consider

‖Xk−1 −Xk‖ ≈ ‖Xk−1 −X?‖, k ≥ 1. (3.52)
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Moreover, this criterion can not be performed before starting the iterations (k =
0).

It is clear that none of the mentioned criterion is able to detect the approxi-
mation error on the system solution at the actual iteration k

‖Xk −X?‖, k ≥ 0. (3.53)

For this reason in this work we define a new termination criterion based on
the assumption that during the convergence of a generic iterative method it is
possible to consider approximately constant the ratio

‖R (Xk) ‖
‖Xk −X?‖

≈ const, k ≥ 0. (3.54)

Exploiting the relation (3.52), we can define then a scaling ratio

rs = min
i∈[1,k]

‖R (Xi−1) ‖
‖Xi−1 −Xi‖

, (3.55)

and estimate the sought solution approximation error as

‖Xk −X?‖ ≈ ‖R (Xk) ‖
rs

, k ≥ 0, (3.56)

where in Eq. (3.55) the minimum value is kept for safety purposes. Therefore,
the new termination criterion, hereafter named hybrid criterion, requires that

‖R (Xk) ‖ < rsτs, k ≥ 0. (3.57)

Notice that the relation (3.57) can be applied also before starting the iterations,
i.e. k = 0, by using the scaling ratio rs defined in the previous system solution.

The hybrid criterion has the clear advantage to control the solution approxi-
mation error at the actual iteration k of the iterative method. Nevertheless, this
criterion may require a higher computational cost because of the computation
of both residuals and increments; moreover for a small number of iterations the
scaling ratio rs can be inaccurate since the condition (3.54) is true for k → ∞
but could not be verified for early iterations.

In order to reduce the computational cost of the hybrid criterion we decide
to compute increments only for the first linear/non-linear system solution at the
time step n = 1+ iM , with M user-defined and i ∈ N. Furthermore, for these
particular systems the iterative process is performed until the machine error ε
limit thus defining rs with the maximum accuracy. Notice that rs is frozen over
M steps.

The hybrid criterion is here applied to all implicit schemes defined in Sec. 2.6
and thus to both linear and non-linear iterative methods, i.e. GMRES and
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Newton-Krylov methods. However, we define one scaling ratio for each work-
ing variable wj

rs,wj
= min

i∈[1,k]

‖R (Xi−1) ‖
‖Xwj ,i−1 −Xwj ,i‖

, ∀j = 1, . . . ,m. (3.58)

As a consequence, the iteration process is stopped only if the relation (3.57) is
verified for all working variables

‖R (Xk) ‖ < rs,wj
τs,wj

, ∀j = 1, . . . ,m. (3.59)

When the machine error limit is required, the stop condition becomes

‖R (Xk) ‖ < 10 max
j∈[1,m]

(
rs,wj

)
ε, (3.60)

where 10 is a safety factor.
We remember that Xk = Wi

k, Xk = Yi
k and Xk = Wi,n

k − Wi
0 for ES-

DIRK, Rosenbrock and Peer schemes, respectively.

3.4.1 Threshold tolerance and Local Truncation Error

In order the preserve the time integration accuracy, the approximation error of
the system solution must be smaller than the local truncation error. Moreover,
when the adaptive step-size algorithm is activated the correct evaluation of the
local estimator must be ensured. Therefore, the threshold tolerance of iterative
methods is set for all stages at the step ∆tn as

τs,wj
= ζs min

(
‖LTEn+1

wj
‖, rn+1

wj

)
, (3.61)

where ζs is a safety factor hereafter imposed ζs = 1/10 unless otherwise spec-
ified.

The local estimator r is computed from the asymptotic behaviour (3.7)
where the constant error is extrapolated from previous steps using the same
process described for the adaptive algorithm in Sec. 3.2.1.

The local truncation error LTE, instead, can be computed only at the first
step as pointed out in Sec. 3.1. However, simply exploiting the hypothesis of
the adaptive time step strategy (3.10), here we derive an approximating value.
Indeed, combining the asymptotic behaviours (3.6) and (3.7)

‖LTEn+1‖ = ψn+1
l

(
ψn+1
r

)− ql
qr
(
rn+1

) ql
qr , (3.62)

and applying the hypothesis (3.10) it follows that

ψn+1
l

(
ψn+1
r

)− ql
qr = cost. = ψ1

l

(
ψ1
r

)− ql
qr , (3.63)
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where the dependence on the working variable wj is omitted for notational
convenience. Therefore, the LTE is derived by Eq. (3.6) imposing the local
constant as

ψn+1
l = ψ1

l

(
ψn+1
r

ψ1
r

) ql
qr

. (3.64)

Local and estimator constants at the first step can be easily defined only once
during a pre-processing step.

The threshold tolerance τs,wj
defined in Eq. (3.61) fulfils the local accuracy

of the temporal scheme ensuring at the same time the correct evaluation of the
local estimator. However, for robustness purposes, when a time step is rejected
by the adaptation algorithm we impose the machine error limit condition (3.60)
to the hybrid criterion.

3.5 Modified Newton-Krylov method

The ESDIRK time integration lead to the non-linear system of equations (2.103)
that written in the compact form reads

R(Wi) = AWi +B(Wi) = 0. (3.65)

Here we solve the system (3.65) by means of the iterative Newton-Krylov
method which entails the repeated solution of linear systems (2.104) in the
compact form

∂R(Wi)

∂Wi

∣∣∣∣
k

∆Wi
k −R(Wi

k) = 0, k ≥ 0, (3.66)

∆Wi
k = Wi

k+1 −Wi
k, (3.67)

which must be solved again iteratively using a linear method, i.e. GMRES
method.

It is therefore easy to realize that, even with the adoption of initial guess
approaches and of termination criteria described in previous sections, the non-
linear solution can still require an high computational cost. Indeed, the global
matrix ∂R(Wi)/∂Wi, and thus the analytical Jacobian matrix JP, should be
computed at each newton iteration k hence representing a strong source of
computational cost especially when using higher DG polynomial orders. Be-
sides, solve each linear system (3.66) with the maximum accuracy, i.e. machine
error, is in general too much expensive and moreover useless since it is not a
necessary condition for preserving the Newton quadratic convergence rate.

In order to reduce these costs, several strategies can be applied to Newton
method which hence is renamed as modified/inexact Newton method. Eisenstat
and Walker [30] defined an algorithm to determine the cut-off criterion of the
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linear systems solution able to ensure the expected convergence rate of Newton
method. Moreover, Knoll and Keyes [45] suggest the possibility to replace the
Jacobian matrix by a finite differences approximation. However, in this work
we follow different approaches.

The global matrix, computed at the first iteration of the first non-linear sys-
tem solution, is here recomputed only if the convergence rate of the modified
Newton method between iteration k− 1 and k decreases below a given thresh-
old value

‖∆Wi
k‖

‖∆Wi
k−1‖

> τJ , k ≥ 1, (3.68)

where τJ is here set to 0.2. This choice requires to freeze the Jacobian matrix
between iterations, stages and steps as well and, despite the main disadvantage
of degrading the Newton quadratic convergence rate, it lead to the saving of a
large amount of computational resources.

Notice that the condition (3.68) can be applied only for k ≥ 1 thus giv-
ing none information for the first iteration where the matrix remains frozen.
Basing on our experience no issues are expected until very large step-sizes are
used (step-sizes for which the time integration accuracy, even for higher order
ESDIRK schemes, is remarkably poor).

Since the choice of freezing the Jacobian matrix reduces the convergence
rate then it reduces the linear solution accuracy requirement as well. There-
fore, the forcing term ηJ , defined as the relative tolerance of the linear system
solution (3.66)∥∥∥∥ ∂R(Wi)

∂Wi

∣∣∣∣
k

∆Wi
k −R(Wi

k)

∥∥∥∥ ≤ ηJ
∥∥R(Wi

k)
∥∥ , k ≥ 0, (3.69)

can be set much higher. Forcing term values of ηJ = 1/10 and ηJ = 1/100
proved to be good choices for compressible and incompressible flows, respec-
tively.

