
UNIVERSITY OF BERGAMO

School of Doctoral Studies

Doctoral Degree in Engineering and Applied Sciences

XXIX Cycle

SSD: ING–INF/05

Rigorous Model-based Development of
Programmable Electronic Medical Systems

(PEMS): from Requirements to Code

Doctoral Thesis
Silvia BONFANTI

Student ID 1004829

Supervisor:
Chiar.mo Prof. Angelo Gargantini

Academic year 2015/16

Acknowledgements

I would like to thank my supervisor Prof. Angelo Gargantini, for his guidance,
support and help during my PhD. I would like to thank Prof.ssa Elvinia Riccobene
and Dr. Paolo Arcaini for their continuing and patient support.

A special thanks to my husband, my parents and my sister for their support
and encouragement.

I would like to thank the SCCH (Software Competence Center Hagenberg) and
all the staff, in particular Dr. Atif Mashkoor who has supported me in research
activities during my stay at SCCH.

The Austrian Ministry for Transport, Innovation and Technology, the Federal
Ministry of Science, Research and Economy, and the Province of Upper Austria
have supported this work in the frame of the COMET (Competence Centers for
Excellent Technologies) project.

I

Contents

Acknowledgements I

1 Introduction 1
1.1 Research questions and Objective 3

I State of the Art 7

2 Standards and regulations for the certification of medical devices software 9
2.1 IEC 62304: Software Development Life Cycle 11
2.2 FDA: General Principles of Software Validation 13
2.3 Conclusion . 14

3 Systematic Literature Review 17
3.1 The SLR Process . 17

3.1.1 Papers selection . 18
3.1.2 Classification and Synthesis 23

3.2 Conclusion . 31

II Abstract State Machines 35

4 ASM-based development process 37
4.1 ASMs Modelling, Validation & Verification 38
4.2 Compliance of the ASMs process with regulations 41

4.2.1 Compliance of Abstract State Machines process with IEC 62304 42
4.2.2 Compliance of Abstract State Machines process with FDA

principles . 43

5 Unified Syntax for ASM to Xtext 45
5.1 UASM Header . 46
5.2 Transition Rules Definition . 47

III

Contents

5.3 Type Definition . 55
5.4 Functions definition . 57
5.5 Terms . 59
5.6 Header . 68
5.7 Terminals . 68
5.8 Implementation: from UASM to Asmeta 69

5.8.1 Coffee Vending Machine . 69

6 Visualization for Abstract State Machines 73
6.1 A visual notation for Abstract State Machines 74
6.2 Visual Trees . 75
6.3 Visual Patterns . 77

6.3.1 Structural patterns . 77
6.3.2 Semantic Patterns . 78

6.4 Tool . 82
6.5 Preliminary evaluation of visual notation 82

7 Automatic Code Generator 85
7.1 Model transformation . 85

7.1.1 Model-to-Text . 86
7.1.2 Model-to-Model . 86

7.2 Microcontrollers . 87
7.3 Design choices . 88
7.4 Transformation process . 89
7.5 Tool implementation . 92

7.5.1 Code Generation . 92
7.5.2 Hardware configuration . 98
7.5.3 The Asm2C++ Eclipse Plugin 99

7.6 Illustrative example . 100
7.6.1 Modelling . 101
7.6.2 Validation & Verification . 101
7.6.3 Hardware . 103
7.6.4 From UASM to C++ code 104

III Case studies 109

8 3D4AMB: diagnosis and treatment for visual diseases 111
8.1 Stereoacuity test . 111
8.2 3D4Amb projects . 113
8.3 StereoAcuity Test . 115

8.3.1 Modelling and refinement . 116
8.3.2 Validation & Verification of the SAM 118
8.3.3 Scenario and test generation 121

IV

Contents

9 Hemodialysis machine case study 125
9.1 Requirements . 125

9.1.1 Hemodialysis machine architecture 126
9.1.2 Hemodialysis therapy . 128

9.2 Modelling by refinement . 129
9.2.1 Ground model . 129
9.2.2 First refinement: preparation phase 132
9.2.3 Second refinement: initiation phase 137
9.2.4 Third refinement: ending phase 143

9.3 Conformance checking . 146
9.4 Related Work . 149
9.5 Conclusions . 149

Conclusion 151

Appendix A IEC and ISO deliverables 155

Appendix B Publications 157

Bibliography 167

V

CHAPTER1
Introduction

Many people get in contact with medical devices during their life, e.g. infusion
pump, diagnostic X-ray equipment, hemodialysis machine. These devices were
based on mechanical and electrical components, and all the hardware parts were
tested to guarantee their correct functioning. Over the years, the software has
increasingly become a critical component of the devices and this has given rise
to a new subgroup of medical devices: Programmable Electronic Medical Sys-
tems (PEMS). PEMS are safety–critical system [78]. They are a combination of
hardware and software to implement all the functionalities that have effects on
people health and, in case of malfunctions, they can seriously compromise human
safety. For this reason, the software installed on these devices must be guaranteed
through rigorous processes to assure medical software safety and reliability. Cor-
rect operation of a medical device depends upon the software, whose development
should adhere to certification standards or guidelines.

Several standards for the validation of medical devices have been proposed,
but they mainly consider hardware aspects of the physical components of a de-
vice, and do not mention the software component. The only reference concerning
regulation of medical software is the standard IEC (International Electrotechni-
cal Commission) 62304 [3]. This standard provides a very general description of
common life cycle activities of the software development, without giving any indi-
cation regarding process models, or methods and techniques to assure safety and
reliability. The U.S. Food and Drug Administration (FDA), the United States
federal executive department that is responsible for protecting and promoting
public health through the regulation and supervision of medical devices, although
accepts the IEC 62304 standard, also pushes towards the application of rigorous
approaches for software validation. In [128], FDA defines several broad concepts

1

Chapter 1. Introduction

that can be used as guidance for software validation and verification, and requires
these activities to be conducted throughout the software development life cycle.
However, no particular technique or method is recommended.

The rigorous process presented in this thesis is based on the Abstract State
Machines (ASMs) [41] formal method, a mathematically based techniques for the
specification, analysis and development of software systems. Currently, the in-
dustries do not develop medical devices using formal methods, but in university
research several groups apply experimentally formal methods to medical device
software. Systematic Literature Review (SLR) is a good start point to better un-
derstand the current state of the art and get some tips to follow for both academic
and industrial researcher. The formal approach based on Abstract State Machines
(ASMs) proposes an incremental life cycle model for software development based
on model refinement. It covers the main software engineering activities (specifi-
cation, validation, verification, conformance checking), and it is supported by a
wide range of tools [25].

Although, we believe that rigour of a formal method can improve the current
normative and that ASMs have the required potential, evidence must be given
about a smooth possible integration of the method into the standards for medical
software development. Additionally, it must be studied how much the ASM pro-
cess is compliant with the normative: which steps and activities of the standard
IEC are covered by using ASMs, and which are not; which FDA principles are
ensured, and to what extent.

In this thesis, the ASM development approach and its supporting Asmeta (ASM
mETAmodeling) framework1 are used to propose a rigorous development process
for PEMS. The final goal is to provide a process able to guarantee the development
of correct and controllable systems in a correct and controllable way. Up to now,
ASMs and Asmeta framework has never been applied to model and to analyse
medical devices. The application of the ASMs to the medical software, and the
definition of a process for their correct development has leaded to some improve-
ments of the method, mainly regarding the textual and graphical notations, and
the automatic code generation from models.

A new rigorous notation, Unified Syntax for Abstract State Machine (UASM),
has been defined to provide a stable language kernel for ASMs languages that sup-
port the interoperability of tools designed and implemented by different groups. In
addition, the UASM language should be usable for communication with customers
and non-experts (e.g. doctors and technician).

The mathematical notation used in ASMs can appear sometimes difficult to
read and to understand by not expert stakeholders, and the size of the specifi-
cation often consists of several pages of rules and formulas. For this reason, the
availability of a visualization tool to provide a graphical representation of ASM
models has been considered a good means for people to communicate and to get
a common understanding.

Another limitation discovered during the application of ASMs to medical de-
vice, is the manual implementation of the code starting from the models. By
performing this last step manually, the costs increase, the reuse of a formal spec-

1http://asmeta.sourceforge.net/

2

http://asmeta.sourceforge.net/

1.1. Research questions and Objective

ification is limited, some faults can be introduced in the code writing process,
and it can be a barrier for a wider adoption of the ASMs. For this reason, we
have devised a methodology to generate the desired source code from ASMs. The
tool automatically translates the formal specification into the target code (C++
for Arduino in the present case) and it preserves the system behaviour and the
properties verified during validation and verification.

1.1 Research questions and Objective

The goal of this thesis is to apply rigorous methods to derive medical software
starting from requirements.

The thesis is divided into nine chapters, and each of these chapters (introduc-
tion excluded) try to answer to a research question (RQ).
RQ1 Are there regulations for medical software?

This is shown in Chapter 2 in which two documents are analysed, IEC 62304
and FDA general principles. The first is an international standard. It describes
the life cycle activities of the software development without giving any informa-
tion about the method to be applied. The FDA general principles provide the
guidelines for the validation and verification of the medical software.
RQ2 Are there application of formal methods to medical device soft-
ware development?

The answer is in Chapter 3. SLR is applied to point out which is the current
state of the art. Statistical data and technical details are provided to understand
the current applications of the rigorous methods to medical devices software.
RQ3 ASMs are applicable to support the development of software for
medical devices?

Chapter 4 shows the Asmeta framework. The set of tools included in the
framework support the user during the development and the analysis of formal
specifications using ASMs.
RQ4 How to increase designer productivity by improving ASM tools
interoperability?

There are different communities which have developed their tools based on
their language to represent ASMs. Due to this, the diffusion in industrial field
could be difficult because the final user has to choose between the frameworks and
each of them provide different tools for different goals. This problem is taken on
in Chapter 5. UASM is implemented using a framework for the development of
programming languages and domain-specific languages. A translator from UASM
to AsmetaL has been developed, by taking advantages from framework functional-
ities. Using the translator the UASM models can be translated in AsmetaL models
and the Asmeta tools can be used to perform different analysis.
RQ5 How to improve the readability and understandability of ASM
specifications?

When the system is complex and the textual model consists of several lines of
code, for the user it would be difficult to understand the behaviour of the model. A
tool for the visualization of the ASMs automatically translates the textual model

3

Chapter 1. Introduction

in the corresponding graphical notation. The graphical representation helps the
user to easily understand the ASM specification.
RQ6 Is it possible to automatically translate a formal specification
to code automatically?

In Chapter 7, a tool for code generation is shown. The tool translates automat-
ically UASM models into C++ code for Arduino platform. The translation tries
to keeping true the system behaviour and the properties verified during validation
and verification.
RQ7 Are the tools applicable to real case studies?

In Part III, the Asmeta tools are applied to two two case studies. The first is
a software to detect visual diseases developed within the 3D4Amb2 (3D for the
diagnosis and treatment of AMBlyopia) project (see Chapter 8). The second case
study is the hemodialysis machine case study (see Chapter 9).

The material presented in this thesis have been published in the proceedings of
the following international workshops and conferences:
• the content of Chapter 3 has been partially presented in “S. Bonfanti, A. Gar-

gantini, and A. Mashkoor. A preliminary systematic literature review of the
use of formal methods in medical software systems. In 23rd EuroAsiaSPI
Conference, Graz University of Technology, Graz, Austria, 2016”

• the content of Chapter 5 has been partially presented in “P. Arcaini, S.a
Bonfanti, M. Dausend, A.o Gargantini, A. Mashkoor, A. Raschke, E. Ric-
cobene, P. Scandurra, and M. Stegmaier. Unified syntax for abstract state
machines. In Abstract State Machines, Alloy, B, TLA, VDM, and Z: 5th In-
ternational Conference, ABZ 2016, Linz, Austria, May 23-27, 2016, LNCS,
pages 231–236. Springer International Publishing, 2016”

• the content of Chapter 6 has been presented in “P. Arcaini, S. Bonfanti,
A. Gargantini, and E. Riccobene. Visual notation and patterns for abstract
state machines. In Paolo Milazzo, Dániel Varró, and Manuel Wimmer, edi-
tors, Software Technologies: Applications and Foundations: STAF 2016 Col-
located Workshops: DataMod, GCM, HOFM, MELO, SEMS, VeryComp, Vi-
enna Austria, July 4-8, 2016, LNCS, pages 163–178. Springer International
Publishing, 2016”

• the content of Chapter 7 has been partially presented in “S. Bonfanti, M. Caris-
soni, A. Gargantini, and A. Mashkoor. Asm2C++: a tool for Code Gener-
ation from Abstract State Machines to Arduino. In NASA Formal Methods
Symposium, 2017”

• the content of Chapter 8 has been presented in
– “P. Arcaini, S. Bonfanti, A. Gargantini, A. Mashkoor, and E. Riccobene.

Formal validation and verification of a medical software critical com-
ponent. In Formal Methods and Models for Codesign (MEMOCODE),
pages 80–89. Institute of Electrical and Electronics Engineers Inc., 2015”

2http://3d4amb.unibg.it/

4

http://3d4amb.unibg.it/

1.1. Research questions and Objective

– “Silvia Bonfanti, Angelo Gargantini, and Andrea Vitali. A mobile ap-
plication for the stereoacuity test. In G. Vincent Duffy, editor, Dig-
ital Human Modeling. Applications in Health, Safety, Ergonomics and
Risk Management: Ergonomics and Health: 6th International Confer-
ence, DHM 2015, Held as Part of HCI International 2015, Los Angeles,
CA, USA, August 2-7, 2015, Proceedings, Part II, LNCS, pages 315–326.
Springer International Publishing, 2015”

– “Angelo Gargantini, Fabio Terzi, Matteo Zambelli, and Silvia Bonfanti.
A low-cost virtual reality game for amblyopia rehabilitation. In Proceed-
ings of the 3rd 2015 Workshop on ICTs for improving Patients Rehabil-
itation Research Techniques, pages 81–84. ACM, 2015”

• the content of Chapter 9 has been presented in

– “P. Arcaini, S. Bonfanti, A. Gargantini, and E. Riccobene. How to assure
correctness and safety of medical software: The hemodialysis machine
case study. In International Conference on Abstract State Machines,
Alloy, B, TLA, VDM, and Z - ABZ 2016, volume 9675, pages 344–359.
Springer International Publishing, 2016”

– “P. Arcaini, S. Bonfanti, A. Gargantini, A. Mashkoor, and E. Riccobene.
Integrating Formal Methods into Medical Software Development: the
ASM approach (submitted at Science of Computer Programming)”

This thesis reports the results of an ongoing research activity carried ou by a
scientific group I was part of in the last two years. Some parts of the presented
work have been developed by co-authors of the papers published, but they are
reported in the thesis for completeness and to ensure that the reader is able to
understand the content. My contribution can be divided into three categories:
• Development: I have developed tools/software.
• Experimental: I have tested the tools already available to verify the applica-

bility to case studies.
• Conceptual: I have worked on the theoretical part of the topic.
Following, I am going to make precise my contribution for each chapter of the

thesis.

Chapter 2: I have searched the standards, technical reports, guidelines and other
documents for the certification of medical devices software. Subsequently, I have
selected the most important standard/guidelines used by companies.

Chapter 3: I have collected the papers from different repositories, I have selected
the important papers and I have analysed them to perform the analysis.

Chapter 4: This is a background chaper regarding the process adopted by Asmeta
framework for the analysis of the models: from requirements to validation and
verification of the models. This process has been used for the case studies in
Chapter 8 and Chapter 9.

5

Chapter 1. Introduction

Chapter 5: I have implemented the UASM grammar using the Xtext frame-
work. Some ambiguities discovered during the implementation have been resolved.
Based on Xtext, I have developed a translator from UASM to AsmetaL. The trans-
lator offers the opportunity to the user to use the tools of the Asmeta framework
to perform the analysis of the model.

Chapter 6: I have applied the control state ASMs to the case study presented in
Chapter 9 and I have identified the limitation of the notation. I have cooperated
in the definition of the notation presented in the thesis and I have applied the
notation to the case studies.

Chapter 7: I have worked on the theoretical part of the code generator and I have
partially contributed to the development of the code generator. Furthermore, I
have worked on the case study definition and I have contributed in the process
from requirements to code.

Chapter 8: I have applied the Asmeta process to the stereoacuity test. I have
developed and validated the models and I have verified the properties defined in
the requirements document.

Chapter 9: I have applied the Asmeta process to the hemodialysis case study. I
have developed and validated the models and I have verified the properties defined
in the requirements document.

6

Part I

State of the Art

7

CHAPTER2
Standards and regulations for the certification of

medical devices software

Due to the criticality of medical devices, in the world, lots of institutions pro-
vide standards/guidelines for their certifications. For example, IEC (International
Electrotechnical Commission), ISO (International Organization for Standardiza-
tion), European Union, FDA (Food and Drug Administration), ANSI (American
National Standards Institute), UNI (Italian Organization for Standardization)
and DIN (German Institute for Standardization). The European Union (EU)
puts into force council directives concerning medical devices. The council direc-
tive 93/42/EEC [50] is the first introduced by EU. The directive defines medical
device as “any instrument, apparatus, appliance, material or other article, includ-
ing the software necessary for its proper application intended by the manufacturer
to be used for human beings” for the purpose of diagnosis, prevention, monitor-
ing, treatment or alleviation of disease, compensation for an injury or handicap,
investigation, replacement or modification of the anatomy or of a physiological
process, control of conception. The directive classifies the medical devices in non-
invasive devices, invasive devices (in whole or in part, penetrates inside the body)
and active devices (depend on a source of electrical energy or power). The council
directive 2007/47/EC [58] extends the definition of medical device as “any instru-
ment, apparatus, appliance, software, material or other article, whether used alone
or in combination, together with any accessories”. This directive defines “stand
alone software” as an active medical device. European Commission – the execu-
tive body of the European Union – provides “MEDDEVs”1, a range of guidance
documents, to assist stakeholders in implementing Directives related to Medical
Devices. These documents do not give information about the process to develop

1http://ec.europa.eu/growth/sectors/medical-devices/guidance/index_en.htm

9

http://ec.europa.eu/growth/sectors/medical-devices/guidance/index_en.htm

Chapter 2. Standards and regulations for the certification of medical devices software

medical devices software, but they only provide information to classify a software
as medical device or not. However, the new amendments introduced by Directive
2007/47/EC have not been incorporated into all MEDDEVs yet. At present, the
most important standards for medical devices certification were introduced by
IEC and ISO. The standards are:

• IEC 61508-3:2010 [8] defines software requirements for functional safety of
electrical/electronic/programmable electronic safety-related systems

• ISO 14971:2007 [4] specifies a process for a manufacturer to identify the
hazards associated with medical devices, including in vitro diagnostic (IVD)
medical devices, to estimate and evaluate the associated risks, to control
these risks, and to monitor the effectiveness of the controls.

• IEC 62304:2006 [3] defines common guidelines for the life cycle of software
of medical devices.

• IEC 60601-1:2005 [2] contains requirements concerning basic safety and es-
sential performance that are generally applicable to medical electrical equip-
ment.

• ISO 13485:2003 [1] specifies requirements for a quality management system
where an organization needs to demonstrate its ability to provide medical
devices and related services that consistently meet customer requirements
and regulatory requirements.

IEC and ISO have published other deliverables (see Appendix A), considering
medical device software, they have developed the following documents:

• IEC/TR 80002-1:2009 [6] provides guidance for application of require-
ments contained in ISO 14971:2007 to medical device software with reference
to IEC 62304:2006. This technical report aims to provide guidelines when a
software is included in the medical device/system.

• IEC/TR 80002-3:2014 [10] is a Technical Report (TR) and provides the
description of software life cycle processes for medical device. These processes
are derived from IEC 62304 considering safety class and are aligned with the
software development life cycle processes of ISO/IEC 12207:2008 [5] and are
presented herein in full compliance with ISO/IEC 24774:2010 [9]. This TR
does not address FDA guidance documents or software development tools. It
describes the process model for medical device software development limited
to life cycle process described in IEC 62304.

The most important standard is IEC 62304:2006 which defines the guidelines
for software development and explains how the other standards are integrated into
the process (see Sect. 2.1). Furthermore, FDA wrote the General Principles of
Software Validation [128], that specifies general principles applicable to validation
and verification of medical device software (see Sect. 2.2).

10

2.1. IEC 62304: Software Development Life Cycle

2.1 IEC 62304: Software Development Life Cycle

The IEC 62304 standard has emerged as a global benchmark for management
of the software development life cycle and it is adopted by the European Union
and the United States. The standard is approved by both IEC and ISO as an
international standard. It is adopted by CENELEC (European Committee for
Electrotechnical Standardization), ANSI (American National Standard Institute),
SFDA (State Food and Drug Administration) of China and Japan Industry. It is
recognized by FDA for use in premarket submissions. Even tough the standard
establishes a common guidelines for medical device software life cycle processes
and tasks, it does not give guidelines for validation and verification of the software,
even when the medical device is only software. The standard IEC 62304 defines
safety classes for software based on the potential to create an injury to the patient.
The safety classes are:
• Class A: No injury or damage to health is possible
• Class B: Nonserious injury is possible
• Class C: Death or serious injury is possible

The standard defines “serious injury” as: “Injury or illness that directly or indi-
rectly
a) is life threatening
b) results in permanent impairment of a body function or permanent damage to a
body structure, or
c) necessitates medical or surgical intervention to prevent permanent impairment
of a body function or permanent damage to a body structure.”
IEC 62304 defines specific processes and tasks for each class (higher safety class
(B and C) means additional tasks and more detailed documentation) as shown in
Table 2.12.

The first step in Table 2.1 (5.1) consists in defining the life cycle model. The
plan shall address: - the processes to be used in the development of software; - the
deliverables of the activities and tasks; - how to achieve traceability among system
requirements, software requirements, software test, and risks control; - software
configuration and software problem resolution. The development plan shall be
updated as appropriate.

Software requirements (5.2) consists in defining and documenting functional
and non-functional requirements. It requires to measure the risk of potential soft-
ware defects in the requirements and to re-evaluate the risk when the requirements
are established or updated. Moreover, the manufacturer should verify software re-
quirements to avoid contradiction and ambiguity.

Software architecture (5.3) is obtained from the software requirements. It re-
quires to describe the software structure, to identify the software elements, to
specify functional and performance requirements for the software elements, to
identify software elements related to risk control, and to verify the software archi-
tecture with respect to the software requirements.

Regarding the software architecture shall be detailed into software units and
2The numbers are the same used in the IEC 62304 standard

11

Chapter 2. Standards and regulations for the certification of medical devices software

N Software documentation Class A Class B Class C

5.1 Software development planning X X X
5.2 Software requirements analysis X X X
5.3 Software architecture X X
5.4 Software detailed design X

5.5
Software unit implementation X X X
Software unit verification X X

5.6
Software integration and
integration testing

X X

5.7 Software system testing X X X
5.8 Software release X X X
6 Software maintenance process X X X
7 Software risk management process X X

Table 2.1: IEC 62304 software development process

for each unit a detailed design (5.4) shall be provided.
After the implementation of software unit, the manufacturer shall verify it and

systematically document the results (5.5). Each software unit is integrated (5.6)
based on the integration plan and the final system is verified. The tests (5.7) are
performed again after each changes on the software. The software release (5.8)
includes the demonstration, by a device manufacturer, that software has been
validated and verified. In case of anomalies the manufacturer has to document
and establish a process to resolve them. Also the maintenance process (6) is
defined. The last step that the manufacturer shall follow is the analysis of risk
(7). This analysis aims to identify causes that could contribute to a hazardous
situation.

Integration of IEC 62304 with other standards Figure 2.1 shows how other stan-
dards are integrated into the process described in IEC 62304:2006. These stan-
dards are briefly described and not further detailed, because they consider hard-
ware/management of medical devices.

ISO 13485:2003 and ISO 14971:2007 provide a management environment that
lays out a foundation to develop products. ISO 13485:2003 defines requirements
for the quality management system, in particular for the design and development
of planning, inputs, outputs, review, verification and validation. ISO 14971:2007
amplifies requirements for the risk management process to evaluate patient, opera-
tor, other person, other equipment and environment risks. It introduces a process
through which the manufacturer can identify hazards associated with a medical
device, estimate and evaluate risks, control the risks and monitor the effectiveness
of the control.
ISO/IEC 90003:2014 [11], IEC 61508-3:2010 and ISO/IEC 12207:2008 [5] can be
used as additional guidelines, methods, tools and techniques to implements re-

12

2.2. FDA: General Principles of Software Validation

Figure 2.1: Integration of standards with IEC 62304:2006

quirements in IEC 62304:2006. ISO/IEC 90003:2014 provides guidance to the
acquisition, supply, development, operation and maintenance of computer soft-
ware and related support services. IEC 61508-3:2010 defines objectives and re-
quirements for safety software life cycle steps. Moreover, it introduces objectives
and requirements regarding the integration between hardware and software in
electronic devices. ISO/IEC 12207:2008 defines requirements for software life cy-
cle process in general, i.e. not restricted to medical devices. IEC 60601-1:2005
and IEC 61010-1:2010 [7] give specific direction for creation of a safe medical
device. In more details, both standards refers to the electrical part of medical
device. IEC 61010-1:2010 specifies safety requirements for electrical test and mea-
surement equipment, electrical industrial process-control equipment and electrical
laboratory equipment. IEC 60601-1:2005 contains general requirements concern-
ing safety and performance applicable to medical electrical components of the
device.

2.2 FDA: General Principles of Software Validation

Food and Drug Administration is a federal agency of the United States and is
responsible for protecting and promoting public health through the regulation
and supervision of medical devices. The General Principles of Software Valida-
tion [128] defines several broad concepts that can be used as guidance for software

13

Chapter 2. Standards and regulations for the certification of medical devices software

validation and verification activities. Moreover, it requires these activities to be
conducted throughout the software development life cycle. The document lists
the following general principles as guidelines:

1. A documented software requirements specification should provide a base-
line for both V&V.

2. Developers should use a mixture of methods and techniques to prevent the
introduction of defects into the software development process and not
on trying to test the software code after it is written.

3. Software validation should be planned early and conducted throughout the
software life cycle.

4. Software life cycle contains documents necessary to support the software
validation and software engineering tasks. Furthermore, software life cycle
contains verification and validation tasks that guarantee the intended use of
the software.

5. Software V&V process should be defined and controlled through the use of a
plan.

6. Software V&V process should be executed through the use of procedures.

7. When a change occurs, validation analysis should be conducted not just for
the individual change, but also to determine the impact on the entire software
system. The developer should show that the change has not altered the system
behaviour.

8. Validation coverage should be based on software complexity and safety
risk. As the risk increases, additional validation activities should be added to
guarantee the coverage of all risks.

9. V&V activities should be conducted using the quality assurance precept of
independence of review to guarantee the quality of software. It is better
that V&V are assigned to staff members that are not involved in design or
implementation of software.

10. Device manufacturer has flexibility in choosing validation principles, but
retains ultimate responsibility for demonstrating that the software has been
validated.

2.3 Conclusion

In this chapter, standards and guidelines adopted for the certification of medical
device software are identified. The standard IEC 62304:2006 identify the step of
software development life cycle, without reference to a specific life cycle. The
company who wants to certify the software has to map his process applied for the
software development with the clauses of IEC 62304. To guarantee that a software
is certifiable, the mapping should cover 100% of IEC 62304 clauses. When the
document is available, it is submitted to the organisations responsible for certifying

14

2.3. Conclusion

the software. The organisation evaluates the documentation and provides the
certification or changes to fit the presented process with the standard. The same
process is applied to get the certification by FDA.

If we consider rigorous methods from the point of view of FDA, they are sug-
gested as methodology for the development of medical device software [78]. For
this reason, in Section 4.2.2 we show the compliance of ASMs with FDA principles.
We have applied the same process to the standard IEC 62304. In Section 4.2.1,
the mapping between the standard IEC 62304 and ASMs process is presented,
but not all the steps are covered by ASMs.

15

CHAPTER3
Systematic Literature Review

Systematic Literature Review (SLR) is the review of a clearly formulated question
that uses systematic and explicit methods to identify, to select, to appraise relevant
research, to collect and to analyse data from the studies that are included in the
review. Through this analysis, we give an overview of the research literature
about formal methods applications to model, to verify and to validate medical
systems. Moreover, we consider processes and tools to translate models written
using formal languages in machine code. We would like to underline that the SLR
considers only formal methods applied to medical device/software.

The goal of SLR is twofold:
• to provide guidance to researchers starting to work on this topic
• to assess the state of the art which is more useful for researchers already

working on this subject.
We have applied a Systematic Literature Review process to the topic of rigorous

methods for designing and validation of medical software and systems. The goals
of this process are (1) to gather a sufficient number of relevant articles, (2) to
perform a series of analyses, and (3) to publish the results of the findings to allow
researchers to browse in the collected data. This activity follows a systematic
process to avoid possible biases, inclusive in order to include as much information
as possible, but at the same time capable of identifying only relevant papers. We
followed the guidelines presented in [56,84,92] with some adjustments.

3.1 The SLR Process

Systematic Literature Review is the review of a clearly formulated question that
uses systematic and explicit methods to identify, to select, to appraise relevant

17

Chapter 3. Systematic Literature Review

research, to collect and to analyse data from the studies that are included in
the review [74]. SLR defines a precise process for literature review: criteria for
inclusion and exclusion are explicitly stated and therefore it provides a transparent
and replicable selection process. The final aim is to minimize the bias and increase
objectivity of the review outcomes.

In Figure 3.1 is shown the SLR process, it is divided into two main steps:
• Papers collection: collect papers for the SLR analysis;
• Classification and analysis: classify and analyze papers obtained in the

first step.
The final goal of this process is to provide a list of papers that fit with the topic

of the SLR and several analysis over the selected papers. The first step consists in
the definition of terms used to perform queries on different databases. Once the
user runs queries on databases (see Section 3.1.1 for further details on databases),
the results can be saved in different file formats. We have chosen the .bib file type,
which is very often used for the bibliography, it adopts a standardized format, and
it is easily processable with tools and own scripts since it is a textual file. After
that, all obtained .bib files are merged into the Merged.bib file. The user checks
whether all already known papers (a list of papers already known to the user
about the topic) are included into the file Merged.bib. If not, s/he has to identify
terms from omitted papers and rerun queries to also include them. Then the pre-
processing activity is performed (e.g., delete duplicates and unrelated papers).
The result of pre-processing is the Final.bib file ready for the analysis. Then
Final.bib is translated into the .xml file using our own bib2xml script.

Starting from the .xml file, we perform Quantitative Analysis (see Sec-
tion 3.1.2) to automatically extract a set of statistical information. Quantitative
analysis has a low degree of human interaction because only fields in the biblio-
graphic entries are used (e.g., year, type of publication, and number of citations).
We use our own scripts written using EXtensible Stylesheet Language Transfor-
mation (.xslt), and results are saved into .txt or .csv files. After that, results
are plotted using pgfplot package provided by LATEX. The quantitative anal-
ysis results are statistical data obtained using mathematical measurements and
calculations.

On the other hand, starting from Final.bib, we collect PDF files of resulted
papers and complete a Qualitative Analysis to provide more technical details
(e.g., the case study analyzed and the notation used). Qualitative analysis (see
Section 3.1.2) requires user interaction. Furthermore, starting from the .xml file,
we generate a HTML site by using the .xslt script. The web site contains all
publications listed in the Final.bib file and is available on-line1.

3.1.1 Papers selection

During a preliminary analysis [39], we used only Scopus (http://www.scopus.
com), but we missed some relevant papers published in journals and in proceedings
not included in the Scopus database. For this reason, now we consider other reposi-
tories besides Scopus, i.e., Web of Science (https://apps.webofknowledge.com),
DBLP (http://dblp.uni-trier.de/) and Google Scholar (https://scholar.

1The list of publications is available at http://cs.unibg.it/bonfanti/FMMedicalDeviceSLR/

18

http://www.scopus.com
http://www.scopus.com
https://apps.webofknowledge.com
http://dblp.uni-trier.de/
https://scholar.google.com/
https://scholar.google.com/
http://cs.unibg.it/bonfanti/FMMedicalDeviceSLR/
https://scholar.google.com/

3.1. The SLR Process

START

Scopus
Web of
Science

DBLP
Google
Scholar

.bib .bib .bib .bib

Queries

Terms/
Keywords

Merging

Merged .bib

Pre-processing Final .bib

bib2xml.xml

QUANTITATIVE ANALYSIS

xslt scripts

HTML site

.txt/.csv for statistics

Pgfplot functions Graphs

QUALITATIVE ANALYSIS

Tables

END

PDF collection

Terms/Keywords from
omitted papers

Are the already
known papers
in the results?

NO

PDF

Papers collection

Classification and
analysis

Known papers

YES

Figure 3.1: SLR Process

google.com/). We do not consider IEEE Xplore (http://ieeexplore.ieee.
org/), Springer (http://www.springer.com), and ACM Digital Library (http:
//dl.acm.org/) because they are already included in Scopus and DBLP. Further-
more, we noticed that the search function of IEEE Xplore has some limitations:
during the search activity some queries returned unrelated results which did not

19

https://scholar.google.com/
https://scholar.google.com/
http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/
http://www.springer.com
http://dl.acm.org/
http://dl.acm.org/

Chapter 3. Systematic Literature Review

contain the terms entered in the query.
Scopus is the largest database owned by Elsevier, it contains scientific journals,

books and conference proceedings. It encloses more than 60 million records, over
21.500 peer-reviewed journals, over 360 trade publications, 7.2 million conference
papers, 27 million patents, 5.000 articles-in-press from international publishers
including Cambridge University Press, the Institute of Electrical and Electronics
Engineers (IEEE), Nature Publishing Group, Springer, Wiley-Blackwell. It in-
cludes more than 113.000 books that will increase by 10.000 each year. Thomson
Reuters maintains Web of Science that provides a citation search. It gives access
to several database in different disciplinary researches: Conference Proceedings
Citation Index (covers more than 160.000 conference titles), Science Citation In-
dex Expanded (covers more than 8.500 journals encompassing 150 disciplines),
Social Sciences Citation Index (covers more than 3.000 journals in social science),
Arts & Humanities Citation Index (covers more than 1.700 arts and humanities
journals), Book Citation Index (covers more than 60.000 books), Current Chemi-
cal Reactions (more than one million) and Index Chemicus (more than 2.6 million
compounds). Dblp provides open bibliographic information of major computer
science journals and proceedings. It contains more than 3 million publications re-
lating to more than 4.500 conferences and more than 1.400 journals. This service
is provided by University of Trier and Schloss Dagstuhl. Google Scholar fur-
nishes a way to search literature, but contains large quantity of documents and it
is difficult to select those important. It is possible to search across many sources:
articles, theses, books, abstract, court opinions, academic publishers, professional
societies, on-line repositories, universities, patents. Initially we performed some
queries, but a set of known paper were missing. To cope with this problem, we
identified new queries to include the missing papers. In this way, we are able
to include similar papers as well. The queries are a combination of terms using
“and” and “or” logical operators. The majority of queries perform the search only
in titles, while few of them are executed on author keywords. This limitation is
due to the search functions provided by the repositories, as shown below. Due to
the intrinsic limited functionality, the number of queries run for each repository
is not the same. Afterwards, the queries executed are listed for each repository.
The keywords used depends on the person who perform the SLR. We have choose
the below keyword because the SLR is about the application of formal methods
applied for validation and/or verification to a medical software or device.
The keywords pacemaker, infusion pump and cardiac are added because they
derived from known papers (see the recursion in Figure 3.1).