3.6 Peer methods starting procedure

Peer methods defined in Sec. 2.6.3 are multi-step and multi-stage time integra-
tion schemes. As all multi-step schemes, they are not self-starting, that means
they need a set of starting solutions Wi,0 at times

ti,0 = tst + ci∆t
st, i = 1, . . . , s, (3.70)

where
∆tst = t1 − tst, (3.71)

in order to perform the first step n = 1.
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Gerisch et al. [34] suggest to compute starting solutions using one time step
of a one-step method with continuous output and to control their accuracy by
means of standard adaptive time step algorithm or by choosing ∆tst sufficiently
small. However, even if straightforward and fast this strategy has three main
drawbacks

• the one-step method must provide a continuous output,

• the continuous output, in general, has a different accuracy with respect to
the one-step method and this must be taken into account for the choice of
the starting step-size ∆tst,

• for continuous output with low order of accuracy the starting step-size can
be excessively small, leading to a large first step-size ratio σ1 = ∆t1/∆tst

that reduces the peer order from s to s− 1.

In order to overcome these drawbacks in this work we introduce a new start-
ing procedure for Peer methods based on the local and global asymptotic be-
haviours of time integration errors.

Defining
c− = min

i∈[1,s]
(ci) , t− = tst + c−∆tst, (3.72)

as the minimum value of nodes ci and the smallest time point of the starting
procedure, respectively, and imposing that

t− = t0, (3.73)

with t0 the initial time, it follows from Eq. (3.70)

ti,0 = t0 +
(
ci − c−

)
∆tst, i = 1, . . . , s, (3.74)

and from Eq. (3.71)
t1 = t0 +

(
1− c−

)
∆tst. (3.75)

The starting procedure time-step ∆tst is here imposed equal to the user-defined
initial time-step ∆t1 of Peer methods,

∆tst = ∆t1, (3.76)

in order to ensure σ1 = 1. Moreover, the starting procedure time integration
period can be derived from (3.74) as

T st =
(
c+ − c−

)
∆tst, (3.77)

with c+ = maxi∈[1,s] (ci).
Starting solutions at corresponding times ti,0 can be obtained by means of a

one-step time integration scheme, e.g. Rosenbrock or ESDIRK schemes with
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global order q′g and local order q′l, knowing that for small time integration pe-
riods T ′ the asymptotic behaviour of the global error (3.5) can be written in a
more general form

‖errT ′‖ ∝ (T ′)
x
(∆t′)

y
, (3.78)

where ∆t′ is the arithmetic mean value of the step size during the time inte-
gration of the one-step scheme and the exponents x and y can be defined from
global and local error definitions noting that{

‖errT ′‖ ∝ (∆t′)y ∝ (∆t′)q
′
g T ′ = const.

‖errT ′‖ ∝ (∆t′)x+y ∝ (∆t′)q
′
l T ′ = ∆t′,

(3.79)

that means
x = q′l − q′g, y = q′g. (3.80)

Imposing then a starting solution accuracy proportional to the accuracy of the
Peer method used for the simulation, we find the relation

(T ′)
q′l−q

′
g (∆t′)

q′g ∝ (∆t)qg , (3.81)

where ∆t is the arithmetic mean time-step used by the Peer method of order
qg. Knowing that

T ′ = T st, ∆t ≈ ∆t1, (3.82)

the mean step-size of the one-step method is derived from Eq. (3.81) exploiting
Eqs. (3.76) and (3.77)

∆t′ = ψ
(
∆t1
) qg+q′g−q′l

q′g , (3.83)

where the constant value must be defined by the user (for simplicity we con-
sider ψ = 1).

After sorting the starting time points such that

t0j < t0j+1, j = 1, . . . , s− 1, (3.84)

with in general t0j 6= t0i for j = i, we find the number of steps,

N ′
j = int

(
t0j+1 − t0j

∆t′

)
+ 1, (3.85)

needed to integrate in time from t0j to t0j+1 by means of the one-step scheme
and, as a consequence, the corresponding fixed time-step

∆t′j =
t0j+1 − t0j
N ′
j

. (3.86)

Notice that ∆t′j ≤ ∆t′. Finally, imposing the initial condition

Wj=1,0 = W(t0), (3.87)
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the solution Wj+1,0, with j = 1, . . . , s − 1, can be computed starting from
Wj,0 after N ′

j steps of dimension ∆t′j performed with the one-step temporal
scheme.

The procedure described is applicable for a generic one-step scheme inde-
pendently on its accuracy and without requiring any dense output, meanwhile
ensuring the accuracy of the Peer method. However, we suggest to avoid the
use of this strategy for q′g << qg since from Eq. (3.83) the step-size ∆t′ could
became too small leading to an excessively expensive starting procedure. Fur-
thermore, since it is not ensured in general that a one-step method provides the
same order of accuracy for all system variables, e.g. some Rosenbrock schemes
show an order reduction only for the pressure variable when applied to incom-
pressible flows [5], then the exponent in Eq. (3.83) is set for safety purposes
as the maximum between exponents computed from one-step scheme orders
shown for each variable wj

qg + q′g − q′l
q′g

= max
j∈[1,m]

(
qg + q′g − q′l

q′g

)
wj

. (3.88)
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CHAPTER4
Numerical results: part A

In this chapter we show and examine the robustness and efficiency improve-
ments of the numerical strategies proposed in Cap. 3 for the simulation of two
benchmark test cases: the advection of a compressible isentropic vortex and
the advection-diffusion of incompressible travelling waves.

Afterwards, the potential of the proposed high-order coupling between DG
method and implicit temporal schemes is demonstrated by performing the im-
plicit Large Eddy simulation (ILES) of the massively separated compressible
flow over periodic hills at Re = 10595.

4.1 The isentropic vortex and travelling waves test cases

In this section we show the efficiency and robustness improvements of implicit
time integration schemes introduced with the approaches proposed Chap. 3.
Benchmark test cases are the transport of a compressible inviscid isentropic
vortex [5,40,50] and the transport-diffusion of incompressible travelling waves
[5].

The isentropic vortex (vortex) is defined by velocity and temperature per-
turbations of a uniform flow, with pressure, temperature, density and velocity
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Figure 4.1: Initial pressure and velocity magnitude fields for isentropic vortex (left) and trav-
elling waves (right) test cases, respectively.

components equal to 1. Perturbations are given by

δu1 = − α

2π
(y − y0) e

φ
(
1−r2

)
,

δu2 =
α

2π
(x− x0) e

φ
(
1−r2

)
,

δT = −α
2 (γ − 1)

16φγπ2
e2φ

(
1−r2

)
,

(4.1)

where γ = 1.4 is the gas specific heats ratio, φ = 0.8 and α = 4 are parameters
defining the vortex strength and r is the distance of a point (x, y) from the
vortex center (x0, y0), placed at (5, 5) at time t0 = 0, that moves on the diagonal
of a square domain [0, 10]× [0, 10] with all periodic boundaries. Therefore, the
vortex period T is equal to ten non-dimensional convective times.

The travelling waves (waves) solution on the doubly-periodic unit square
[0.25, 1.25]× [0.5, 1.5] is

u1 (x, y, t) = 1 + 2cos (2π (x− t)) sin (2π (y − t)) e−8π2νt, (4.2)

u2 (x, y, t) = 1− 2sin (2π (x− t)) cos (2π (y − t)) e−8π2νt, (4.3)

p (x, y, t) = − (cos (4π (x− t)) + cos (4π (y − t))) e−16π2νt, (4.4)

with ν = 1e−2. Waves period T is equal to one non-dimensional convective
time.

The initial pressure and initial velocity magnitude fields of isentropic vortex
and travelling waves, respectively, are shown in Fig. 4.1. Solutions are com-
puted at tN = T using a very accurate DG space discretization on a uniform
quad mesh to keep the space discretization error well below the time integration
error (see Tab. 4.1).

Results shown in Fig. 4.2 and 4.3 demonstrate that all ESDIRK and Rosen-
brock schemes verify the formal order of convergence for all working variables
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Table 4.1: Inviscid vortex & travelling waves - DG space discretization data.

vortex waves
Grid 16× 16 4× 4
Polynomial degree P12 P13

DoF for each variable 23296 1680

Figure 4.2: Isentropic vortex - Convergence analysis for the global error norm of working
variables
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Table 4.2: Isentropic vortex - List of local, global and estimator constants and orders

scheme ψNg ψ1
l ψ1

r qg ql qr
p̃

BE 2.53E + 01 1.93E + 00 1.21E + 00 1 2 1
CN 7.42E + 00 1.34E + 00 1.93E + 00 2 3 2
ESDIRK34 1.43E + 01 2.12E + 00 1.00E− 01 3 4 3
ESDIRK46 1.10E + 00 4.84E− 01 1.89E− 02 4 5 4
ESDIRK58 1.15E + 00 7.45E− 01 1.16E− 01 5 6 6
LBE 2.53E + 01 1.93E + 00 1.21E + 00 1 2 1
IB 3.69E + 00 7.21E− 01 8.01E− 01 2 3 2
ROS3PL 1.43E + 01 2.13E + 00 3.61E− 01 3 4 3
RODASP 1.11E + 00 6.24E− 01 3.53E− 01 4 5 4
Rod5 1 8.81E− 01 6.67E− 01 6.37E− 01 5 6 5

T̃

BE 7.24E + 00 5.53E− 00 3.46E + 01 1 2 1
CN 2.12E + 00 3.84E− 01 5.53E− 01 2 3 2
ESDIRK34 4.09E + 00 6.05E− 01 2.86E− 02 3 4 3
ESDIRK46 3.15E− 01 1.38E− 01 5.40E− 03 4 5 4
ESDIRK58 3.33E− 01 2.13E− 01 3.33E− 02 5 6 6
LBE 7.24E + 00 5.53E− 01 3.46E− 01 1 2 1
IB 1.05E + 00 2.06E− 01 2.29E− 01 2 3 2
ROS3PL 4.09E + 00 6.09E− 01 1.03E− 01 3 4 3
RODASP 3.18E− 01 1.78E− 01 1.01E− 01 4 5 4
Rod5 1 2.52E− 01 1.91E− 01 1.82E− 01 5 6 5

u
1

BE 2.27E + 01 2.66E + 00 1.99E + 00 1 2 1
CN 1.35E + 01 1.45E + 00 2.66E + 00 2 3 2
ESDIRK34 1.20E + 01 1.80E + 00 1.08E− 01 3 4 3
ESDIRK46 1.56E + 00 3.22E− 01 1.83E− 02 4 5 4
ESDIRK58 1.09E + 00 4.29E− 01 7.73E− 02 5 6 6
LBE 2.27E + 01 2.66E + 00 1.99E + 00 1 2 1
IB 6.61E + 00 1.12E + 00 1.10E + 00 2 3 2
ROS3PL 1.20E + 01 1.86E + 00 5.28E− 01 3 4 3
RODASP 1.56E + 00 3.99E− 01 4.08E− 01 4 5 4
Rod5 1 7.27E− 01 3.16E− 01 3.83E− 01 5 6 5

u
2

BE 1.84E + 01 2.66E + 00 1.99E + 00 1 2 1
CN 8.10E + 00 1.45E + 00 2.66E + 00 2 3 2
ESDIRK34 1.31E + 01 1.79E + 00 1.08E− 01 3 4 3
ESDIRK46 1.68E + 00 3.19E− 01 1.83E− 02 4 5 4
ESDIRK58 1.19E + 00 3.97E− 01 7.13E− 02 5 6 6
LBE 1.84E + 01 2.66E + 00 1.99E + 00 1 2 1
IB 4.02E + 00 1.12E + 00 1.10E + 00 2 3 2
ROS3PL 1.31E + 01 1.85E + 00 5.28E− 01 3 4 3
RODASP 1.68E + 00 3.96E− 01 4.05E− 01 4 5 4
Rod5 1 8.34E− 01 3.24E− 01 3.73E− 01 5 6 5

and both for ODEs (vortex) and DAEs (waves), where all errors are computed
with respect to the available analytic solutions.

In Tab. 4.2, 4.3 are reported global, local and estimator constants and the re-
spective orders obtained for both test cases. In particular, observing the orders

60



4.1. The isentropic vortex and travelling waves test cases

Table 4.3: Travelling waves - List of local, global and estimator constants and orders

scheme ψNg ψ1
l ψ1

r qg ql qr
p

BE 1.65E + 01 7.90E + 01 8.92E + 00 1 2 1
CN 3.56E + 01 1.66E + 02 5.60E + 01 2 3 2
ESDIRK34 1.39E + 02 6.49E + 02 8.76E + 00 3 4 3
ESDIRK46 5.76E + 01 2.66E + 02 3.96E + 00 4 5 4
ESDIRK58 9.71E + 01 4.46E + 02 3.30E + 01 5 6 6
LBE 1.65E + 01 7.89E + 01 1.27E + 01 1 2 1
IB 1.59E + 01 6.52E + 00 3.31E + 01 2 2 2
ROS3PL 1.40E + 02 8.53E + 00 3.14E + 00 3 3 2
RODASP 5.76E + 01 2.80E + 02 1.09E + 02 4 5 4
Rod5 1 4.31E + 01 2.54E + 02 5.74E + 02 5 6 5

u
1

BE 2.58E + 01 5.61E + 01 8.92E + 00 1 2 1
CN 5.55E + 01 1.18E + 02 5.60E + 01 2 3 2
ESDIRK34 2.16E + 02 4.60E + 02 8.76E + 00 3 4 3
ESDIRK46 8.89E + 01 1.89E + 02 3.96E + 00 4 5 4
ESDIRK58 1.52E + 02 3.19E + 02 3.30E + 01 5 6 6
LBE 2.58E + 01 5.60E + 01 8.92E + 00 1 2 1
IB 2.69E + 01 5.71E + 01 2.32E + 01 2 3 2
ROS3PL 2.16E + 02 4.60E + 02 2.92E + 01 3 4 3
RODASP 8.88E + 01 1.89E + 02 6.90E + 01 4 5 4
Rod5 1 6.75E + 01 1.40E + 02 1.26E + 02 5 6 5

u
2

BE 2.58E + 01 5.61E + 01 8.92E + 00 1 2 1
CN 5.55E + 01 1.18E + 02 5.60E + 01 2 3 2
ESDIRK34 2.16E + 02 4.60E + 02 8.76E + 00 3 4 3
ESDIRK46 8.89E + 01 1.89E + 02 3.96E + 00 4 5 4
ESDIRK58 1.52E + 02 3.19E + 02 3.30E + 01 5 6 6
LBE 2.58E + 01 5.60E + 01 8.92E + 00 1 2 1
IB 2.69E + 01 5.71E + 01 2.32E + 01 2 3 2
ROS3PL 2.16E + 02 4.60E + 02 2.92E + 01 3 4 3
RODASP 8.88E + 01 1.89E + 02 6.90E + 01 4 5 4
Rod5 1 6.75E + 01 1.40E + 02 1.26E + 02 5 6 5

found for the incompressible case we can see that the local order on pressure
field for IB and ROS3PL schemes turns out to be lower than expected. Besides,
for ROS3PL scheme only we also observe a reduction of the estimator order
on pressure field.