Scopus Scopus has the most performing search system. It is possible to execute
an advanced search e.g. by title (TITLE), author keywords (AUTHKEY) and
combine them using logical operators. Furthermore, it allows to search terms that
start with a prefix or end with a suffix by using ‘*’ symbol (e.g. “method*” means
“method, methods, methodology, methodologies”). For the research purpose the
queries performed are:

• TITLE (medical) AND (TITLE (software) OR TITLE (device*)) AND TI-
TLE (formal method*)

20

3.1. The SLR Process

• TITLE (formal specification) AND TITLE (medical)
• TITLE (formal*) AND TITLE (infusion pump)
• TITLE (formal*) AND TITLE (medical software)
• TITLE (formal*) AND TITLE (medical device*)
• AUTHKEY (formal) AND (AUTHKEY (medical) AND (AUTHKEY (de-

vice*) OR AUTHKEY (software) OR AUTHKEY (service*)))
• AUTHKEY (formal method*) AND AUTHKEY (health)
• TITLE (formal) AND TITLE (pacemaker)
• TITLE (medical) AND (TITLE (software) OR TITLE (device*)) AND TI-

TLE (*formal verification)
• TITLE (medical) AND (TITLE (software) OR TITLE (device*)) AND (TI-

TLE (verification))
• TITLE (medical) AND TITLE (formal method*)
• TITLE (formal AND cardiac AND (specification OR modeling OR mod-

elling))

For each query a set of papers has been found, some of them were not consistent
with our research and some papers were duplicate.

Web of Science Web of Science is similar to Scopus but it is not allowed to
perform advanced search e.g. by keywords or by author keywords. Due to the
limited advanced search respect to Scopus, less queries have been performed:

• TI = (medical) AND (TI = (software) OR TI = (device*)) AND TI = (formal
method*)

• TI = (formal specification) AND TI = (medical)
• TI = (formal*) AND TI = (infusion pump)
• TI = (formal*) AND TI = (medical software)
• TI = (formal*) AND TI = (medical device*)
• TI = (formal) AND TI = (pacemaker)
• TI = (medical) AND (TI = (software) OR TI = (device*)) AND TI = (*for-

mal verification)
• TI = (medical) AND (TI = (software) OR TI = (device*)) AND (TI =

(verification))
• TI = (medical) AND TI = (formal method*)

Dblp Dblp has a limited search technology. It is not possible to specify the search
field (e.g. title, keywords) and it is not allowed the words search by suffix or prefix.
Considering these limitations, the queries chosen are more bounded:

• medical software | device formal method
• formal specification medical

21

Chapter 3. Systematic Literature Review

• formal infusion pump
• formal medical software
• formal medical device
• formal pacemaker
• medical software | device verification
• medical formal methods

Google Scholar Google Scholar search provides two options: the first limits the
search to the title, the second extends the search to all document (title, content,
keywords, authors) at the same time. The second option introduces many papers
out of scope, so only the first is considered. The queries executed in this repository
are:

• allintitle: medical formal (method OR methods) software OR devices OR
device

• allintitle: formal specification medical
• allintitle: formal infusion pump
• allintitle: formal medical software
• allintitle: formal medical device OR devices
• allintitle: formal pacemaker
• allintitle: medical formal verification software OR device OR devices
• allintitle: medical formal method OR methods

Google Scholar includes unaudited documents e.g. technical reports, that are out
of search because they are not formally recognized by the community. Further-
more, we left out patents and citations.

In Table 3.1, the number of queries executed for each repository and the number
of entries found are shown (328 papers). Note that, the number of entries includes
duplicates (177 papers) between the queries in the same repositories, because
some papers fit in more than one query. Duplicates exist also between different
repositories because they search papers in common databases. The remaining
papers, 151, have been analysed and 80 were not consistent with our SLR topic.
71 paper have been analysed in the classification and synthesis section.

Scopus Web of Science DBLP Google Scholar
No queries 12 9 3 8
No entries 134 55 60 79

Table 3.1: Number of queries and entries for each repository

By following the process defined in Figure 3.1, the next step consists of ex-
porting all papers found in the repositories and merging them in the Merged.bib
file.

22

3.1. The SLR Process

3.1.2 Classification and Synthesis

Before performing classification, we made pre-processing activities that consist of
the following steps:

1. conform authors names using the format (first name initial, surname),

2. update authors names: add missing letters, e.g., ö, é, ś,

3. delete duplicates,

4. delete unrelated papers.

The first activity is automatically performed using our own script. The script
analyses the author field and adjust names and surnames considering the target
format. We perform the second activity manually, because we did not find any
process to make it automatic. The third activity is performed using JabRef tool2.
The tool has a function to find duplicates, after a duplicate is identified the user
can choose how to handle it. The possible solutions are: keep one of them, keep
both, or keep the merged entry only. The last activity is the most time-consuming
because it requires involvement of the one who is performing the SLR. We analyze
all papers by reading their abstracts and over-viewing their content in ambigu-
ous cases. We delete all papers that do not describe the application of formal
methods to a medical device software. Moreover, we remove all documents that
are not peer-reviewed in order to maintain the number of documents manage-
able and the quality of the collection high. The result of pre-processing activity
is the Final.bib file. Starting from this file, we perform two types of analysis:
Quantitative Analysis and Qualitative Analysis.

Quantitative analysis

Quantitative analysis has a low degree of human interaction and we performed it
by using own scripts written in EXtensible Stylesheet Language Transformation
(.xslt). For this analysis, we consider the number of publications written over the
years, the type of publications, the number of papers written by authors and the
number of citations. We answer the set of research questions as shown below.

RQ1: Which is the trend of publications? As a first question, we wanted to observe
the trend of publications about formal methods applied in medical field. We
analyze the number of publications from 1992 (the year of the oldest publication
we found) until 2016. As shown in Figure 3.2, until 2004 only three publications
have been published. Starting from 2004, the interest on application of formal
methods to medical devices increases. From 2011, the behavior of the number
of papers shows a progressive increase until 20163. The overall behavior of the
graph shows an increasing interest in this topic by the community mostly in the
last years.

2http://www.jabref.org/
3The search is performed in January 2017, few papers published at the end of 2016 could be missed due to

the delay in databases update.

23

http://www.jabref.org/

Chapter 3. Systematic Literature Review

20
16

20
15

20
14

20
13

20
12

20
11

20
10

20
09

20
08

20
07

20
06

20
05

20
04

20
03

19
95

19
92

10

13

9

7

3
2

5

1

Year

N
pu

bl
ic

at
io

ns

Trend of publications by year

Figure 3.2: RQ1: Trend of publications

RQ2: Which is the trend of publications considering the type? In Figure 3.3, the
pie chart shows the percentage of publications grouped by type. Note that from
the databases we obtain only journals and conference papers (InProceedings). The
number of publications in proceedings (approx. 63%) is greater than the number
of publications in journals (approx. 37%).

36.6%

Journal

63.4%

InProceedings

Figure 3.3: RQ2: Types of publications

Figure 3.4 depicts the trend of the number of publications in journals and in
proceedings. In the last few years, we notice an increase in number of publications
in conferences. This confirms that the subject is still rather novel and there is an
increasing interest of the computer science community towards this topic.

RQ3: How many papers about this topic have been written by the same author?
Figure 3.5 shows the number of publications per author. The most apparent
observation is that the majority of authors (approx. 73.5%) have published only
once about this topic and 18% of authors have two publications. Only 8.5% of
authors have more than two publications. An explanation could be that this topic
is rather new in the scientific community and authors are starting their activities
in these years. We expect an increase in number of publications per author in
upcoming years due to ongoing scientific studies.

24

3.1. The SLR Process

20
16

20
15

20
14

20
13

20
12

20
10

20
08

20
06

20
04

19
95

3

5
4

2
1

Year

N
pu

bl
ic

at
io

ns

Trend of publications by type

Journal
InProceedings

Figure 3.4: RQ2: Publications in Journal/Proceedings per year

1 2 3 4 5 6 7

0

50

100

150 138

34

7 3 2 2 2

N publications

N
au

th
or

s

Number of publications per authors

Figure 3.5: RQ3: Number of papers by the same author

25

Chapter 3. Systematic Literature Review

−5 0 5 10 15 20 25 30 35 40 45 50 55 60 65

0

10

20

30 29

12

44 43 22 1111 1 1 111 11

N citations

N
pu

bl
ic

at
io

ns

Number of citations per publications

Figure 3.6: RQ4: Number of citations/publication

RQ4: Which are the most cited publications? Before introducing which are the
most cited papers, we analyzed the general behavior of the number of citations
(see Figure 3.6). Overall, approx. 40% of publications do not have citations.
Approx. 45% of publications have less than ten citations and approx. 15% of
publications have more than ten citations. This low percentage of citations could
be due to the novelty of this topic in the scientific community.

Table 3.2 shows the most cited publications by considering only the citations
given by Scopus. The publication with most citations [127] presents the utiliza-
tion of formal methods in the improvement of medical protocols. A new formal
language and theorem prover have been defined to help medical experts in medical
protocol definition. The second paper [78] introduces the importance of formal
methods used in pre-market and post-market analysis. Paper number three [28]
applies formal methods to infusion pumps. The authors model the system using
Extended Finite State Machines (EFSM) and apply validation and verification
techniques using the UPPAAL framework. Furthermore, they generate test cases
from the formal specification of the system to test the machine code. Also paper
four [14] models the infusion pump using EFSM and applies verification technique
using the Software Cost Reduction (SRC) tool. Paper number five [77] models a
Clinical Neutron Therapy System using the Z notation. Paper number six [68]
models pacemaker using Z tools. We can notice that the majority of these papers
are regarding infusion pump and pacemaker case studies. These case studies are
those provided by authoritative groups as explained in RQ6. In paper number
seven [89], authors verify the model of pacemaker using bounded model checking.
Paper number eight [106] models pacemaker using the Event-B method and per-
forms validation and verification activities. Paper number nine [49] verifies pulse
oximeter using different formal tools. Infusion pump is modeled and verified in
the last paper [94] using Prototype Verification System (PVS) tools.

26

3.1. The SLR Process

N Publications # cit
1 [127]A. Ten Teije, M. Marcos, M. Balser, J. Van Croonenborg, C. Duelli,

F. Van Harmelen, P. Lucas, S. Miksch, W. Reif, K. Rosenbrand, and A. Seyfang.
Improving medical protocols by formal methods. Artificial Intelligence in Medicine,
36(3):193–209, 2006

60

2 [78]R. Jetley, S.P. Iyer, and P. Jones. A formal methods approach to medical
device review. Computer, 39(4):61–67, 2006

33

3 [28]D. Arney, R. Jetley, P. Jones, I. Lee, and O. Sokolsky. Formal methods based
development of a PCA infusion pump reference model: Generic infusion pump
(GIP) project. In High Confidence Medical Devices, Software, and Systems and
Medical Device Plug-and-Play Interoperability, pages 23–33, Cambridge, MA, June
2007

25

4 [14]R. Alur, D. Arney, E.L. Gunter, I. Lee, J. Lee, W. Nam, F. Pearce, S. Van Al-
bert, and J. Zhou. Formal specifications and analysis of the computer-assisted
resuscitation algorithm (CARA) Infusion Pump Control System. International
Journal on Software Tools for Technology Transfer, 5(4):308–319, 2004

22

5 [77]J. Jacky. Specifying a safety-critical control system in Z. IEEE Transactions
on Software Engineering, 21(2):99–106, Feb 1995

18

6 [68]A.O. Gomes and M.V.M. Oliveira. Formal specification of a cardiac pacing
system. In International Symposium on Formal Methods - FM 2009, volume 5850
LNCS, pages 692–707, 2009

16

7 [89]C. Li, A. Raghunathan, and N.K. Jha. Improving the trustworthiness of med-
ical device software with formal verification methods. IEEE Embedded Systems
Letters, 5(3):50–53, Sept 2013

14

8 [106]D. Méry and N.K. Singh. Formal specification of medical systems by proof-
based refinement. Transactions on Embedded Computing Systems, 12(1), 2013

13

9 [49]L. Cordeiro, B. Fischer, H. Chen, and J. Marques-Silva. Semiformal veri-
fication of embedded software in medical devices considering stringent hardware
constraints. In Proceedings - 2009 International Conference on Embedded Software
and Systems, ICESS 2009, pages 396–403, 2009

13

10 [94]P. Masci, P. Curzon, M.D. Harrison, A. Ayoub, I. Lee, and H. Thimbleby.
Verification of interactive software for medical devices: PCA infusion pumps and
FDA regulation as an example. In EICS 2013 - Proceedings of the ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, pages 81–90, 2013

12

Table 3.2: Publications with most citations

Qualitative analysis

Qualitative analysis is based on user interaction. It cannot be carried out by
automatic scripts like quantitative analysis. The publications have to be analysed
by the user to extract the following information:
• the case study analysed (e.g. pacemaker, infusion pump)
• the target of the application (e.g. model verification, model validation, cer-

tification)
• the notation used (e.g. automata, state chart, abstract state machine)
• the tools used (e.g. MATLAB, SPIN, Asmeta, Rodin)
• the methodology applied (e.g. modelling, modelling by refinement, verifica-

tion, conformance checking)

27

Chapter 3. Systematic Literature Review

Notation type Languages

Logic
Higher-Order Logic, Linear Temporal Logic (LTL), Compu-
tational Tree Logic (CTL), Temporal Ordering of Events,
Timed Computational Tree Logic (TCTL)

State Based

Automata, B, Extended Finite State Machines (EFSM),
Abstract State Machine (ASM), Z, Circus, State Machine,
Event-B, Vienna Development Method (VDM), UML ac-
tivity diagram, UML state machines, Algebraic State-
Transition Diagrams (ASTD)

Event Based Predicate/Transition Nets, Petri Nets, Activity Newtorks,
Timed Transition System (TTS)

Programming Languages Visual Contract Language (VCL), C, Mixed Signal Asser-
tion Language (MSAL)

Table 3.3: Notations used in the literature

RQ5: Which are the notations used? In Table 3.3, the notations used in resulted
papers are classified into five macro categories:
• Logic: the notation is based on a logical language that consists of logical

symbols and is characterized by having a fix interpretation. The combination
of these symbols compose well-formed formulas.

• State Based: in a state-based approach, an execution of a system is viewed
as a sequence of states, where a state is an assignment of values to some set
of components [12].

• Event Based: an event-based approach views an execution as a sequence of
events [12].

• Programming Languages: the notation is based on programming languages.
The most used notations are Automata, Event-B, Z, and Extended Finite State

Machine (EFSM). All of them are state-based notations. One of the possible
reasons why state-based notations are popular in medical software systems is
because they support a model-driven development paradigm where requirements
are transformed into functional code through a systematic process. In this fashion,
it is easier to manage complexity, it is easier to reason about the behavior of the
system, and efforts spent in earlier phases of the development ultimately result in
generation of code that is correct by construction.

RQ6: Which are the case studies analyzed and which activities are performed? Ta-
ble 3.4 shows which are the methods applied for each case study analyzed Starting
from the second column, we have identified a set of steps applied during the soft-
ware development process. The first activity performed is modeling. Depending
on the tool used by the user, a system is modeled using different notations (see
RQ5). After that, a set of activities can be performed on the model. Model
verification verifies whether certain properties are compliant with the model defi-
nition. Model simulation checks the behavior of the system. Software validation
analyses the behavior of software as compared to the model. Code generation
derives software directly from the model previously defined using a tool. Certi-
fication activity aims to identify a connection between the process applied using
formal methods and the standards/guidelines that guide the medical software cer-

28

3.1. The SLR Process

tification. The last column of Table 3.4 collects papers that provide a theoretical
study concerning medical devices specified in the first column. The first column
of Table 3.4 shows the application of formal methods to medical devices. The
most analyzed case study is about infusion pumps provided by FDA [132]4. The
case study invites the formal methods community to provide techniques and tools
that improve the overall reliability of medical devices. Another case study pro-
vided by Software Quality Research Laboratory (SQRL) to the formal methods
community is pacemaker5. Recently, at ABZ 2016 conference6, the hemodialysis
machine case study has been provided to advocate the use of formal methods in
medical applications [100]. The remaining case studies proposed by researchers
are derived from their own experiences.

The hemodialysis machine case study is modeled by [16,33,60,67,75,90,97–99].
Some of them perform validation [16,75,98,99] and verification [16,33,67,90,97,98].
Paper [98] generates the machine code starting from formal specification, and
paper [16] defines a set of characteristics to fit formal methods with the stan-
dards for medical software certification. A model of pacemaker is described
in papers [68, 69, 81, 82, 85–87, 104, 106, 115, 118]. Other authors apply model
verification [81, 82, 85, 86, 89, 106, 115, 118] and model validation [106, 125]. Pa-
pers [69,81,104] contribute to develop a new step that consists in translating the
model into machine code. The infusion pump case study is modelled [14,28,31,34,
37, 52, 72, 79, 80, 93–96, 107, 109, 113, 116, 119], verified [14, 28, 31, 52, 72, 79, 80, 93–
96,107,113,116,119] and validated [34,37,80,116,119] by using different tools and
languages. Paper [93] generates the machine code starting from the formal model
and in [28,79] authors use different approaches to validate software. In paper [52],
authors develop a method to support the certification process, indeed, Jetley et.
al. [78] explain how to apply formal methods to premarket and post-market evalu-
ations in case of medical devices (infusion pump). Formal methods are also used in
medical image processing for modeling and model verification [27,29,53,55]. The
paper [108] provides a survey about formal methods applied to image processing.
Stereoacuity test [15] determines which is the acuity level in patients. The pa-
per shows a process that includes modeling, model simulation, model verification,
model validation and software validation by comparing the code with the formal
requirements model. Electrocardiography is the process of recording the electrical
activity of the heart. The system is modeled [35, 36, 105, 122, 123], verified [105],
and validated [122, 123] using different tools. E-health systems are a recent clas-
sification of health-care systems supported by electronic processes and communi-
cation. Paper [126] models, verifies and validates the system, while [30] models
an e-health system using a different language. Suggestions on how to use formal
methods are given also in the medical protocol case study [32]. Papers [70, 127]
propose a model of medical protocol and verify whether the overall process is
correct or not. Model verification is performed for systems responsible for pulse
oximeter [49] and imatinib dose [117]. The models [43, 48, 51, 88, 91, 101, 120] of
medical device connections are verified [43, 48, 51, 54, 76, 88, 91, 101, 120] and vali-

4http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/
InfusionPumps/

5http://sqrl.mcmaster.ca/pacemaker.htm
6http://www.cdcc.faw.jku.at/ABZ2016/

29

http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/
http://sqrl.mcmaster.ca/pacemaker.htm
http://www.cdcc.faw.jku.at/ABZ2016/

Chapter 3. Systematic Literature Review

dated [48, 51, 76, 120]. Model validation, model verification and modelling activi-
ties are performed for left ventricular assist device [13]. A formal model is defined
for clinical neutron therapy system [77] and for syringe pump [42], furthermore
syringe pumps are validated in papers [42,125]. Overall, the most common activ-
ities performed are modelling, model verification and model validation. A trend
towards code generation has also been observed in recent publications.

RQ7: Which are the tools used for each performed activity? Table 3.5 shows
which tools or tool families are used for each software development activity. The
majority of tools operate on a models written in their specific languages. After
the modeling process, a number of activities are performed on the model. The
validation step checks whether the model specified by the user behaves properly.
Verification, on the other hand, analyses whether the model is consistent and
expected properties are verifiable. There exist different verification techniques,
those used in the papers found are:
• Model Checking: it is applied to finite-state systems. The properties are

translated in formulas of a temporal logic (e.g., CTL -Computational Tree
Logic- or LTL -Linear Temporal Logic) and efficient symbolic algorithms are
used to verify that all possible configurations validate the specified proper-
ties. If the property is false, a counterexample is displayed. The limitation
of this technique is the state space explosion: the transition graph grows
exponentially making difficult the development of an efficient algorithm.

• SMT (Satisfiability Modulo Theories) solvers: they are given an expression
with boolean variables along with and/or predicates, based on which they
determine the conditions that would make the expression true.

• Theorem Provers: they prove axioms derived from the desired behaviour of
the system. Support tools, however, are not always able to provide a proof
given an axiom.

Software validation returns differences between the behaviour captured by the
real system and the requirements model defined by the user. Code generation
automatically produces the code for the real system, while test case generation
derives test cases for the real system.

Regarding the types of activities, Table 3.5 hints that formal approaches are
primarily used for modelling purposes. Also verification and in particular model
checking play a predominant role in this area. The main advantage of model
checking is that it is fully automated, so it is the preferred mean of verification.
Activities like software validation (e.g., testing) and code generation are surpris-
ingly not common areas for the application of formal methods in medical software
systems.

Regarding the tools used, we can see that most approaches use a rather small
set of tools including B tools, MATLAB and Simulink, and UPPAAL. These tools
have a good support and a commercial backing. Although tools like Mathworks’
MATLAB and Simulink are strictly commercial, other tools like B tools and UP-
PAAL allow and encourage non-commercial uses as well. Other tools are used
only in few case studies.

30

3.2. Conclusion

3.2 Conclusion

In Section 3.1.2 qualitative analysis and quantitative analysis have been per-
formed. In the last years, the interest of the communities to the applications
of formal methods to medical device development is increased due to the critical
issue of the topic. The novelty of the topic is confirmed by the type of publications
as there are more publications in conferences than in journals. The topic novelty
explains the fact that authors do not have a large number of publications and the
papers are not cited by many publications. The most cited papers apply formal
methods to infusion pump and pacemaker case studies, the case studies provided
by authoritative groups. These are also the case studies most analysed in general
by the community (see Table 3.4). Considering the tools, the most used are B
tools, MATLAB and Simulink and UPPAAL. This is reflected also in RQ5, where
the most used notations are the state-based notations, those handled by the most
used tools.

Comparison of ASMs with other approaches Considering the ASMs, only the case
studies presented in this thesis have been found7. The main activities presented
using ASMs are modelling, model validation, model verification using model check-
ing and software validation. If we consider the all methodologies applied by the
other approaches, we can notice that ASMs cover most of the activities presented
in Tables 3.4 and 3.5. The code generator from ASMs is not applied to medical
device case studies because it is a new feature of the Asmeta framework and it
was not available at the time of the case studies development. Furthermore, the
current version (see Chapter 7) translates ASMs in C++ code for Arduino, which
is not consistent with the final platform associated to the medical case studies.

Compared to the other development environments, Asmeta provides an inte-
grated environment. For each activity performed, a tool is available and all the
tools are integrated with each other. This is a vantage of this framework because
the users do not have to care about the transformation of models into different
language to perform different activities.

7We are considering the application to medical devices software.

31

Chapter 3. Systematic Literature Review
T

able
3.4:

A
pplication

ofform
alm

ethods
to

m
edicaldevices

M
edical

device
M

ain
A

ctivity

M
odelling

M
odel

verification
M

odel
validation

Softw
are

validation
C

ode
generation

C
ertification

Survey
H

em
odialysis

M
a-

chine
[16,33,60,

67,
75,

90,
97–99]

[16,33,67,
90,97,98]

[16,75,98,99]
[98]

[16]

P
acem

aker
[68,69,81,

82,
85–87,

104,
106,

115,118]

[81,82,85,
86,

89,
106,

115,118]

[106,125]
[69,81,104]

L
eft

V
entricular

A
s-

sist
D

evice
[13]

[13]
[13]

Infusion
pum

p
[14,28,31,

34,
37,

52,
72,

79,
80,

93–96,107,
109,

113,
116,119]

[14,28,31,
52,72,79,80,
93–96,

107,
113,116,119]

[34,37,80,116,119]
[28,79]

[93]
[52]

[78]

Syringe
P

um
p

[42]
[42,125]

M
edical

im
age

pro-
cessing

[27,29,53,
55]

[27,29,53,
55]

[108]

Stereoacuity
test

[15]
[15]

[15]
[15]

E
C

G
(E

lectrocar-
diography)

[35,36,105,
122,123]

[105]
[122,123]

e-H
ealth

system
[30,126]

[126]
[126]

M
edical

protocol
[70,127]

[70,127]
[32]

P
ulse

oxim
eter

[49]
M

edical
device

con-
nection

[43,48,51,
88,91,101,
120]

[43,48,51,
54,76,88,91,
101,120]

[48,51,76,120]

C
linical

N
eutron

T
herapy

System
[77]

Im
atinib

dose
[117]

[117]

32

3.2. Conclusion
T

ab
le

3.
5:

To
ol

s
us

ed
fo

r
ea

ch
m

et
ho

do
lo

gy

M
od

el
lin

g
M

od
el

va
lid

at
io

n
V

er
ifi

ca
ti

on
So

ft
w

ar
e

va
lid

at
io

n
C

od
e

ge
ne

ra
ti

on
M

od
el

ch
ec

ki
ng

SM
T

T
he

or
em

pr
ov

er
O

th
er

N
ot

sp
ec

ifi
ed

M
A

T
L

A
B

an
d

Si
m

ul
in

k
[3

4,
35

,5
2,

79
,

80
,

85
,

10
7,

11
6,

12
2,

12
3]

[3
4,

80
,

11
6,

12
2,

12
3]

[7
9,

80
,1

07
]

[1
07

]
[5

2,
85

,
10

7,
11

6]
[7

9]

SP
IN

[5
5,

80
]

[5
5,

80
]

U
P

P
A

A
L

[2
7–

29
,5

3,
79

–8
2,

11
5,

11
7]

[8
0]

[2
7–

29
,

53
,7

9–
82

,
11

5,
11

7]
[1

15
]

[2
8,

79
]

[8
1]

SC
R

[1
4,

11
6]

[1
16

]
[1

4]
As

me
ta

[1
5,

16
]

[1
5,

16
]

[1
5,

16
]

[1
5]

Z
to

ol
s

[3
0,

31
,

43
,6

8,
77

]
[3

1,
43

]
[6

9]
SA

L
[1

3,
95

,1
13

]
[1

3]
[9

5]
[1

3,
11

3]

B
to

ol
s

[3
3,

42
,6

0,
75

,9
7–

99
,

10
4–

10
6,

10
9,

11
8,

11
9]

[4
2,

75
,

98
,

99
,

10
6,

11
9]

[9
7,

98
,1

06
]

[9
8]

[3
3,

10
5,

11
8,

11
9]

[9
8,

10
4]

P
V

S
[3

7,
52

,
93

,9
4,

96
]

[3
7]

[9
3,

96
]

[5
2,

94
]

[9
3]

V
D

M
[1

26
]

[1
26

]
[1

26
]

P
ro

V
er

if
[1

01
]

[1
01

]
P

er
fe

ct
D

ev
el

op
er

[6
9]

R
ea

l-
T

im
e

M
au

de
[9

1,
12

5]
[1

25
]

[9
1]

N
uS

M
V

[4
9]

C
B

M
C

[4
9]

[8
9]

SA
T

A
B

S
[4

9]
C

E
G

A
R

[8
2]

[8
2]

V
C

B
[8

7]
A

sb
ru

[7
0]

K
IV

[1
27

]
[7

0]
A

B
V

[9
0]

[9
0]

Y
ic

es
[1

3]
[1

3]
[1

3]
Z

3
[1

15
]

[1
15

]
[1

15
]

B
L

E
SS

[8
6]

[8
6]

O
SC

P
[8

8]
[8

8]
IV

Y
w

or
kb

en
ch

[7
2]

[7
2]

C
ir

cu
s

[6
7]

[6
7]

C
el

lE
xc

it
e

[3
6]

L
O

T
O

S
to

ol
s

[5
1]

[5
1]

[5
1]

V
2T

[4
8,

12
0]

[4
8,

12
0]

[4
8,

12
0]

M
at

hS
A

T
5

[5
4]

33

Part II

Abstract State Machines

35

CHAPTER4
ASM-based development process

Abstract State Machines (ASMs) are an extension of Finite State Machines where
unstructured control states are replaced by states with arbitrary complex data. A
state represents the instantaneous configuration of the system under development,
and transition rules describe the change of state. ASMs states are multi-sorted
first-order structures, i.e., domains of objects with functions and predicates defined
on them. ASMs transition rules express how function interpretations are modified
from one state to the next one, and therefore describe the system configuration
changes.

Figure 4.1: ASMs State–Transition

The basic form of a transition rule is the guarded update: “if Condition then
Updates”, where Updates is a set of update functions of the form f(t1, . . . , tn) := t
which are simultaneously executed when Condition is true; f is an arbitrary n-
ary function and t1, . . . , tn, t are terms. An ASMs state is represented by a set of
couples (location, value). ASMs locations represent the abstract ASMs concept
of basic object containers (memory units). Location updates represent the basic
units of state change. Besides if-then, there is a limited but powerful set of rule
constructors: par for simultaneous parallel actions, seq for sequential actions,
choose for nondeterminism (existential quantification), forall for unrestricted
synchronous parallelism (universal quantification). Functions that never change
during any run of the machine are static. Those updated by agent actions are

37

Chapter 4. ASM-based development process

dynamic, and distinguished between monitored (only read by the machine and
modified by the environment), and controlled (read and written by the machine).
A computation of an ASMs is a finite or infinite sequence s0, s1, . . . , sn, . . . of
states of the machine, where s0 is an initial state and each sn+1 is obtained from
sn by simultaneously firing all the transition rules which are enabled in sn. The
(unique) main rule is a transition rule and represents the starting point of the
computation. The ASMs can have more than one initial state. It is possible to
specify state invariants (set of conditions always true during the execution).

For system specification, the ASMs method builds upon two further concepts:
• ground model, an ASM which is a first reference model for the design;
• model refinement, a general scheme for stepwise instantiations of model ab-

stractions to concrete system elements, providing controllable links between
the more and more detailed descriptions at the successive stages of system
development.

The modelling activity is supported by a number of V&V activities on models,
already applicable at the ground level and along the chain of refined models, that
helps to guarantee correctness of the developed system.

This is a short introduction about ASMs, more information can be found in [41].

4.1 ASMs Modelling, Validation & Verification

A rigorous process for ASMs-based development [23], based on the concepts of
ground model and model refinement, is depicted in Figure 4.2. The modelling
activity is complemented with a number of other activities on models and even-
tually on code. All these activities help the modeller to develop a correct system
in a correct way.

A set of tools exists to support the developer in the various activities and to
make the ASMs method useful in practice. The process is not automatic, but it
is automatable if an order among the activities is imposed. Tools are part of the
Asmeta (ASM mETAmodeling) framework1 [25], and are strongly integrated in
order to permit reusing information about models during different development
phases. The IDE AsmEE is available to assist the user when editing an ASMs
model by using the concrete syntax AsmetaL [65].

An abstract ground model (ASM0 in Figure 4.2) is specified using terms of the
application domain by reasoning on the informal requirements (generally given as
a text in natural language), possibly with the involvement of all stakeholders. The
ground model should be correct, i.e., it reflects the intended initial requirements,
and consistent, i.e., it removes ambiguities of the initial textual requirements.
However, it does not need to be complete, i.e., it may leave some given functional
requirements unspecified.

From the ground model, by step-wise refined models, further details are added
to capture all the functional requirements and provide descriptions of the com-
plete software architecture and component design of the system. In this way, the
complexity of the system can be always taken under control, and it is possible

1http://asmeta.sourceforge.net/

38

http://asmeta.sourceforge.net/

4.1. ASMs Modelling, Validation & Verification

Validation Property Verification

Model Checking
AsmetaSMV

Modelling

Textual editor
AsmetaL - AsmEE

Visualizer
AsmetaVis

Refinement prover
AsmRefProver

ASM 0 ASM 1 ASM n Code

Validation and verification

Model Review
AsmetaMA

Interactive Simulation
AsmetaS

Scenarios
AsmetaV

Conformance Checking

Model-Based Testing
ATGT

Runtime Verification
CoMA

A
t

co
d

e
le

ve
l

A
t

an
y

le
ve

l

Figure 4.2: ASMs development process

to bridge, in a seamless manner, the gap between specification and code. Each
time a model is specified as a refinement of an abstract one, refinement correctness
should be checked. This can be done by hand, but we provide an automatic way to
achieve this assurance in case of stuttering refinement, a restricted form of ASMs
refinement. The tool ASMRefProver automatically checks stuttering refinement
between two ASMs models.

Modelling is sustained by the visualizer AsmetaVis, it provides a visual notation
that supports the user to better understand the current behaviour of the model
(see Chapter 6).

Modelling activity is supported, at each level of refinement, by model validation
and verification (V&V). Model validation should be applied, already at ground
model level, in order to ensure that the specification reflects the user needs and
statements about the system, and to detect faults in the specification as early as
possible with limited effort.

ASMs model validation is possible by means of the model simulator AsmetaS [65],
the model validator AsmetaV [46] and the model reviewer AsmetaMA tool [20].

The simulator AsmetaS allows to perform two type of simulations: interactive
simulation and random simulation. The first asked to the user the values of
parameters that depend on him/her, while the second itself randomly chooses the
values for monitored functions (those that depends on the environment).

Model validator AsmetaV allows to build and execute scenarios of expected sys-
tem behaviours. Scenario-based validation permits to automatize the simulation
activity, so scenarios can be rerun after specification modifications. In scenario-

39

Chapter 4. ASM-based development process

based validation the designer writes a scenario (using the textual notation Avalla)
specifying the expected behavior of the model; scenarios are similar to test cases.
The tool AsmetaV reads the scenario and executes it using the simulator AsmetaS.
Avalla provides constructs to express scenarios as interaction sequences consist-
ing of actions committed by the user to set the environment (i.e., the values of
monitored/shared functions), to check the machine state, to ask for the execution
of certain transition rules, and to enforce the machine itself to make one step (or
a sequence of steps by command step until) as reaction to the user’s actions.
We wrote several scenarios for the different refinement steps. We discovered that
such scenarios had several common parts, since they had to perform the same
actions and same checks in different parts of their evolution. Therefore, we ex-
tended the validator with the possibility to define blocks of actions that can be
reused in different scenarios: a block is a named sequence of Avalla commands
delimited by keywords begin and end. A command block can be defined in any
Avalla scenario and can be called by means of the command execblock in other
parts of the same scenario or in other scenarios. A block can also be nested in
another block.

A further validation technique is model review AsmetaMA (a form of static
analysis) to determine if a model has sufficient quality attributes (as minimal-
ity, completeness, consistency). Common vulnerabilities and defects that can be
introduced during ASMs modelling are checked as violations of suitable meta-
properties (MPs, defined in [20] as CTL formulae). Meta-properties are devised
in three categories:
• consistency guarantees that locations (memory units) are never simultane-

ously updated to different values;
• completeness requires that every behaviour of the system is explicitly mod-

elled;
• minimality guarantees that the specification does not contain elements de-

fined or declared in the model but never used.
The violation of a meta-property means that a quality attribute (minimality,
completeness, consistency) is not guaranteed, and it may indicate the presence of
an actual fault (i.e., the ASM is indeed faulty), or only of a stylistic defect (i.e.,
the ASM could be written in a better way).

Validation usually precedes the application of more expensive and accurate
methods, like formal requirements analysis and verification of properties, that
should be applied only when a designer has enough confidence that the specifica-
tion captures all informal requirements. Formal verification of ASMs is possible
by means of the model checker AsmetaSMV [19]. The tool translates AsmetaL mod-
els to models of the model checker NuSMV; so both Computation Tree Logic (CTL)
and Linear Temporal Logic (LTL) formulas can be proved.

When an actual code of the system implementation is available, either derived
from the model as last low-level refinement step, or externally provided, also
conformance checking is possible. Both model-based testing and runtime verifica-
tion can be applied to check if the implementation conforms to its specification.
Asmeta supports conformance checking w.r.t. Java code. The tool ATGT [64] can

40

4.2. Compliance of the ASMs process with regulations

be used to automatically generate tests from ASMs models2 and, therefore, to
check the conformance offline; CoMA [21], instead, can be used to perform runtime
verification, i.e., to check the conformance online.

In MBT (Model Based Testing) [73, 129], abstract test sequences are derived
from the specification; such sequences are then realize in tests for the implemen-
tation. In order to generate abstract test sequences, the tool used is ATGT [64].
The tool derives from the specification some test goals (called test predicates) ac-
cording to some coverage criteria [63], and then generates sequences for covering
these goals. For example, the update rule coverage criterion requires that each
update rule is executed at least once in a test sequence and the update is not
trivial (i.e., the new value is different from the current value of the location). The
tool uses a classical approach based on model checking for generating tests. The
ASMs model is translated in the language of a model checker, and each test goal
is expressed as a temporal property (called trap property); if the trap property is
proved false, the returned counterexample is the abstract test sequence covering
the test goal (and possibly also other test goals). In order to realize the abstract
test sequences into tests for the implementation, a linking between the specifica-
tion and the implementation is provided. In [21], a technique is proposed to do
the linking using Java annotations:
• associate a Java class with the corresponding ASMs model (@Asm);
• associate the ASMs state with the Java state:

– @FieldToFunction connects a Java field with an ASM controlled func-
tion;

– @MethodToFunction connects a Java pure (i.e., returning a value but not
modifying the object state) method with an ASM controlled function;

– @Monitored connects a Java field with an ASM monitored function; such
fields represent the inputs of the Java class that take their value from
the environment (as monitored functions in ASMs).

• associate the ASM behavior with the Java object behavior; @RunStep is used
to annotate methods whose execution corresponds to a step of the ASM
model.

Given the mapping provided by the Java annotations, abstract test sequences
are translated in JUnit tests following the technique described in [22].

4.2 Compliance of the ASMs process with regulations

In Sect. 4.2.1 and Sect. 4.2.2, it is shown how compliant the ASM-based process
is w.r.t. the existing normative in the field of medical software, which activities of
the IEC standard can be covered by the use of ASMs, which FDA principles are
ensured by the use of ASMs, how the rigour of a formal method such as ASMs
can improve the current normative, and what can not be captured by or is out of
the scope of ASMs.

2Note that sequences generated by ATGT could be used to test programs written in any programming language.

41

Chapter 4. ASM-based development process

4.2.1 Compliance of Abstract State Machines process with IEC 62304

Regarding step (5.1) of the IEC 62304 standard, ASMs can supply a precise iter-
ative life cycle model based on model refinement. Life cycle procedures are mod-
eling, validation, verification, and conformance checking, the last applicable also
at the maintenance phase. Deliverables are given in terms of a sequence of refined
models, each one equipped with validation and verification results. Traceability
is given, at each refinement step, by the conformance relation between abstract
and refined models. ASMs do not support activities peculiar to risk management,
although ASMs tools can be used to predict possible risks by reasoning on mod-
els and checking incorrect behaviours or potential faults. Thus, there is not any
evidence of a possible use of ASMs in the context of risk management.

Step (5.2) is not covered by the use of ASMs, since it consists of informal
requirements definition. Complementary techniques for requirements gathering
can be exploited. The use of ASMs, as well as of any other formal method, starts
from the results of requirements elicitation. An example is the HMCS description
in [100].

Steps (5.3 - 5.4) are covered by the continuous activity of modeling and verifying
software requirements along the ASM process till the desired level of refinement,
possibly to code level. Already at the ground level, software structure is captured,
even if not completely, by the model signature (i.e., domains and functions defined
on them), while software behaviour is specified by means of transition rules. Model
refinement and decomposition can help to manage the complexity of systems and
move from a global view of the system to a component (or unit) view. Design
decisions and architectural choices are added along model refinement. The ASM
process has no specific techniques for risk analysis required by these steps of the
standards; however, several static and dynamic verification techniques can be used
for this aim.

Steps (5.5 - 5.7) concern code and testing. Although in ASMs a code proto-
type could be obtained as a last model refinement step, usually we expect code to
be developed by a vendor and implemented by the use of powerful programming
techniques and languages. Thus, the ASM process does not fully cover these de-
velopment steps. However, having executable models available, ASM techniques
for conformance checking (model-based testing and runtime verification) are ap-
plicable.

Regarding step (5.8), if a device manufacturer adopts the ASM process, demon-
stration that software has been validated and verified is straightforward, since
validation and verification are continuous activities along the process, and confor-
mance checking is possible on the subsequent released versions of the software.

Step (6) concern maintenance process. Every time the model is changed, the
ASM process steps should be executed to guarantee the conformance between the
model and the executable code.

Regarding step (7), it is not considered in the ASM process.

42

4.2. Compliance of the ASMs process with regulations

4.2.2 Compliance of Abstract State Machines process with FDA prin-
ciples

By proposing the ASM process for medical software development, following, a
discuss how ASM V&V activities achieve the FDA principles is proposed.

(1) Using ASMs, requirements are specified and documented by means of a
chain of models providing a rigorous baseline for both validation and verification.

(2) Continuous defect prevention is supported. At each modelling level, faults
and unsafe situations can be checked. Safety properties are proved on models,
while software testing for conformance verification of the implementation is pos-
sible.

(3)-(6) The ASM process allows preparation for software validation and verifi-
cation as early as possible, since V&V can start at ground level. These activities
are part of the process, can be planned at different abstract levels, are documented,
and supported by precise procedures, i.e., methods and techniques.

(7) In case changes only regard the software implementation and do not affect
the model, our process requires to re-run conformance checking only; in case a
software change requires to review the specification at a certain level, then re-
finement correctness must be re-proved and V&V re-executed from the concerned
level down to the implementation.

(8) Regarding validation coverage, by simulation and testing, we can collect the
coverage in terms of rules or code covered. This can be used by the designer to
estimate if the validation activity is commensurate with the risk associated with
the use of the software for the specified intended use.

(9) Since V&V are performed by exploiting unambiguous mathematical-based
techniques, they facilitate independent evaluation of software quality assurance.

(10) The ASM process allows a device manufacturer to demonstrate that the
software has been validated and verified: if an implementation is obtained as the
last model refinement step, it is correct-by-construction due to the proof of re-
finement correctness; if the code has been developed by a vendor, conformance
checking can guarantee correctness w.r.t. a verified model.

43

CHAPTER5
Unified Syntax for ASM to Xtext

ASMs are a flexible, yet mathematically well-founded method and language for
rigorous system engineering. The formalism can be seen as “pseudocode over ab-
stract data”. Although this pseudocode notation is formally defined, in practice
many ways exist to encode algebraic concepts and many abbreviations can be used
to improve model conciseness and readability. Among the different frameworks
for the ASM method (like AsmL, ASM Workbench, ASMGofer, KIV), two of the
main ones are Asmeta and CoreASM. These platforms provide industrial strength
tools to specify, verify, simulate, and test ASMs models. However, they implement
different dialects of the pseudocode notation and support slightly different exten-
sions of the original definition. Thus, while the availability of multiple support
platforms is obviously an advantage, it may also be confusing for new adopters
of the method. Moreover, designers cannot share models among the tools (un-
less a translator or adapter is defined) and thus can not easily take advantage
of each tool’s strengths. To overcome these limitations, the idea of a common
syntax definition Unified Abstract State Machines (UASM) [18], driven by the
community, open to any actors, has grown in the last two years. The main goals
are: - provide a stable language kernel for ASMs languages that support the in-
teroperability of tools designed and implemented using this language; - preserve
various useful extensions of the different tools. Furthermore, on the one hand, the
UASM language should be usable for communication with customers and non-
experts, and, on the other hand, precise enough to allow automatic analysis (like
type checking, property verification, etc.). The definition of this language started
two years ago, but the language was not implemented. For this reason in this
thesis, the implementation has been performed using Xtext1. Xtext is a frame-

1https://eclipse.org/Xtext/

45

Chapter 5. Unified Syntax for ASM to Xtext

work for development of programming languages and domain-specific languages.
It follows the Model-Driven Engineering paradigm and uses Metamodel-based ap-
proach. The syntax used to define the grammar is similar to the EBNF standard.
Once the grammar is defined, it provides many utilities, including the editor (with
syntax highlighting, auto-completion, auto-indentation, typechecker), the parser
and the validator (for semantic checking). During the implementation in Xtext,
we found some incompleteness in the language and some ambiguities have been
resolved. The final implementation of UASM grammar in Xtext is shown in the
next section, the definitions are followed by some examples2.

5.1 UASM Header

The UASM syntax is defined using EBNF (Extended Backus-Naur form) nota-
tion3, a metasyntax notation which can be used to express a context-free grammar
and it is defined as international standard in ISO-14977. In the following, UASM
grammar rules are shown by using the Xtext syntax.

UASM specifications must contain a single ASM structure definition and take
the extension .uasm. The structure defined in Xtext is divided into three sections:
an ID, an Header and a Body.

Asm: ('asm' | 'asmmodule') name=ID header=Header body=Body;

There exist two types of ASM files:
- asm: contains a complete ASM and must contain the command for the execution

of the main rule ('exec'IdRule);
asm mainASM
...
rule rule1 =
...
exec rule1

- asmmodule: contains an ASM and must not define a main rule (exec.Thus,
it is not executable by itself. Any initialization has to be done by using the
initially keyword in the definition of a function. It is also possible to provide
a rule that has to be called from the ASM that uses this module, but one cannot
rely on this, since it is up to the user to do this or not. If one cannot avoid this,
we recommend to introduce a flag that indicates if the module was properly
initialized or not.

asmmodule moduleASM
...
rule ruleN =
...

2The examples can be found at https://github.com/uasm/uasm-language-examples/tree/master/UNIBG
3The UASM syntax can be found at https://github.com/uasm/uasm-language-definition

46

https://github.com/uasm/uasm-language-examples/tree/master/UNIBG
https://github.com/uasm/uasm-language-definition

5.2. Transition Rules Definition

The ID is the name of the ASM and it is a terminal (literal symbols which
may appear in the outputs of the production rules of a formal grammar, the final
output string consists only of terminal symbols).

The Header includes the imported/exported parts of an ASM from/to another
ASM and the imported libraries to mange the elements defined. Although the
Body contains domains definition, functions definition, rules definition and the
main rule ('exec'IdRule).

Header : {Header} directives+=UseDirective*
directives+=ImportDirective* directives+=ExportDirective*;

Body : {Body} (definitions+=Definition)*(execution=Execution)?;
Execution : ('exec') idRule=IdRule);

Definition returns Definition : (TypeDefinition |
FunctionDefinition | RuleDefinition);

Code 5.1 shows a simple example of an .uasm file. It is a counter that increment
the value at each step. counterASM is the name of the ASM, counter is the
function updated at each step and increment is the name of the main rule.

asm counterASM

controlled counter -> INTEGER initially 0

rule increment =
counter := counter + 1

exec increment

Code 5.1: ASM structure

5.2 Transition Rules Definition

In a given state, a transition rule of an ASM produces for each variable assignment
an update set for some dynamic functions of the signature. Each rule is identi-
fied by the keyword rule, the name IdRule (ID terminal), the rule parameters
(ParameterDefinition) and the rule definition.

RuleDefinition : {RuleDefinition} 'rule' idRule=ID
parameters=ParameterDefinition)? '=' rule=Rule;

A simple example of rule definition is shown in Code 5.2. The rule computeSum
has two parameters num and num2, both INTEGER.

controlled sum -> INTEGER
rule computeSum (num in INTEGER , num2 in INTEGER) =
sum := num + num2

47

Chapter 5. Unified Syntax for ASM to Xtext

Code 5.2: Rule definition

There are different type of rules in UASM.

Rule ::= ParBlock | SeqBlock | SeqNext | CaseRule | ChooseRule |
ConditionalRule | ExtendRule | ForAllRule | ImportRule |
IterateRule | LetRule | WhileRule | UpdateRule | SkipRule
| CallRule | LocalRule | PrintRule;

Afterwards, the rules are shown.

ParBlock rule

Rule is a set of rules (two or more) executed in parallel. The rules can be inserted
between 'par - endpar' keywords or between braces {}. The functions values are
updated at the end of the state.

ParBlock : {ParBlockRule} 'par' rules+=Rule+ 'endpar' | '{'
rules+=Rule+ '}';

rule parRule =
par
rule1
rule2
...
endpar

Code 5.3: ParBlock rule

rule parRule =
{
rule1
rule2
...
}

SeqBlock and SeqNext rule

Rule is a set of rules (two or more) executed sequentially. In case of SeqBlock
the rules can be inserted between 'seq - endseq' keywords or between brackets [].
Otherwise, in case of SeqNext the rules can be inserted between 'seq - endseq'
keywords and the rules next to the first are preceded by the keyword 'next'. The
functions values are updated when an update rule occurs.

SeqBlock : {SeqBlock} 'seq' rules+=Rule+ 'endseq' | '['
rules+=Rule+ ']';
SeqNext : {SeqNext} 'seq' rules+=Rule ('next' rules+=Rule)+
('endseq')?;

Code 5.4 and Code 5.5 show an example of sequential rule where rules “rule1,
rule2, ...” are executed sequentially in the order they are written.

48

5.2. Transition Rules Definition

rule seqRule =
seq

rule1
rule2 ...

endseq

Code 5.4: SeqBlock rule

rule seqRule =
[

rule1
rule2 ...

]

rule seqRule =
seq

rule1
next rule2 ...
endseq

Code 5.5: SeqNext rule

Case Rule

Depending on the value assumed by the first Term, rulesi is executed when
Termsi is equal to Term. otherwise Rule is executed if Term does not correspond
to any Termi. If otherwise Rule is omitted it is assumed as Skip as default.

CaseRule : {CaseRule} 'case' caseTerm=Term 'of' (terms+=Term
':' rules+=Rule)+ ('otherwise' otherwiseRule=Rule)?
'endcase';

Code 5.6 shows two simple application of case rule. Assuming that x is a
number, depending on the value assumed by x the corresponding rule is executed.
In case x is equal to 1 rule1 is executed, in case x is equal to 2 rule2 is executed,
otherwise rule3 is executed. In the second example, since otherwise term is
omitted, in case x is different from 1 and 2 it is assumed that skip rule is executed.

controlled x -> INTEGER

rule caseRule =
case x of

1: rule1
2: rule2
otherwise rule3

endcase

Code 5.6: Case Rule

controlled x -> INTEGER

rule caseRule =
case x of

1: rule1
2: rule2

endcase

Choose Rule

Choose rule executes Rule with VariableTerm (set of letters and numbers) chosen
in EnumerableTerm (Term or Domain) with Term true. If none VariableTerm

49

Chapter 5. Unified Syntax for ASM to Xtext

satisfy Term, ifnone Rule is executed. If ifnone Rule is omitted it is assumed
as Skip as default.

ChooseRule : {ChooseRule} 'choose' varTerm+=VariableTerm
'in' term+=EnumerableTerm (',' varTerm+=VariableTerm 'in'
term+=EnumerableTerm)* ('with' termWith=Term)? 'do' rule=Rule
('ifnone' ifnoneRule=Rule)? ('endchoose')?;

Code 5.7 shows three examples of choose rule. First example chooses x in the
domain D2. If x satisfies the condition x<5, rule1 is executed; otherwise if there
are no x that satisfy the condition, rule2 is executed. The second example is like
the first, but if there are no x that satisfy the condition, it is assumed as Skip as
default. The third example chooses x in the interval 0-10 and y in the domain
ExampleDomain (contains number in the interval 0-100). If the condition x!=5 is
satisfied the ParBlock rule is executed, otherwise Skip is executed.

rule chooseRule =
choose x in D2 with x<5 do rule1 ifnone rule2 endchoose

rule chooseRule =
choose x in D2 with x!=5 do rule1 endchoose

domain ExampleDomain of (INTEGER) initially {[0 .. 100]}
rule chooseRule =

choose x in D2, y in ExampleDomain with x!=5 do
par

z := x;
w := x + y;

endpar
endchoose

Code 5.7: Choose Rule

Conditional Rule

Conditional rule executes then Rule if Term is true, otherwise else Rule is exe-
cuted. If else Rule is omitted it is assumed as Skip as default.

ConditionalRule : 'if' condition=Term 'then' thenRule=Rule (⇒
'else' elseRule=Rule)? 'endif'?;

Code 5.8 shows an example where rule1 is executed if x>0 is true, otherwise
rule2 is executed. In the second example if the condition is false, Skip rule is
executed.

50

5.2. Transition Rules Definition

controlled x -> INTEGER
rule conditionalRule =

if x>0 then
rule1

else
rule2

endif

Code 5.8: Conditional Rule

controlled x -> INTEGER
rule conditionalRule =

if x>0 then
rule1

endif

Skip Rule

Skip rule does nothing. This rule is used when the machine does not perform any
action

SkipRule : {SkipRule} 'skip';

Update Rule

LocationTerm (function previously declared) is updated with Term value.

UpdateRule : {UpdateRule} location=LocationTerm ':=' term=Term;

An example is shown in Code 5.2 where function sum is updated with the result
of num + num2.

Extend Rule

Extend Rule extends an ExtendableDomain with one or more VariableTerm
and then Rule is executed. The set of VariableTerm can be assigned to an
as VariableTerm and used as as VariableTerm in Rule execution.

ExtendRule : {ExtendRule} 'extend' extendDomain=ExtendableDomain
'with' varTerm+=VariableTerm (',' varTerm+=VariableTerm)* ('as'
varTermOpt=VariableTerm)? 'do' rule=Rule 'endextend'?;

In Code 5.9 an extendable domain userDomain is extended with the values 5,6
and 7 and then rule1 is executed. In the second example, the values 5,6 and 7
are assigned to the VariableTerm NewVar and it is passed to rule1 as parameter.

51

Chapter 5. Unified Syntax for ASM to Xtext

rule extendRule =
extend userDomain with 5,6,7 do rule1 endextend

rule extendRule =
extend userDomain with 5,6,7 as NewVar do rule1(NewVar)
endextend

Code 5.9: Extend Rule

ForAll Rule

ForAll rule executes Rule with VariableTerm chosen in EnumerableTerm with
Term true. If none VariableTerm satisfy Term, ifnone Rule is executed. If
ifnone Rule is omitted it is assumed as Skip as default.

ForAllRule : {ForAllRule} 'forall' varTerm+=VariableTerm
'in' term+=EnumerableTerm (',' varTerm+=VariableTerm 'in'
term+=EnumerableTerm)* ('with' termWith=Term)? 'do' rule=Rule
('ifnone' ifnoneRule=Rule)? 'endforall'?;

In the examples shown in Code 5.10, rule1 is executed forall x in the domain
D2 if the condition x<5 is true. If there are no x that satisfy the condition rule2
is executed. In the second example if the condition is false forall x, Skip rule is
executed.

rule forAllRule =
forall x in D2 with x<5 do rule1 ifnone rule2 endforall

rule forAllRule =
forall x in [0..10] with x<5 do rule1 endforall

Code 5.10: ForAll Rule

Import Rule

Import rule imports VariableTerm and executes Rule using the imported terms.

ImportRule : {ImportRule} 'import' varTerm=VariableTerm 'do'
rule=Rule 'endimport'?;

In the example shown in Code 5.11

52

5.2. Transition Rules Definition

rule importRule =
import x do rule1(x) endimport

Code 5.11: Import Rule

Iterate Rule

Iterate Rule executes Rule until the update set produced is either empty or in-
consistent.

IterateRule : {IterateRule} 'iterate' rule=Rule 'enditerate'?;

Code 5.12 execute rule1 until the update set is empty.

rule iterateRule =
iterate rule1 enditerate

Code 5.12: Iterate Rule

Let Rule

Let Rule assigns Term to VariableTerm and then executes Rule which contains
occurrences of VariableTerm.

LetRule : {LetRule} 'let' varTerm+=VariableTerm '=' term+=Term
(',' varTerm+=VariableTerm '=' term+=Term)* 'in' rule=Rule
'endlet'?;

In Code 5.13, rule1 is executed with two parameters which value is set in rule
let.

rule letRule =
let (x=5, y=8) in rule1(x,y) endlet

Code 5.13: Let Rule

While Rule

While Rule executes Rule while Term is true.
WhileRule : {WhileRule} 'while' term=Term 'do' rule=Rule
'endwhile'?;

Code 5.14 executes x:=x-1 while x is bigger than y.

53

Chapter 5. Unified Syntax for ASM to Xtext

rule whileRule =
while x>y do x:=x-1 endwhile

Code 5.14: While Rule

Call Rule

Call Rule calls rule with name IdRule (declared in the ASM) and passes param-
eters (Term) if they exist.

CallRule : {CallRule} calledRule=IdRule ('(' term+=Term (','
term+=Term)* ')')?

In Code 5.15, rule1 (the rule called) is executed if y>0.

rule rule1 (x in INTEGER) = skip

rule callRule =
if (y>0) then rule1(y) endif

Code 5.15: Call Rule

Local Rule

Local Rule defines a local function with ID name, the set of parameters (Parameters-
Definition), the function Domain and the initial value of the function (Initial-
FunctionDefinition). Rule is executed considering this new declared function.

LocalRule : 'local' id+=ID paramdef+=ParameterDefinition?
(('->' | '→') domain+=Domain)? ('initially'
initialDefinition+=InitialFunctionDefinition)? (',' id+=ID
paramdef+=ParameterDefinition? (('->' | '→') domain+=Domain)?
('initially' initialDefinition+=InitialFunctionDefinition)?)*
'in' rule=Rule 'endlocal'?;

In the example shown in Code 5.16, the local function x is declared and used
as parameter in rule1.

...
local x -> INTEGER initially 0 in rule1(x) endlocal
...

Code 5.16: Local Rule

Print Rule

Print Rule prints out Term to the environment.

54

5.3. Type Definition

PrintRule : 'print' term=Term

Code 5.17 print the value of function x.

...
print x
...

Code 5.17: Print Rule

5.3 Type Definition

Type Definition contains the definition of user-named domains: type-domains
(DomainDefinition) and enumerative domains (EnumerateDefinition).

TypeDefinition returns TypeDefinition : DomainDefinition |
EnumerateDefinition;

Domains

At the root of enumerative domains and type-domains, there are the following
individual components: structured domains, basic domains and extendable do-
mains.

Domain : StructuredDomain | BasicDomain | ExtendableDomain;

Structure domains are used for building data structures like sets, sequences,
bags, maps. Basic domains are reals, integers, strings and extendable domains
are a subset of another user-named domain, generic domain or sub-domains of
the Agent type-domain.

StructuredDomain : {StructuredDomain} type='SET'
('('domainSet=Domain')')? | type='BAG'
('('domainBag=Domain')')? | type='LIST'
('('domainList=Domain')')? | type='MAP' ('('domainMap+=Domain
',' domainMap+=Domain')')?;
ExtendableDomain : {ExtendableDomain} type='ANY' |
type='AGENT' | type='IdDomain';
BasicDomain : {BasicDomain} typeBasicDom=BasicDomainEnum ;
enum BasicDomainEnum: number='NUMBER' | integer='INTEGER'
| string='STRING' | char='CHAR' | boolean='BOOLEAN' |
rule='RULE';

55

Chapter 5. Unified Syntax for ASM to Xtext

Enumerative Domain Definition

Enumerative Domain is a domain ID with a defined set of elements EnumTerm.
Enumerative domain are dynamic and during the ASM execution new elements
can be added.

EnumerateDefinition : {EnumerateDefinition} 'enum' name=ID '='
'{' enums+=EnumTerm (',' enums+=EnumTerm)* '}';

The example in Code 5.18 shows the definition of the enumerative domain
ColorDomain. At first the values contained in the domain are RED, BLUE and
GREEN. In rule extendDomain the ColorDomain is extended with two values,
YELLOW and BLACK.

enum ColorDomain = {RED, BLUE, GREEN}
...
rule extendDomain=

extend ColorDomain with YELLOW, BLACK do rule1 endextend
...

Code 5.18: Enumerative Domain

Domain Definition

Domain definition defines new user-named domains. IdDomain (defined as set of
letters and numbers) is the name of the user-named domain, DomainParameter-
Definition identifies the structure of the elements of the declared domain and
InitialDomainDefinition is the initial set of values in the defined domain. All
domains defined by the user are extendable, new elements can be imported from
a possibly infinite reserve by means of extend rules.

The domains can be divided into two groups: tuple domains (domains with
more than one field) or single domains (domain with only one field).

DomainDefinition : {DomainDefinition} 'domain' name=ID ('of'
domainParamDef=DomainParameterDefinition)?
(initialDefition=InitialDomainDefinition)?;
DomainParameterDefinition : {DomainParameterDefinition} Domain
| ParameterDefinition;
ParameterDefinition : {ParameterDefinition} '(' (idIn=ID ('in'
| '∈') domainIn=Domain | id=ID | domain=Domain) (',' (idIn=ID
('in' | '∈') domainIn=Domain | id=ID | domain=Domain))* ');'

In UASM user-named domains are all dynamic, this means that can be ex-
tended during the ASM execution. If the values of domains are known a pri-
ori, they can be defined in the InitialDomainDefinition section. The initial-
ization can be both domain and tuple domain using respectively Literal and
TupleLiteral (records of Literal).

56

5.4. Functions definition

InitialDomainDefinition : {InitialDomainDefinition}
'initially' '{' (tuple+=TupleLiteral | literals+=Literal) (','
(tuple+=TupleLiteral | literals+=Literal))* '};'
TupleLiteral : {TupleLiteral} '(' literals+=Literal (','
literals+=Literal)+ ')';
Literal : NumberLiteral | BooleanLiteral | KernelLiteral |
StringLiteral | CharLiteral | EnumTerm;

Some examples are shown in Code 5.19. PlayingCards is a subset of the
INTEGER domain and identifies the number of one card deck. BOOK domain identify
a book, it has three fields: the author, the year and the publisher. Initially the
domain contains two entities. listDom is a domain which elements belong to a
list of strings; Red, Yellow and Blue are the initial values.

domain PlayingCards of INTEGER initially [0..40]
domain BOOK of (author in STRING, year in INTEGER, publisher in STRING)
initially {("Angelo",2002,"Springer"),("Elvinia",2010,"Elsevier")}
domain listDom of LIST(STRING) initially ["Red", "Yellow", "Blue"]

Code 5.19: Domains

5.4 Functions definition

There exist six type of functions: controlled, static, derived, monitored, shared and
out. Each function may have domain (Domain, before declared), set of parameters
(ParameterDefinition) and initial definition (InitialFunctionDefinition);
all these elements are not mandatory for each type of function. Only the function
type and function name (IdFunction) are mandatory in function definition.

FunctionDefinition returns FunctionDefinition :
(ControlledFunction | StaticFunction | DerivedFunction |
MonitoredFunction | SharedFunction | OutFunction);

Controlled Function

Controlled functions are read and written by the machine.

ControlledFunction : {ControlledFunction} ('controlled'
|('function'|('controlled' ('function') name=IdFunction
from=ParameterDefinition? ((('->' | ('→') to=Domain)?
(('initially' initialDef=InitialFunctionDefinition)?;

Static Function

Static functions do not change the value depending on the current state. Static
function must be initialize (InitialFunctionDefinition) with the value always
assumed during ASM execution.

57

Chapter 5. Unified Syntax for ASM to Xtext

StaticFunction : {StaticFunction} 'static' 'function'?
name=IdFunction from=ParameterDefinition? (('->' | ('→')
to=Domain)? ('always' initialDef=InitialFunctionDefinition);

Derived Function

Derived functions return value that depends on the current value of its inputs.
The value assumed by the function is defined in InitialFunctionDefinition.

DerivedFunction : {DerivedFunction} 'derived' 'function'?
name=IdFunction from=ParameterDefinition? (('->' | ('→')
to=Domain)? ('=' initialDef=InitialFunctionDefinition);

Monitored Function

Monitored functions are read by the machine and written by the environment.
There is not InitialFunctionDefinition because the value is read externally
at each state.

MonitoredFunction : {MonitoredFunction} 'monitored'
'function'? name=IdFunction from=ParameterDefinition? (('->'
| ('→') to=Domain)?;

Shared Function

Shared functions are read and written by the machine and the environment.

SharedFunction : {SharedFunction} 'shared'
'function'? name=IdFunction from=ParameterDefinition?
(('->' | ('→') to=Domain)? ('initially'
initialDef=InitialFunctionDefinition);

Out Function

Out functions are written by the machine.

OutFunction : {OutFunction} 'out' 'function'? name=IdFunction
from=ParameterDefinition? (('->' | ('→') to=Domain)?
('initially' initialDef=InitialFunctionDefinition);

Parameter Definition

Parameter definition contains the definition of the function parameters. It can
be a single parameter or a set of parameters (see domain definition in Sect. 5.3).
Each parameter can be identified by its Domain, its name (ID) with a generic
domain (any type) or its name with a specific Domain.

58

5.5. Terms

Initial Function Definition

Initial function definition identifies the values assumed always by static functions,
the definition of derived function or the value initially assumed by controlled,
shared and out functions.

InitialFunctionDefinition : 'from'? term=Term;

An example of functions definition and initialization is shown in Code 5.20.

controlled counter -> INTEGER initially 5
static binary -> INTEGER always 2
derived functionder (x in INTEGER)-> BOOLEAN =

if x > 0 then
true

else
false

endif
shared commonfunction -> BOOLEAN initially false
out printResult -> STRING initially "Undefined result"
monitored currentTemperature -> INTEGER

Code 5.20: Functions definition

The controlled function counter is an integer function and assumes value 5 as
initial value. binary is an integer static function, this means that the value as-
sumed is always 2 during the execution of ASM. The value assumed by the derived
function functionder is always a boolean and depends on the current value of x;
if x>0 functionder is equal to true, otherwise is equal to false. The boolean
shared function commonfunction and the string out function printResult are
initialized to two different values which can be changed during the machine ex-
ecution. In case of monitored function, initialization is not provided, only the
domain can be defined.

5.5 Terms

Terms are nested expressions which can be evaluated in a state of an ASM. The
Terms are recursive expression and can be easily represented using EBNF gram-
mar. Considering Xtext, it does not support left recursion. Left recursion is
avoided by adding a return value to each rule. By following the same principle,
Xtext allows the definition of the precedence in the operators. In this case the
precedence followed is the same as proposed by Java.

59

Chapter 5. Unified Syntax for ASM to Xtext

Term returns Expression : CondTernaryExpression;
CondTernaryExpression returns Expression :
ImpliesExpression ({CondTernaryExpression.cond=current} '?'
then=ImpliesExpression ':' else=ImpliesExpression)*;
ImpliesExpression returns Expression : BitwiseOrExpression
({BinaryExpression.left=current} op=('implies')
right=BitwiseOrExpression)*;
BitwiseOrExpression returns Expression : BitwiseXorExpression
({BinaryExpression.left=current} op=('or')
right=BitwiseXorExpression)*;
BitwiseXorExpression returns Expression : BitwiseAndExpression
({BinaryExpression.left=current} op=('xor')
right=BitwiseAndExpression)*;
BitwiseAndExpression returns Expression : EqualityExpression
({BinaryExpression.left=current} op=('and')
right=EqualityExpression)*;
EqualityExpression returns Expression : RelationExpression
({BinaryExpression.left=current} op=('!='|'=')
right=RelationExpression)*;
RelationExpression returns Expression :
AddExpression ({BinaryExpression.left=current}
op=('<'|'>'|'<='|'>='|'memberof') right=AddExpression)*;
AddExpression returns Expression : MultExpression
({BinaryExpression.left=current} op=('+'|'-')
right=MultExpression)*;
MultExpression returns Expression : PowerExpression
({BinaryExpression.left=current} op=('*'|'/'|'mod'|'div')
right=PowerExpression)*;
PowerExpression returns Expression : UnaryExpression
({BinaryExpression.left=current} op=('ˆ')
right=UnaryExpression)*;

UnaryExpression returns Expression : {BooleanNegation} ⇒
op='not' expression=BasicExpression | {ArithmeticSigned} ⇒
op='-' expression=BasicExpression | BasicExpression;

Basic Expression

A basic expression can be a BasicTerm or again a Term.

BasicExpression returns Expression : {BasicTermExpr} ⇒
basicT=BasicTerm | {ParenthesisTermExpr} ⇒ '(' term=Term ')';

There is a set of BasicTerm in UASM:

60

5.5. Terms

BasicTerm : LocationTerm | ComprehensionTerm | StructureTerm
| PickTerm | ConditionalTerm | CaseTerm | RuleAsTerm |
ReturnTerm | ForAllTerm | ExistsTerm | LetTerm | Literal |
SizeOfEnumerableTerm

Location Term

Location Term is a specialized function term where FunctionTerm is a dynamic
function fixed in the ASM definition.

LocationTerm : {LocationTerm} function = FunctionTerm | result
= 'result';

Function Term

Function term is a function with IdFunction name defined in the Function-
Definition section. Term represents the set of the actual parameters of the
function. If the arity of the function is 0, there is no Term.

FunctionTerm : {FunctionTerm} function=IdFunction ('('
args=Term (',' argsTuple=Term)* ')')?;

An example of function term is shown in Code 5.21. The definition of the de-
rived function functionder depends on the value assumed by the derived function
addValue. The element addValue(y) in functionder is the FunctionTerm.

derived addValue (x in INTEGER) -> INTEGER =
x+100

derived functionder (y in INTEGER)-> BOOLEAN =
if addValue(y) > 0 then

true
else

false
endif

Code 5.21: Functions definition

Structure Term

Structure term identifies four collections:
StructureTerm : SetTerm | ListTerm | BagTerm | MapTerm;

• Set Term: unordered set of unduplicated Term of the same nature

SetTerm : {SetTerm} '{' Term (',' Term)* '}' | '{''}'

61

Chapter 5. Unified Syntax for ASM to Xtext

• List Term: list of ordered Term of the same nature (duplicated allowed)

ListTerm : {ListTerm} '[' Term (',' Term)* ']' | '['']';

• Bag Term: unordered set of Term of the same nature (duplicated allowed)

BagTerm : BagTerm '<' Term (',' Term)* '>' | '<''>';

• Map Term: represents a mapping between an unduplicated key (first Term)
and a value (second Term)

MapTerm : MapTerm '{' (Term ('->' | '→') Term) (',' Term
('->' | '→') Term)* '}' | '{' ('->' | '→') '};'

Code 5.22 shows an example of Set, List, Bag and Map terms.

Set: {1,8,6,10}
List: [1,6,8,8,9]
Bag: <1,9,5,7,5,6>
Map: {1->5, 3->8, 8->4, 10->8}

Code 5.22: Structure Term

Comprehension Term

Comprehension term (Set, List, Map, Bag or Range) consists of elements that
breach of a condition.

ComprehensionTerm : SetComprehensionTerm |
ListComprehensionTerm | MapComprehensionTerm |
BagComprehensionTerm | NumberRangeTerm;

• Set Comprehension Term: identifies a set of Term of the same nature, such
that VariableTerm takes value in EnumerableTerm and WithTerm is satisfied
(if WithTerm is omitted it is assumed true).

SetComprehensionTerm : {SetComprehensionTerm} '{'
term=Term '|' varTerm+=VariableTerm ('in' | '∈')
enumTerm+=EnumerableTerm (',' varTerm+=VariableTerm
('in' | '∈') enumTerm+=EnumerableTerm)* (('with' | ':')
termWith=Term)? '};'

The example in Code 5.23 initializes the domain setDomain with values a +
b that satisfy the condition a > 5 and b > a.

62

5.5. Terms

domain limitDomain of INTEGER initially {0..10}
domain setDomain of SET(INTEGER) initially

{ a + b | a in limitDomain, b in limitDomain with a > 5 and b > a}

Code 5.23: Set Comprehension Term

• List Comprehension Term : identifies a list of Term of the same nature, such
that VariableTerm takes value in EnumerableTerm and WithTerm is satisfied
(if WithTerm is omitted it is assumed true).

ListComprehensionTerm : {ListComprehensionTerm} '['
term=Term '|' varTerm+=VariableTerm ('in' | '∈')
enumTerm+=EnumerableTerm (’,’ varTerm+=VariableTerm
('in' | '∈') enumTerm+=EnumerableTerm)* (('with' | ':')
termWith=Term)? ']';

In Code 5.24 the domain listDomain is initialized with the result of double(a)
that satisfy the condition a > b.

domain limitDomain of INTEGER initially {0..10}
domain listDomain of LIST(INTEGER) initially [double(a) | a in limitDomain,

b in limitDomain with a > b]
derived double (a in limitDomain) -> INTEGER = ...

Code 5.24: List Comprehension Term

• Map Comprehension Term: identifies a map between two Terms (Term −→
Term) of the same nature, such that VariableTerm takes value in EnumerableTerm
and WithTerm is satisfied (if WithTerm is omitted it is assumed true).