As regards Peer schemes we want to show the effects of the new starting
procedure proposed in Sec. 3.6. The procedure is here adopted using as one-
step schemes the Rosenbrock ROS3PL, RODASP and Rod5 1 schemes, where
the ROS3PL is used for all Peer methods while higher order RODASP and
Rod5 1 are applied only to peer5A and peer6A, respectively. In Tabs. 4.4 and
4.5 are reported global errors and orders obtained for the travelling wave test
case using on one hand the exact starting values Wi,0 and on the other hand
the numerical values computed with the starting procedure. Notice that for all
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Chapter 4. Numerical results: part A

Figure 4.3: Travelling waves - Convergence analysis for the global error norm of working
variables

10−3 10−2 10−1 100
10−11

10−8

10−5

10−2

101

Time step ∆t

‖e
rr
N p
‖

BE
CN
ESDIRK34
ESDIRK46
ESDIRK58

10−3 10−2 10−1 100
10−11

10−8

10−5

10−2

101

Time step ∆t

‖e
rr
N p
‖

LBE
IB
ROS3PL
RODASP
Rod5 1

10−3 10−2 10−1 100
10−11

10−8

10−5

10−2

101

Time step ∆t

‖e
rr
N u
1
‖

BE
CN
ESDIRK34
ESDIRK46
ESDIRK58

10−3 10−2 10−1 100
10−11

10−8

10−5

10−2

101

Time step ∆t

‖e
rr
N u
1
‖

LBE
IB
ROS3PL
RODASP
Rod5 1

10−3 10−2 10−1 100
10−11

10−8

10−5

10−2

101

Time step ∆t

‖e
rr
N u
2
‖

BE
CN
ESDIRK34
ESDIRK46
ESDIRK58

10−3 10−2 10−1 100
10−11

10−8

10−5

10−2

101

Time step ∆t

‖e
rr
N u
2
‖

LBE
IB
ROS3PL
RODASP
Rod5 1

Peer methods and with all one-step schemes the starting procedure preserves
the global accuracy. Nevertheless, we point out that with a lower order one-
step scheme the starting procedure becomes more expensive thus reducing the
overall efficiency of the Peer method as shown in Tab. 4.5 for the peer5A and
peer6A schemes in terms of work unit. Notice that, due to the machine er-
ror limit, the peer6A scheme is not able to verify the order of convergence at
smallest time step.

It could be useful knowing that for all temporal schemes the CFL condition,
i.e. CFL= 1 where the Courant number is computed with respect to the maxi-
mum eigenvalue of the Jacobian matrix, applied to all mesh elements requires
∆t < 1/400 and ∆t < 1/23000 for the vortex and the waves, respectively.
Therefore, results here obtained prove that, thanks to the implicit treatment of
the integration in time, for these benchmark test cases and with the applied very
high-order DG discretization we are able to perform simulations through step-
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4.1. The isentropic vortex and travelling waves test cases

Table 4.4: Travelling waves - Pressure and velocity components global error norms and com-
puted orders of convergence for Peer schemes with exact initial values Wi,0. T = tN = 1
is the time integration period.

∆t ‖errNp ‖ order ‖errNu1
‖ order ‖errNu2

‖ order

peer3A

T/40 1.78E-01 1.57 2.76E-01 1.57 2.76E-01 1.57
T/80 3.74E-02 2.92 5.82E-02 2.92 5.82E-02 2.92

T/160 4.84E-03 2.98 7.54E-03 2.98 7.54E-03 2.98
T/320 6.13E-04 2.99 9.54E-04 2.99 9.54E-04 2.99
T/400 3.15E-04 - 4.90E-04 - 4.90E-04 -

peer4A

T/40 8.53E-03 3.74 1.33E-02 3.73 1.33E-02 3.73
T/80 6.01E-04 3.93 9.36E-04 3.93 9.36E-04 3.93

T/160 3.88E-05 3.98 6.04E-05 3.98 6.04E-05 3.98
T/320 2.45E-06 3.99 3.82E-06 3.99 3.82E-06 3.99
T/400 1.01E-06 - 1.57E-06 - 1.57E-06 -

peer5A

T/40 2.75E-04 4.89 4.28E-04 4.89 4.28E-04 4.89
T/80 9.07E-06 4.97 1.41E-05 4.97 1.41E-05 4.97

T/160 2.87E-07 4.99 4.47E-07 4.99 4.47E-07 4.99
T/320 9.02E-09 5.00 1.40E-08 5.00 1.40E-08 5.00
T/400 2.96E-09 - 4.60E-09 - 4.60E-09 -

peer6A

T/40 7.66E-06 5.98 1.19E-05 5.98 1.19E-05 5.98
T/80 1.20E-07 6.01 1.86E-07 6.01 1.86E-07 6.01

T/160 1.87E-09 5.80 2.89E-09 6.03 2.89E-09 6.03
T/320 1.78E-10 - 4.06E-11 - 4.06E-11 -
T/400 1.76E-10 - 1.81E-11 - 1.81E-11 -

sizes even one hundred times larger than the CFL limit without any stability
issue.

4.1.1 Time integration robustness and efficiency improvements

The results presented above have been obtained without using neither time
adaptation nor improved initial guess strategies reported in Chap. 3. More-
over the stopping criterion has been set to machine error limit. These results,
hereinafter referred as base results (base), are now compared with results ob-
tained using respectively the initial guess approach (guess), the stopping crite-
rion (stop), the time step adaptation (adp) and all strategies activated (all). We
would like to underline that the stopping criterion is here applied for both test
cases imposing the severe limit values ζs = 1 and M → ∞. This means that
the threshold tolerance is exactly τs,wj

= min(LTEn+1
wj

, rn+1
wj

) and the scaling
ratio rs is frozen during the whole simulation to the value found at the first time
step.

Here for the sake of simplicity we analyse the robustness and efficiency
improvements of developed numerical approaches only for the 4th order ES-
DIRK46 and RODASP schemes as examples of implicit and linearly-implicit

63



Chapter 4. Numerical results: part A

Table 4.5: Travelling waves - Pressure and velocity components global error norms and com-
puted orders of convergence for Peer schemes with numerical starting procedure. The one-
step scheme used for the starting procedure is reported inside the brackets. T = tN = 1 is
the time integration period.

∆t ‖errNp ‖ order ‖errNu1
‖ order ‖errNu2

‖ order work unit

peer3A (ROS3PL)

T/40 1.78E-01 1.57 2.76E-01 1.57 2.76E-01 1.57 2.66E+03
T/80 3.74E-02 2.92 5.82E-02 2.92 5.82E-02 2.92 3.02E+03

T/160 4.84E-03 2.98 7.54E-03 2.98 7.54E-03 2.98 3.88E+03
T/320 6.13E-04 2.99 9.54E-04 2.99 9.54E-04 2.99 5.58E+03
T/400 3.15E-04 - 4.90E-04 - 4.90E-04 - 6.55E+03

peer4A (ROS3PL)

T/40 8.52E-03 3.74 1.33E-02 3.73 1.33E-02 3.73 1.78E+03
T/80 6.01E-04 3.93 9.35E-04 3.93 9.35E-04 3.93 2.22E+03

T/160 3.88E-05 3.98 6.04E-05 3.98 6.04E-05 3.98 3.28E+03
T/320 2.45E-06 3.99 3.81E-06 3.99 3.81E-06 3.99 6.16E+03
T/400 1.01E-06 - 1.57E-06 - 1.57E-06 - 7.15E+03

peer5A (RODASP)

T/40 2.75E-04 4.89 4.29E-04 4.89 4.29E-04 4.89 1.60E+03
T/80 9.07E-06 4.97 1.41E-05 4.97 1.41E-05 4.97 2.14E+03

T/160 2.87E-07 4.99 4.47E-07 4.99 4.47E-07 4.99 3.62E+03
T/320 9.02E-09 5.00 1.40E-08 5.00 1.40E-08 5.00 6.03E+03
T/400 2.96E-09 - 4.60E-09 - 4.60E-09 - 7.63E+03

peer5A (ROS3PL)

T/40 2.75E-04 4.89 4.29E-04 4.89 4.29E-04 4.89 1.54E+03
T/80 9.08E-06 4.97 1.41E-05 4.97 1.41E-05 4.97 2.25E+03

T/160 2.87E-07 4.99 4.48E-07 4.99 4.48E-07 4.99 3.89E+03
T/320 9.03E-09 4.99 1.41E-08 5.00 1.41E-08 5.00 7.50E+03
T/400 2.96E-09 - 4.61E-09 - 4.61E-09 - 7.78E+03

peer6A (Rod5 1)

T/40 7.66E-06 5.98 1.19E-05 5.98 1.19E-05 5.98 1.66E+03
T/80 1.20E-07 6.01 1.86E-07 6.01 1.86E-07 6.01 2.24E+03

T/160 1.87E-09 5.80 2.89E-09 6.03 2.89E-09 6.03 3.81E+03
T/320 1.78E-10 - 4.06E-11 - 4.06E-11 - 6.16E+03
T/400 1.79E-10 - 1.81E-11 - 1.81E-11 - 6.75E+03

peer6A (ROS3PL)

T/40 7.65E-06 5.99 1.19E-05 5.98 1.19E-05 5.98 2.32E+03
T/80 1.20E-07 6.00 1.86E-07 6.00 1.86E-07 6.00 4.72E+03

T/160 1.86E-09 5.79 2.89E-09 6.02 2.89E-09 6.02 9.03E+03
T/320 1.79E-10 - 4.05E-11 - 4.05E-11 - 1.98E+04
T/400 1.74E-10 - 1.80E-11 - 1.80E-11 - 2.42E+04

time integration schemes respectively. Moreover we report only the results for
the velocity component u2, the working variable on which is defined the adap-
tive algorithm, knowing that all the conclusions are also valid for the remaining
variables.