MapComprehensionTerm : {MapComprehensionTerm} '{' term1=Term
('->' | '→') term2=Term '|' varTerm+=VariableTerm ('in' |
'∈') enumTerm+=EnumerableTerm (',' varTerm+=VariableTerm
('in' | '∈') enumTerm+=EnumerableTerm)* (('with' | ':')
termWith=Term)? '};'

The example in Code 5.25 shows the initialization of mapDomain. The ele-
ments are pairs of number (key, value) that satisfy the condition a > 5 and
b = 8.

63

Chapter 5. Unified Syntax for ASM to Xtext

domain limitDomain of INTEGER initially {0..10}
domain mapDomain of MAP(INTEGER -> INTEGER) initially

{a -> b | a in limitDomain, b in limitDomain with a > 5 and b = 8}

Code 5.25: Map Comprehension Term

• Bag Comprehension Term: identifies a list of Term of the same nature (also
duplicated are admitted), such that VariableTerm takes value in EnumerableTerm
and WithTerm is satisfied (if WithTerm is omitted it is assumed true).

BagComprehensionTerm : {BagComprehensionTerm} '<'
term=Term '|' varTerm+=VariableTerm ('in' | '∈')
enumTerm+=EnumerableTerm (',' varTerm+=VariableTerm
('in' | '∈') enumTerm+=EnumerableTerm)* (('with' | ':')
termWith=Term)? '>';

The domain bagDomain in Code 5.26 is initialized with the values a + b *
2 where the condition a = 5 is true.

domain limitDomain of INTEGER initially {0..10}
domain bagDomain of BAG(INTEGER) initially

< a + b * 2 | a in limitDomain, b in limitDomain with a = 5 >

Code 5.26: Bag Comprehension Term

• Number Range Term: identifies a list of Terms that starts from first Term
until second Term. If Step Term is specified, the values chosen are from first
Term until second Term with a constant step.

NumberRangeTerm : {NumberRangeTerm} '[' start=Term '..'
end=Term ('step' step=Term)?; ']'

The example in Code 5.27 shows the initialization of domain range1 with
the values between 0 and 10, while range2 is initialized with even numbers
from 0 to 10.

domain range1 of INTEGER initially [0..10] //0,1,2,3,4,5,6,7,8,9,10
domain range2 of INTEGER initially [0..10] step 2 //0,2,4,6,8,10

Code 5.27: Number Range Term

64

5.5. Terms

Enumerable Term : can be a Domain or again a Term.
EnumerableTerm : Term | dom=Domain;

Pick Term

Pick term chooses a VariableTerm in EnumerableTerm with With Term true if it
is specified. If With Term is not provided it is skip as default.

PickTerm : 'pick' varTerm=VariableTerm ('in' | '∈')
enumTerm=EnumerableTerm ('with' term=Term)?;

The instruction pick in Code 5.28 takes a value x that belongs to limitDomain
if the condition double(x)>10 is true.

domain limitDomain of INTEGER initially {0..10}
derived double(a in limitDomain) -> INTEGER = ...
...
pick x in limitDomain with double(x)>10
...

Code 5.28: Number Range Term

Conditional Term

In conditional term condition, then clause and else clause are mandatory. The
term can be written in abbreviated or extended form.

ConditionalTerm : 'if' cond=Term 'then' thenTerm=Term 'else'
elseTerm=Term;

The conditional term is used in the example in Code 5.29 to define the value
assumed by the derived function counterDer.

controlled positive -> BOOLEAN initially false
controlled counter -> INTEGER initially 0
derived counterDer -> INTEGER =

if counter>0 then
positive := true

else
positive := false

Code 5.29: Number Range Term

Case Term

In case term the corresponding Term is returned, depending on the value assumed
by Case Term. If no Term has been found, the oterwise Term is returned.

65

Chapter 5. Unified Syntax for ASM to Xtext

CaseTerm : 'case' caseTerm=Term 'of' (term+=Term ':'
termAction+=Term)+ ('otherwise' otherwiseTerm=Term)?
'endcase';

Code 5.30 uses case term to determine the value of the derived function result.
Depending on the value assumed by winner function the value of result function
is: "WinFirst" if winner is 1, "WinSecond" if winner is 2, "Draw" otherwise.

controlled winner -> INTEGER initially 0
derived result -> STRING =

case winner of
1: "WinFirst"
2: "WinSecond"
otherwise: "Draw"

endcase

Code 5.30: Number Range Term

Rule As Term

The rule with id IdRule is used as a term when preceded by @ symbol.

RuleAsTerm : {RuleAsTerm} '@' rule=IdRule;

Return Term

The return term returns the Term defined in Rule.
ReturnTerm : {ReturnTerm} 'return' term=Term 'in' rule=Rule;

An example is shown in Code 5.31. The term r defined in the conditional rule,
is assigned to the derived function functionrecursive.

derived functionrecursive(x) =
return r in

if x < 0 then r := 0
else if x < 2 then r := x

else r := functionrecursive(x-2) + functionrecursive(x-1)

Code 5.31: Number Range Term

Let Term

Let term allows to assign a set of VariableTerm to a single Term and use them
simply calling the Term.

66

5.5. Terms

LetTerm : {LetTerm} 'let' varTerm+=VariableTerm '=' term+=Term
(',' varTerm+=VariableTerm '=' term+=Term)* 'in' body=Term;

The example in Code 5.32 shows the definition of the derived function Average-
AreaRectangles. The function computes the average area among two rectangles
given the bases and the heights. The areas of rectangles are assigned to two
VariableTerms, a1 and a2, subsequently the average is computed.

derived AverageAreaRectangles (h1 in INTEGER, b1 in INTEGER, h2 in INTEGER,
b2 in INTEGER) -> NUMBER =

let (a1=(h1*b1)/2, a2=(h2*b2)/2) in (a1+a2)/2

Code 5.32: Number Range Term

Exists Term

Exists term verifies if a Term or a set of terms exist (unique) and fulfil the condition
'with' Term. The term return a boolean value.

ExistsTerm : {ExistsTerm} (('exists' unique='unique'?) |
'∃' | '∃!') varTerm+=VariableTerm ('in' | '∈') inTerm+=Term
(',' varTerm+=VariableTerm ('in' | '∈') inTerm+=Term)* 'with'
withTerm=Term;

Code 5.33 shows an example of exists term. The derived function existUser-
Colour returns true if the userColour is contained in SubsetColour domain,
false otherwise.

enum SubsetColour = {RED, YELLOW, BLACK}
enum Colour = {RED, YELLOW, BLACK, BROWN, PINK, WHITE, BLUE, ORANGE, GREEN}
derived existUserColour (userColour in Colour) -> BOOLEAN =

exist a in SubsetColour with a=userColour

Code 5.33: Number Range Term

Size Of Enumerable Term

Size of Enumerable Term returns the size of the EnumerableTerm. The condition
of usage is that EnumerableTerm is a finite collection of elements.

SizeOfEnumerableTerm : SizeOfEnumerableTerm '|'
enumTerm=EnumerableTerm '|';

In Code 5.34, the derived function numberOfSubsetColour is equal to the num-
ber of elements in the enumerable domain SubsetColour. The value of the derived
function changes because the enumerable domain SubsetColour is dynamic and
new elements can be added.

67

Chapter 5. Unified Syntax for ASM to Xtext

enum SubsetColour = {RED, YELLOW, BLACK}
derived numberOfSubsetColour -> INTEGER = | SubsetColour |

Code 5.34: Number Range Term

5.6 Header

Header identifies which parts are imported or exported by the ASM. UseDirective
loads modules (plugins, not other ASMs) with name ID. ImportDirective im-
ports in the current ASM domains, functions and/or rules from other ASMs.
ExportDirective identifies which domains, functions and/or rules are exported
from current ASM to other ASMs.

Afterwards, the definition of basic elements is shown.

Header : {Header} UseDirective* ImportDirective*
ExportDirective*;
UseDirective : {UseDirective} 'use' id=ID;
ImportDirective : {ImportDirective} 'import' id+=ID ('(' (
IdDomain | IdFunction | IdRule) (',' (IdDomain | IdFunction
| IdRule))* ')')?;
ExportDirective : ExportDirective 'export' id+=ID ('(' (
IdDomain | IdFunction | IdRule) (',' (IdDomain | IdFunction
| IdRule))* ')' | '*')?;

5.7 Terminals

Terminals are the elementary symbols of UASM. They are String, Char, Number
(integer and real) and IDs (sequence of letters and numbers).

terminal ID : 'ˆ'? ('a'..'z' | 'A'..'Z' | ' ')('a'..'z' |
'A'..'Z' | '0'..'9')*;
terminal INT returns ecore:EInt: ('0'..'9')+;
String ::= '"' ('\\'. | !('\\' | '"'))* '"' | ''' ('\\'. |
!('\\' | '''))* '''

Following are shown the definition of the remain elements.

BooleanLiteral : {BooleanLiteral} val='true' | val='false'
KernelLiteral : {KernelLiteral} val='undef' | val='self'
NumberLiteral : {NumberLiteral} value=INT | valueDec=TK FLOAT;
EnumTerm : ID;
IdDomain : ID;
IdFunction : ID;
IdRule : ID;

68

5.8. Implementation: from UASM to Asmeta

5.8 Implementation: from UASM to Asmeta

Currently only the parser and the editor are available for UASM grammar. Asmeta
framework provides tools (see Sect. 4.1) for validation and verification, but they
manipulate AsmM models. So, in order to use Asmeta tools on UASM specifica-
tions, the UASM specifications must to be mapped to AsmM models.

uasm.ebnf

t2m

uasm.xtext

uasm model m2t
AsmM model

AsmetaL
(Asmeta grammar)

myasm.uasm
(UASM spec)

myasm.asmetal

t2m transformation chain

Asmeta
Parser (t2m)

uasm.ecore
(metamodel)

AsmM.ecore
(Asmeta

metamodel)

A
B

1 2
3

Figure 5.1: From UASM specification to AsmetaL specification

The process adopted is shown in Figure 5.1. The Xtext grammar (see from
Section 5.1 to Section 5.7) has been derived starting from UASM EBNF grammar
definition (step A). From Xtext grammar a parser and a metamodel have been ob-
tained automatically (step B). The metamodel is in the form of an EMF (Eclipse
Modelling Framework) model in the ecore format and Java APIs are automat-
ically obtained to manage UASM models. Furthermore, an editor with syntax
colour highlighting, auto completion and outline view helps the user in writing
the specifications.

Given the UASM specification, the transformation to an AsmM model (bottom
of Figure 5.1) consists in the following steps:
• (step 1) parse the specification with the parser: the parser is automatically

generated by Xtext.
• (step 2) produce an AsmetaL specification from the Ecore objects derived by

Xtext. These objects are iteratively analysed and, based on the type, they
are translated to the target language. The translation is not automatically
defined by Xtext, but it is defined by the user through a set of translation
rules. The translation rules can be defined using Xtend (a typed program-
ming language sitting on top of Java) or Java classes.

• (step 3) obtain an AsmM model with the AsmetaL parser.
UASM and AsmetaL are syntactically similar, but they have some differences4.
In Section 5.8.1, an example of translation from UASM to AsmetaL is shown. It

is a didactic example, but it helps to understand some differences between UASM
and AsmetaL.

5.8.1 Coffee Vending Machine

The machine distributes coffee, tea and milk. The machine accepts only 50 cents
and 1 euro. If the user inserts 50 cents the machine distributes milk (if it is

4The EBNF definition of AsmetaL can be found at http://fmse.di.unimi.it/asmeta/download/AsmetaL_
EBNF.html.

69

http://fmse.di.unimi.it/asmeta/download/AsmetaL_EBNF.html
http://fmse.di.unimi.it/asmeta/download/AsmetaL_EBNF.html

Chapter 5. Unified Syntax for ASM to Xtext

available); if the user inserts 1 euro the machine distributes randomly coffee or
tea (if they are available). If a drink is distributed his availability is decremented
and the money is preserved into the machine. Each step matches with the money
insertion. At the beginning the machine has 10 coffee, 10 tea and 10 milk. The
machine can contain 25 money maximum. The user decides the money to be
insert at each step.

The UASM specification (see Code 5.35) is manually written, while the AsmetaL
specification (see Code 5.36) is automatically derived using the tool.

asm coffeeVendingMachine

enum CoinType = { HALF , ONE }
enum Product = { COFFEE , TEA , MILK }
domain QuantityDomain of (INTEGER) initially { [0 .. 10] }
domain CoinDomain of (INTEGER) initially { [0 .. 25] }
controlled available (Product) -> QuantityDomain initially 10
controlled coins -> CoinDomain initially 0
monitored insertedCoin -> CoinType

rule r_serveProduct (p in Product) =
{

available (p) := available (p) - 1
coins := coins + 1

}

rule Main =
if (coins < 25) then

if (insertedCoin = HALF) then
if (available (MILK) > 0) then

r_serveProduct (MILK)
endif

else
choose p in Product with p != MILK and available (p) > 0 do

r_serveProduct (p)
endif

endif

exec Main

Code 5.35: Coffee Vending Machine UASM specification

The first difference among the UASM specification and AsmetaL specification
is the structure. UASM specification does not have constraints in the position of
function definition and rule definition. AsmetaL is more rigorous. It is divided
into three section: the signature contains the functions and domains definition,
the definition section contains the rules implementation and the functions and
domains are initialized in the default init section. Furthermore AsmetaL requires
the Standard Library which contains definition of basic domains, operators and
basic functions.

70

5.8. Implementation: from UASM to Asmeta

asm coffeeVendingMachine

import StandardLibrary

signature:

enum domain Cointype = {HALF | ONE}
enum domain Product = {COFFEE | TEA | MILK}
dynamic domain Quantitydomain subsetof Integer
dynamic domain Coindomain subsetof Integer
controlled available: Product -> Quantitydomain
controlled coins: Coindomain
monitored insertedCoin: Cointype

definitions:

rule r_serveProduct($p in Product) =
par

available ($p):= available ($p) - 1
coins := coins + 1

endpar

main rule r_Main =
if ((coins < 25)) then

if ((insertedCoin = HALF)) then
if ((available (MILK) > 0)) then

r_serveProduct[MILK]
endif

else
choose $p in Product with $p != MILK and available ($p) > 0 do

r_serveProduct[$p]
endif

endif

default init s0:

domain Quantitydomain = {(0)..(10)}
domain Coindomain = {(0)..(25)}
function available ($productparam0 in Product) = 10
function coins = 0

Code 5.36: Coffee Vending Machine AsmetaL specification

In the specifications, two enumerative domains are defined CoinType and Prod-
uct. In UASM the keyword enum is used to identified the enumerative domain,
while in AsmetaL two keyowrds are used: enum domain. The other difference is in
the elements separator, in UASM comma is used, while AsmetaL uses the vertical
bar. In both cases enumerative domains are extendible.

71

Chapter 5. Unified Syntax for ASM to Xtext

Other domains can be defined, in UASM the domains are all dynamic, while
in AsmetaL they can be dynamic or static. For this reason in the AsmetaL spec-
ification the domain is preceded by the keywords dynamic domain, if dynamic
is omitted it is considered static. Furthermore in AsmetaL the domains are di-
vided in abstract domain (any type of domain) and concrete domain (subset of
predefined numerical set e.g. integer, real).

In UASM the keyword used is of while in AsmetaL is subsetof, in both cases
the keyword is followed by the name of the concrete domain. In UASM the
initialization is performed after the domain definition preceded by the keyword
initially. While in AsmetaL the domains are initialized in the default init section.

The functions definition is preceded by the keyword controlled, monitored,
static, derived or out in both cases. After the keyword that identifies the type of
function, in UASM the name of the function is defined, followed by the domain
and codomain separated by the symbol →. Subsequently, if necessary the function
can be initialized using the keyword initially. In AsmetaL, the function name is
declared after the keyword that identifies the type and it is followed by the colon
mark. After, the domain and codomain are separated by the symbol →. The
function initialization is in default init section.

The rules definition has some differences between UASM and AsmetaL. UASM
rules are preceded by the keyword rule and the main rule is defined by writing
the name of the rule preceded by the keyword exec after the rules are defined. In
AsmetaL, the name of the rules must start with the characters r and they are
preceded by the keyword rule. The exception is for the main rule. The main rule
is preceded by the keyword main rule and the name starts with the characters r .

The rules are very similar, the differences are:
• parallel rule: in UASM the parallelism can be represented using the keywords

par - endpar or using the braces; in AsmetaL only the keywords par - endpar
are admitted.

• variables: in AsmetaL the variables name are preceded by the symbol $.
• call rule parameters: in UASM the parameters are between round brackets

while in AsmetaL they are listed in brackets.

72

CHAPTER6
Visualization for Abstract State Machines

Formal models are in principle accepted as the only way to specify in a precise
and rigorous way the informal system requirements: they help to understand
what has to be developed and to prove properties already at the early stages of
the system development. However, formal specification languages are not widely
used in industry, and practitioners largely consider formal methods “too hard
to understand and use in practice”. Limiting factors are the lack of simplicity,
learnability, readability, easiness of use of formal notations [124]. All these qual-
ities are fundamentals to achieve easiness of development and comprehension of
models, particularly for large, complex software systems. Requirement models
should act as a communication medium among customers, users, designers, de-
velopers, and this common understanding is fundamental for the success of the
system realization. However, since the mathematical notation is not always in-
tuitive, and the size of the specification often consists of several pages of rules
and formulas, model comprehension is threatened. Visualization is considered as
a good means for people to communicate and to get a common understanding.
Indeed, the use of diagrams and graphical blocks is at the base of the mostly
used notations in industry, as FSMs (and their extensions) or UML, the latter
nowadays accepted as the industrial standard for system design. However, their
shortcomings, as limited expressiveness for FSM w.r.t. other formal notations [41]
or semantics lack for UML [45], are well-known. Ever since UML appeared, many
modelling approaches have been developed which try to use UML (or one of its
profiles or domain-specific UML-like notations) as front-end of the requirements
specification and formal notations as back-end of the process, to provide rigour
and preciseness to lightweight models and make model validation and verification
possible [83,103,110,112,121].

73

Chapter 6. Visualization for Abstract State Machines

A concrete textual notation, called AsmetaL, to encode the ASM mathematical
model as defined in the Lipari Guide [71] has been proposed in [65]. AsmetaL has
been designed by exploiting the metamodelling paradigm.

The experience in trying to build and read very large system specifications [15,
23] has shown that the complexity of the behaviour being described overwhelms
the reader, and most users (even the authors of the specification) need help in
navigating and understanding it. This also happened while the development of
the Hemodialysis machine case study [16] (see Chapter 9). We tried, at first, to
directly specify the ASM models from the textual description of the requirements.
Although the refinement process helped us in managing the complexity of the
case study, we still had some problems in discussing among us about the solution.
So, we started making some drawings, whose notation was inspired by different
sources: control flow graphs, UML state machines, sequence diagrams, etc. The
lack of a way to graphically represent ASM models was clear. A further obser-
vation we have made is that most of the new ASM users start developing ASM
models as control state ASMs, a particular frequent class of ASMs – proposed by
Börger in [41] – useful to model system modes (or control states). Control state
ASMs have an intuitive graphical representation by means of FSM-like state dia-
grams. However, when the system to model is very complex, the resulting control
state is too complicated and fails in achieving its main aim, i.e., easily communi-
cating the behaviour of the system. Moreover, a systematic use of control state
ASMs is missing, and there is no algorithmic support to build or reconstruct such
machines from models written in textual notations.

Starting from the motivations that (a) formality is important but also un-
derstanding and communicating among stakeholders is fundamental, (b) visual-
ization of formal models can surely aid the understanding of model structure
and behaviours, (c) visual editing is often used to help designers and developers
to graphically build complex models [57], we introduce a graphical notation for
ASMs.

6.1 A visual notation for Abstract State Machines

The proposed visual notation [17] supports basic ASMs and sequential composi-
tion, it is defined in terms of a set of construction rules and schemas that give a
graphical representation of an ASM and its rules. We assume that the graphical
information is represented by a visual graph in which nodes represent syntactic
elements (like rules, conditions, rule invocations) or states, while edges represent
bindings between syntactic elements or state transitions. We do not introduce a
graphical representation for the signature (functions and domains) and proper-
ties, since we believe that they can be already easily understood from the textual
model. The final goal is to have a graphical visualization derived from textual
representation as shown in Figure 6.1.

Visualization −→ From textual to graphical representation

The first usage scenario consists in writing an ASM model in a textual representa-
tion (AsmetaL) and then derive a graph from it. Such approach can be used when

74

6.2. Visual Trees

(a) Textual representation (b) Graphical representation

Figure 6.1: Visual notation

the modeller is familiar with the ASM syntax, but (s)he wants to have a graphical
representation of the model for its better understanding and communication. If
the ASM model is syntactically correct, also the produced graph is correct. In
the visualizer, the user can activate some optimizations (see Section 6.3), in or-
der to have different views of the same model: structural (with different levels of
optimization), or semantic (behavioural).

6.2 Visual Trees

We introduce the relevant concepts which bring to a graphical representation of
an ASM model in terms of a navigable forest of tree structures, i.e., a forest of
trees connected by navigation links.

Definition 6.2.1. The visual notation for ASMs is given by the bijective function
visT between an ASM rule and a visual tree.

Definition 6.2.2. The function visT is given by Table 6.1.
1. For basic rules (update, skip and macro call) the function simply returns a

tree with only one node (the root).
2. For compound rules (conditional, block, forall, choose, let), one must ap-

ply the schema given in Table 6.1 and recursively call the function visT on
component rules.

Table 6.1 describes the semantics of ASM transition rules, and shows the pro-
posed graphical representation and the AsmetaL textual notation. The function
visT is only based on the syntactical structure of the ASM and it can always be
applied. Tree leaves are always skip, update, or call rules, and they are shown
in boxes. Note that a call rule invokes a macro rule that has its own tree that,
however, is not part of the main tree. At the end, one can obtain a tree for every
rule declaration by applying visT to its definition. The visualization of an ASM is
given by the forest compound of all the trees of the declared rules. To navigate
this visual view, the entry point is the tree for the main rule and, from every call
rule, one can navigate to the tree of the invoked macro rule by a virtual navigation

75

Chapter 6. Visualization for Abstract State Machines

Table 6.1: visT: Mapping from ASM transition rules to visual trees

Rule Visual tree AsmetaL notation

Skip rule
do nothing

skip skip

Update rule
update f to v

f := v f := v

Macro call rule r rule[] r rule[]

invoke rule r rule
with arguments v (if
any)

r rule[v] r rule[v]

Conditional rule guard visT (rule1)
if guard then
rule1
endif

execute rule1 if
guard holds, other-
wise execute rule2
(if given)

guard visT (rule1)

visT (rule2)

true

false

if guard then
rule1
else
rule2
endif

Block rule
execute rule1
. . . rulen in par-
allel

visT (rule1)
visT (rule2)

...
visT (rulen)

par

par
rule1
rule2
...
rulen
endpar

Forall rule
execute rule1 with
all values v ∈ V for
which d(v) holds

forall d(v)v ∈ V visT (rule1[v])
forall v ∈ V with d(v)

do
rule1[v]

Choose rule choose d(v)v ∈ V visT (rule1[v])
choose v ∈ V with d(v)

do
rule1[v]

execute rule1 with a
v ∈ V for which d(v)
holds. If no such v
exists, execute rule2
(if given)

choose d(v)v ∈ V visT (rule1[v])

visT (rule2)
ifnone

choose v ∈ V with d(v)
do

rule1[v]
ifnone
rule2

Let rule
execute rule1 substi-
tuting t for x

let visT (rule1[x])x = t

let(x = t) in
rule1[x]
endlet

link, which is not visualized in the graphical representation. By considering the
navigation links in the visualization, the resulting structure is a graph, as a macro
rule can be called by different call rules.

76

6.3. Visual Patterns

6.3 Visual Patterns

A pattern is a schema of connected tree nodes that is recurring and conveys
a structural or semantic (i.e., behavioral) information. Therefore, identifying a
pattern and substituting the entities belonging to it with a simplified structure is
of interest.

6.3.1 Structural patterns

We identify the following structural pattern that permits to obtain a more compact
representation of the model structure.

Nested Guards Pattern

The pattern regards the use of nested conditional rules. Suppose that you have a
conditional rule as shown in Figure 6.2c.

a visT (rule1)

b visT (rule2)

visT (rule3)

true

false true

false

(a) Visual tree

a,b visT (rule1)

visT (rule2)visT (rule3)

true,-

false,truefalse,false

(b) Pattern

if a then
rule1

else
if b then

rule2
else

rule3
endif

endif

(c) Nested
conditional
rules

Figure 6.2: Structural pattern – Nested guards pattern

By applying the visual trees in Table 6.1, one would obtain the tree shown in
Figure 6.2a. However, one can visualize the rule in a more compact way as shown
in Figure 6.2b. The pattern is applicable to any depth of nested conditional rules.
One just has to collect all the guards g1, . . . , gn, and create only one decision
node comprising all the guards separated by commas. The decision node has as
many exiting arcs as the number of conditional branches not containing another
nested conditional rule, but a different rule rulei; each arc is labeled with the
evaluations of the guards that permit to take that particular arc and fire rule
rulei. Evaluations of guards that are not relevant for the firing of a rule rulei
are depicted with symbol “–”. The decision node has up to n + 1 exiting arcs.
Note that the pattern does not necessarily produce a tree that is more clear to
understand, but it always provides a more compact representation of the nested
conditional rules. For this reason, we let the modeller decide if (s)he wants to
apply it.

77

Chapter 6. Visualization for Abstract State Machines

6.3.2 Semantic Patterns

Any ASM model can be always represented using visual trees and possibly opti-
mized by applying structural patterns. The resulting tree visualizes the structure
of the ASM. However, sometimes it is possible to infer from the model also some
hints on the behaviour of the machine. For this reason, we introduce semantic
patterns that can be applied when it is possible to infer from the model some
information on the workflow of the machine. We identify here three semantic
patterns: mutual exclusive guards, state, and state flow patterns.

Mutual exclusive guards pattern

In case of parallel conditional rules having mutual exclusive guards, it could be
useful to represent that the workflow of the machine follows only one of the possible
parallel execution paths.

The mutual exclusive guards pattern has been defined for this purpose. It is
applicable when the rule guards check the current value of a given location that
can assume disjoint values. This guarantees mutual exclusion among the guards
of the conditional rules. Consider, for example, the ASM rule in Figure 6.3c.

x = 1 visT (rule1)

x = 2 visT (rule2)par

x = 3 visT (rule3)
(a) Visual tree

x visT (rule1)

visT (rule2)visT (rule3)

1
2

3

(b) Pattern

par
if x = 1 then
rule1
endif
if x = 2 then
rule2
endif
if x = 3 then
rule3
endif
endpar

(c) Parallel conditional
rules

Figure 6.3: Semantic pattern – Mutual exclusive guards pattern

It fires the parallel execution of three conditional rules guarded by the current
value of the location x. Applying the visual tree in Table 6.1 to this rule, we
obtain the representation given in Figure 6.3a. However, one can understand that
the three conditions on x are mutually exclusive and, therefore, visualize the rule
in a more compact way as in Figure 6.3b, showing that the machine workflow
follows only one of the three possible paths1.

State pattern

Often, it could be desirable to represent the machine behaviour as a flow of activ-
ities along a sequence of states of control, i.e., configurations (or modes) in which
the machine can be. Therefore, we enrich our visual notation with a special node

1Note that the pattern can be detected by a simple static analysis of the model because of the particular
guard structure we consider. If we would like to handle any type of guard, detecting the pattern would require
to use a logical solver.

78

6.3. Visual Patterns

(an ellipse) representing information about the (control) state in which a given
rule can be executed. Suppose the model is as shown in Figure 6.4a, where ruleA

is a macro call rule that might call (directly or indirectly) the update rule state
:= stateB.

if state = stateA then
ruleA[]

endif

(a) Conditional rule

state = stateA

ruleA[]

(b) Visual tree

state = stateA

ruleA[]

state = stateB

(c) Pattern with state
change rules

state = stateA

ruleA[]

state = stateB state = stateC

(d) Pattern with multiple state change

state = stateA

ruleA[]

(e) Pattern without
state change

Figure 6.4: Semantic pattern – State pattern

Using only the visual trees defined in Table 6.1, the rule would be represented
by the schema shown in Figure 6.4b. However, supposing the modeler wants to
use the function state to identify states of control, if ruleA changes the state from
stateA to stateB, one can build the graph as shown in Figure 6.4c to explicitly
represent the state change. In case ruleA can bring to different states (e.g., states
stateB and stateC), the pattern is as shown in Figure 6.4d. Instead, if rule ruleA

leaves the mode unchanged, the pattern is as shown in Figure 6.4e. Note that
rule ruleA will be represented as a macro call rule, if this is not already the case.

State flow pattern

The definition of the state pattern can be extended to graphically represent a flow
of activities along a sequence of control states. Suppose to have the code reported
in Figure 6.5a and that ruleA contains the update rule state := stateB and ruleB

contains the update rule state := stateC .
By applying the state pattern explained above, one would obtain the visual

graph in Figure 6.5b. However, the evolution of the system from state stateA to
stateB and then to stateC can be made explicit, and the graph can be rewritten as
in Figure 6.5c. Note that if rule ruleB does not update state, the flow ends with
ruleB. Instead, if rule ruleB updates state to stateA, the resulting structure is a
graph as shown in Figure 6.5d. Note that if the state flow pattern is applicable,
also the mutual exclusive guards pattern is applicable.

Following, two examples show the application of the state flow pattern. The
result of the first example is like the pattern in Figure 6.5c, while the results of
the second example is a diagram like the patter in Figure 6.5d.

79

Chapter 6. Visualization for Abstract State Machines

par
if state = stateA then

ruleA[]
endif
if state = stateB then

ruleB []
endif

endpar

(a) Parallel conditional rules

par

state = stateA ruleA[] state = stateB

state = stateB ruleB [] state = stateC

(b) State pattern

state = stateA

ruleA[]

state = stateB

ruleB []

state = stateC

(c) Pattern as tree

state = stateA

ruleA[]

state = stateB

ruleB []

(d) Pattern as graph

Figure 6.5: Semantic pattern – State flow pattern

Example 1: car wash At the beginning of the washing cycle, the car is
DIRTY. The cleaning machine washes it, the car is CLEAN but it still wet. It
is DRY only after the drying cycle. The ASM model is shown in Code 6.1. By
applying the state flow pattern (see Figure 6.6b), the readability of the state flow
is more clear compared to the state pattern shown in Figure 6.6a.

asm CarWash

signature:
enum domain CarState = {DIRTY |
CLEAN | DRY}

controlled state: CarState

definitions:
rule r_wash =

state := CLEAN

rule r_dry =
state := DRY

Code 6.1: State flow patter example 1

main rule r_exec_machine =
par

if state = DIRTY then
r_wash[]

endif
if state = CLEAN then

r_dry[]
endif

endpar

default init s0:
function state = DIRTY

Example 2: industrial machine An industrial machine can be in three
different states: OFF, ON, WORKING. Initially the machine is OFF and the
only action admitted moves it to state ON. After that the machine goes in state
WORKING, and the next action takes it in state OFF. The model of the system
is shown in Code 6.2. By applying the state pattern (see Figure 6.7a) the graph
is more complicated and the state flow is less clear than the one obtained using

80

6.3. Visual Patterns

par

state = DIRTY r wash[] state = CLEAN

state = CLEAN r dry[] state = DRY

(a) State pattern

state = DIRTY

r wash[]

state = CLEAN

r dry[]

state = DRY

(b) Pattern as tree

Figure 6.6: Example 1: Semantic pattern – State flow pattern

the state flow pattern (see Figure 6.7b).

asm Machine

signature:
enum domain MachineState =
{OFF | WORKING | ON}

controlled state: MachineState

definitions:
rule r_turnOn =

state := ON

rule r_work =
state := WORKING

rule r_turnOff =
state := OFF

Code 6.2: State flow patter example 2

main rule r_exec_machine =
par

if state = OFF then
r_turnOn[]

endif
if state = ON then

r_work[]
endif
if state = WORKING then

r_turnOff[]
endif

endpar

default init s0:
function state = OFF

par

state = OFF r turnOn[] state = ON

state = ON r work[] state = WORKING

state = WORKING r turnOff[] state = OFF

(a) State pattern

state = OFF

r turnOn[]

state = ON

r work[]

state = WORKING

r turnOff[]

(b) State flow pattern

Figure 6.7: Example 2: Semantic pattern – State flow pattern

It is possible to notice from the two examples shown above, that the state flow
pattern greatly simplifies the readability of the graphs in case it is applicable to

81

Chapter 6. Visualization for Abstract State Machines

the model under investigation.

6.4 Tool

A prototypical tool called AsmetaVis has been developed, that permits to rep-
resent the visual trees and some of the visual patterns we have presented. The
tool permits to obtain the graphical representation of a specification written in
AsmetaL. The tool is currently able to visualize the ASM in two modes:
• basic visualization in which the ASM is visualized using only the visual trees

presented in Section 6.2;
• semantic visualization in which information on the workflow of the model

is visualized using semantic patterns (see Section 6.3.2). Note that the tool
automatically identifies the semantic patterns without any hint from the
user. It first tries to apply the state and state flow patterns; if these are not
applicable, it tries to apply the mutual exclusive pattern.

Figure 6.8 shows the basic and the semantic visualizations applied to the Example
1 (see Section 6.3.2) in AsmetaVis.

Due to the complexity of some models, the tool loads the AsmetaL model and
shows the graph of the main rule. A double-click on a macro call rule node causes
the visualization of the corresponding macro rule graph; in this way, we provide the
navigation links described in Section 6.1. An example is shown in Figure 6.9 using
the Example 1 (introduced in Section 6.3.2). Initially the tool shows the window
“models/CarWash.asm” that corresponds to the visualization of the main rule.
When the user double-clicks on the call rule “r wash”, the corresponding window
“RULE r wash” is open. The same process is applied for the visualization of the
windows “RULE r dry”; it is opened when the user double-clicks on the call rule
“r dry”.

The tool is integrated in the Asmeta framework as eclipse plugin2 and it uses
Zest for implementing the visualization features3.

6.5 Preliminary evaluation of visual notation

We conducted a preliminary experiment to evaluate whether the proposed visual
notation can help in understanding a model. We interviewed 15 students who
attended a course on formal system modelling and verification at the University
of Milan (ten lectures on ASMs), and 11 who attended a course on principles
of programming languages at the University of Bergamo (six lectures on ASMs).
We took the (last refined) textual model of the hemodialysis case study (see
Chapter 9), that consists of 163 macro rules and 1880 lines of code. We gave the
textual model to half of the students and its graphical representation to the other
half. Then we asked them a question in order to evaluate their understanding
of the model (UQ: Which are the phases of the hemodialysis treatment and in
which order are they executed?). We measured the time taken for answering the
question. After this experiment, we gave them also the other representation (the
textual one for those having the graphical one, and vice versa) and we asked them

2http://asmeta.sourceforge.net/download/asmetavis.html
3https://www.eclipse.org/gef/zest/

82

http://asmeta.sourceforge.net/download/asmetavis.html
https://www.eclipse.org/gef/zest/

6.5. Preliminary evaluation of visual notation

(a) Basic visualization

(b) Semantic visualization

Figure 6.8: AsmetaVis tool

Figure 6.9: Example 1: visual notation using the tool - in red the navigations links

83

Chapter 6. Visualization for Abstract State Machines

Table 6.2: Experimental results of preliminary evaluation of visual notation

Group UQ (% correct answers) Avg. time (sec) SQ (% affirmative answers)
Graphical 92.3 135 100
Textual 73.0 226 7.6

to identify the same elements in both representations (we did not count the time
in the second phase of the evaluation). Then we asked them a question regarding
their satisfaction about the notation they used at the beginning (SQ: Are you
satisfied with the notation you used at the beginning?).

Table 6.2 shows the results of the experiment. By UQ, we observe that the
graphical notation permits to understand the model semantics better in less time
than the textual notation. Regarding the level of satisfaction (SQ), all the students
who used the graphical notation were satisfied and they would not have preferred
using the textual one. Instead, only 7.6% of those using the textual notation
were satisfied and 92.4% of them said that they would have preferred using the
graphical one.

84

CHAPTER7
Automatic Code Generator

In Chapter 4, the Asmeta framework has been presented. Given the informal
requirements the user derives the models and performs validation and verifica-
tion activities. The last step of V&V verifies the conformance between the last
ASM model and the code (machine code). The code is externally provided or
developed by the user considering the last ASM model. Code generation process
aims to generate automatically the code from the last formal model. Moreover,
it tries to keeping true the system behaviour and the properties verified during
V&V. The target language chosen for the first code generator tool from ASM
specification is C++, in particular C++ for Arduino devices. In the next sections
the transformation process is shown and the design choices are motivated. The
starting point of translation process is the formal specification written in UASM
(see Chapter 5). UASM has been chosen because it aims to be a stable language
kernel for ASMs languages. The tools presented in Chapter 4 process AsmetaL
models and cannot be used for UASM models. For this reason a translator from
UASM to AsmetaL has been developed (see Sect. 5.8).

The next sections show the process and the tools used to generate C++ code
from UASM specification.

7.1 Model transformation

The starting point to get the machine code is the formal specification written in
UASM conforms to UASM grammar. After that, the specification is translated
into UASM model conforms to the meta-model using text-to-model (T2M) trans-
formation. T2M transformation is often called parsing and it is performed by
the parser. The parser takes as input a string (for example the text file for the

85

Chapter 7. Automatic Code Generator

source code), it verifies if the string is conform to the grammar and creates the
corresponding model. In case the text file is not conform to the grammar, an
exception is raised and the parsing process is stopped. Starting from model, two
solutions can be adopted to perform code generation: model-to-text (M2T) and
model-to-model (M2M). The former translates the model into textual represen-
tation, e.g. source code of a specific language; the latter translates the starting
model into the model of the target textual representation, e.g. the model of C++
language.

7.1.1 Model-to-Text

Model-to-text is the most used technique, since it translates the model directly
into source code. For example, in the present case (see Figure 7.1) the UASM
model is translated into C++ code.

UASM grammar

UASM spec
(.uasm)

UASM model

UASM metamodel

C++ code

conform to conform to

T2M M2T

Figure 7.1: M2T Transformation

There are different technologies to support M2T transformation process, the
most common are:
• Xpand1 is based on EMF (Eclipse Modeling Framework) framework and

provides code generation facilities like a meta-model (Ecore) to describe the
models, a set of Java classes for the components of the model, a set of adapter
classes that enable viewing and command-based editing of the model, and a
basic editor. The main disadvantage of Xpand is that the output generation
is slow, the code is not maintained and it is not well tested.

• Xtend22 is the successor of Xpand based on Java dialect and Xpand func-
tionalities. It has the following advantages: - it is translated into Java - it
is faster than Xpand - it is debuggable - it has its own IDE (Integrated
Development Environment).

7.1.2 Model-to-Model

Model-to-model transforms the model of the specification into the model of the
target source code. There are two types of transformations: endogenous and
exogenous; the first is between models conform to the same meta-model, while
the latter refers to models having different meta-models. The second is the case
that matches the present case, because UASM model and source code model of

1https://eclipse.org/modeling/m2t/?project=xpand
2http://www.eclipse.org/xtend/

86

https://eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/xtend/

7.2. Microcontrollers

the target language are conform to different meta-models. As shown in Figure 7.2

UASM grammar

UASM spec
(.uasm)

UASM model

UASM metamodel

C++ code

conform to conform to

T2M M2TSource code
Model

Source code
metamodel

conform to

M2M

Figure 7.2: M2M Transformation

M2M transformation leads two steps to transform the starting model into runnable
code. UASM model is first transformed into the model of the target language and
then, through M2T transformation, it is translated into target source code.

There are different technologies to support this process, the most common are:
• Epsilon3 is a family of languages and tools for code generation, model-to-

model transformation, model validation, comparison, migration and refac-
toring that works out of the box with EMF and other types of models.

• ATL Transformation Language4 is a model transformation language. It
takes as input the meta-model, then it applies defined transformation rules
and produces the output model.

• Henshin5 provides a transformation language for EMF. The transformation
language is based on a graphical syntax where every rule is represented by a
graphical diagram. The transformation diagrams quickly become extremely
complicated.

7.2 Microcontrollers

A microcontroller (or MCU – MicroController Unit) is a small computer (SoC)
designed to govern the operation of embedded systems. For example, they are
used in automotive control systems, implantable medical devices, remote controls,
industrial machines, appliances, power tools and toys. Microcontrollers have a
small code memory that can be programmed via specific tools. Some of the
most relevant aspects that influence the choice between all microcontrollers are:
price, programming language and hardware support. Following, the most used
microcontrollers are listed:
• Arduino6 is an open source hardware and software project. It is used by

hobbyists to perform some experiments and also by professionals to develop
prototypes of systems. There are different programming environments, the
most used are: the official Arduino IDE, that is recommended for beginners
and the Eclipse plugin, which enables developers to deal with more complex

3http://www.eclipse.org/epsilon/
4http://www.eclipse.org/atl/
5https://www.eclipse.org/henshin/
6https://www.arduino.cc/

87

http://www.eclipse.org/epsilon/
http://www.eclipse.org/atl/
https://www.eclipse.org/henshin/
https://www.arduino.cc/

Chapter 7. Automatic Code Generator

projects. The language used to program Arduino is C++11, with some ad-
ditional libraries to manage the hardware. One of the advantages of Arduino
is the price, it is cheaper and accessible by all. The base version includes
some digital/analog pins and a serial port, but it is possible to extend the
hardware by plugging additional shields (e.g. WiFi, bluetooth and motor
control).

• PIC7 is a family of microcontrollers made by Microchip Technology, they
are derived from the PIC1650 originally developed by General Instrument’s
Microelectronics Division. PIC microcontrollers are widely used in industry
and they can be programmed in assembly or in C, but some of them support
C++. PIC provides any kind of desired peripherals and hardware support
by paying the related cost.

• Raspberry is a computer implemented on a single board and it is used
mainly in education. It is comparable with Arduino, the main difference is
that Raspberry runs a full Linux distribution (Raspbian) while Arduino runs
the program that holds in memory. It supports C++ and Python and can
be extended with accessories (e.g. camera module and touch display).

• PLC (Programmable Logic Controller) is a digital computer used mainly in
electromechanical processes and for safety-critical system because it is sturdy.
IEC 61131-3 defines five programming languages for programmable control
systems: function block diagram (FBD), ladder diagram (LD), structured
text (ST), instruction list (IL), and sequential function chart (SFC). PLCs
are very expensive because of their reliability in extreme conditions.

7.3 Design choices

In the previous sections many technologies, tools and hardware platforms were
analysed. In this project, those chosen are shown below.

Platform and Language The first choice is the target platform to support. The
final decision is Arduino, since an explicit request concerns embedded systems was
received. It is very cheap and is widely used in the academic world. In addition,
Arduino programs are written in C and C++ languages, which are the most used
for embedded systems. Also PLC was evaluated, but it is not convenient because
of its high costs and it requires the use of ad hoc programming languages often
bound to specific vendors.

Model transformation The project is based on the Xtext implementation of UASM.
Xtext framework provides a parser that given a textual file containing the ASM
specification builds a collections of Java objects using the metamodel. Moreover,
Xtext provides a set of Java APIs useful to access and modify the objects. In-
deed, it offers an infrastructure for M2M and M2T transformations. As explained
in [44], “... it seems easier to start with building a code generator by employ-
ing M2T transformation languages - especially when no metamodel for the target
language exists. ...”. Since in the present case the complete metamodel of C++

7http://www.microchip.com/design-centers/microcontrollers

88

http://www.microchip.com/design-centers/microcontrollers

7.4. Transformation process

(in particular the metamodel for Arduino) is not available, M2T approach has
been adopted. The tool chosen from those listed in Sect. 7.1.1 is Xtend2 which
provides interesting features for code generation and it is fully compatible with
Java and Xtext.

7.4 Transformation process

The transformation process is designed as described in Figure 7.3. One goal of
transformation process is an easily reconfigurable translation for the other target
languages. For this reason the transformation process is based on black-box,
compared to a more reconfigurable pipelined process with intermediate results.
Another solution to keep the transformation process easily reconfigurable is to
keep separated the code from the hardware configuration. So a different target
platform would not affect the code generation but only the HW configuration
step. This approach is partially inspired by a similar work about translation from
Event-B to C++ [102]. In view of above, the steps implementing the translation
are:
• Parsing given a textual UASM specification the parser generates the corre-

sponding syntax tree as Java Objects.
• Code generation generates the corresponding C++ code from the parsed

UASM specification.
• Base HW configuration, HW integration and user change define the

hardware-specific aspects e.g. setup, input/output pin connections.
• ASM Runner generation writes the Arduino code (.ino extension) that

contains the loop function, where the ASM main rule is iteratively called.
• Merge links the different source code files to create the Arduino project.
It is important to highlight that the result is the source code of the model

provided. Therefore the generated code must be completed to implement all the
aspects not included in the model.

Parsing The generation process, as described in Figure 7.4, starts from the UASM
specification. The specification is written in a textual notation conform to the
UASM grammar and contains all the information about the model. The UASM
parser, provided by Xtext, takes as input the UASM specification and creates the
abstract syntax tree of the model as Java Objects. This is easier to be processed
compared to the textual representation.

Code Generation The code generation step, described in Figure 7.5, generates
C++ code starting from the UASM model. M2T transformation is adopted for
the code generation step. Once the model is parsed, it is transformed in Java
objects that reflects the syntactical structure of the parsed file. The output is the
C++ code that can be compiled and executed by any compiler that supports the
C++11 (or more recent) standard. The C++ code is composed by the header
(.h) and the source (.cpp) files.

Base HW configuration, HW integration and User Change The HW configura-
tion goes in parallel to the code generation phase and aims to produce the HW-

89

Chapter 7. Automatic Code Generator

UASM spec
.uasm

Parsing

UASM model
Java Objects

Base HW configuration
generation

Base config
.u2c

User change

Full config
.u2c

HW
integration

HW integration
.cpp

Merge

Arduino project

Code
generation

UASMspec
.cpp & .h

ASM Runner
Generation

ASM runner
.ino

Start

End

Figure 7.3: Flow Diagram: transformation process from UASM specification to Arduino
project.

specific part of the Arduino project which is missing in the automatic C++ code
generator. The C++ code containing the HW integration is composed by three
functions: the setup function, which contains the hardware initial settings, and

90

7.4. Transformation process

UASM grammar

UASM spec
(.uasm)

UASM model
(Java Objects)

UASM metamodel

conform to conform to

Xtext parserT2M

Figure 7.4: Parsing process

UASM model
(Java Objects)

UASM metamodel

C++ code
Xtend M2T

Figure 7.5: Code generator process

the two functions responsible for acquiring inputs and setting outputs. The M2T
transformation starts from the UASM model and the tool automatically gener-
ates the base .u2c configuration file. At this step all functions are defined and
they are distinguished between monitored and out functions. Monitored functions
are assigned to the inputs while out functions to the outputs. Furthermore, the
configuration file contains all hardware settings including Arduino version, which
is the machine step delay, the path to the UASM specification and the list of
bindings. The base configuration file is the minimal skeleton and the user has to
complete this file in User change phase. In this phase, the user links monitored and
out functions to physical hardware pins and further details can be added. Once
the .u2c configuration file is complete, the HW integration code is automatically
generated.

ASM Runner generation The generated C++ code is a complete translation of
the ASM specification. However, to run the ASM on an Arduino board, the loop()
function (a function continuously called) must be implemented. This part is kept
in a separated .ino file to split the ASM behaviour and the execution policy. The
loop() function executes iteratively the following methods: - getInputs(): reads
the data from the input devices like sensors; - Main(): contains the behaviour
described in the UASM specification; - UpdateState(): updates the state at the

91

Chapter 7. Automatic Code Generator

end of each loop; - setOutputs(): sets the output values like the current state of
led.

Merge In previous steps, different source codes have been produced. The C++
code containing the translation of the UASM specification, the C++ code for the
HW integration and the .ino code that executes the ASM. The merge process
simply links all the previously generated artefacts together to create the Arduino
project. This is done using the include directive of C++ (see Figure 7.6).

C++ code
.h

ASM runner
.ino

C++ code
.cpp

HW integration
.cpp

<include> <include> <include>

Figure 7.6: Merge process

7.5 Tool implementation

The translation from UASM specification (event-driven language) to C++ (im-
perative language) is not immediate because they belongs to two different pro-
gramming paradigms. The tool presented is the first version and not all the
functionalities of UASM are translated into C++. By reference to the ASMs
classes, basic ASMs and sequential composition are supported. Furthermore, dur-
ing the translation some compromises have been assessed. Two parameters are
considered: correctness and performance. Correctness guarantees that safety and
liveness properties still valid after the transformation. Performance could be in
conflict with correctness, and for this reason a trade-off must be assessed.

7.5.1 Code Generation

The code generation implements one-to-one mapping between UASM constructs
and C++ code. The transformation approach wants to assure the correctness of
the transformation with respect to the original model. A formal prove of correct-
ness will be provided as future work (see Section III), while in this section the
correctness is demonstrated through an informal prove.

We consider a generic transition from state Si to Si+1 as shown in Figure 7.7.
A step is the transition from state Si to Si+1 obtained performing the following

activities: the ASM reads the environment functions, executes the main rule,

92

7.5. Tool implementation

Si Si+1

step

Figure 7.7: ASM state transition

computes the update set to obtain the state Si+1 and updates the environment
variables. In C++ a state consists of set of variables. One of the differences
between ASMs and C++ is that in ASMs the functions are updated during the
computation of the update set, while in C++ variables are immediately updated.
For this reason, functions that could change their value during state Si, but the
new value is taken into account in the state Si+1, are translated as an array of two
elements. The first represents the value of the functions in the current state, the
second represents the value of the functions in the next state. The other difference
is about the ASMs step. As mentioned above, it is translated by a set of activities
executed sequentially. This behaviour is simulated through a set of C++ methods
executed in the following order:
• void getInput(): reads the environment variables
• void Main(): executes the actions defined by the main rule in the ASM

models and collects the update set in one element of the array as previously
explained.

• void UpdateState(): copies the value of the second element of the array into
the first element. This will represent the state Si+1

• void setOutput(): the environment variables are updated.
In this way, each step of the ASM is translated in four intermediate steps in

C++. Figure 7.8 and Table 7.1 show the correspondence between ASM step and
C++.

Si Si+1

step

Si Si+1
getInput()

ASM

C++ Main() UpdateState() setOutput()
Si_input Si_main Si_update

Figure 7.8: ASM and C++ correspondence

In the next paragraphs the translation adopted is shown.

Minimal ASM skeleton All the ASMs translated have a common skeleton.
An example of basic UASM model (see Code 7.1) transformation is shown in

Code 7.2. Considering Arduino program (see Code 7.3), the C++ methods are
executed by loop() function and an instance of the machine is globally instantiated.

93

Chapter 7. Automatic Code Generator

ASM C++

Step

Read environment variables getInput()
Execute Main rule Main()
Apply update set and update
environment variables

UpdateState()
setOutput()

Table 7.1: ASM and C++ correspondence

asm MyAsm
...
<function definitions>
...
<rules definitions>
...

rule Main = ...

exec Main

Code 7.1: Minimal UASM model template

class MyAsm{
private:
<properties definitions>
...
<method definitions>
...
public:
MyAsm(){..}

void getInput(){..}
void Main(){..}
void UpdateState(){..}
void setOutput(){..}

};

Code 7.2: Minimal C++ template

MyAsm myAsm;
void setup(){..}
void loop(){

myAsm.getInputs();
myAsm.Main();
myAsm.UpdateState();
myasm.setOutputs();

}

Code 7.3: Arduino execution

Parallelism Parallelism is a fundamental point of ASMs because the operation
done in the same transition are done in parallel, but neither multi-thread nor par-
allelism is supported by Arduino. Nevertheless it is still possible to run ASMs in a
parallel-like way by showing the same copy of the current state to all sequentially-
executed threads following the approach proposed by J. Schmid in [114]. ASMs
run in discrete steps where each step consists of four operation: acquire inputs,
perform the main rule, update the state and release the outputs. The machine
state (represented by controlled functions) is modified only during the main rule
execution. To simulate parallel execution the state is duplicated: the present
state and the future state. Modification made by threads on controlled functions

94

7.5. Tool implementation

will affect only the future state, while status readings will refer to the current
state. In this way, each thread will see exactly the same value of the current
state disregarding the execution order. The modification made by threads will
take place only when every thread is done, this means in UpdateState() method.
This approach guarantees the proper evolving of the machine state, even though
it is not a true parallelism. Table 7.2 shows a simple example of parallelism. The
example swaps the values of functions x and y. If we translate this example in
C++, the result is not the same. The variables x and y would contain the value of
y. For this reason, we introduce an array of two values for each function; the first
value corresponds to the value of the function in the current state of the ASM
execution and the second value corresponds to the value of the function in the
next state of the ASM execution. In this way, when an assignment occurs in C++
we translate it following this rule: we use the next state (the second element of
the array) to the left side of the assignment; we use the current state (the first
element of the array) to the right side of the assignment; after the execution of the
rules in the current state (the Main() method in C++) we assign all the values
of the next state to the current state. The new current state is used in the next
step of execution. We do not consider the case of inconsistent updates because
the methodologies applied during the analysis of the ASM model guarantee that
the inconsistent updates will not occur. This process is applied also to the other
translations in addition to the parallelism.

UASM Main in C++ UpdateState in C++
controlled x in INTEGER
initially 5
controlled y in INTEGER
initially 10
rule parRule =
par
x:=y
y:=x

endpar

int x[2];
int y[2];
void parRule(){
x[1]=y[0];
y[1]=x[0];

}

void UpdateState(){
x[0]=x[1];
y[0]=y[1];

}

Table 7.2: Parallelism: translation in C++

Nondeterminism Nondeterminism in UASM is implemented in either the Choose-
Rule and PickTerm, where a random element is picked out from a certain Enumer-
ableTerm (set of terms of the same nature). This random choice is performed by
generating a random index number that corresponds to the index of the element to
be picked inside the EnumerableTerm. Arduino provides functionality for pseudo-
random number generation. Functions random(max) and random(min,max) gen-
erate a pseudo random number with uniformly distributed probability within the
interval [min .. max). randomSeed function must be called at the beginning
to make the number generation unpredictable. An example of nondeterminism is
shown in Table 7.3.

Domain Definition Domains implementing mathematical set (or a subset of them)
are implemented using the corresponding data type. These implementations of

95

Chapter 7. Automatic Code Generator

UASM
domain D2 of INTEGER initially {5,9,12}
rule chooseRule =
choose x in D2 with x>7 do ruleChoose ifnone ruleIfnone

C++

typedef int D2;
std::set<D2> D2 elems = {5,9,12}
void chooseRule() {
std::vector<decltype(D2 elems)::value type const*> point0;
for(auto const& x : D2 elems)
if(x>7){
point0.push back(&x);

}
int rndm = random() % point0.size();
{
auto x = *point0[rndm];
if(point0.size()>0){
ruleChoose();
} else
ruleIfnone();

}
}

Table 7.3: Nondeterminism: translation in C++

the mathematical sets is named BasicDomain which includes NUMBER, INTE-
GER, STRING, CHAR, BOOLEAN and RULE. As described in Sect. 5.3, besides
BasicDomains there are StructuredDomains, EnumerativeDomains and Extend-
ableDomains. For StructuredDomains there is a porting of the STL library for
Arduino8 which provides structured data types. Respectively list, set, bag and
maps are mapped to the STL equivalents std::list, std::set, std::multiset,
std::map. EnumerativeDomains are directly mapped to C++ with enums. For
ExtendableDomains the machine must keep trace of the elements included in the
domain and every time an element is added, the include set must be extended.
For this reason a set of elements is assigned to each ExtendableDomain. Some
examples of translation are shown in Table 7.4.

Rule Rules are translated into class methods where every rule is implemented
using the C++ basic constructs. The evaluation strategy adopted in ASMs is the
pass-by-name, while in C++ the strategy is pass-by-value. Now to guarantee the
consistency, we apply the translation only rule calls taking as parameters location
variables that are not updated in the rule. The translation of rules into C++ is
shown in Table 7.5.

Terms In UASM different kind of terms are implemented (see Sect. 5.5), while
in imperative language such as C++ only few of them are present. The prob-
lem is how to translate UASM terms which are not implemented in C++. For
example, consider CaseTerm, that depending on the value assumed by a specific
term returns a different value. The first approach has been to translate it into
the C++ switch-case construct, but in this case the term is translated into rule,

8The porting of the STL library it’s available at https://github.com/rpavlik/StandardCplusplus

96

https://github.com/rpavlik/StandardCplusplus

7.5. Tool implementation

UASM Translation in C++
Basic Domains: corresponding data type in C++

NUMBER float
INTEGER int
STRING String
CHAR char
BOOLEAN N boolean
RULE Not supported

Structured Domains: STL library
SET std::set
BAG std::multiset
LIST std::list
MAP std::map

Enumerative Domains
enum enum

Extendable Domains arity 1: implemented with typedef
domain D1 of INTEGER typedef int D1

domain D2 of INTEGER initially
{5,9,12}

typedef int D2;
std::set<D2> D2 elems = {5,9,12}

domain D3 of (x in INTEGER) Not implemented
domain D4 of (x in INTEGER) initially
{5,9,12}

Not implemented

Extendable Domains arity N: the parameters are implemented as tuple
domain D1 of (INTEGER, INTEGER) typedef boost::tuple<int,int> D1

domain D2 of (INTEGER, INTEGER)
initially {{5,9},{12,10}}

typedef boost::tuple<int,int> D2;
std::set<D2> D2 elems =
[] { std::set<D2> supp =
make set(
boost::make tuple(5,9);
boost::make tuple(12,10);)
return supp;

}();
domain D3 of (x in INTEGER, y in
INTEGER)

Not implemented

domain D4 of (x in INTEGER, y in
INTEGER) initially {{5,9},{12,10}}

Not implemented

Table 7.4: Domain definition: translation from UASM to C++

violating the one-to-one mapping design goal. A better approach is using lambda
functions. A lambda function is a function that can be write inline in the source
code and call directly without declare it. The main advantages are the flexibility,
any kind of function can be defined and the one-to-one mapping from UASM to
C++. The disadvantages of this approach are the worsening of readability and ef-
ficiency. The structure of lambda function declaration is shown in Code 7.4,while
the translation of the terms is shown in Table 7.6.

[&](){
//place your code here
return <some_value>;

}

97

Chapter 7. Automatic Code Generator

Code 7.4: Example of lambda function

FunctionTerm FunctionTerm, depending on the type and on the arity will result
in a different translation. Static function with arity zero is translated into con-
stant value, while with non-zero arity is translated into constant array. Dynamic
function with zero arity is translated as variable, while function with non-zero
arity are translated into map with a n-tuple as key. Derived function is translated
into method with zero parameter if the function has zero arity, with n parameters
otherwise.

StructuredTerm StructuredTerms are identified by comma-separated elements
enclosed by brackets inside a UASM model. In C++ these terms are implemented
with the container class of the STL library. Unfortunately, there is no standard
notation to refer to them in C++ as for UASM language. For this reason struc-
tured terms are implemented with lambda functions that create and return the
desired term containing the elements. An example is shown in Code 7.5, a SET
of values is assigned to the output function defined in [SET(INTEGER)] domain.

out myset of SET(INTEGER)
...
myset := {1, 2, 3}

std::set<int> myset;
...
myset= [](){

auto x = {1,2,3};
std::set<int> s(x.begin(),x.end());
return s;

}();

Code 7.5: Translation of a Structured Term

7.5.2 Hardware configuration

Binding Bindings describe the association between ASM functions and physical
pins. Depending on the function domain and the pin type, different binding
mode can be realized. Here there is a list of the possible binding mode that are
supported:
• Digital a binary function is mapped on the HIGH/LOW level of the digital

pin.
• DigitalInverted the same as Digital, but HIGH and LOW level are inverted.
• AnalogLinearIn reads the analog value from the analog port and rescales it

over the function domain.
• AnalogLinearOut reads the analog value from the analog port and rescales it

from the function domain and sets to the analog port.
• PWM reads the analog value from the analog port and sets it as PWM

modulation of the analog value.
• UserDefined none of the above mode was appropriate, the binding is subse-

quently defined by the user.

98

7.5. Tool implementation

Step time A limitation about ASM is time modelling because an ASM evolves in
discrete steps. However there is no exact correspondence between a machine step
and the time. It may be that each step corresponds to an infinitesimal of second,
or a fixed timespan for discrete systems. The steptime parameter defines the time
frame for each machine step.

Configuration File In order to generate the complete Arduino project, the infor-
mation about hardware configuration have to be stored in a configuration file. The
file (.u2c extension) is automatically generated by the tool with some predefined
values, however it must be completed by the user in User change step.

7.5.3 The Asm2C++ Eclipse Plugin

The Asm2C++ Eclipse Plugin is realized as push-button transformation, this means
that the transformation process, except for the User Change step, is completely
automatic. The plugin project requires two subprojects: the uasm2code cppgen
and the uasm2code hw. The first one is responsible to generate the C++ code,
while the latter to generate the hardware part. Moreover, the uasm2code hw
is responsible also for automatically generating the configuration file template.
Before the execution on the hardware or on the emulator the configuration file
has to be completed by the user. Figure 7.9 shows the screenshot of the plug-in
The red circle indicates the transformation button. On the left it is shown the
UASM specification, and on the right (a part of) the generated C++ code.

Figure 7.9: Plug-in screenshot

99

Chapter 7. Automatic Code Generator

7.6 Illustrative example

In this section a case study is presented to show a concrete application of the
tool. The purpose is to demonstrate the functionalities by using UASM constructs
and Arduino features. The case study is a control system installed in a medical
laboratory that contains critical materials. The temperature and the lighting
must be controlled otherwise the material inside is compromise (the architecture
is shown in Figure 7.10).

Climate
control

LightingPhotoresistor

Thermistor

Control
system

1 2 3 4

Button 1..4

Figure 7.10: Control system architecture

The functionalities implemented by the control system are:
• Switch on/off the system
• Climate control
• Automatic lighting control
Initially the system is off and can be turned on by pressing button 1. Once

the system is on, the panel displays the menu which is composed by two voices:
climate control and lighting control. The user navigates through the menu voices
by pressing button 2 (up) and 3 (down). Once the desired function is reached,
the user selects it by pressing button 4. Depending on the selected voice, the
corresponding operation is performed. If the user chooses climate control, the
measured temperature is shown. The user can edit the desired temperature by
pressing button 4. At this point, the desired temperature is shown and can be
edited using buttons 2 and 3 (respectively up and down). Finally, the value is set
by pressing button 4 and the system returns to the menu. Once the climate control
is activated, if the measured temperature is greater than the threshold the RGB
LED9 becomes red, if the temperature is less than the threshold the led becomes
blue, otherwise the led becomes green. The user can deactivate the climate control
by selecting again “climate control” voice from the menu. The display shows a

9The led replaced the heat pump behaviour. If the led is green, the heat pump maintains the temperature; if
the led is red the heat pump cools the environment; if the led is blue the heat pump heats the environment.

100

7.6. Illustrative example

confirmation message, if the user press “yes” (button 2) the control is deactivated,
if the user press “no” (button 3) the control remains active and it is possible to edit
the desired temperature. If the user chooses automatic lighting control, the
lighting measured by the photoresistor is shown. The user can edit the desired
lighting by pressing button 4. At this point, the desired lighting is shown and
can be edited using buttons 2 and 3 (respectively up and down). Finally, the
value is set by pressing button 4 and the system returns to the menu. Once the
automatic lighting control is activated, if the measured lighting is greater than the
threshold the RGB LED10 becomes red, if the lighting is less than the threshold
the led becomes blue, otherwise the led becomes green. The user can deactivate
the lighting control by selecting again “automatic lighting control” voice from the
menu. The display shows a confirmation message, if the user press “yes” (button
2) the control is deactivated, if the user press “no” (button 3) the control remains
active and it is possible to edit the desired lighting. During the operation the
following properties must be verified on the model:
• All operations are enabled only if the system is turned on.
• If the temperature/lighting is below the threshold, the corresponding RGB

LED is blue (only if the climate/lighting control is enabled)
• If the temperature/lighting is equal to the threshold, the corresponding RGB

LED is green (only if the climate/lighting control is enabled)
• If the temperature/lighting is above the threshold, the corresponding RGB

LED is red (only if the climate/lighting control is enabled)
• It is possible to deactivate climate/lighting control only if it was activated in

the previous step
Subsequently, the process shown in Chapter 4 is applied to the case study.

The Arduino code is obtained using code generation plug-in instead of derive the
model manually from the specification or catch the code externally.

7.6.1 Modelling

Starting from the ground model, through two steps of refinement, the final model
is derived. The ground model (see Code 7.6) specification switches on and off
the system and its state is described by a binary function (ON/OFF). In the first
refinement step (see Code 7.7) the menu is modelled, it is accessible only when the
system is turned on. The user navigates through the menu voices and selects the
desired functionality. The rule executed when the corresponding voice is selected,
is implemented in the next refinement step, at the moment no actions (skip rule)
are implemented.

The second (see Code 7.8) and the last refinement (see Code 7.9) steps imple-
ment climate control and automatic lighting control. When the user chooses the
operation, the corresponding rule is activated as described in the Sect. 7.6.

7.6.2 Validation & Verification

At each step of refinement validation and verification activities are performed.
Different scenarios have been executed, an example is shown in Code 7.10. The

10The led replaced the adjustable lights behaviour. If the led is green, the lights maintain the current lighting;
if the led is red the lights decrease the lighting; if the led is blue the lights increase the lighting

101

Chapter 7. Automatic Code Generator

enum Switch = {OFF, ON}
controlled controlState -> Switch initially OFF
rule r_Main =

if controlState = OFF then
r_SwitchOnSystem

else
if controlState = ON then

r_SwitchOffSystem
else

skip
endif
endif

...

Code 7.6: Ground model

enum Switch = {OFF, ON}
controlled controlState -> Switch

initially OFF
enum State = {MENU, SET_TEMP, EDIT_TEMP,

SET_LIGHTS, EDIT_LIGHTS}
monitored btnOK -> Switch
monitored btnUp -> Switch
monitored btnDown -> Switch
controlled systemState -> State

initially MENU

rule r_Main =
if controlState = OFF then

r_SwitchOnSystem
else
if controlButton = ON then

r_SwitchOffSystem
else
par

r_Menu
r_SetLights
r_SetTemperature
r_EditTemperature
r_EditLights

Code 7.7: First refinement

r_manageLightsRGBLed
r_manageTemperatureRGBLed

endpar
endif
endif

rule r_Menu =
if systemState = MENU then
if btnOK = ON then

r_selectFunction
else

if btnUp = ON then
...

else
if btnDown = ON then

...
endif

endif
endif
endif

rule r_SetTemperature =
skip

scenario turns on the system and scrolls the menu by pressing two times the button
2 and observes the displayed function changing consequently. At the end of the
test, the displayed function is the same as the one shown at the beginning.

All the properties are verified as soon as possible in the refinement steps; all of
them are verified. For example, the property “ If the temperature/lighting is below
the threshold, the corresponding RGB LED is blue (only if the climate/lighting

102

7.6. Illustrative example

monitored temperature -> INTEGER
controlled tempThreshold -> INTEGER

initially 20

rule r_SetTemperature =
if systemState = SET_TEMP then
if not(outputEnable(TEMPERATURE)) then

if btnOK = ON then
systemState := EDIT_TEMP

endif
else

if btnUp = ON then
par

outputEnable (TEMPERATURE) :=
false

systemState := MENU
endpar
endif

endif
endif

Code 7.8: Second refinement

rule r_EditTemperature =
if systemState = EDIT_TEMP then
if btnOK = ON then

par
systemState := MENU
outputEnable (TEMPERATURE) :=

true
endpar

else
if btnUp = ON then

tempThreshold := tempThreshold + 1
else
if btnDown = ON then

tempThreshold := tempThreshold - 1
endif
endif
endif
endif

Code 7.9: Third refinement

scenario navigatemenu
load ControlSystem_complete.asm

set controlButton := ON;
step
check systemState = ON;
set controlButton := OFF;
step
check displayedFunction = TEMPERATURE;
set btnUp := ON;
step
check displayedFunction = LIGHTS;
set btnUp := ON;
step
check displayedFunction = TEMPERATURE;

Code 7.10: Navigate menu scenario

control is enabled)” is translated in LTL formula as:
g(((outpuEnable(TEMPERATURE) = true) and (temperature < temperatureThreshold)) implies (RGB R = 0 and

RGB B = 255 and RGB G = 0))

7.6.3 Hardware

In addition to the model, a hardware prototype of the system has been realised
to verify the correct functioning of the generated code.

103

Chapter 7. Automatic Code Generator

Components

The components required for inputs are:
• 4 buttons
• 1 photo-resistor for brightness measurement
• 1 thermistor for temperature measurement

The components required for outputs are:
• 1 LCD (Liquid Cristal Display) to show menu
• 1 LEDs for the system state
• 1 RGB LED for climate and lighting control

Other components:
• 1 potentiometer to adjust LCD contrast
• 2 resistors (220 Ω) for LED current regulation
• 2 resistors (2 kΩ) to calibrate photo-resistor and thermistor
• 4 pull-down resistor (1 kΩ), one for each button
• as many wires/jumpers as needed

HW Integration

Once the model is written, verified and tested, and the hardware is ready to be
used, the last thing to do before code generation is to configure the integration
file. A base configuration is automatically generated by the plugin, but it needs
to be edited to reflect the actual hardware configuration. In addition to bindings,
another parameter to be defined is the step time. A too low value would result in a
continuously refreshing display, while a too high value would lead to a considerable
lag during the user interaction. In this example the value inserted is 200ms, which
is fast enough for the user and sufficiently slow for the display. The resulting
configuration is shown in Code 7.11.

{
"arduinoVersion": "UNO",
"stepTime": 200,

4 "bindings": [
{

"mode": "ANALOGLINEARIN",
"function":"brightness",
"pin": "A0",

9 "minval": 0,
"maxval": 1023

},
{

"mode" : "ANALOGLINEARIN",

Code 7.11: HW configuration

"function":"temperature",
"pin": "A1",
"minval" : 0,
"maxval" : 1023

5 },
{

"mode" : "DIGITAL",
"function" : "btnUp",
"pin" : "A2"

10 },

[.. omitted ..]
]

7.6.4 From UASM to C++ code

The last step is the code generation [47]. A simple example of the code genera-
tion from UASM to C++ is shown in Code 7.12-Code 7.15. It focuses on turn

104

7.6. Illustrative example

asm ControlSystem
enum Switch = {OFF, ON}
controlled systemState −> Switch
initially OFF
monitored controlButton −> Switch
...

rule r Main =
if systemState = OFF then
r SwitchOnSystem
else if controlButton = ON then
systemState := OFF
else
par
r Menu
r SetLights
r SetTemperature
...
endpar
endif
endif
...

Code 7.12: UASM

#include ”ControlSystem.h”

// main rule
void ControlSystem::r Main(){
if (systemState[0] == OFF)
r SwitchOnSystem();
else if (controlButton == ON)
systemState[1] = OFF;
else{
r Menu();
r SetLights ();
r SetTemperature();
...
}
}

// apply the update set
// to the current state
void ControlSystem::updateState(){
systemState[0]=systemState [1];
}
...