First of all, we prove that all developed numerical approaches preserve the
theoretical order of convergence. This can be easily seen in Figs. 4.4 and 4.5
where none approach degrades the schemes accuracy.

Furthermore, it is of particular interest to see the effects of the tolerance
proportionality and calibration applied with step-size adaptation (see Figs. 4.6
and 4.7). Thanks to the proportionality, a variation on absolute tolerance leads
to vary the global error of the same quantity. Besides, with the calibration
constants τψ reported in Tab. 4.6 we are able to ensure the condition τa =
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4.1. The isentropic vortex and travelling waves test cases

Figure 4.4: Isentropic vortex - Comparison of the velocity component u2 global error norm
obtained using ESDIRK46 and RODASP schemes with the initial guess approach (guess),
the stopping criterion (stop), the time step adaptivation (adp) and all strategies (all) acti-
vated. For the base configuration (base) standard initial guesses and constant step-sizes
are used and machine error limit is required to system solution.
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Figure 4.5: Travelling waves - Comparison of the velocity component u2 global error norm
obtained using ESDIRK46 and RODASP schemes with different strategies activated.
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Table 4.6: Inviscid vortex & travelling waves - List of calibration constants τψ (3.28) computed
for the velocity component u2.

τψ,vortex τψ,waves
ESDIRK46 1.17E− 02 3.04E− 02
RODASP 2.61E− 01 5.33E− 01

‖errNu2‖. The relative tolerance τr is here set to the machine error limit.
In Figs. 4.8 and 4.9 we compare efficiency improvements in terms of total

number of GMRES iterations. We can see that each strategy has a different
behaviour with respect to the step-size. Since it is based on an extrapola-
tion process which produces more accurate initial guesses for ∆t → 0, the
initial guess approach gives best improvements for smallest time steps. Con-
versely the hybrid stopping criterion ensures better efficiency enhancements for
higher step-sizes since temporal scheme accuracy requirements are less restric-
tive thus allowing to consider higher threshold tolerance values. The adaptive
algorithm instead does not show performance increments because the step-size
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Chapter 4. Numerical results: part A

Figure 4.6: Isentropic vortex - Velocity component u2 global error norm versus the adaptive
absolute tolerance τa imposed in Eq. (3.21) where the relative tolerance τr is set to the
machine error limit. Dashed lines represent the condition τa = ‖errNu2

‖.
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Figure 4.7: Travelling waves - Velocity component u2 global error norm versus the adaptive
absolute tolerance τa imposed in Eq. (3.21) where the relative tolerance τr is set to the
machine error limit. Dashed lines represent the condition τa = ‖errNu2
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Figure 4.8: Isentropic vortex - Comparison of the velocity component u2 global error norm
in terms of total number of GMRES iterations obtained using ESDIRK46 and RODASP
schemes with the different strategies activated.
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remains roughly constant for these simple test cases. Moreover, no step rejec-
tion is needed. Finally, the simultaneous activation of all strategies minimizes
the computational effort on iterative system solution by fulfilling the advan-
tages of each approach except for few simulations at extremely high step-sizes
where some step rejection occurred.

In Figs. 4.10 and 4.11 we show performances enhancements in term of com-
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4.1. The isentropic vortex and travelling waves test cases

Figure 4.9: Travelling waves - Comparison of the velocity component u2 global error norm
in terms of total number of GMRES iterations obtained using ESDIRK46 and RODASP
schemes with the different strategies activated.
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Figure 4.10: Isentropic vortex - Comparison of the velocity component u2 global error norm
in terms of wall time [s] obtained using ESDIRK46 and RODASP schemes with the different
strategies activated.
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Figure 4.11: Travelling waves - Comparison of the velocity component u2 global error norm
in terms of wall time [s] obtained using ESDIRK46 and RODASP schemes with the different
strategies activated.
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putational time. All considerations previously derived regarding GMRES iter-
ations are here still valid. Furthermore, we are also able to analyse the Ja-
cobian matrix impact on the computational cost. More in particular, for the
ESDRIK46 scheme, as for all temporal schemes that use the modified new-
ton method here applied, for sufficiently small step-sizes the matrix is usually
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Chapter 4. Numerical results: part A

Table 4.7: Isentropic vortex - Time integration efficiency enhancements for ESDIRK46 and
RODASP schemes in terms of GMRES iterations (∆%ItGMRES) and wall time (∆%twall)
reduction.

τa ∆t ‖errNv ‖ ∆%ItGMRES ∆%twall speedup

E
SD

IR
K

46

1.00E− 04 8.85E− 02 1.04E− 04 −79.2 −58.7 2.42
1.00E− 05 5.00E− 02 1.06E− 05 −78.0 −62.6 2.68
1.00E− 06 2.82E− 02 1.06E− 06 −73.1 −62.9 2.69
1.00E− 07 1.59E− 02 1.07E− 07 −69.3 −61.9 2.62
1.00E− 08 8.94E− 03 1.07E− 08 −71.3 −65.8 2.92
1.00E− 09 5.03E− 03 1.06E− 09 −75.5 −67.8 3.10

R
O

D
A

SP

1.00E− 04 8.89E− 02 1.03E− 04 −78.5 −28.7 1.40
1.00E− 05 5.03E− 02 1.08E− 05 −78.4 −19.2 1.24
1.00E− 06 2.82E− 02 1.06E− 06 −76.1 −19.2 1.24
1.00E− 07 1.59E− 02 1.07E− 07 −74.7 −10.6 1.12
1.00E− 08 8.94E− 03 1.08E− 08 −74.2 −10.3 1.11
1.00E− 09 5.03E− 03 1.08E− 09 −73.2 −7.3 1.08

frozen through several time steps while for very high values of ∆t it is com-
puted more than once for each step hence increasing considerably the execu-
tion time. Conversely, for RODASP scheme, and more in general for linearly
implicit schemes, the matrix must always be computed once per step and there-
fore represents a large part of the step computational cost independently on the
∆t value. As a consequence, the efficiency improvements in terms of wall
time are limited especially for ODEs system, i.e. vortex test case, where the
GMRES method converges very quickly.

Results reported in Tab. 4.7 and 4.8 and obtained by activating all the strate-
gies developed in this work clearly show what has been previously mentioned.
Indeed, although we are able to reduce the total number of GMRES itera-
tions of 60/80% for both linear and non-linear iterative methods and for both
ODEs and DAEs, the computational effort reduction (∆%twall) for the RO-
DASP scheme (≈ −20/ − 30%) is strongly limited with respect to the ES-
DIRK46 one (≈ −60%). Nevertheless, we can see that the proposed ap-
proaches are able to provide a remarkable maximum speedup equal to 3 for
ESDIRK46 and to 1.4/1.7 for RODASP schemes for both inviscid vortex and
travelling waves test cases.

4.2 Flow over periodic hills

The reliability of the proposed implicit and globally high-order approach to
the simulation of unsteady turbulent flows is here demonstrated on the ILES of
the compressible flow over periodic hills. More in particular, no subgrid-scale
models are included in the governing equations and all numerical approaches
developed in Chap. 3 and tested in Sec. 4.1 are applied.
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4.2. Flow over periodic hills

Table 4.8: Travelling waves - Time integration efficiency enhancements for ESDIRK46 and
RODASP schemes in terms of GMRES iterations (∆%ItGMRES) and wall time (∆%twall)
reduction.