Code 7.13: ControlSystem.cpp

class ControlSystem{
enum Switch {OFF, ON};
Switch systemState [2];
Switch controlButton;
public:
void getInputs ();
void r Main();
void updateState();
void setOutputs();
...
};

Code 7.14: ControlSystem.h

#include ”ControlSystem.h”
ControlSystem controlSystem;
...
void loop(){
controlSystem. getInputs ();
controlSystem.r Main();
controlSystem.updateState();
controlSystem.setOutputs();
}

Code 7.15: ASM runner

Figure 7.11: Snippets from model and code

on and turn off the system. The ASM is translated in the ControlSystem class,
where domains, functions and rules become respectively data types, properties
and methods. As shown in Code 7.15, the runner cyclically calls four Control-
System methods: 1. Acquire inputs from sensors (getInputs) 2. Perform the main
rule (r Main) 3. Update the ASM state (updateState) 4. Set outputs to actua-
tors (setOutputs). Parallel execution is translated as described in [114], where
controlled functions are duplicated and the state is updated after the main rule.

Once the code is generated, in order to load the program into the Arduino
board, the user must press the ”Load” button of the Arduino Eclipse plugin and
wait few seconds to have the code built and uploaded into the Arduino code
memory.

105

Chapter 7. Automatic Code Generator

UASM Translation in C++
Rule Definition

rule newrule (x in INTEGER) = void newrule (int x) {}
Update Rule

x := 15 x = 15;
Conditional Rule

if x>0 then
ruleIf

[else
ruleElse]

endif

if (x>0) then {
ruleIf();

}[else {
ruleElse();

}]
Case Rule

case color of
BLUE : ruleBlue
RED : ruleRed

otherwise
ruleOtherwise]

endcase

if (color==BLUE) {
ruleBlue();

} else if (color == RED) {
ruleRed();

} else {
ruleOtherwise();

}
ForAll Rule

enum EnumDom = { AA , BB }
forall x in EnumDom , y in EnumDom
with x = AA do ruleDo

for(auto x: Enum<EnumDom>()) {
for(auto y: Enum<EnumDom>()) {
if(x==EnumDom::AA) {
ruleDo();
}}}

While Rule

while x>y do ruleWhile endwhile
while (x>y) {
ruleWhile();
}

Call Rule
ruleCalled(x in INTEGER, y in
INTEGER)

ruleCalled(int x, int y);

Skip Rule
skip ;

PrintRule Rule
print (x) println(x);

Seq Rule
seq
rule1
rule2

endseq

{
rule1();
rule2();

}
Let Rule

let x=5 in ruleLet endlet

{
auto (x=5);
ruleLet();

}
Extend Rule: Not Implemented
Iterate Rule: Not Implemented
Import Rule: Not Implemented

TurboReturnRule Rule: Not Implemented
LocalRule Rule: Not Implemented

Table 7.5: Rules: translation from UASM to C++

106

7.6. Illustrative example

UASM Translation in C++
Conditional Term

if x>0 then
true

[else
false]

endif

(x>0) ? true : false

Case Term

case color of
BLUE : 0
RED : 1

otherwise
-1]

endcase

[&]() {
if (color==BLUE) {
return 0;

} else if (color == RED) {
return 1;

} else {
return -1;

}
}()

Tuple Term
(10,15,20,25) boost:make tuple(10,15,20,25)

ForAll Term

enum EnumDom = { AA , BB }
forall x in EnumDom holds x = AA

[&]() {
for (auto x: Enum<EnumDom>()) {
if (!(x==EnumDom::AA))
return false;

}
return true;
}()

Exist Term

enum EnumDom = { AA , BB }
exist x in EnumDom with x = AA

[&]() {
for (auto x: Enum<EnumDom>()) {
if ((x==EnumDom::AA))
return true;

}
return false;
}()

Let Term

let x=5 in f(x) endlet

[&]() {
auto (x=5);
f(x);

}()
Size Of Enumerable Term

|containerSet| or |containerBag| or
|containerMap| or |containerList|

containerSet.size() or
containerBag.size() or
containerMap.size() or
containerList.size()

|newDomain| newDomain elems.size()
Rule As Term: Not Implemented
Return Term: Not Implemented

Comprehension Term: Not Implemented

Table 7.6: Terms: translation from UASM to C++

107

Part III

Case studies

109

CHAPTER8
3D4Amb: diagnosis and treatment for visual

diseases

3D4Amb project aims at developing software for diagnosis and treatment of vi-
sual diseases. In particular, the focus is on amblyopia, a visual disease that affect
young children (see Section 8.1). Other tests have been developed for the mea-
surement of the strabismus and the aniseikonia (the eyes perceive different size
of images). In the next sections the project is furthermore explained and in Sec-
tion 8.3 an application of the process shown in Chapter 4 is applied to the software
to perform the diagnosis of amblyopia. This application is not critical (considering
the classification of the standard IEC 62304) but it is the first case studies where
we applied the ASM process to a medical software using Asmeta framework.

8.1 Stereoacuity test

Having two eyes, as human beings and most animals, located at different lateral
positions on the head allows binocular vision. It permits for two slightly different
images to be created that provide a means of depth perception. Through high-
level cognitive processing, the human brain uses binocular vision cues to determine
depth in the visual scene. This particular brain skill is defined as stereopsis. Some
pathologies, such as blindness in one eye and strabismus, cause a total or partial
stereopsis absence. The examination of stereopsis ability can be evaluated by
measuring stereoscopic acuity. Stereoscopic acuity, also named stereoacuity, is
the smallest detectable depth difference that can be seen by someone with normal
two eyes and brain functions. Testing the total or partial loss of stereovision
can lead to the detection of visual diseases like amblyopia. Amblyopia, otherwise
known as ‘lazy eye’, is reduced visual acuity that results in poor or indistinct vision

111

Chapter 8. 3D4Amb: diagnosis and treatment for visual diseases

in one eye that is otherwise physically normal. It may exist even in the absence of
any detectable organic disease. Amblyopia is generally associated with a squint
or unequal lenses in the prescription spectacles. This low vision is not correctable
(or only partially) by glasses or contact lenses. Amblyopia is caused by media
opacity, strabismus, anisometropia, and significant refractive errors, such as high
astigmatism, hyperopia, or myopia. This condition affects 2-3% of the population,
which equates to conservatively around 10 million people under the age of 8 years
worldwide [131]. If amblyopia is not diagnosed and treated in the first years of
life, the lazy eye becomes weaker and the normal eye becomes dominant. Children
who are not successfully treated when still young (generally before the age of 7)
will become amblyopic adults. The projected lifetime risk of vision loss for an
individual with amblyopia is estimated around at least 1-2% [111]. For these
reasons, screening for amblyopia in early childhood is done in many countries to
ensure that affected children are detected and treated within the critical period.
The main goal is to help children to achieve a level of vision in their amblyopic
eye that would be useful should they lose vision in their non-amblyopic eye later
in life. Stereoacuity is the smallest disparity that can be seen in binocular vision
and it is measured in second of arc (arcsec). Stereoacuity tests can be divided
into two groups: random dot stereotests and contour stereotests. Random dot
stereotests are based on dots patterns arranged randomly with lateral disparity.
These tests do not allow monocular vision. TNO, stereotest Lang I and II belong
to this group. TNO is a test based on set of sheets with red and green random
dots. Using red and green eyeglasses the patient is able to see 3D pictures if he is
healthy. This test measures stereoacuity level from 2000 arcsec to 15 arcsec. Lang
I and II are based on random dots and they do not need glasses because the dots
are displaced to create disparity. These tests are mostly used in young children,
but the lower measurable stereoacuity level is 550 arcsec in Lang I and 200 arcsec
in Lang II. Contour stereotests are made up by two recognizable images, stagger,
and shown to patients using polarized or anaglyph glasses. This category is not
sensitive as the former since the images are recognized also monocularly. Titmus
stereotest belongs to contour stereotest and is based on vectographic technique.
This test measures three levels of stereoacuity: high level around 3600 arcsec,
medium level from 400 arcsec to 100 arcsec and low level upto 40 arcsec. There is
a test that is a joint of random dot stereotests and contour stereotests, i.e., randot
test. It is composed by two tables, the first is based on contour stereotest but
background is replaced with dots. This technique prevents the monocular vision.
Using this first table the measurable stereoacuity level is from 400 arcsec to 20
arcsec. The second table is based on random dots and it measures stereoacuity
from 500 arcsec to 250 arcsec. All these tests can generate a false negative because
they have the following disadvantages:
• Shown images are always the same, so the patients can memorize them and

give right answers even if they do not see the right image.
• Children can be helped by parents or doctors, so the test is not truthful.

In order to reduce the number of false negative, the policies devised are:
• the shape is randomly chosen every time;
• the user that delivers the test has no clue about which shape is currently

112

8.2. 3D4Amb projects

Applications
Technologies

3D Active Anaglyph CardBoard

Tests
Stereo Acuity Test X X X
Lancaster/Hess X
Aniseikonia X

Treatments
Videogames Space Invaders Tetris

Car Racing Cardboard
Tetris

Video Rebalancing X X

Table 8.1: 3D4Amb applications and technologies

displayed.
For these reasons, the project 3D4Amb1 works on developing an efficient and
affordable tests and treatments [66], using for instance personal computer and
stereoscopic 3D technology as in [59, 61, 62, 130] that permits to show different
images to the amblyopic eye and the normal eye.

8.2 3D4Amb projects

Currently, the 3D4Amb project uses different 3D technologies and for each tech-
nology different applications have been developed (see Table 8.1).

The technologies used in 3D4Amb project are:
• 3D Active
• Anaglyph
• CardBoard

Amblyopic

 lazy eye
Normal

eye

Image with all

the details
Image without the

most interesting parts

(a) Principle of operation Cardboard

Anaglyph

Glasses

Amblyopic

 lazy eye
Normal

eye

Smartphone/

Tablet/PC

(b) Principle of operation Anaglyph

NVIDIA

3D

Glasses

Amblyopic

 lazy eye
Normal

eye

Image with all

the detailsImage without

the most

interesting

parts

Computer

and monitor

NVIDIA 3D

vision ready

(c) Principle of operation 3D Active

Figure 8.1: 3D technologies

1http://3d4amb.unibg.it/

113

http://3d4amb.unibg.it/

Chapter 8. 3D4Amb: diagnosis and treatment for visual diseases

3DActive

3D Active (see Figure 8.1c) is based on NVIDIA® 3D Vision™ technology. It
requires a standard personal computer with a NVIDIA graphic card (also entry
level NVIDIA graphic boards work) and a monitor 3D Vision ready with a refresh
rate of 120 Mhz as well as a NVIDA 3D glasses. The monitor alternates images
for the two eyes and the glasses are able to synchronize the display of the images
shown by the monitor through the synchronized emitter to be connected either
PC USB port or directly to the graphic board.

Anaglyph

Anaglyph (see Figure 8.1b) is based on glasses lenses using filters of chromati-
cally opposite colours, typically red and cyan. The images contain three different
colours: red, cyan and one visible by both eyes. Common dots are used to merge
the images seen by left and right eye. Red dots are seen by the eye with cyan
lens, while cyan dots are seen by the other eye.

Cardboard

Cardboard (see Figure 8.1a) is a simple box with two lenses that used in combina-
tion with a smartphone, constitutes a simple yet powerful virtual reality viewer.
The smartphone must be inserted in the box and the user looks inside in order to
see the images displayed by the phone. It permits a stereo vision by sending two
different images to the two eyes. It works with different smartphones and can be
easily adapted to be used by children.

Diagnosis and Treatments

The applications are divided in two categories: diagnosis and treatments. Diag-
nosis are applications that verify if patient suffering from diseases, treatments are
applications used to cure the diseases. Stereoacuity test measure the visual acu-
ity, the total or partial lost of acuity cause diseases like amblyopia. This test has
been developed for 3D active (Figure 8.2a), anaglyph glasses (Figure 8.2b) and
cardboard [40] (Figure 8.2c)2. The Lancaster/Hess test (see Figure 8.3a) measures
strabismus in the nine diagnostic positions of gaze, the result is a grid (one for
each eye) that shown the mobility of the eye in different position (see Figure 8.3b).
Aniseikonia (see Figure 8.3c) measures if there is a significant difference in the
perceived size of images, the difference is measure in percentage respect to the size
perceived by the other eye. These two test have been developed only for anaglyph
technology.
Treatments are applications that help people to cure the diseases, in particular our
applications cure the amblyopia. 3D system provides different images to the two
eyes of the same scene with viewing angles slightly out of phase, that correspond
to the different points of view of left and right eye. For treatment applications,
the principle of the system that shows different images to the two eyes is used.
Two different images are sent to the two eyes: to the amblyopic eye we will show

2Note that the images shown in Figure 8.2 have picture guess coloured otherwise it would not be possible to
see it.

114

8.3. StereoAcuity Test

(a) StereoAcuity test using 3D Active (b) StereoAcuity test
using Anaglyph

(c) StereoAcuity test using CardBoard

Figure 8.2: StereoAcuity tests

(a) Lancaster test (b) Lancaster results (c) Aniseikonia

Figure 8.3: Lancaster test and Aniseikonia measurement

the most interesting part of the frame of the clip (or game), while to the not am-
blyopic eye (or good) we will show the least interesting part. In this way, the user
uses more the amblyopic eye to piece together the complete scene. For 3D Active,
two applications have been developed: Space Invaders and video rebalancing (see
Figure 8.4c). The first is a game and the application shows to the amblyopic eye
the more interesting parts needed to win. The second shows e.g. video, film,
cartoon and send to the amblyopic eye the complete scene, while to the non am-
blyopic eye send the scene without all details. The same principle is applied to the
version for CardBoard. Tetris has been developed for anaglyph (see Figure 8.4a)
and CardBoard. For both technologies the application shows the most important
part to the amblyopic eye and some part of the game to the non amblyopic eye.
The same principle has been applied to Car Racing Cardboard (see Figure 8.4b).

8.3 StereoAcuity Test

StereoAcuity test aims to substitute the standard random dot stereotests. Stereoacu-
ity test has been developed for different platforms: Java applications for pc us-
ing 3D Active and anaglyph technologies, Android applications for anaglyph and
CardBoard technologies. The goal is to perform stereotests in order to reduce the
number of false negative. All these applications share the core component called

115

Chapter 8. 3D4Amb: diagnosis and treatment for visual diseases

(a) Tetris for
Anaglyph
technology

(b) CarRacing Cardboard (c) Aniseikonia

Figure 8.4: Treatments for visual diseases

sam (Stereoscopic Acuity Measurer). sam decides the stereo depth of the image
to be shown to the patient, when to stop the test, and to provide the final exam
result (stereoacuity certification). To certify the patient’s stereoacuity, different
stereo random dot images are shown at different levels of difficulties. The test
starts at level N, that is the easiest level. Every time a patient recognizes the
shown image, the level decreases (i.e., the test becomes more difficult) until it
reaches level 1, which is the most difficult level. A level is passed if the patient
recognizes three times the shown images. When the patient answers incorrectly,
(s)he can try another time at the same level. If (s)he fails again, the level in-
creases(i.e., the test becomes easier), and (s)he cannot be tested at that level any
more: (s)he can try to be certified at the upper level. If the patient fails twice the
Nth level, the test stops with no certified level. Besides recognizing images, a user
can EXIT the test or SKIP an image. The SKIP answer is treated like the wrong
answer: if the patient skips twice at the same level, the level increases. The SAM
component eventually stops: 1) by certifying the patient at level i, if the patient
has been able to recognize three images at level i, but has failed at level i-1 (if
any); 2) without certification, if the patient has been unable to complete the test
or the doctor has quit the exam.

8.3.1 Modelling and refinement

The sam component has been modelled using five levels of refinement. The start-
ing ground model captures the core behaviour of the component; the further
requirements have been considered incrementally along the subsequent refined
models till a level detailed enough to be checked for conformance w.r.t. the code3.

Ground model

In the ground model, we abstract from the explicit answers of the patient, and we
consider only if (s)he successfully recognizes an image (regardless of the specific
image). We, therefore, model the reaction of the software component to a user

3Complete models are available at http://fmse.di.unimi.it/sw/MEMOCODE15.zip

116

http://fmse.di.unimi.it/sw/MEMOCODE15.zip

8.3. StereoAcuity Test

input which can be a correct/incorrect patient’s answer or the doctor request to
quit the system without any certification. Therefore, in the ground model, the
patient is certified at a given level if (s)he recognizes the image once. The system
can be in three different configurations: in state Test when the patient is doing the
test, in (the final) state Uncertified when the patient is not able to complete
the test and the system is not able to certify the patient, in (the final) state
Certified when the patient finishes the test at a given level and can be certified
at that level. In state Test (also initial), the system checks for the user answer. If
the doctor wants to EXIT, the test is stopped and the system goes in Uncertified
state. Otherwise, the system checks if the patient’s answer is correct or not. If the
answer is RIGHT and the patient is in level 1, (s)he has completed the test. The
system provides the corresponding certification and moves to Certified state.
Otherwise, the software checks if the patient has previously failed a level (i.e., a
level has been increased before). If this is the case, the software certifies the
patient at the current level and moves to Certified state. Otherwise, the level
is decreased and the system returns to Test state. If the answer is WRONG and
the patient is doing the test at the maximum level, the system stops the test and
moves to Uncertified state. Otherwise, the level testing is increased (Increase
level) and the system returns to Test state.

First refinement

At this level of refinement, we add the SKIP option. At each level the patient can
skip the answer once. If (s)he skips the answer twice at the same level, the level is
increased. If the user inserts SKIP for the first time, the system memorizes that a
SKIP has been made and returns to Test state. In case it is the second skip at the
same level, the system behaves as in presence of a wrong answer in the previous
model.

Second refinement

At this level of refinement, we model the requirement that the patient can give
a wrong answer only once; thus, on the second mistake at the same level, the
level is increased. When the patient gives the WRONG answer for the first time at
the same level, the system memorizes that an error has been made and returns
to Test state. Otherwise, if it is the second error at the same level, the system
behaves as in presence of a wrong answer in the previous models.

Third refinement

At this level of refinement, we specify the requirement that the patient has to
recognize the shown image three times at the same level to get certification at that
level. When the patient gives the RIGHT answer, the system checks for the current
level under test. If it is level 1 and the patient has already answered correctly
twice (i.e., the current answer is the third correct image recognition), the system
issues her/him a certification and moves to the Certified state. Otherwise, the
number of images recognized at that level is incremented and the patient continues
the test. The same behaviour is performed when the patient is not in level 1 but

117

Chapter 8. 3D4Amb: diagnosis and treatment for visual diseases

(s)he has already incremented the level (i.e., (s)he made two skips or two errors
in a lower level).

Fourth refinement

This model refines RIGHT and WRONG answers with the images name. Images are
randomly chosen and the system checks whether the patient correctly recognizes
the shown image or not. When the patient answers SKIP or the doctor selects the
EXIT answer, the behaviour is the same as in the previous refinements. In case
the answer is an allowed image name, the system checks whether it is the right
one. If the answer is correct, the system behaves as previously modelled in case
of right answer, otherwise it has the same behaviour as in case of a wrong answer
(see previous refinements).

8.3.2 Validation & Verification of the SAM

In this section we apply Validation & Verification activities presented in Chapter 4
to the StereoAcuity test case study.

Proving refinement

Each step of refinement is proved correct [41] using the SMT-based tool ASM-
RefProver. We check a notion of refinement, called stuttering refinement, more
restrictive than the definition given in [41]. If we consider as conformance re-
lation between abstract and refined states the equality of functions levelTest
(representing the current level) and certMsg (representing the status of the certi-
fication), all our refinement steps are correct. Let us consider the third refinement
in which is modelled the fact that the certification is granted only when three im-
ages are recognized at the same level. The proof of correct refinement in case
of (a) wrong answer, (b) right answer to decrease the level, (c) skip answer, and
(d) skip command, is straightforward (since there is surely an abstract run equal
to the refined run). It is also shown that the runs in which a given level is certified
(i.e., three shown images are recognized) have corresponding runs in the abstract
machine. A refined state in which the shown images have been recognized once
or twice is stuttering conformant with the abstract state in which no image has
been recognized yet. Figure 8.5 shows an example of refined run certifying level
1 and a corresponding abstract run.

Similar arguments for proving refinement correctness can be done for all the
refinements. Note that the proof of the refinement correctness is completely auto-
matic: the designer must only indicate which are, in the two models, the “locations
of interest” [41] that are involved in the conformance relation.

Simulation

Simulation is a validation activity by using the AsmetaS simulator. It allows in-
teractive simulation and random simulation. In interactive simulation, at each
step the user is asked for the values of the monitored functions, whereas in ran-
dom simulation the simulator itself randomly chooses the values for monitored

118

8.3. StereoAcuity Test

. . . //

levelTest = 1
certMsg =

undef
userAnsw =

RIGHT

//
levelTest = 1

certMsg =
CERTIFIED
userAnsw = -

. . . //

levelTest = 1
certMsg =

undef
userAnsw =

RIGHT

≡

KS

//

levelTest = 1
certMsg =

undef
userAnsw =

RIGHT

≡

cc

//

levelTest = 1
certMsg =

undef
userAnsw =

RIGHT

≡

ii

//
levelTest = 1

certMsg =
CERTIFIED
userAnsw = –

≡

KS

Figure 8.5: Stuttering refinement from the second refinement model to the third refinement
model – Example of refined run

functions. Moreover, the AsmetaS simulator allows to check if some invariants are
satisfied during simulation. For example, if we consider the following invariant:
(certMsg=CERTIFIED and not loop) implies
levelCertificate=1

It states that if the patient has been CERTIFIED and (s)he has never increased the
level (i.e., function loop is false), (s)he is definitely certified at level 1.

Scenario Validation

Simulation is useful in the earlier stages of model development when it is easy
to follow the machine executions due to the compactness of the model. When
the ASM becomes more complex and large or the simulations become repetitive,
AsmetaV is a useful tool to support the user in validation. Such scenarios have
been executed whenever the models are modified to check that the behaviour
of the ASM was not altered (in a kind of regression testing). Moreover, the
user constructs some scenarios for simulating different refined models; indeed, a
scenario for an abstract model M should be correct also for a refined model M̃
if the scenario is related to the elements of M that have not been refined in M̃ .
For example, the scenario that simulates the certification of first level without
any error has to be the same in the ground model, first, and second refinement.
Indeed, first and second refinements add the counting of the wrong answers and
the possibility of giving the skip answer; however, the handling of correct answers
is the same in the three models.

Model review

Model review is an automatic validation technique that verifies some general prop-
erties that any model should guarantee such as completeness, minimality, and
consistency. The AsmetaMA tool [20] allows automatic review of ASMs. Typical
vulnerabilities and defects that can be introduced during the modeling activity
using ASMs are checked as violations of suitable meta-properties (MPs, defined
in [20] as CTL formulae). An inconsistent update (meta-property MP1 in [20]), for
example, is a signal of a real fault in the model; the presence of functions that are
never read nor updated (meta-property MP7 in [20]), instead, may simply indi-
cate that the model is not minimal, but not that it is faulty. AsmetaMA tool found

119

Chapter 8. 3D4Amb: diagnosis and treatment for visual diseases

that, in the fourth refinement, function expAnsw (specifying the expected answer)
could not take values SKIP, EXIT (violation of meta-property MP6 in [20]). This
violation is not a signal of a real fault in the model, but of a bad choice at de-
sign time. Indeed, in the models (starting from the ground model), the same
domain Answers has been used for modelling the patient’s choices (i.e., RIGHT
and WRONG till the third refinement, the image names in the fourth refinement)
and the commands to skip a step and to exit the test (i.e., SKIP and EXIT). In
the fourth refinement, the random choice of an image is chosen by the machine
and the chosen value is stored in expAnsw: since for the function codomain the
same domain Answers is used for the patient’s choice, the model must avoid to
select SKIP and EXIT as chosen images. A better design choice would have been
to separately model the available images and the test execution commands. In
a preliminary version of our ground model, instead, AsmetaMA found a real fault.
We wrongly wrote levelTest < maxLevel instead of levelTest > maxLevel in
the guard of a conditional rule and this did not allow the else branch of the con-
ditional rule to be ever executed (violation of meta-property MP3 in [20]). These
small examples show that model review is a quite powerful push-button validation
activity that can be used since the first stages of model development to find faults
(e.g., inconsistencies) and/or stylistic defects (e.g., minimality violations) of our
models.

Property verification

In this section we use model checking (by means of the AsmetaSMV tool) for ver-
ifying application-dependent properties, i.e., properties specific to our case study.
Some have been derived directly from the requirements of the system, others have
been added during the verification activity for increasing the requirements com-
pleteness. We here report some CTL properties common to all models. For each
developed model, we have also specified more specific properties regarding the re-
quirements considered by that model. As first property, we check that it is always
possible to terminate a test (note that the boolean function test is true when the
test is running).
af (not test)

Moreover, we check that if the test is terminated, it cannot start again (for us, a
test corresponds to a run of the ASM).
ag (not test implies ag (not test))

The decision whether or not to certify a level for a patient can only be made
when the test is finished. Therefore, we verify that, during the test, the mes-
sage containing the certification decision (i.e., function certMsg) is undefined and
becomes defined when the test is finished.
ag (test implies isUndef(certMsg))
ag (isDef(certMsg) implies not test)

Note that the previous two properties were also specified as invariants for simu-
lation4.

4The tool AsmetaSMV, for each invariant ϕ, automatically creates the CTL property AG(ϕ).

120

8.3. StereoAcuity Test

Then we check that both decisions can be taken:
ef (certMsg = CERTIFIED)
ef (certMsg = NOTCERTIFIED)

We further check that, once a decision has been taken (either CERTIFIED or (NOT-
CERTIFIED)), it cannot be changed:
ag (certMsg = CERTIFIED implies
ag (certMsg = CERTIFIED))
ag (certMsg = NOTCERTIFIED implies
ag (certMsg = NOTCERTIFIED))

8.3.3 Scenario and test generation

We have exploited model checking tools for identifying interesting runs of the
models by introducing trap properties, which are not actual system properties
to be verified. A trap property has form never(φ), where φ is a predicate over
the state that we want to cover with a system run, and never is translated to
a corresponding model checker operator. If a state S satisfying φ exists, the
trap property is false and the returned counterexample is a trace leading to S.
Such counterexamples are used in the scenario-based validation for constructing
execution scenarios (see Sect. 8.3.2) and in the test framework for testing the
implementation (see Sect. 8.3.3). Some trap properties we have specified are:
never (certMsg = NOTCERTIFIED)
never (certMsg = CERTIFIED and
levelCertificate = 1)
...
never (certMsg = CERTIFIED and
levelCertificate = 6)

By means of these properties, we are able to generate a scenario (test) in which
the exam is terminated without certifying the patient and six different scenarios
(tests) in which the patient is certified in one of the six levels.

Conformance checking

In this section, it is shown how the formal specifications is used for testing the Java
implementation of sam. First of all, the implementation has to be linked with the
formal specification: in order to do this, we use a set of Java annotations originally
introduced in the runtime verification framework CoMA [21]. Such annotations
link both the data part (some fields and pure methods of the implementation
are linked to functions of the specification) and the behaviour (the execution
of some selected methods corresponds to a step of the ASM). In the original
version of CoMA, only one class can be connected with the formal specification. In
this work, CoMA is extended to handle more complex programs: if a program is
composed of several classes, the tester writes a wrapper class and connects it with
the specification. In our case, sam is composed of the main 3DStereoLogic class,
and the DepthCertifier class, which is internally used by 3DStereoLogic. A
wrapper is used as shown in Figure 8.6. Code 8.1 reports its Java implementation
annotated for testing and connected to the last refined model. For example, for
the data part, the field outMessage is connected to the ASM function certMsg (in

121

Chapter 8. 3D4Amb: diagnosis and treatment for visual diseases

the implementation, the certification result is shown as an output message) and
the pure method getCurrentLevel is connected to the ASM function levelTest;
for the behavioural part, the execution of method chooseShape corresponds to
an ASM step.

CoMA

ASM n

CoMA - New technique

SAM

3DStereoLogic DepthCertifier

ASM n

SAMWrapper

Figure 8.6: Wrap class for testing

import org.asmeta.monitoring .∗;

@Asm(asmFile = ”models/SAM ref4.asm”)
public class SAMWrapper {
@FieldToLocation(func = ”certMsg”)
OutMessage outMessage;
@FieldToLocation(func = ”test”)
boolean test ;
@Monitored(func = ”expAnsw”)
ShapeW chosenShape;
@Monitored(func = ”userAnsw”)
AnswersW userAnswer;
3DStereoLogic logic = new 3DStereoLogic(5);

Code 8.1: Java code of sam Wrapper

@StartMonitoring
public SAMWrapper() {
logic . startTest (new ExperimentSetupData(6), false);
test = (certifier .getMode() == TEST);
}

@RunStep
public void chooseShape() { ... }

@MethodToFunction(func = ”levelTest”)
int getCurrentLevel () {
return certifier .getCurrentDepth();
}
}

To produce tests from formal specifications, we use the ATGT tool [64] which is
based on the model checker SPIN. The produced tests are abstract and they need
to be concretised in tests for the implementation (e.g., JUnit tests): in order to
do this, we use the technique introduced in [22] that exploits the linking provided
by the Java annotations. In a preliminary version of the Java implementation, we
found an error related to the counting of the recognized images. The requirements
prescribe that a level i is certified if the patient recognizes three times the shown
images, without changing the level between two recognitions. Thus, the number
of recognized images in a level is reset when the patient change the level. The
preliminary Java implementation, instead, did not reset the counters for the dif-
ferent levels: a patient could be wrongly certified at level 2 by recognizing the
image at level 2, moving to level 1, failing twice at level 1, and guessing twice
at level 2 (i.e., recognizing three times at level 2 but moving to level 1 between
two recognitions). We have tested the implementation (whose size is 2.6 KLOCs)
with three different test suites: one we generated manually by reasoning on the
requirements (Handmade), one generated by ATGT using a Breadth-First-Search
(BFS) approach in generating the tests, and the last one generated by ATGT
using a Depth-First-Search (DFS) approach. Table 8.2 reports the obtained re-
sults in terms of number of tests, global test length, and achieved coverage. The
coverage is split between the two main components of the program sam. We can
observe that the handmade test suite has the minimum number of test instruc-
tions, but also obtains the lowest coverage. DFS obtains better coverage than

122

8.3. StereoAcuity Test

#tests total length of tests Achieved coverage (%)
3DStereoLogic DepthCertifier

Handmade 15 872 62.1 60.8
BFS 14 1181 62.5 69.3
DFS 8 1688 64.4 83.4

Table 8.2: Code coverage

BFS, although both test suites have been built for covering the same set of test
predicates over the ASM; this is due to the fact that a depth-first approach usually
builds longer tests that are able to exercise code instructions not reached by the
usually shorter tests generated by a breadth-first approach. Finally, we observe
that the advantage of using an automatic approach becomes significant when the
program under test is particular complex (as the DepthCertifier component);
for simple programs (as the 3DStereoLogic component), instead, the handmade
approach can still obtain good results. Note that the linking of the implementa-
tion with its formal specification can also be used for checking the conformance
at runtime [21] (in a kind of online testing).

123

CHAPTER9
Hemodialysis machine case study

The hemodialysis machine case study has been proposed at ABZ 2016 conference1.
Given the document of requirements and the design of an hemodialysis machine,
the goal is to provide a model of the system using formal methods. Starting from
the model, validation and verification techniques are applied to guarantee the
correctness of the model compared to the document of requirements. In this case
study, we have applied the process defined in Chapter 4 using the tools provided
by Asmeta framework.

9.1 Requirements

Kidney diseases are increasing every year due to:
- diabetes
- high blood pressure
- autoimmune diseases
- genetic diseases
- nephrotic syndrome
- urinary tract problems.

Sometimes the kidney can stop working very suddenly. It is called acute kidney
injury and its common causes are:

- heart attack
- illegal drug use and drug abuse
- not enough blood flowing to the kidneys
- urinary tract problems.

1http://www.cdcc.faw.jku.at/ABZ2016/program/

125

http://www.cdcc.faw.jku.at/ABZ2016/program/

Chapter 9. Hemodialysis machine case study

When the patient is nearing kidney failure, he/she will need dialysis or a kidney
transplant to survive. Hemodialysis is a treatment that use a machine to clean
the blood. The machine transported the blood to and from the patient and
filters wastes, salts and fluid from the blood. The connection between venous and
the machine is done with a vein created surgically. Following, the hemodialysis
machine architecture and the therapy execution are briefly shown, the complete
description can be found in [100].

9.1.1 Hemodialysis machine architecture

The hemodialysis machine architecture is shown in Figure 9.1 and it is composed
of components described in the next paragraphs.

Extracorporeal Blood Circuit (EBC) The extracorporeal system consists of com-
ponents that transport the blood from and to the patient. Arterial blood pump
pumps the blood from the patient to the machine. Heparin pump inject the hep-
arin to avoid the blood coagulation previously the blood enters into the arterial
chamber, where it is accumulated before get in the dialyser. When the blood
comes out of the dialyser, it is accumulated into venous chamber before pumped
it back to the patient. Sooner the blood is reinfused into the patient, the Safety
Air Detector (SAD) detects air bubbles in the blood to prevent the patient death.

Dialyser The dialyser is a component of the machine that filters the blood to
remove waste. It is composed by a set of semipermeable hollow fibres encased in a
plastic canister. The dialyser is used to correct the concentration of water-soluble
substances in the patient blood before delivering it back. The blood is sepa-
rated from the dialysing fluid (DF) by a semipermeable membrane that permits a
bidirectional diffusive transport and ultrafiltration (UF). The process allows the
diffusion of waste from the blood to the DF and the nutrients from the DF to the
blood.

Balance chamber The balance chamber is a closed system that consists of two
chambers, each with a flexible membrane, allowing it to fill the chamber from
one side while an identical volume is emptied to the other side. Therefore the
outlet fluid volume is equal to the input fluid volume. Each membrane has a
magnetic sensor which reads the membrane position and controls the opening and
the closing of each sub compartment. The control of the dialysate volume is also
carried out by the balance chamber. The difference between used dialysate and
fresh dialysate is the ultrafiltration volume, which is removed from the blood side
of the dialyser. Ultrafiltrate removal is carried out by the UF pump.

DF preparation In bicarbonate dialysis, which is the most common procedure,
concentrate preparation consists of mixing the heated and degassed water with
bicarbonate concentrate and acid concentrate. The accuracy of dialysate concen-
tration is controlled by conductivity sensors. If the concentration is incorrect, the
dialyser will be bypassed.

126

9.1. Requirements

EB
C

(E
xt

ra
co

rp
o

re
al

 B
lo

o
d

C
ir

cu
it

)

B Y P A S S

A
RT

ER
IA

L

V
EN

O
U

S

P A T I E N T

D
F

cl
ea

n

D
F

u
se

d

an
d

 U
F

D
F

p
re

p
ar

at
io

n

BICARBONATE

ACID

WATER

H
ea

te
r

D
eg

as
si

n
g

C
h

am
b

er

Flow used DF and UF drain

U
se

r
In

te
rf

ac
e

A
rt

er
ia

l
B

ol
u

s
(s

al
in

e
)

A
rt

er
ia

l
Pr

es
su

re

Tr
an

sd
u

ce
r

A
rt

er
ia

l
B

lo
o

d

Pu
m

p

H
ep

ar
in

p

u
m

p

A
rt

er
ia

l
C

ha
m

be
r

B
lo

o
d

-s
id

e
En

tr
y

Pr
e

ss
u

re

V
en

ou
s

C
h

am
b

er
V

en
ou

s
Pr

es
su

re

Tr
an

sd
u

ce
r

SA
D

 -
 S

af
et

y
ai

r
d

et
ec

to
r

–
w

it
h

V
R

D
 -

ve

no
u

s
re

d
de

te
ct

o
r

V
en

ou
s

Tu
b

in
g

V
al

ve

M
ag

n
et

ic

p
os

it
io

n

se
n

so
r

M
ag

n
et

ic

p
os

it
io

n

se
ns

o
r

C
ha

m
b

er
 1

C
ha

m
b

er
 2

C
on

du
ct

iv
it

y
se

n
so

r

C
on

tr
o

l S
ys

te
m

Sa
lin

e
so

lu
ti

on

d
is

ca
rd

e
d

W
as

te

A
rt

e
ri

al

Tu
b

in
g

V
al

ve

Figure 9.1: Hemodialysis machine: schema

127

Chapter 9. Hemodialysis machine case study

Water preparation Purified water, coming from the reverse osmosis system, has
to be degassed and tempered to a predetermined temperature, which is set by the
user (usually 37◦C), before the concentrate is prepared. A degassing chamber and
a heater are integrated in the system.

Bypass Bypass is activated when the DF conductivity or temperature goes be-
yond permissible limits. The dialyser is separated from the DF without interrupt-
ing DF preparation, when temperature and conductivity are within the limits the
bypass is deactivated.

User interface The user interface is a display panel that provides communication
between the machine and the user. On the display it is possible to visualize
all the dialysis parameters and relevant information about the procedure and
alarm conditions. By touching the icons on the screen, the user can input all the
parameters for the treatment such as: dialysis time, UF volume and heparin pump
flow. Several profiles for the procedure can be selected and set via the interface.

Control system The control system is divided into two parts: The top level con-
trol system connects the interface with the user and transmits data to and from
other modules. The low level control system controls and monitors the machine
and its functions and also communicates with the top level control system. Both
systems operate independently of each other.

9.1.2 Hemodialysis therapy

During the therapy the machine extracts the blood through an arterial access.
The dialyser separates the metabolic waste products from the blood. At the end
the clean blood is pumped back to the patient. A therapy session is divided into
three phases: 1. Preparation 2. Initiation 3. Ending .

Preparation phase The first operation executed by the machine is an automatic
test to check all functions. After that, the concentrate for the therapy is connected
and a nurse sets all rinsing parameters. The tubing system is connected to the
machine and it is filled with saline solution. Afterwards, the nurse prepares the
heparin pump and inserts the treatment parameters. At the end of preparation
phase the dialyser is connected to the machine and rinsed with saline solution.

Initiation phase During the initiation phase, the patient is connected to the ma-
chine. The patient is connected arterially and the tubes are filled with blood until
it is detected by VRD (Venous Red Detector) sensor (VRD detects the blood
and it is installed with the SAD sensor). Subsequently the patient is connected
venously and the therapy can start. During the therapy the blood is cleaned and
the following operations are performed:
• monitoring the blood pressure limits
• set the treatment at minimum UF rate
• run heparin bolus
• infuse sodium chloride

128

9.2. Modelling by refinement

• switch the dialysis mode into bypass (the dialyser is temporary disconnected
from the DF)

When the therapy is completed an acoustic signal is heard.

Ending phase The patient is disconnected arterially and saline solution is infused.
When the solution is infused completely, the patient is disconnected venously.
After that the dialyser and the cartridge are emptied. Finally, an overview of the
therapy is shown.

9.2 Modelling by refinement

In this section, the application of the ASM-based development process of the
Hemodialysis machine case study (HMCS) is exemplified. The ASM method can
be used to support in a formal way the activities required by steps 5.3 and 5.4 of the
IEC 62304 standard and allows early and continuous V&V activities as required by
the FDA principles. In modelling the HMCS, we proceeded through refinement.
At the highest level of abstraction, the ground model gives the overall abstract
view of the whole device that goes through three phases: the PREPARATION of the
device, the execution (or INITIATION) of the therapy, and the termination (or
ENDING) of the process. Then, each of these phases has been refined. The first
refinement regards PREPARATION phase, the second refinement models the device
operating in INITIATION phase, and the third refinement specifies the behaviour in
ENDING phase. Each refinement step models all the (possible) activities performed
in the phase and all the controls with related errors and alarms. A peculiarity of
the case study is that the device behaviour is clearly divided in phases and each
phase is characterized by different activities (or sub-phases). To identify which
activity is currently executed, a function that assumes the value corresponding
to the sub-phase is introduced. For example, during the PREPARATION phase the
nurse performs different activities and to identify which one is currently executed
a function prepPhase assumes the corresponding value. If one of these sub-phase
consists of a set of actions, a new function is introduced. Table 9.1 summarizes
the phases and sub-phases of the case study.

In the next sections each refinement step is shown together with validation and
verification activities.

9.2.1 Ground model

As said before, the ground model simply describes the transitions between the
phases constituting a hemodialysis treatment, without any additional detail.
Code 9.1 shows the ground model written using the AsmetaL syntax. Depending
on the current phase, the machine executes a corresponding rule:
• r run preparation models all the activities needed to prepare the hemodial-

ysis device for the treatment. This rule is refined in the first refinement step
(see Sect. 9.2.2).

• r run initiation models the hemodialysis therapy, when the patient is con-
nected to the device and her/his blood is cleaned. The rule is refined in the
second refinement step (see Sect. 9.2.3).

129

Chapter 9. Hemodialysis machine case study

phase

PREPARATION

prepPhase
AUTO TEST
CONNECT CONCENTRATE
SET RINSING PARAM

TUBING SYSTEM

tubingSystemPhase
CONNECT AV TUBES
CONNECT ALL COMP
SET SALINE LEVELS
INSERT BLOODLINES
PRIMING
CONNECT AV ENDS

PREPARE HEPARIN

SET TREAT PARAM

treatmentParam
BLOOD CONDUCTIVITY
BIC AC
BIC CONDUCTIVITY
DF TEMP
DF FLOW
UF VOLUME
THERAPY TIME
MIN UF RATE
MAX UF RATE
MAX AP
DELTA AP
PERC DELTA TMP
LIMITS TMP
MAX TMP
EXTENDED TMP
MAX BEP
STOP TIME H
BOLUS VOLUME H
RATE H
ACTIVATION H
SYRINGE TYPE

RINSE DIALYZER

rinsePhase
CONNECT DIALYZER
FILL ART CHAMBER
FILL VEN CHAMBER
FILL DIALYZER

INITIATION

initPhase

CONNECT PATIENT

patientPhase
CONN ART
START BP
BLOOD FLOW
FILL TUBING
CONN VEN
END CONN

THERAPY RUNNING

therapyPhase
START HEPARIN

THERAPY EXEC

arterialBolusPhase
WAIT SOLUTION
SET ARTERIAL BOLUS VOLUME
CONNECT SOLUTION
RUNNING SOLUTION

THERAPY END

ENDING

endingPhase

REINFUSION

reinfusionPhase
REMOVE ART
CONN SALINE
START SALINE INF
CHOOSE NEXT REINF STEP
RUN SALINE INF
START SALINE REIN
RUN SALINE REIN
REMOVE VEN

DRAIN DIALYZER
EMPTY CARTRIDGE
THERAPY OVERVIEW

Table 9.1: Hemodialysis device phases

• r run ending models the terminal part of the therapy, when the patient is
disconnected and the device is cleaned for subsequent treatments. The rule
is refined in the third refinement step (see Sect. 9.2.4).

Since the textual representation could be difficult to understand when the model
becomes complicated, the AsmetaVis tool (see Chapter6) is used. The tool allows
two visualization techniques: basic visualization (shows the syntactical structure
of the ASM in terms of a tree) and semantic visualization (represents the ASMs
extrapolating part of the behaviour from the model). Figure 9.2 shows the basic
visualization of the rule r run dialysis of the model in Code 9.1. Depending on
the value assumed by phase function, the corresponding rule is executed.

Figure 9.3 shows the semantic visualization of the rule r run dialysis. The
system starts in the PREPARATION phase and moves to the INITIATION phase by
executing rule r run preparation, from which it moves to the ENDING phase by

130

9.2. Modelling by refinement

asm HemodialysisGround

signature:
enum domain Phases =

{PREPARATION | INITIATION |
ENDING}

controlled phase: Phases

definitions:
macro rule r_preparation =
phase := INITIATION

macro rule r_initiation =
phase := ENDING

macro rule r_ending =
skip

Code 9.1: Ground model

main rule r_Main =
par

if phase = PREPARATION then
r_run_preparation[]

endif
if phase = INITIATION then

r_run_initiation[]
endif
if phase = ENDING then

r_run_ending[]
endif

endpar

default init s0:
function phase = PREPARATION

Figure 9.2: Ground model basic visualization

the execution of rule r run initiation. In the ENDING phase, rule r run ending
is executed, and does not modify the phase. The simple visual inspection was
sufficient to give us confidence that the model correctly evolves through the three
top-level phases.

Figure 9.3: Ground model semantic visualization

Figure 9.4 shows the content of the rules r run preparation, r run initiation
and r run ending. Since the ground model describes the transition between
phases, the rules simply contain the update of the phase function to the next
value.

131

Chapter 9. Hemodialysis machine case study

(a) Preparation phase (b) Initiation phase (c) Ending phase

Figure 9.4: Ground model phases

9.2.2 First refinement: preparation phase

The first refinement extends the ground model by refining the PREPARATION phase.
As shown in Figure 9.5, the preparation consists in a sequence of activities, spec-
ified by function prepPhase. For each value of prepPhase, a given rule performs
some actions related to the device preparation and updates prepPhase to the next
value.

Figure 9.5: Preparation rule: semantic visualization

The overall behaviour is not clear if we consider the code of preparation phase
(see Code 9.2) instead of the graphical representation. It is not easy to understand
which is the correct sequence of rules execution because is not clear which is the
next value assumed by prepPhase function.

As shown in Table 9.1, some phases are further divided in sub-phases. For
example, Figure 9.6 shows how phase SET TREATMENT PARAM is specified by the
treatment parameter (function treatmentParam). Also in this case, the sub-
phases are executed in sequence.

The correctness of each refinement step has been proved with the tool AsmRef-
Prover that checks a particular kind of refinement called stuttering refinement [24].
The first refined model is a correct stuttering refinement of the ground model, us-
ing as conformance relation the equality on the phase function. Figure 9.7 shows
the correspondence of a refined run with an abstract run. We can see that, in the
run of the ground model (abstract run), the machine goes from a state in which
phase is PREPARATION to a state in which is INITIATION in one step. Instead,
in the run of the refined model (refined run), there is a sequence of intermediate
states in which phase remains in PREPARATION. These states are all compliant

132

9.2. Modelling by refinement

asm HemodialysisGround

signature:
enum domain Phases =
{PREPARATION | INITIATION | ENDING}
enum domain PrepPhase = {RINSE_DIALYZER | SET_TREAT_PARAM | PREPARE_HEPARIN
| TUBING_SYSTEM | SET_RINSING_PARAM | CONNECT_CONCENTRATE | AUTO_TEST}

controlled phase: Phases
dynamic controlled prepPhase: PrepPhase

definitions:
...
macro rule r_exec_preparation =

par
if prepPhase = AUTO_TEST then

r_run_automatic_test[]
endif
if prepPhase = CONNECT_CONCENTRATE then

r_connect_concentrate[]
endif
if prepPhase = SET_RINSING_PARAM then

r_set_rinsing_param[]
endif
if prepPhase = TUBING_SYSTEM then

r_install_tubing_system[]
endif
if prepPhase = PREPARE_HEPARIN then

r_prepare_heparin[]
endif
if prepPhase = SET_TREAT_PARAM then

r_set_treatment_param[]
endif
if prepPhase = RINSE_DIALYZER then

r_rinse_dialyzer[]
endif

endpar

default init s0:
function phase = PREPARATION

Code 9.2: First refinement - Preparation rule

Figure 9.6: Treatment parameters

133

Chapter 9. Hemodialysis machine case study

Ground
model . . . // phase =

PREPARATION
// phase = INITIATION // . . .

First ref . . . // phase =
PREPARATION

prepPhase =
AUTO TEST

...

≡

KS

// . . .

≡

aa

// phase =
PREPARATION

prepPhase =
RINSE DIALYZER

rinsePhase =
FILL VEN CHAMBER

...

. . .

≡

ii

phase =
PREPARATION

prepPhase =
RINSE DIALYZER

rinsePhase =
FILL DIALYZER

...

≡

kk

// phase = INITIATION
prepPhase =

RINSE DIALYZER
rinsePhase =

FILL DIALYZER
...

≡

KS

// . . .

Figure 9.7: Hemodialysis case study – Relation between a refined run and an abstract run

with the first abstract state. The state in the refined run in which phase becomes
INITIATION is compliant with the second abstract state. Furthermore, during
preparation activities, the machine performs checks and manages errors if there
were. If a violation occurs, the model tracks the error and activate an alarm.
When the user confirms the alarm, the alarm stops. The error still active until
the problem is resolved. For example, Figure 9.8 shows how the machine checks
the upper limit of the temperature. If the temperature exceeds the upper thresh-
old, the error and the alarm are raised. After that, the alarm is disabled by the
user and the error is automatically reset when the temperature goes below the
upper limit.

Figure 9.8: Check temperature upper limit

Validation and Verification

Starting from the first refinement, model review is applied using AsmetaMA [20]
tool. Common vulnerabilities and defects that can be introduced during ASM
modeling are checked as violations of suitable meta-properties (MPs, defined
in [20] as CTL formulae). In this model, we found that controlled function
machine state was initialized but never updated (violation of meta-property
MP7). Although this is not a real fault of the model, it could make the model
less readable, since a reader may expect an update of the function (since it is
controlled). Declaring the function static made clear that, in this refinement step,
the function is not updated. When modelling other case studies [15,23,26], we ex-
tensively used interactive simulation by means of the simulator AsmetaS [65] that
allowed us to observe some particular system executions. In this case study, we
could largely reduce the effort spent in simulation, since by semantic visualization
we could get a feedback regarding the control flow similar to that provided by
simulation. Figure 9.9 shows a simulation trace of the current model. Transitions
between phases can be discovered also through simulation, but in a less direct way
than with semantic visualization (see Figure 9.5). A further advantage of semantic

134

9.2. Modelling by refinement

Insert a boolean constant for auto_test_end:
true
<State 0 (monitored)>
auto_test_end=true
</State 0 (monitored)>
<State 1 (controlled)>
alarm(DF_PREP)=false
alarm(SAD_ERR)=false
alarm(TEMP_HIGH)=false
dialyzer_connected_contr=false
error(DF_PREP)=false
error(SAD_ERR)=false
error(TEMP_HIGH)=false
phase=PREPARATION
prepPhase=CONNECT_CONCENTRATE
preparing_DF=false
signal_lamp=GREEN
</State 1 (controlled)>

Insert a boolean constant for conn_concentrate:
true
<State 1 (monitored)>
conn_concentrate=true
</State 1 (monitored)>
<State 2 (controlled)>
alarm(DF_PREP)=false
alarm(SAD_ERR)=false
alarm(TEMP_HIGH)=false
dialyzer_connected_contr=false
error(DF_PREP)=false
error(SAD_ERR)=false
error(TEMP_HIGH)=false
phase=PREPARATION
prepPhase=SET_RINSING_PARAM
preparing_DF=true
signal_lamp=GREEN
</State 2 (controlled)>

Figure 9.9: Simulation trace of first refinement model

visualization is that it also shows the rule that changes a given phase. However,
simulation shows ASM states, whereas semantic visualization only shows control
states given by the value of the phase function. Therefore, if we are interested
in observing the exact ASM runs, we still have to use simulation. Instead, if we
are only interested in knowing how the machine evolves through its phases, the
semantic visualization is enough. Instead of interactive simulation, we mainly per-
formed scenario-based validation [46] that permits to automatize the simulation
activity, so scenarios can be rerun after specification modifications. In scenario-
based validation the designer writes a scenario (using the textual notation Avalla)
specifying the expected behaviour of the model; scenarios are similar to test cases.
The tool AsmetaV reads the scenario and executes it using the simulator AsmetaS.
We wrote several scenarios for the different refinement steps. We discovered that
such scenarios had several common parts, since they had to perform the same
actions and same checks in different parts of their evolution. Code 9.3 shows an
example of scenario for the first refined model reproducing the whole therapy pro-
cess. We defined the block initStatePrep, since its instructions regarding the

scenario completeTherapyRef1

load HemodialysisRef1.asm

begin initStatePrep
check phase = PREPARATION;
check prepPhase = AUTO TEST;
check rinsingParam = FILLING BP RATE;
...

end //initStatePrep

begin preparationPhase
begin automaticTest

set auto test end := true;
step

end //automaticTest

Code 9.3: Scenario for the first refinement

begin connectConcentrate
check prepPhase = CONNECT CONCENTRATE;
check signal lamp = GREEN;
set conn concentrate := true;
step

end //connectConcentrate
...

end //preparationPhase

check phase = INITIATION;
check bp status = STOP;
check bp status der = STOP;
step

check phase = ENDING;
step

initial state will be reused in scenarios written for other refinement steps. We also
defined the block preparationPhase containing instructions related to the PREP-
ARATION phase. Such block is further divided in sub-blocks (e.g., automaticTest),

135

Chapter 9. Hemodialysis machine case study

since some scenarios will reuse the whole block preparationPhase, while others
will reuse only some sub-blocks and redefine some others. Once a modeller is con-
fident enough that the model correctly reflects the intended requirements, heavier
techniques can be used for property verification. The case study document [100]
reports a list of safety requirements (divided between general (S1-S11) and soft-
ware (R1-R36) requirements) that must be guaranteed. We have specified them as
LTL properties and verified using the tool AsmetaSMV [19] that translates AsmetaL
models to models of the model checker NuSMV. Each requirement has been proved
as soon as possible in the chain of refinements, i.e., in the model that describes
the elements involved in the requirement. At this refinement step, we were able to
express only 13 of the 47 requirements; these are software requirements regarding
the flow of bicarbonate concentration into the mixing chamber, the heating of the
dialysing fluid, and the detection of safety air conditions. Requirement R20 states
that “if the machine is in the preparation phase and performs priming or rinsing
or if the machine is in the initiation phase and if the temperature exceeds the
maximum temperature, then the software shall disconnect the dialyser from the
DF and execute an alarm signal.” The requirement has been formalized in LTL
as follows.
//R20
g((phase = PREPARATION and dialyzer connected contr and prepPhase = RINSE DIALYZER and not error(

TEMP HIGH) and current temp = HIGH) implies x(error(TEMP HIGH) and alarm(TEMP HIGH) and not
dialyzer connected status))

Note that some requirements are strictly related and somehow redundant and,
therefore, can be verified together with only one property. This is the case of
requirements R18 and R19, and requirements R23-R32. Requirements R18 and
R19 specify conditions about the concentrate:
• “During preparation of the DF in the bicarbonate mode, if acid concentrate

is provided instead of bicarbonate concentrate, then the software shall detect
the mix-up of concentrates and disconnect the dialyser from the DF and
execute an alarm signal.”

• “During preparation of the DF in the bicarbonate mode, if acetate concen-
trate is provided instead of bicarbonate concentrate, then the software shall
detect the mix-up of concentrates and disconnect the dialyser from the DF
and execute an alarm signal.”

These two requirements are verified together because it is enough to verify that
the sensor detects bicarbonate, otherwise raise an alarm.
//R18−R19
g((phase = PREPARATION and prepPhase = RINSE DIALYZER and dialyzer connected contr and not error(

DF PREP) and preparing DF and not detect bicarbonate) implies x(error(DF PREP) and alarm(DF PREP)
and not dialyzer connected status))

Concerning requirements R23-R32, they define conditions relative to safety air
detector (SAD) sensor:
• “If the machine is in the preparation phase and performing rinsing of the EBC

or if the machine is connecting the patient or if the machine is in the initiation
phase or if the machine is in the reinfusion process, then the software shall
monitor the flow through the SAD sensor and if the flow through the SAD

136

9.2. Modelling by refinement

sensor exceeds 1200 mL/min, then the software shall stop the BP and execute
an alarm signal.”

• “If the flow through the SAD sensor is in the range of 0 to 200 mL/min, then
the software shall use an air volume of 0.2mL as limit for air detection by
the SAD sensor.”

• “If the flow through the SAD sensor is in the range of 200 to 400 mL/min,
then the software shall use an air volume of 0.3mL as limit for air detection
by the SAD sensor.”

• “If the flow through the SAD sensor is greater than 400 mL/min, then the
software shall use an air volume of 0.5mL as limit for air detection by the
SAD sensor.”

• “The software shall update the air volume detected by the SAD sensor every
1mS.”

• “If the machine is in the preparation phase and performing rinsing of the
EBC and if the software detects that the air volume exceeds the air volume
limit depending on the actual flow through the venous blood line, then the
software shall stop the blood flow and execute an alarm signal.”

• “During the application of arterial bolus, if the software detects that the air
volume exceeds the air volume limit depending on the actual flow through
the venous blood line, then the software shall stop the blood flow and execute
an alarm signal.”

• “While connecting the patient, if the software detects that the air volume
exceeds the air volume limit depending on the actual flow through the venous
blood line, then the software shall stop the blood flow and execute an alarm
signal.”

• “During the initiation phase, if the software detects that the air volume
exceeds the air volume limit depending on the actual flow through the venous
blood line, then the software shall stop the blood flow and execute an alarm
signal.”

• “During the reinfusion process, if the software detects that the air volume
exceeds the air volume limit depending on the actual flow through the venous
blood line, then the software shall stop the blood flow and execute an alarm
signal.”

//R23−R32
g((phase = PREPARATION and prepPhase = TUBING SYSTEM and passed1Msec and currentSAD !=

PERMITTED and current air vol != PERMITTED and not error(SAD ERR)) implies x(error(SAD ERR) and
alarm(SAD ERR)))

Requirements R20 and R23-R32 are related both to the preparation and initi-
ation phases; R23-R32 also consider the ending phase. At this level of refinement,
these properties can only check the preparation phase; they will be refined in the
second refinement to take into consideration the initiation phase (see Sect. 9.2.3),
and in the third refinement for considering the ending phase (see Sect. 9.2.4).

9.2.3 Second refinement: initiation phase

The second refinement extends the first refinement by refining the INITIATION
phase. As shown in Table 9.1, the phase is further divided in two phases (recorded

137

Chapter 9. Hemodialysis machine case study

by function initPhase): the connection of the patient (CONNECT PATIENT) and
the running of the therapy (THERAPY RUNNING).

(a) Patient phase

(b) Therapy phase

(c) Arterial bolus phase

Figure 9.10: Second refinement – Semantic visualization

As shown in Figure 9.10a, function patientPhase indicates in which step the
patient is during the connection. The patient is initially connected arterially;
then the blood pump is activated to extract the blood from the patient (in state
BLOOD FLOW). In this state, rule r set blood flow can follow two different paths:
• In the first execution of the rule, patientPhase is updated to FILL TUBING.

Then, the operator sets the blood flow and the blood pump stops when the
blood fills the tubes between the patient and the dialyser After this, the
patient is connected venously and the blood pump is restarted to fill the
tubes between the dialyser and the patient vein.

• In the second execution of the rule (when the patient has been venously
connected), patientPhase is updated to END CONN. Then, the therapy can
start (i.e., initPhase goes to THERAPY RUNNING).

Note that, in this case, the semantic visualization is not sufficient to completely
understand the model behaviour, since the path taken after the rule execution
can only be discovered by simulation. The therapy status is specified by function
therapyPhase (see Figure 9.10b) that, when in THERAPY EXEC, is further specified
by arterialBolusPhase, whose semantic visualization is shown in Figure 9.10c.
Such sub-phase consists in the infusion of saline solution and it is activated by
the operator. arterialBolusPhase is initially in state WAIT SOLUTION until the
operator presses the start button. After that, the doctor sets the volume of

138

9.2. Modelling by refinement

scenario completeTherapyRef2

load HemodialysisRef2.asm

begin initStateInit
execblock completeTherapyRef1.initStatePrep;

check patientPhase = CONN ART;
check arterialBolusPhase = WAIT SOLUTION;
...
end

execblock completeTherapyRef1.preparationPhase;

Code 9.4: Scenario for the second refinement

begin initiationPhase
begin patientConnection
check phase = INITIATION;
check initPhase = CONNECT PATIENT;
check patientPhase = CONN ART;
set art connected := true;
step
...
end
end

check phase = ENDING;
step

the saline solution, the solution is connected to the machine, and the infusion
starts. When the predefined volume is infused, the arterialBolusPhase returns
to WAIT SOLUTION state until the operator restarts again the saline infusion. Also
in this case, semantic visualization does not allow to fully understand the machine
behaviour: the initial state of the graph in Figure 9.10c can only be discovered
through simulation. As required by the modelling process (see Figure 4.2), before
any further validation and verification activity of the requirements, it is necessary
to guarantee correctness of the refinement step. This has been carried out, simi-
larly to what described at the end of Sect. 9.2.2, by means of the AsmRefProver.

Validation and Verification

By model review, some locations were trivially updated (meta-property MP4),
i.e., that the value of the location before the update was always equal to the new
value. This means that the update is not necessary. Removing trivial updates
is important because the reader may have the feeling that the ASM is modifying
its state when it is not. The trivial updates were related to signal lamp when
updated to GREEN, and error(UF DIR) and error(UF RATE) when updated to
true. The update of signal lamp was indeed unnecessary and we removed it; the
updates of error(UF DIR) and error(UF RATE), instead, were not correct since
the locations had to be updated to false and so we fixed the fault. Moreover,
we found that functions bf err ap low, reset err pres ap low were never up-
dated (meta-property MP7): this was due to a wrong guard in a conditional rule.
This shows that model review is also useful in detecting behavioural faults. We
found that also locations error(ARTERIAL BOLUS END), error(UF BYPASS), and
error(UF VOLUME ERR) were never updated. This is due to the fact that functions
error and alarm share the domain AlarmErrorType representing the different
alarms; for each alarm there is an error, except for ARTERIAL BOLUS END, UF -
BYPASS, and UF VOLUME ERR. Therefore, locations error(ARTERIAL BOLUS END),
error(UF BYPASS), and error(UF VOLUME ERR) are actually unnecessary. It is
possible to declare two different domains for errors and alarms, but we think that
the specification would have been less clear and it would have been more difficult
to keep consistent the values of errors and alarms. Therefore, we ignored the meta-
property violation and we left the model as it is. We also wrote some scenarios
for this refinement step, as the one shown in Code 9.4. The scenario reuses blocks

139

Chapter 9. Hemodialysis machine case study

initStatePrep and preparationPhase defined in scenario completeTherapy-
Ref1 for the first refined model (see Code 9.3). At this modelling level, it is
possible to prove 23 more safety requirements. They concern patient connection,
infusion of the saline solution when the patient is connected to the extra-corporeal
blood circuit, pressure during the therapy, dialysing fluid temperature, heparin
infusion, air detected in the blood and ultrafiltration process. Among these, we
realized that some were not correctly described in [100]. For example, S1 states
that “arterial and venous connectors of the EBC are connected to the patient
simultaneously”. The corresponding LTL property is as follows
g(art connected contr iff ven connected contr)

However, the property is false because the patient is connected before to the
arterial connector and then to the venous connector. Other requirements are
instead ambiguous and so we had problems in formalizing them. For example, S5
states that “the patient cannot be connected to the machine outside the initiation
phase, e.g., during the preparation phase.” We did not know how to interpret
“be connected”: as the patient status of being attached to the machine, or as the
atomic action performed by the operator of connecting the patient to the machine?
The former interpretation would require to prove the following property:
g((art connected contr or ven connected contr) implies phase = INITIATION)

that, however, is false. Indeed, the patient can be attached to the machine also
outside the INITIATION phase. The former interpretation, instead, would require
to prove the two following properties:
g((not art connected contr and x(art connected contr)) implies phase = INITIATION)
g((not ven connected contr and x(ven connected contr)) implies phase = INITIATION)

that are actually both true. It may be the case that this interpretation is not
correct; this is a clear example of ambiguous requirement that would need a clari-
fication from the stakeholders. Such clarification would also be needed for require-
ments S2, S3, S6 and R16, for which we were not able to provide a satisfactory
formalization. Requirement S4 verifies that “when the patient is connected to the
EBC, the saline solution in the EBC is replaced with blood. The BP is stopped
when either the VRD detects blood or the BP has transported a predefined vol-
ume.”
//S4
g((phase = INITIATION and initPhase = CONNECT PATIENT and patientPhase = FILL TUBING and not(

err patient conn) and not(error bp) and (blood on VRD or conn infuse set volume = PERMITTED)) implies x
(bp status der = STOP and patientPhase = CONN VEN))

Requirement R1 refers to arterial bolus applications during which “the software
shall monitor the infusion of saline into the patient and if the infused volume
exceeds 0.4 l, then the software shall stop the blood flow and execute an alarm
signal.”
//R1
g((phase = INITIATION and initPhase = THERAPY RUNNING and therapyPhase = THERAPY EXEC and

arterialBolusPhase = RUNNING SOLUTION and not(error therapy) and not(error bp) and not(error(
ARTERIAL BOLUS)) and current art bolus volume = HIGH) implies x(error(ARTERIAL BOLUS) and alarm(
ARTERIAL BOLUS)))

140

9.2. Modelling by refinement

Requirements R2-R4 specify properties about the blood pump during initiation
phase. The requirements state:
• R2: “the software shall monitor the blood flow in the EBC and if no flow

is detected for more than 120 s, then the software shall stop the BP and
execute an alarm signal.”

• R3: “if the machine is not in bypass, then the software shall monitor the
blood flow in the EBC and if the actual blood flow is less than 70% of the
set blood flow, then the software shall execute an alarm signal.”

• R4: “the software shall monitor the rotation direction of the BP and if the
software detects that the BP rotates backwards, then the software shall stop
the BP and execute an alarm signal.”

The properties defined for requirements R2 and R4 include the verification of
requirements R14 and R17 respectively. Requirements R14 and R17 express the
same requirement in a sub-phase considered by R2 and R4.
//R2 and R14
g((phase = INITIATION and bp status der = START and not(error(BP NO FLOW)) and (not(detected blood flow

) and passed120Sec)) implies x(error(BP NO FLOW) and alarm(BP NO FLOW)))
//R3
g((phase = INITIATION and bp status der = START and machine status der = MAIN FLOW and not(error(

BP LESS FLOW)) and current bp flow = TOOLOW) implies x(error(BP LESS FLOW) and alarm(
BP LESS FLOW)))

//R4 and R17
g((phase = INITIATION and bp status der = START and not(error(BP ROTATION DIR)) and bp rotates back)

implies x(error(BP ROTATION DIR) and alarm(BP ROTATION DIR)))

Requirements from R5 to R11 regard the value assumed by arterial and venous
pressure. The values must remain within the limits according to these conditions:
• R5: “During initiation, if the software detects that the pressure at the VP

transducer exceeds the upper pressure limit, then the software shall stop the
BP and execute an alarm signal.”

• R6: “During initiation, if the software detects that the pressure at the VP
transducer falls below the lower pressure limit, then the software shall stop
the BP and execute an alarm signal.”

• R7: “During initiation, if the software detects that the pressure at the AP
transducer exceeds the upper pressure limit, then the software shall stop the
BP and execute an alarm signal.”

• R8: “During initiation, if the software detects that the pressure at the AP
transducer falls below the lower pressure limit, then the software shall stop
the BP and execute an alarm signal.”

• R9: “While connecting the patient, if the software detects that the pressure at
the VP transducer exceeds +450mmHg for more than 3 s, then the software
shall stop the BP and execute an alarm signal.”

• R10: “While connecting the patient, if the software detects that the pressure
at the VP transducer falls below the defined lower pressure limit for more
than 3 s, then the software shall stop the BP and execute an alarm signal.”

• R11: “While connecting the patient, if the software detects that the pressure
at the AP transducer falls below the lower pressure limit for more than 1 s,
then the software shall stop the BP and execute an alarm signal.”

//R5

141

Chapter 9. Hemodialysis machine case study

g((phase = INITIATION and initPhase = THERAPY RUNNING and therapyPhase = THERAPY EXEC and not(
error therapy) and bp status der = START and ap limits set and vp limits set and not(error(INIT VP UP))
and current vp = HIGH) implies x(error(INIT VP UP) and alarm(INIT VP UP)))

//R6
g((phase = INITIATION and initPhase = THERAPY RUNNING and therapyPhase = THERAPY EXEC and not(

error therapy) and bp status der = START and ap limits set and vp limits set and not(error(INIT AP UP))
and current ap = HIGH) implies x(error(INIT AP UP) and alarm(INIT AP UP)))

//R7
g((phase = INITIATION and initPhase = THERAPY RUNNING and therapyPhase = THERAPY EXEC and not(

error therapy) and bp status der = START and ap limits set and vp limits set and not(error(INIT VP LOW))
and current vp = TOOLOW) implies x(error(INIT VP LOW) and alarm(INIT VP LOW)))

//R8
g((phase = INITIATION and initPhase = THERAPY RUNNING and therapyPhase = THERAPY EXEC and not(

error therapy) and bp status der = START and ap limits set and vp limits set and not(error(INIT AP LOW))
and current ap = TOOLOW) implies x(error(INIT AP LOW) and alarm(INIT AP LOW)))

//R9
g((phase = INITIATION and initPhase = CONNECT PATIENT and not(err patient conn) and not(error bp) and

bp status der = START and not(error(CONN VP UP)) and current vp = HIGH and passed3Sec) implies x(
error(CONN VP UP) and alarm(CONN VP UP)))

//R10
g((phase = INITIATION and initPhase = CONNECT PATIENT and not(err patient conn) and not(error bp) and

bp status der = START and not(error(CONN VP LOW)) and current vp = TOOLOW and passed3Sec)
implies x(error(CONN VP LOW) and alarm(CONN VP LOW)))

//R11
g((phase = INITIATION and initPhase = CONNECT PATIENT and not(err patient conn) and not(error bp) and

bp status der = START and not(error(CONN AP LOW)) and current ap = TOOLOW and passed1Sec)
implies x(error(CONN AP LOW) and alarm(CONN AP LOW)))

Two of the four requirements defined for patient connection (R14 and R17)
have been verified together with previous requirements. Requirement R15 states
that “while connecting the patient, the software shall monitor the filling blood
volume of the EBC and if the filling blood volume exceeds 400 mL, then the
software shall stop the BP and execute an alarm signal. The blood volume can
be detected by measuring the pump rotations with the speed sensor of the BP.”
//R15
g((phase = INITIATION and initPhase = CONNECT PATIENT and bp status der = START and not(

err patient conn) and not(error bp) and not(error(FILL BLOOD VOL)) and current fill blood vol = HIGH)
implies x(error(FILL BLOOD VOL) and alarm(FILL BLOOD VOL)))

Regarding the water used in dialyser fluid, requirement R21 is introduced dur-
ing initiation phase. It states that “if the machine is in the initiation phase and if
the temperature falls below the minimum temperature of 33℃, then the software
shall disconnect the dialyser from the DF and execute an alarm signal.”
//R21
g((phase = INITIATION and not(error(TEMP LOW)) and current temp = TOOLOW) implies x(error(TEMP LOW

) and alarm(TEMP LOW)))

During heparin infusion (R22) “the software shall monitor the anticoagulant
flow direction and if the reverse direction is detected, then the software shall stop
the blood flow and the anticoagulant flow, and execute an alarm signal.”
//R22
g((phase = INITIATION and initPhase = THERAPY RUNNING and therapyPhase = THERAPY EXEC and not(

error therapy) and heparin running and not(error(HEPARIN DIR)) and reverse dir heparin) implies x(error(
HEPARIN DIR) and alarm(HEPARIN DIR)))

Requirements R33-R36 express conditions about ultrafiltration process. The
requirements state:
• R33: “The software shall monitor the net fluid removal rate in the balance

chamber and if the net fluid removal rate exceeds a safe upper limit, then

142

9.2. Modelling by refinement

the software shall stop flow from and to the dialyser and execute an alarm
signal.”

• R34: “If the machine is in the initiation phase and net fluid removal is
enabled, then the software shall monitor the rotation direction of the UFP
and if backward rotation of the UFP is detected, then the software shall put
the machine in bypass and execute an alarm signal. The backward delivered
volume shall not exceed 400 mL.”

• R35: “If the machine is in the initiation phase and net fluid removal is
enabled, then the software shall monitor the net fluid removal volume and if
the net fluid removal volume exceeds (UF set volume + 200 mL), then the
software shall put the machine in bypass and execute an alarm signal. When
the alarm is acknowledged by the user, then the software shall increase the
UF set volume by 200 mL.”