τa ∆t ‖errNu2
‖ ∆%ItGMRES ∆%twall speedup

E
SD

IR
K

46

1.00E− 04 3.22E− 02 9.54E− 05 −75.3 −56.3 2.29
1.00E− 05 1.81E− 02 9.73E− 06 −71.9 −61.3 2.59
1.00E− 06 1.03E− 02 1.00E− 06 −72.6 −66.0 2.94
1.00E− 07 5.78E− 03 9.95E− 08 −69.8 −67.5 3.08
1.00E− 08 3.26E− 03 1.00E− 08 −67.9 −66.4 2.98
1.00E− 09 1.83E− 03 1.00E− 09 −67.7 −66.5 2.99

R
O

D
A

SP

1.00E− 04 3.22E− 02 9.80E− 05 −76.4 −43.1 1.76
1.00E− 05 1.81E− 02 9.91E− 06 −72.5 −38.2 1.62
1.00E− 06 1.03E− 02 1.00E− 06 −69.1 −39.7 1.66
1.00E− 07 5.78E− 03 1.00E− 07 −66.7 −37.0 1.59
1.00E− 08 3.26E− 03 1.00E− 08 −62.7 −33.6 1.51
1.00E− 09 1.83E− 03 1.00E− 09 −57.9 −33.9 1.51

Figure 4.12: Second order curved mesh for the periodic hill test case.

The flow over periodic hills is a test case deeply analysed in literature
[17,32,49] and it is part of the test case repository defined inside the EU project
TILDA (Towards Industrial LES/DNS in Aeronautics - Paving the Way for Fu-
ture Accurate CFD). The flow is computed for the hill hight h based Reynolds
number Reh = 10595 and for the Mach number M = 0.1, thus matching
incompressible conditions. The channel length and heigh are Lx = 9h and
Ly = 3.035h, respectively, and the spanwise extent is Lz = 4.5h. The second
order mesh is composed of 64 × 32 × 32 elements (see Fig. 4.12). Computa-
tions are performed with DG P2 and P4 polynomial degrees leading to 655 360
and 2 293 760 DoF per equation, respectively.

The domain is periodic in streamwise and spanwise directions. At solid
upper and lower walls the isothermal no-slip boundary condition is imposed
using non-dimensional temperature of Tw = 1. The non-periodic behaviour
of the pressure distribution is handled by adding the mean pressure gradient
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Chapter 4. Numerical results: part A

Figure 4.13: Periodic hills - Comparison of the velocity component u2 global error norm in
terms of wall time [s] obtained using DG P2 (left) and P4 (right).
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as a source term, imposed uniform over the whole domain, to the momentum
equation in streamwise direction.

The pressure gradient ∂pn/∂x, set constant at time step ∆tn, is derived
following the Benocci and Pinelli approach [13] modified in order to take into
account of non constant step-sizes

∂p

∂x

n

=
∂p

∂x

n−1

+ ζh
2

ρh∆tn (1 + σn)

[
ṁh − ṁn (1 + σn) + ṁn−1σn

]
, (4.5)

where σn = ∆tn/∆tn−1 and ζh = 1/10 is a safety factor that proved to be
very useful to control temporal oscillations of the forcing term when dealing
with high time steps. The parameter ṁh is the mass flow rate, here considered
averaged on the whole domain, which ensures the prescribed Reh. ṁn and
ṁn−1 are the numerical averaged mass flow rates computed at previous steps.

The choice of the temporal scheme is performed by comparing the effi-
ciencies of high order ESDIRK and Rosenbrock schemes for P2 and P4 DG
discretizations with initial guess approach and hybrid stopping criterion acti-
vated. More in detail, for the stopping criterion, data reported in Tab. 4.9 are
used. The comparison between different temporal schemes obtained after one
reference period T = Lx/ub, with ub the prescribed bulk velocity at hill crest,
and starting from a fully-developed turbulent flow is shown in Fig. 4.13. The
step-sizes considered are ∆t ∈ [T/80, T/400] and ∆t ∈ [T/256, T/400] for
DG P2 and P4, respectively. All errors are computed with respect to a reference
solution obtained for each polynomial degree with the ESDIRK58 scheme and
∆t = T/1000.

Since the Rosenbrock Rod5 1 proves to be the most efficient temporal
scheme then it is used for the integration in time over 100 and 60 reference
periods T for DG P2 and P4 simulations, respectively. The adaptive algorithm
is carried out imposing the calibration factor τψ = 1 and an absolute tolerance
value τa in such a way to verify ∆t ≈ T/400 (again the relative tolerance τr is
set equal to the machine error limit). Moreover for the hybrid stopping criterion
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4.2. Flow over periodic hills

Table 4.9: Periodic hills - List of local and estimator constants and orders.

scheme ψ1
l ψ1

r ql qr

p̃

ESDIRK34 1.62E− 04 1.84E− 05 4 3
ESDIRK46 6.36E− 06 2.18E− 06 5 4
ESDIRK58 3.98E− 06 1.67E− 06 6 6
ROS3PL 2.38E− 04 4.89E− 04 4 3
RODASP 9.18E− 04 8.48E− 04 5 4
Rod5 1 6.47E− 05 3.62E− 04 6 5

T̃

ESDIRK34 3.80E− 04 3.64E− 05 4 3
ESDIRK46 1.18E− 05 1.79E− 06 5 4
ESDIRK58 7.70E− 06 9.54E− 07 6 6
ROS3PL 3.63E− 04 1.98E− 04 4 3
RODASP 1.31E− 03 7.91E− 04 5 4
Rod5 1 9.55E− 05 2.36E− 04 6 5

u
1

ESDIRK34 3.27E− 03 4.45E− 04 4 3
ESDIRK46 7.94E− 05 1.39E− 05 5 4
ESDIRK58 4.76E− 05 5.76E− 06 6 6
ROS3PL 3.11E− 03 1.94E− 03 4 3
RODASP 9.85E− 03 7.57E− 03 5 4
Rod5 1 7.68E− 04 2.35E− 03 6 5

u
2

ESDIRK34 5.55E− 03 6.70E− 04 4 3
ESDIRK46 1.60E− 04 2.55E− 05 5 4
ESDIRK58 8.80E− 05 9.87E− 06 6 6
ROS3PL 5.31E− 03 2.58E− 03 4 3
RODASP 1.68E− 02 1.13E− 02 5 4
Rod5 1 8.14E− 04 2.20E− 03 6 5

u
3

ESDIRK34 6.13E− 03 7.34E− 04 4 3
ESDIRK46 1.58E− 04 2.58E− 05 5 4
ESDIRK58 9.97E− 05 1.11E− 05 6 6
ROS3PL 5.88E− 03 2.84E− 03 4 3
RODASP 1.71E− 02 1.18E− 02 5 4
Rod5 1 9.08E− 04 2.36E− 03 6 5

we require one recalculation of the scaling ratio rs every reference period, i.e.
M = 400. The maximum Courant number obtained with this time integration
configuration is CFLmax ≈ 180.

Fig. 4.15 shows the contours of the averaged streamwise velocity for P2 and
P4 computations. Both discretizations show the expected recirculation bubble
and the post-reattachment-recovery region after the hill crest. Fig. 4.14 dis-
plays the instantaneous Q-criterion for P2.

In Fig. 4.16, 4.17, 4.18, 4.19, 4.20 and 4.21 are shown respectively the
mean velocity 〈u1〉/ub, 〈u2〉/ub, the Reynolds stresses 〈u′1u′1〉/u2b , 〈u′2u′2〉/u2b ,
〈u′1u′2〉/u2b and the turbulent kinetic energy 〈k〉/u2b profiles obtained with DG
P2 and P4. All the results are obtained by averaging both in time and in span-
wise direction. Data comparison is performed with numerical results reported
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Chapter 4. Numerical results: part A

Figure 4.14: Periodic hill - Volume rendering of the instantaneous Q criterion field (DG P2).

Figure 4.15: Periodic hill - Averaged streamwise velocity contour.

by Breuer et al. in [17] and available on ERCOFTAC database. Despite the
coarse mesh and the low number of DoFs, a good agreement is achieved with
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4.2. Flow over periodic hills

Figure 4.16: Periodic hill - Averaged velocity 〈u1〉 /ub profiles at different positions.
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Figure 4.17: Periodic hill - Amplified averaged velocity 〈u2〉 /ub profiles at different positions.
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Figure 4.18: Periodic hill - Amplified Reynolds stresses 〈u′1u′1〉 /u2b profiles at different posi-
tions.

−1 0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

10 〈u′1u′1〉 /u2b

y
/
h

DG P2

DG P4

ref. [17]

respect to the reference data, especially for the DG P4 solution. Notice that
the vertical velocity, the Reynolds stresses and the turbulent kinetic energy
profiles are about one order of magnitude smaller than the streamwise veloc-
ity and, thus, they are here amplified when shown in figures for the sake of
comprehension. As a consequence, also the discrepancies with respect to the
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Chapter 4. Numerical results: part A

Figure 4.19: Periodic hill - Amplified Reynolds stresses 〈u′2u′2〉 /u2b profiles at different posi-
tions.
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Figure 4.20: Periodic hill - Amplified Reynolds stresses 〈u′1u′2〉 /u2b profiles at different posi-
tions.

−1 0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

10 〈u′1u′2〉 /u2b

y
/h

DG P2

DG P4

ref. [17]

Figure 4.21: Periodic hill - Amplified turbulent kinetic energy 〈k〉 /u2b profiles at different
positions.
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reference solution are amplified.
Finally, in Tab. 4.10 we report the time integration performance improve-

ments obtained for the periodic hill test case. Thanks to the strategies devel-
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4.2. Flow over periodic hills

Table 4.10: Periodic hills - Time integration efficiency enhancements in terms of GMRES
iteration reduction (∆%ItGMRES), wall time reduction (∆%twall), speedup, CPU hours
saving (hCPU ) and man hours saving (hman) obtained applying all numerical strategies
developed in this work to the Rod5 1 scheme for DG P2 and P4 polynomial approximations.

∆%ItGMRES ∆%twall speedup hCPU hman
P2 −54.08 −15.51 1.18 6 200 6
P4 −59.21 −9.71 1.11 40 908 40

oped in this work, for the DG P2 computation we are able to reduce the total
number of GMRES iterations more than 50% and the global computational
time of ≈ 15%, thus leading to a speedup of 1.18. Moreover, the total number
of saved CPU hours is 6 200, corresponding to 6 man hours (here we used 1024
cores). For the DG P4 simulation, we obtain a lower computational time re-
duction (≈ 10%) and speedup (1.11) because of the higher cost of the Jacobian
matrix computation. However, we achieve the remarkable a CPU hours saving
of 40 908 and a man hours saving of 40.
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CHAPTER5
Numerical results: part B

In this chapter we want to show the potential of the proposed Discontinuous
Galerkin approach to the simulation of incompressible multicomponent free
surface flows. The advection of an inviscid squared drop and the dry bed in-
viscid dambreak problem are here analysed. Moreover in order to illustrate the
possibility of the proposed DG formulation to perform simulations with more
than two fluids, a dry bed inviscid double-dambreak problem is here introduced
and solved.

All simulations are performed with a Backward Euler (BE) scheme. Here,
all the approaches proposed in Chap. 3 are applied considering for simplicity
ψl = ψr = 1 for each working variable. Furthermore, for hybrid stopping
criterion we require M = 25 and for adaptive algorithm τψ = 1, τa = 0.005
and τr = ε.

5.1 Advection of a square drop

This 2D test case consists of the advection of a square liquid drop inside a
gas. Pressure and velocity fields are considered unitary in whole the doubly-
periodic square domain [0, 10] × [0, 10]. The drop, placed at (5, 5) at time
t0 = 0, has the initial dimension of (1.25, 1.25) and moves on the diagonal of
the domain thus completing one advection period in T = 10 convective times.
Drop density is imposed unitary ρl = 1 while gas density ρg = ρl/rρ is defined
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Chapter 5. Numerical results: part B

Figure 5.1: Square drop - Mesh and initial density ρ field.

Figure 5.2: Square drop - Density ρ iso-lines after one period T .

by means of the density ratio kept here equal to rρ = 816.33, i.e. water-air
density ratio. Solutions are computed using a P6 DG polynomial discretization
on a uniform 16 × 16 quad mesh hence ensuring an exact projection of the
initial working density ρ̃ field (see Fig. 5.1).

The solution performed at the output time tN = T is shown in Fig. 5.2. De-
spite the large dimension of mesh elements, the small quantity of the numerical
diffusion introduced by the local artificial viscosity allows to capture the inter-
face as a very thin layer with continuous sharp gradients. Moreover, in Fig. 5.3
are shown the working density and density profiles along the domain diagonal
x = y. Thanks to the proposed change of variables, the density is positive and
under/overshoots are strongly limited. As a result, the overall shape of the drop
is well preserved. Finally, solving each BE non-linear system at the machine
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5.2. Dry bed inviscid dambreak problem

Figure 5.3: Square drop - Working density ρ̃ and density ρ profiles on the domain diagonal
after one period T .

Table 5.1: Square drop - Working variables field errors.

‖errNp ‖ ‖errNu1
‖ ‖errNu2

‖ ‖errNρ̃ ‖
8.64e−14 7.21e−12 6.86e−12 3.98e+00

error limit no appreciable variation on pressure and velocity fields are found,
as reported in Tab. 5.1 where errors are defined with respect to the available
exact solution.

5.2 Dry bed inviscid dambreak problem

The dambreak problem over a dry bed is a classical free surface problem that
consists on a collapse of a vertical wall that separates water from air. An exact
solution of the shallow water (SW) model has been already derived for this test
case by Ritter [57] in 1892.

Following the problem set-up proposed by Dumbser [29], the domain
[−50, 50] × [0, 4] initially contains liquid in the region [−50, 0] × [0, 1.4618].
The body acceleration is set according to the gravity constant and velocity
components are imposed null thus requiring an hydrostatic initial pressure pro-
file. Again we consider the water-air density ratio with a unitary liquid density.
Transmissive condition is applied to the top boundary and no-slip wall condi-
tion is considered for remaining borders. Solutions are computed using a P6

DG polynomial discretization on the 260 × 8 and 520 × 16 meshes generated
in order to ensure the exact projection on the polynomial space of the initial
working density field (see Fig. 5.4).

In Figs. 5.5 results obtained for both meshes are compared with the ex-
act solution of the shallow water model at convective time t = 5. An ex-

79



Chapter 5. Numerical results: part B

Figure 5.4: Dambreak - Meshes zoom for x ∈ [−5, 5] and initial density ρ contour.

cellent agreement is achieved in terms of the free surface position except for
the predicted position of the liquid front which is moved forward in the shal-
low water solution. This behaviuor is explained by the fact that shallow water
equations assume that vertical accelerations are negligible compared with hor-
izontal ones [28]. As a consequence, the exact solution shows a maximum
velocity, |u|max = 2

√
gH with H the liquid high, constant in time and thus it

predicts a faster moving liquid front in early times.

5.3 Dry bed inviscid double-dambreak problem

In order to show the capabilities of the proposed DG variable density incom-
pressible formulation to deal with more than two fluids we perform a dambreak
problem with two different liquids and one gas. The gas and the first liquid are
again air and water meanwhile the last fluid is a liquid with an intermediate
density, i.e. the arithmetic mean value of air and water densities. For the sake
of simplicity, the last fluid is here named oil. This test case is challenging since
entails both high (water-air, oil-air) and low (water-oil) density ratio interac-
tions.

80



5.3. Dry bed inviscid double-dambreak problem

Figure 5.5: Dambreak - Comparison of coarse and fine mesh results with respect to the exact
shallow water solution at convective time t = 5 in terms of free surface position and
velocity component u1 profiles at bottom boundary.

The domain [−5, 5]× [0, 8] contains two liquid regions [−5,−3.8]× [0, 3.6]
and [3.8, 5]× [0, 3.6] for water and oil, respectively, while the remaining part is
filled by the air. Null velocity component fields and hydrostatic pressure profile
are imposed as initial conditions and no-slip wall condition is applied to all
boundaries. Solutions are computed using a P6 DG polynomial approximation
on a coarse 25 × 20 and a fine 50 × 40 mesh. At start time, the projection on
the polynomial space of the working density is exact.

Since no references are available on this test case, we only show and analyse
the evolution in time of the double-dambreak problem. In Fig. 5.6 are reported
density contours at chosen times for both coarse and fine mesh computations.
At early times the problem evolves as a classical single dambreak until liquid
fronts collide (t = 0.25). As a consequence a wave of both water and oil
rises till reaching the maximum hight roughly at t = 0.5. After that, in the
meantime that the wave collapses on itself incorporating a small air bubble, the
water front goes forward into the oil region.

Despite the large elements dimension, thanks to the high order DG approx-
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imation the coarse mesh is able to capture quite well the interface evolution in
time. Nevertheless, finer mesh provides better spatial resolutions which allow
to detect smaller flow features.
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5.3. Dry bed inviscid double-dambreak problem

Figure 5.6: Double-dambreak - Density ρ contour at different times for coarse (left) and fine
(right) meshes. Blue is water and red is oil.
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Conclusions

In this work we developed, improved and implemented several numerical ap-
proaches for the robustness and efficiency enhancement of the implicit high-
order time integration performed by means ESDIRK and Rosenbrock schemes.
A new starting procedure able to preserve the theoretical order of accuracy for
multi-step Peer methods is derived as well.

The efficiency of the proposed numerical strategies have been exhaustively
examined on compressible and incompressible benchmark test cases and fi-
nally demonstrated by computing the implicit Large Eddy simulation of the
massively separated compressible flow over periodic hills at Reh = 10595.

Furthermore, we proposed a high-order Discontinuous Galerkin method for
the simulation of variable density incompressible flows which is able to treat
interface problems in a diffuse fashion. More in detail, a change of variables
is introduced in order to ensure the density positivity and limit under/over-
shoots, a local artificial viscosity approach is applied to handle spurious den-
sity oscillations that occur at interfaces, and an exact Riemann solver based on
the artificial compressibility approach is derived for the inviscid interface flux
treatment.

Promising results on numerical experiments involving high-density ratios
(water-air) and the possible interaction of more than two fluids have been ob-
tained using a very high-order polynomial representation of the solution on
relatively coarse grids.

85





Bibliography

[1] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis
of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer.
Anal., 39(5):1749–1779, 2002.

[2] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.
McInnes, K. Rupp, F. Barry, K. R. Smith, S. Zampini, and H. Zhang.
PETSc Web page. http://www.mcs.anl.gov/petsc, 2016.

[3] F. Bassi, L. Botti, A. Colombo, A. Crivellini, A. Ghidoni, A. Nigro, and
S. Rebay. Time integration in the Discontinuous Galerkin code MIGALE
- Unsteady problems. 2014. in press.

[4] F. Bassi, L. Botti, A. Colombo, D. A. Di Pietro, and P. Tesini. On the
flexibility of agglomeration based physical space discontinuous Galerkin
discretizations. J. Comput. Phys., 231(1):45 – 65, 2012.

[5] F. Bassi, L. Botti, A. Colombo, A. Ghidoni, and F Massa. Linearly
implicit Rosenbrock-type Runge-Kutta schemes for the Discontinuous
Galerkin solution of compressible and incompressible unsteady flows.
Computers & Fluids, 118:305–320, 2015.

[6] F. Bassi, A. Crivellini, D. A. Di Pietro, and S. Rebay. An artificial com-
pressibility flux for the discontinuous Galerkin solution of the incom-
pressible NavierStokes equations. Journal of Computational Physics,
218(2):794 – 815, 2006.

[7] F. Bassi, A. Crivellini, D. A. Di Pietro, and S. Rebay. An implicit high-
order discontinuous Galerkin method for steady and unsteady incom-
pressible flows. Comput. Fluids, 36:1529–1546, 2007.

87

http://www.mcs.anl.gov/petsc


Bibliography

[8] F. Bassi, A. Crivellini, S. Rebay, and M. Savini. Discontinuous Galerkin
solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence
model equations. Comput. Fluids, 34:507–540, 2005.

[9] F. Bassi, C. De Bartolo, R. Hartmann, and A. Nigro. A discontinuous
Galerkin method for inviscid low Mach number flows. J. Comput. Phys.,
228(11):3996 – 4011, 2009.

[10] F. Bassi and S. Rebay. A high order discontinuous Galerkin method
for compressible turbulent flows. In Discontinuous Galerkin Methods.
Theory, Computation and Applications, volume 11 of Lecture Notes in
Computational Science and Engeneering, pages 77–88. Springer-Verlag,
2000. First Internation Symposium on Discontinuous Galerkin Methods,
May 24–26, 1999, Newport, RI, USA.

[11] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, and M. Savini. A high-order
accurate discontinuous finite element method for inviscid and viscous tur-
bomachinery flows. In R. Decuypere and G. Dibelius, editors, Proceed-
ings of the 2nd European Conference on Turbomachinery Fluid Dynamics
and Thermodynamics, pages 99–108, Antwerpen, Belgium, March 5–7
1997. Technologisch Instituut.

[12] A.D. Beck, T. Bolemann, D. Flad, H. Frank, G.J. Gassner, F. Hinden-
lang, and C.-D. Munz. High-order discontinuous galerkin spectral ele-
ment methods for transitional and turbulent flow simulations. Internat. J.
Numer. Methods Fluids, 76(8):522–548, 2014.

[13] C. Benocci and A. Pinelli. The role of the forcing term in the large eddy
simulation of equilibrium channel flow. Engineering Turbulence Model-
ing and Experiments, pages 287–296, 1990.

[14] D.S. Blom, P. Birken, H. Bijl, F. Kessels, A. Meister, and A.H. van Zui-
jlen. A comparison of rosenbrock and esdirk methods combined with
iterative solvers for unsteady compressible flows, 06 2016.

[15] P.D. Boom and D.W. Zingg. Time-accurate flow ssimulation using an ef-
ficient newton-krylov-schur approach with high-order temporal and spa-
tial discretization. Grapevine (Dallas/Ft. Worth Region), Texas, January
2013. 51st AIAA Aerospace Sciences Meetin including the New Horizon
Forum and Aerospace Exposition.

[16] L. Botti. Influence of reference-to-physical frame mappings on approxi-
mation properties of discontinuous piecewise polynomial spaces. J. Sci.
Comput., pages 1–29, 2011.

88



Bibliography

[17] M. Breuer, N. Peller, Ch. Rapp, and M. Manhart. Flow over preriodic hills
- numerical and experimental study in a wide range of reynolds numbers.
Computers & Fluids, 38:433–457, 2009.

[18] F. Brezzi, G. Manzini, D. Marini, P. Pietra, and A. Russo. Discontinuous
Galerkin approximations for elliptic problems. Numer. Meth. Part. D. E.,
16:365–378, 2000.

[19] C. Carton de Wiart, K. Hillewaert, M. Duponcheel, and G. Winckelmans.
Assessment of a discontinuous Galerkin method for the simulation of
vortical flows at high Reynolds number. Int. J. Numer. Methods Fluids,
74(7):469–493, 2014.

[20] J. R. Cash. On the integration of stiff systems of O.D.E.s using Ex-
tended Backward Differentiation Formulae. Numerische Mathematik,
(34):235–246, 1980.

[21] J. R. Cash. The integration of stiff initial value problems in ODEs using
Modified Extended Backward Differentiation Formulae. Computers &
Mathematics with Applications, 5(9):645–657, 1983.

[22] J.-B. Chapelier, M. de la Llave Plata, F. Renac, and E. Lamballais. Eval-
uation of a high-order discontinuous Galerkin method for the {DNS} of
turbulent flows. Comput. Fluids, 95(0):210 – 226, 2014.

[23] Y.-H. Choi and C. L. Merkle. The application of preconditioning in vis-
cous flows. J. Comput. Phys., 105(2):207 – 223, 1993.

[24] A. Crivellini, V. D’Alessandro, and F. Bassi. A Spalart-Allmaras turbu-
lence model implementation in a discontinuous Galerkin solver for in-
compressible flows. J. Comput. Phys., 241:388–415, 2013.
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