• R36: “If the machine is in the initiation phase and net fluid removal is enabled
and if the bypass valve is opened, then the software shall stop the DF flow
to and from the dialyser and execute an alarm signal.”

//R33
g((phase = INITIATION and initPhase = THERAPY RUNNING and therapyPhase = THERAPY EXEC and not(

error therapy) and bicarbonate status der and not(error(UF RATE)) and current UF rate = HIGH) implies x(
error(UF RATE) and alarm(UF RATE)))

//R34
g((phase = INITIATION and initPhase = THERAPY RUNNING and therapyPhase = THERAPY EXEC and not(

error therapy) and bicarbonate status der and not(error(UF DIR)) and uf dir backwards) implies x(error(
UF DIR) and alarm(UF DIR)))

//R35
g((phase = INITIATION and initPhase = THERAPY RUNNING and therapyPhase = THERAPY EXEC and not(

error therapy) and bicarbonate status der and not(alarm(UF VOLUME ERR)) and current UF volume =
HIGH) implies x(alarm(UF VOLUME ERR)))

//R36
g((machine status der = BYPASS) implies not(df flow state))

Moreover, properties related to requirements R20 and R23-R32 are refined to
take into consideration also the initiation phase.
//R20 updated
g(((phase = INITIATION and not error(TEMP HIGH) and current temp = HIGH) or (phase = PREPARATION

and dialyzer connected contr and prepPhase = RINSE DIALYZER and not error(TEMP HIGH) and
current temp = HIGH)) implies x(error(TEMP HIGH) and alarm(TEMP HIGH) and not
dialyzer connected status))

//R23−R32 updated
g((((phase = PREPARATION and prepPhase = TUBING SYSTEM) or (phase = INITIATION and bp status der =

START)) and (passed1Msec and currentSAD != PERMITTED and current air vol != PERMITTED and not
error(SAD ERR))) implies x(error(SAD ERR) and alarm(SAD ERR)))

9.2.4 Third refinement: ending phase

The third refinement extends the second refinement by refining the ENDING phase.
As shown in Figure 9.11a, the ending consists in a sequence of activities (specified
by function endingPhase).

When in REINFUSION, the phase is further refined by reinfusionPhase, whose
semantic visualization is shown in Figure 9.11b. The reinfusion consists in an
initial sequence of activities for starting the infusion of the saline solution, followed
by a loop in which the doctor performs the solution reinfusion. Rule r choose -
next reinf step is responsible for deciding the loop termination: either going to

143

Chapter 9. Hemodialysis machine case study

(a) Ending phase

(b) Reinfusion phase

Figure 9.11: Third refinement – Semantic visualization

START SALINE REIN (i.e., the operator decides to continue the reinfusion) or to
REMOVE VEN (i.e., the operator disconnects the patient). To complete modelling at
this level, AsmRefProver was used to prove that this model is a correct stuttering
refinement of the second refinement.

Validation and Verification

Model review did not find any meta-property violation in this model. For this
model, we wrote scenarios for reproducing the occurrence of some errors. Code 9.5
shows the scenario that triggers error TEMP HIGH related to high temperature
of the dialyser fluid during the preparation phase. When the temperature ex-
ceed the upper limit, the model raises and error and an alarm. The alarm is
reset by the user, while the error is reset when the current value of the tem-
perature is within the limits. We can see that in this scenario we reused some
sub-blocks of block preparationPhase defined in scenario completeTherapyRef1
(see Code 9.3) as, for example, automaticTest and connectConcentrate. We
did not use the whole block because the instructions related to the dialyser rinsing
had to be changed in order to trigger the error. Indeed, blocks defined in scenario
completeTherapyRef2 and completeTherapyRef3 are used. In this refinement
step, we were able to prove three more requirements. The first is a general re-

144

9.2. Modelling by refinement

scenario installTubingTempHigh

load HemodialysisRef3.asm

execblock completeTherapyRef3.initStateEnd;

execblock completeTherapyRef1.automaticTest;
execblock completeTherapyRef1.connectConcentrate;
execblock completeTherapyRef1.setRinsingParam;
execblock completeTherapyRef1.installTubingSystem;
execblock completeTherapyRef1.prepareHeparin;
execblock completeTherapyRef1.setTreatmentParam;

check rinsePhase = FILL ART CHAMBER;
set current temp := HIGH;
set reset alarm := false;
step
check error(TEMP HIGH) = true;
check alarm(TEMP HIGH) = true;
set arterial chamber filled := false;
step
check rinsePhase = FILL ART CHAMBER;

Code 9.5: Scenario for the third refinement –
Triggering of error TEMP HIGH

set current temp := HIGH;
set reset alarm := false;
step
check error(TEMP HIGH) = true;
check alarm(TEMP HIGH) = true;
set arterial chamber filled := false;
step
check rinsePhase = FILL ART CHAMBER;
set arterial chamber filled := true;
step
set reset alarm := true;
step
check alarm(TEMP HIGH) = false;
set current temp := PERMITTED;
step
check dialyzer connected status = true;
check error(TEMP HIGH) = false;
step
...

execblock completeTherapyRef2.initiationPhase;
execblock completeTherapyRef3.endingPhase;

quirements about blood pump, it states that “Once “empty dialyser” has been
confirmed, the BP cannot be started anymore.”
//S11
g(empty dialyzer implies g(bp status der = STOP))

The other two requirements specifies conditions about venous pressure and
arterial pressure during reinfusion phase:
• R12: “if the software detects that the pressure at the VP transducer exceeds

+350mmHg for more than 3 s, then the software shall stop the BP and
execute an alarm signal.”

• R13: “if the software detects that the pressure at the AP transducer falls
below 350mmHg for more than 1 s, then the software shall stop the BP
and execute an alarm signal.”

//R12
g((phase = ENDING and endingPhase = REINFUSION and not(error rein press) and not(error bp) and

bp status der = START and not(error(REIN VP UP)) and current vp = HIGH and passed3Sec) implies x(
error(REIN VP UP) and alarm(REIN VP UP)))

//R13
g((phase = ENDING and endingPhase = REINFUSION and not(error rein press) and not(error bp) and

bp status der = START and not(error(REIN AP LOW)) and current ap = TOOLOW and passed1Sec) implies
x(error(REIN AP LOW) and alarm(REIN AP LOW)))

Moreover, we could refine the property related to requirements R23-R32 in
order to take into consideration also the ending phase.
//R23−R32 updated
g((((phase = PREPARATION and prepPhase = TUBING SYSTEM) or (phase = INITIATION and bp status der =

START) or (phase = ENDING and endingPhase = REINFUSION and not error rein press and bp status der
= START)) and (passed1Msec and currentSAD != PERMITTED and current air vol != PERMITTED and
not error(SAD ERR))) implies x(error(SAD ERR) and alarm(SAD ERR)))

Note that there are four requirements that we do not consider in our work.
They are related to aspects that we do not capture because of abstraction, re-
quirements S7-S10 refer to continuous values of the blood flow rate, while we have
discretized them.

145

Chapter 9. Hemodialysis machine case study

9.3 Conformance checking

The implementation of the hemodialysis device is not accessible. Therefore, a
prototypical implementation in Java of the hemodialysis device software has been
built, in order to show the last part of the ASM-based process, i.e., the confor-
mance checking between the implementation and the specification) and how the
process can help to perform the activities required by steps 5.5-5.7 of the IEC
62304 standard, as well as step 5.8 on subsequent releases of medical software.
Techniques of conformance checking are also useful for validation coverage and
re-verification of software upon changes, as required by the FDA principles. The
implementation faithfully reflects (or, at least, it should) the case study require-
ments; however, some components (e.g., the connection with the hardware) have
not been implemented and so they have been substituted with mock objects. Part
of the Java implementation is shown in Code 9.6.

import org.asmeta.monitoring.∗;

@Asm(asmFile = ”models/HemodialysisRef3.asm”)
public class HemodialysisMachine {
HemodialysisMachinePanel dialog;

@FieldToFunction(func = ”phase”)
Phases phase = Phases.PREPARATION;
@FieldToFunction(func = ”preparing DF”)
boolean preparing DF = false;
@FieldToFunction(func = ”initPhase”)
InitPhase initPhase = InitPhase.CONNECT PATIENT;
...
@Monitored(func = ”interrupt dialysis”)
boolean interrupt dialysis = false;
@Monitored(func = ”error heparin resolve”)
boolean error heparin resolve = false;
@Monitored(func = ”blood conductivity”)
int blood conductivity = HIGH;
...

public HemodialysisMachine() {
dialog = new HemodialysisMachinePanel(this);
dialog.setDefaultCloseOperation(JDialog.DISPOSE ON CLOSE);
dialog.setVisible(true);
}

@RunStep
public void execDialysis() {
if (phase == Phases.PREPARATION) {
...
...
dialog.updateGUI();
}

@MethodToFunction(func=”error”)
public boolean error(AlarmErrorType aet){
return error[aet.ordinal()];
}
}

Code 9.6: Java implementation of the HMCS

Note that the implementation has many details that are not present in the spec-
ification, as the graphical user interface written in Swing (shown in Figure 9.12).

Figure 9.12: Hemodialysis device program GUI

Conformance checking can be done offline (i.e., before the deployment) by MBT

146

9.3. Conformance checking

(Model Based Testing) or online (i.e., after the deployment) by RV (Runtime
Verification). In this application the former approach has been applied to the case
study . In MBT [73,129], abstract test sequences are derived from the specification;
such sequences are then concretized in tests for the implementation. In order
to generate abstract test sequences, we use the tool ATGT [64]. The tool first
derives from the specification some test goals (called test predicates) according to
some coverage criteria [63], and then generates sequences for covering these goals.
For example, the update rule coverage criterion requires that each update rule is
executed at least once in a test sequence and the update is not trivial (i.e., the
new value is different from the current value of the location). The tool uses a
classical approach based on model checking for generating tests. The ASM model
is translated in the language of a model checker, and each test goal is expressed as
a temporal property (called trap property); if the trap property is proved false, the
returned counterexample is the abstract test sequence covering the test goal (and
possibly also other test goals). For this work, ATGT has been extended in order to
work with the model checker NuSMV. For the case study, we used the structural
coverage criteria presented in [64]; ATGT built 980 test predicates and generated
183 tests for covering them (in around 2 hours). Note that each generated test
can cover more than one test predicate and we avoid generating tests for already
covered test predicates. An example of test predicate for the update rule coverage
criterion is:
phase = INITIATION and initPhase = THERAPY RUNNING and therapyPhase = THERAPY EXEC and

interrupt dialysis and therapyPhase != THERAPY END

requiring to observe a state in which the update rule of therapyPhase to THERAPY -
END fires and therapyPhase is not already equal to THERAPY END. Note that a
sequence covering this test predicate is guaranteed to exist if the specification has
been previously checked with model review and no violation of MP4 (requiring
that all the update rules are not always trivial) occurred. The sequence covering
the predicate is shown in Figure 9.13. We can see that the test predicate holds in

- State 1 -
phase = PREPARATION
initPhase = CONNECT_PATIENT
therapyPhase = START_HEPARIN
interrupt_dialysis = FALSE
...

...
- State 46 -
phase = INITIATION
initPhase = CONNECT_PATIENT
therapyPhase = START_HEPARIN
interrupt_dialysis = FALSE
...

...
- State 53 -
phase = INITIATION
initPhase = CONNECT_PATIENT
therapyPhase = START_HEPARIN
interrupt_dialysis = FALSE
...
- State 54 -
phase = INITIATION
initPhase = THERAPY_RUNNING
therapyPhase = START_HEPARIN
interrupt_dialysis = FALSE
...

- State 55 -
phase = INITIATION
initPhase = THERAPY_RUNNING
therapyPhase = THERAPY_EXEC
interrupt_dialysis = TRUE
...

Figure 9.13: Abstract test sequence

the last state of the sequence. In order to concretize the abstract test sequences
into tests for the implementation, we need to provide a linking between the speci-
fication and the implementation. In [21], a technique is proposed to do the linking
using Java annotations. The different annotations are:
• associate a Java class with the corresponding ASM model (@Asm);

147

Chapter 9. Hemodialysis machine case study

• associate the ASM state with the Java state:
– @FieldToFunction connects a Java field with an ASM controlled func-

tion;
– @MethodToFunction connects a Java pure (i.e., returning a value but not

modifying the object state) method with an ASM controlled function;
– @Monitored connects a Java field with an ASM monitored function; such

fields represent the inputs of the Java class that take their value from
the environment (as monitored functions in ASMs).

• associate the ASM behavior with the Java object behavior; @RunStep is used
to annotate methods whose execution corresponds to a step of the ASM
model.

Given the mapping provided by the Java annotations, the abstract test se-
quences are translated in JUnit tests following the technique described in [22].
For example, Code 9.7 shows the JUnit test corresponding to the sequence shown
in Figure 9.13.

@Test
public void test() {
HemodialysisMachine sut = new HemodialysisMachine();
// check conformance
assertEquals(Phases.PREPARATION, sut.phase);
assertEquals(InitPhase.CONNECT PATIENT, sut.initPhase);
assertEquals(TherapyPhase.START HEPARIN, sut.therapyPhase);
...
// set monitored
sut.interrupt dialysis = false;
...
// perform step
sut.execDialysis();
...

sut.execDialysis();
// check conformance
assertEquals(Phases.INITIATION, sut.phase);
assertEquals(InitPhase.THERAPY RUNNING, sut.initPhase);
assertEquals(TherapyPhase.THERAPY EXEC, sut.therapyPhase);
...
// set monitored
sut.interrupt dialysis = true;
// perform step
sut.execDialysis();
}

Code 9.7: JUnit test

(a) JUnit failures (b) Code coverage

Figure 9.14: JUnit testing results

Each test is built by creating the initialization of the Java class and then, for
each state of the corresponding abstract test sequence:
• update the fields annotated with @Monitored to the values of the correspond-

ing ASM functions. In the example, field interrupt dialysis is updated
to the value of the homonymous ASM function.

• invoke the method annotated with @RunStep. In the example, method exec-
Dialysis() (see Code 9.6) is executed.

148

9.4. Related Work

• add JUnit assert commands that check that the Java state is conformant
with the ASM state; they check that the values of the fields annotated with
@FieldToFunction and the values returned by the methods annotated with
@MethodToFunction are equal to the values of the corresponding ASM func-
tions. In the example, fields phase, initPhase, therapyPhase, . . . are linked
with @FieldToFunction and checked during conformance checking.

We run all the 183 tests (divided in multiple JUnit files) and we actually
found some conformance violations (i.e., some tests failed. See Figure 9.14a).
We analysed the failing tests and we discovered that the authors writing the
implementation misunderstood some requirements. Consequently, the errors were
fixed. The coverage obtained by the tests is shown in Figure 9.14b: our tests
were able to cover more than 90% of the Java code. Although the obtained
coverage is already high, we found that some parts of the code are not covered,
since the structure of the code in some parts is different from the structure of
the specification. Using structural coverage criteria for test generation may not
guarantee the full coverage.

9.4 Related Work

The hemodialysis machine case study has been developed by other four groups of
researchers.

The authors of paper [75] model the system using iUML-B notation and then
they verify the behaviour using the deductive theorem proving and model check-
ing. Furthermore, the model is validated using the animation technique. The
final model is translated into a sequential programming language code using a
semi–automatic process. The limitation of this approach is that the translator
translates only a subset of the B syntax.

The solution presented in [33] applies Hybrid Event-B to explicitly focus on con-
tinuously varying state evolution. This approach distinguishes between discrete
and continuous elements of hemodialysis machine but the tool do not support all
features of the notation.

The authors of paper [67] show a solution based on Circus. The solution spec-
ifies the concurrent and parallel aspects of the system and it focuses on timing
properties. The model presented is not verified because there are not tools that
support Circus specification. The model is translated in Communicating Sequen-
tial Processes (CSP) and the specification is verified using CSP model checker.

The solution in paper [60] is based on the graphical notation Algebraic State-
Transition Diagrams (ASTD) and Event-B. The graphical notation simplifies the
validation of the model, while the verification is performed using the theorem
prover and model checker of Event-B.

9.5 Conclusions

The hemodialysis machine case study is a complex application of ASMs using
Asmeta framework. The notation used is easy to understand and the visualization
tool helps the developer to follow better the behaviour of the machine. Asmeta
framework provides tools to perform simulation, model review, model checking,

149

Chapter 9. Hemodialysis machine case study

and conformance checking. It gives a grasp on the notion of correctness far better
than the approaches which are comprised of only a subset of the employed analysis
techniques in this work. Another advantage of Asmeta framework is to allow the
modelling of the systems using the refinement technique. It helps to manage
the complexity of the development process in case of complex system (as the
hemodialysis machine).

150

Conclusions and Future Work

In this thesis, we have proposed a formal method to perform validation and veri-
fication of ASMs models. Furthermore, a code generator from ASMs to C++ for
Arduino platform is introduced. Subsequently, the process is applied to two case
studies: stereoacuity software and hemodialysis machine. Due to the criticality of
medical software we have identified standards and regulations for the certification
of the software. Moreover, before starting the work on this topic, we applied SLR
to understand the current applications of formal methods to medical devices. The
works presented in this thesis have been published in different forms in journal
papers, conference papers, and book chapters. The list of publications is reported
in Appendix B.

In the next sections, we summarise the contribution of the thesis and describe
some possible future works.

Contributions of the thesis

In Part I, we described the regulations for medical device software certification
(see Chapter 2) and which is the state of the art of formal methods to certify
software in medical devices (see Chapter 3).

In Chapter 2, we presented standards and guidelines applicable to produce
certifiable software. It is the responsibility of competent authorities to release
the certification based on the software documentation and on the results of some
specific tests.

In systematic literature review (see Chapter 3), 71 publications are analysed.
Quantitative and qualitative analysis (see Sect. 3.1.2) are performed to provide
information that can help researchers working within this domain. We found that
the number of publications per year is still growing due to the critical issue of
the topic. Due to the novelty of the topic, a lot of authors that have published
only once and only a few authors have published more than two papers. The
communities have applied several formal methods, the most used are automata,
Event-B, Z and EFSM (Tables 3.3). The notations are applied to distinct case
studies which results are summarized in Table 3.4. Each notations is supported by

151

Chapter 9. Hemodialysis machine case study

tools to perform different activities which are summarised in Table 3.5. Analysing
the table, the most used tools are B tools, MATLAB and Simulink, and UPPAAL.

Chapter 4 is a background chapter. We proposed a process to model, to validate
and to verify a system using ASMs. After that, we shown the compliance of ASM
process with the standard and regulation, presented in Chapter 2, to develop
medical software: IEC62304 and FDA principles. The main advantages offered
to the standards are: (i) an iterative software life cycle; (ii) models as a rigorous
means for safety properties assurance; (iii) validation and verification performed
continuously along the software life cycle, and always aimed at defect prevention;
(iv) software quality evaluation performed in an objective and repeatable manner;
and (v) demonstration that software has been validated and verified.

In ASMs community, there are different notations and tools to perform mod-
elling, validation and verification, but it is not possible to interoperate with the
tools. We tried to deal with this problem by implementing a common language
UASM (see Chapter 5) that the community can use to share models. For this rea-
son, we have developed a parser and an editor for UASM models. Furthermore,
we have developed the translator from UASM to AsmetaL that allow to the user
of UASM to use also the tools of Asmeta framework to perform different analysis.

A tool for visualization of ASMs models is presented in Chapter 6 to improve
the readability and understandability of ASMs models. We have proposed a graph-
ical notation for ASMs, and we have defined visual patterns that capture, in a
concise way, different recurring ASMs rule patterns. The representation concerns
only the transition rules and not the signature of the model.

In Chapter 7 we have presented a code generator to translate formal specifi-
cation to code automatically. The tool generates C++ from formal specifications
written in UASM dialect. The source code is obtained from requirement models
by applying a set of M2T transformations. Since the analysis tools accept for-
mal specifications written in AsmetaL, the translator from UASM to AsmetaL is
used for the V&V activities. In this way, the specification can be analysed using
Asmeta framework tools and subsequently it can be translated into C++ code.

In Part III, we presented two case studies: a medical software used for mea-
suring the stereoacuity and a hemodialysis machine. For both case studies, we
followed the process presented in Chapter 4; starting from the specification we ap-
plied validation (simulation and model review) and property verification (model
checking) by using model refinement. Finally, the conformance of the imple-
mentation w.r.t. the specification can be checked through testing and runtime
verification.

Future work

We here describe some of the possible improvements of the works presented in
this thesis.

Systematic Literature Review The work presented in this thesis analyses
papers until the end of 2016. In the results of the analysis the newest papers are
missed. The next step is to integrate continuously the new papers into the SLR
process defined in Figure 3.1. The results will help to monitor the current state

152

9.5. Conclusions

of the art about the application of formal methods to medical devices. We will
also investigate new techniques to include the major number of papers about the
topic of the SLR.

Standards and regulations Standards and regulations are continuously up-
dated to fit the current state of the medical software that is continuously in
evolution. We plan to monitor the evolution of the standards.

ASMs The ASM process has been compared with the requirements of the
standards. The next step will be to better define how the ASMs can be integrated
to make them completely conform to the regulations. Furthermore, it is interest-
ing to understand how ASMs can help the user during the software certification
process.

Visualization for ASMs Currently the tool translates the textual repre-
sentation of the ASMs into the graphical representation making available some
patterns. As future work, we plan to identify new visual patterns and to define
visual trees for all the turbo rules. Regarding the tool, we plan to implement a
second usage: from graphical to textual representation. It consists in graphically
specifying the ASMs by drawing the graph. In this way, the modeller can focus on
the high level structure of the model. Once the modeller has produced the graph,
a translator can translate the graph in an AsmetaL textual model. Then, the
AsmetaL parser may find some faults that passed undetected during graph vali-
dation.

Code generation At the moment the generator misses the translation of some
rules and constructors, the future work will be to complete the tool. Furthermore,
we plan to extend the tool with an automatic test cases generator. From the ASMs
specification, a series of tests can be automatically generated and they could be
executed on the Arduino board. This would test both the system and the transla-
tion from the specification to the code. We plan to work on the validation of the
translation itself. We have tried to define our mapping from specification concepts
(like state and rules) to source code as clear as possible and we are convinced of
its correctness, i.e., that the generated code preserves the same behaviour as de-
scribed by the original specification. As future work, we plan to work on proving
the correctness of the code transformation. At present in Chapter 7, an informal
prove of the transformation correctness is shown. Considering code generator,
we are planning to develop a code generator from ASMs to Java by defining a
mapping of ASMs elements to Java language constructs.

Case study FDA provides a complete description of a infusion pump case
study2, in order to allow the application of different approaches, increase user
awareness, proactively facilitate device improvements, and publish new guidance
for industry. We want to apply the approach presented in Chapter 4 to check how

2http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/
InfusionPumps/default.htm

153

http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/default.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/default.htm

Chapter 9. Hemodialysis machine case study

it behaves in a real application and we will compare the results with the other
available in literature.

154

APPENDIXA
IEC and ISO deliverables

IEC and ISO do not develop only standards, but also other documents that users
can follow as a guide.

IEC deliverables

IEC Technical Committees and Subcommittees (TCs/SCs) develop International
Standards and other type of publications. They are divided into two categories:
• Normative publications: provide agreements on the technical description

about product characteristics;
• Informative publications: provide information such as procedures or guide-

lines.
Furthermore the IEC publishes the following deliverables:
• Technical Specifications (TS)
• Publicly Available Specification (PAS)
• Amendments
• Technical Corrigenda
• Interpretation Sheets
• Technical Report (TR)
• Guides
International Standards is a normative document which has been approved

by IEC National Committee members and it is adopted by international standards
organization.

Technical Specifications (TS) has same details and information as Inter-
national Standards, but have not yet passed through all approval stages or the
subject under question is still under development.

155

Appendix A. IEC and ISO deliverables

Publicly Available Specification (PAS) is a publication responding to an
urgent market need.

Amendments is a normative document and alters and/or adds technical pro-
visions in an existing International Standard.

Technical Corrigenda is issued to correct a technical error or ambiguity in
an International Standard, TS, PAS or TR; or to correct information that has
become outdated since publication.

Interpretation Sheets provides a quick formal explanation to an urgent re-
quest by users.

Technical Report (TR) is an informal document that contains data different
from those published in International Standard (e.g. data obtained from a survey,
data of work, state of the art in relation to standards).

Guides give rules, orientation, advice or recommendations relating to interna-
tional standardization and conformity assessment.

ISO deliverables

ISO technical committees deliver International Standards and the following deliv-
erables:
• New work item Proposal (NP)
• Committee draft (CD) or Publicly Available Specification (PAS)
• Technical Specification (TS)
• Technical Report (TR)
• Final Draft International Standard (FDIS)
• International Workshop Agreement (IWA)
• Guide
ISO Standards are normative documents, which have been approved by the

ISO membership and members of the responsible committee.
Committee draft (CD) or Publicly Available Specification (PAS) PAS

is a normative document representing the consensus within a working group. It
shall be review at least every three years and, after six years, PAS shall either be
converted into an International Standard or be withdrawn.

Technical Specification (TS) is a normative document representing the
technical consensus within an ISO committee. This document is drawn up in
cases in which there was insufficient support for the publication of a standards.
TS shall be review at least every three years and, after six years, it shall either be
converted into an International Standard or be withdrawn.

Technical Report (TR) is an informative document containing information
of a different kind from that normally published in a normative document.

International Workshop Agreement (IWA) is an ISO document produced
through workshop meeting(s).

Guides provide guidance to technical committees for the preparation of stan-
dards.

156

APPENDIXB
Publications

1. A Low-cost Virtual Reality Game for Amblyopia Rehabilitation
(co-authors: A. Gargantini, F. Terzi, M. Zambelli)
in Proceedings of the 3rd 2015 Workshop on ICTs for Improving Patients
Rehabilitation Research Techniques, ACM, (2015): 81–84, 978-1-4503-3898-1
Abstract: The paper presents the design and development of a mobile ap-
plication realizing a video game that aims at treating amblyopia by using a
Google Cardboard. Google Cardboard is a low cost device able to reproduce
virtual reality by means of a smartphone. The proposed video game engaged
the patient in a car racing game and it displays the same image to the eyes,
but with some differences that stimulate the lazy eye more than the normal
eye.

2. A Mobile Application for the Stereoacuity Test
(co-authors: A. Gargantini, A. Vitali)
in Digital Human Modeling. Applications in Health, Safety, Ergonomics and
Risk Management: Ergonomics and Health: 6th International Conference,
DHM 2015, Held as Part of HCI International 2015, LNCS, Springer Inter-
national Publishing, (2015): 315–326, 978-3-319-21070-4
Abstract: The research paper concerns the development of a new mobile ap-
plication emulating measurements of stereoacuity using Google Cardboard.
Stereoacuity test is based on binocular vision that is the skill of human beings
and most animals to recreate depth sense in visual scene. Google Cardboard
is a very low cost device permitting to recreate depth sense of images showed
on the screen of a smartphone. Proposed solution exploits Google Cardboard
to recreate and manage depth sense through our mobile application that has
been developed for Android devices. First, we describe the research context

157

Appendix B. Publications

as well as the aim of our research project. Then, we introduce the concept of
stereopsis and technology used for emulating stereoacuity test. Finally, we
portray preliminary tests made so far and achieved results are discussed.

3. A preliminary systematic literature review of the use of formal
methods in medical software systems
(co-authors: A. Gargantini, A. Mashkoor)
in Industrial Proceedings of the 23rd European & Asian System, Software
& Service Process Improvement & Innovation (EuroAsiaSPI2 2016), (2016):
9.15–9.23, 978-87-998116-6-3
Abstract: The use of formal methods is often recommended to guarantee
the provision of necessary services and to assess the correctness of critical
properties, such as safety, security and reliability, in medical and healthcare
systems. Several research groups have proposed and applied formal meth-
ods related techniques to the design and development of medical soft-ware
and systems. However, a systematic and inclusive survey with some form of
analysis is still missing in this domain. For this reason, we have collected
the relevant literature on the use of formal methods to the modelling, design,
development, verification and validation of medical software systems. We ap-
ply the well-known systematic literature review technique and we run several
queries in order to obtain information that can be useful for people working
in this area. We present some research questions and the data answering
these questions. We also discuss some limitations of the adopted approach
and how to address these issues in order to have a comprehensive survey.

4. Asm2C++: a tool for Code Generation from Abstract State Machines
to Arduino
(co-authors: M. Carissoni, A. Gargantini, A. Mashkoor)
in NASA Formal Methods Symposium (NFM) 2017
Abstract: This paper presents Asm2C++, a tool that automatically gener-
ates executable C++ code for Arduino from a formal specification given as
Abstract State Machines (ASMs). The code generation process follows the
model-driven engineering approach, where the code is obtained from a for-
mal abstract model by applying certain transformation rules. The translation
process is highly configurable in order to correctly integrate the underlying
hardware. The advantage of the Asm2C++ tool is that it is part of the Asmeta
framework that allows to analyze, verify, and validate the correctness of a
formal model.

5. Formal validation and verification of a medical software critical
component
(co-authors: P. Arcaini, A. Gargantini, A. Mashkoor, E. Riccobene)
in Formal Methods and Models for Codesign (MEMOCODE), 2015 ACM/IEEE
International Conference, ACM, (2015): 80–89, 978-1-5090-0237-5
Abstract: Medical device software malfunctioning can lead to injuries or
death for humans and, therefore, its development should adhere to certifi-
cation standards. However, these standards establish general guidelines on
the use of common software engineering activities without any indication re-

158

garding methods and techniques to assure safety and reliability. This paper
presents a formal development process, based on the Abstract State Machine
method, that integrates most of the activities required by the standards. The
process permits to obtain, through a sequence of refinements, more detailed
models that can be formally validated and verified. Offline and online test-
ing techniques permit to check the conformance of the implementation w.r.t.
the specification. The process is applied to the validation of the sam medical
software, that is used to measure the patients’ stereoacuity in the diagnosis
of amblyopia.

6. How to Assure Correctness and Safety of Medical Software: The
Hemodialysis Machine Case Study
(co-authors: P. Arcaini, A. Gargantini, E. Riccobene)
in Abstract State Machines, Alloy, B, TLA, VDM, and Z: 5th International
Conference, ABZ 2016, LNCS, Springer International Publishing, (2016):
344–359, 978-3-319-33600-8
Abstract: Medical devices are nowadays more and more software dependent,
and software malfunctioning can lead to injuries or death for patients. Several
standards have been proposed for the development and the validation of
medical devices, but they establish general guidelines on the use of common
software engineering activities without any indication regarding methods and
techniques to assure safety and reliability. This paper takes advantage of the
Hemodialysis machine case study to present a formal development process
supporting most of the engineering activities required by the standards, and
provides rigorous approaches for system validation and verification. The
process is based on the Abstract State Machine formal method and its model
refinement principle.

7. Unified Syntax for Abstract State Machines
(co-authors: P. Arcaini, M. Dausend, A. Gargantini, A. Mashkoor, A. Raschke,
E. Riccobene, P. Scandurra, M. Stegmaier)
in Abstract State Machines, Alloy, B, TLA, VDM, and Z: 5th International
Conference, ABZ 2016, LNCS, Springer International Publishing, (2016):
231–236, 978-3-319-33600-8
Abstract: The paper presents our efforts in defining UASM, a unified syntax
for Abstract State Machines (ASMs), based on the syntaxes of two of the
main ASM frameworks, CoreASM and Asmeta, which have been adapted to
accept UASM as input syntax of all their validation and verification tools.

8. Visual Notation and Patterns for Abstract State Machines
(co-authors: P. Arcaini, A. Gargantini, E. Riccobene)
in Software Technologies: Applications and Foundations: STAF 2016 Col-
located Workshops: DataMod, GCM, HOFM, MELO, SEMS, VeryComp,
LNCS, Springer International Publishing, (2016): 163–178, 978-3-319-50230-
4
Abstract: Formal models are a rigorous way to specify informal system
requirements. However, they are not widely used in practice, since they
are considered difficult to develop and understand. Visualization is often

159

Appendix B. Publications

considered a good means for people to communicate and to get a common
understanding. We here make a proposal of a visual notation for Abstract
State Machines (ASMs), and we introduce visual trees that visualize ASM
transition rules. In addition to these graphical components that are based
only on the syntactical structure of the model, we also present visual patterns
that permit to visualize part of the behavior of the machine. A tool is also
available to graphically represent ASM models using the proposed notation.

160

List of Acronyms

AP Arterial Pressure

ASMs Abstract State Machines

BP Blood Pump

CTL Computational Tree Logic

DB Data Base

EBC Extracorporeal Blood Circuit

EBNF Extended Backus-Naur form

IEC International Electrotechnical Commission

ISO International Organization for Standardization

LTL Linear Temporal Logic

MBT Model Based Testing

PEMS Programmable Electronic Medical Systems

RV Runtime Verification

SLR Systematic Literature Review

SMT Satisfiability Modulo Theories

UASM Unified Abstract State Machines

VP Venous Pressure

VRD Venous Red Detector

V&V Validation and Verification

161

List of Figures

2.1 Integration of standards with IEC 62304:2006 13

3.1 SLR Process . 19
3.2 RQ1: Trend of publications . 24
3.3 RQ2: Types of publications . 24
3.4 RQ2: Publications in Journal/Proceedings per year 25
3.5 RQ3: Number of papers by the same author 25
3.6 RQ4: Number of citations/publication 26

4.1 ASMs State–Transition . 37
4.2 ASMs development process . 39

5.1 From UASM specification to AsmetaL specification 69

6.1 Visual notation . 75
6.2 Structural pattern – Nested guards pattern 77
6.3 Semantic pattern – Mutual exclusive guards pattern 78
6.4 Semantic pattern – State pattern 79
6.5 Semantic pattern – State flow pattern 80
6.6 Example 1: Semantic pattern – State flow pattern 81
6.7 Example 2: Semantic pattern – State flow pattern 81
6.8 AsmetaVis tool . 83
6.9 Example 1: visual notation using the tool - in red the navigations

links . 83

7.1 M2T Transformation . 86
7.2 M2M Transformation . 87
7.3 Flow Diagram: transformation process from UASM specification to

Arduino project. 90
7.4 Parsing process . 91
7.5 Code generator process . 91
7.6 Merge process . 92

163

List of Figures

7.7 ASM state transition . 93
7.8 ASM and C++ correspondence . 93
7.9 Plug-in screenshot . 99
7.10 Control system architecture . 100
7.11 Snippets from model and code . 105

8.1 3D technologies . 113
8.2 StereoAcuity tests . 115
8.3 Lancaster test and Aniseikonia measurement 115
8.4 Treatments for visual diseases . 116
8.5 Stuttering refinement from the second refinement model to the third

refinement model – Example of refined run 119
8.6 Wrap class for testing . 122

9.1 Hemodialysis machine: schema . 127
9.2 Ground model basic visualization 131
9.3 Ground model semantic visualization 131
9.4 Ground model phases . 132
9.5 Preparation rule: semantic visualization 132
9.6 Treatment parameters . 133
9.7 Hemodialysis case study – Relation between a refined run and an

abstract run . 134
9.8 Check temperature upper limit . 134
9.9 Simulation trace of first refinement model 135
9.10 Second refinement – Semantic visualization 138
9.11 Third refinement – Semantic visualization 144
9.12 Hemodialysis device program GUI 146
9.13 Abstract test sequence . 147
9.14 JUnit testing results . 148

164

List of Tables

2.1 IEC 62304 software development process 12

3.1 Number of queries and entries for each repository 22
3.2 Publications with most citations 27
3.3 Notations used in the literature . 28
3.4 Application of formal methods to medical devices 32
3.5 Tools used for each methodology 33

6.1 visT: Mapping from ASM transition rules to visual trees 76
6.2 Experimental results of preliminary evaluation of visual notation . 84

7.1 ASM and C++ correspondence . 94
7.2 Parallelism: translation in C++ . 95
7.3 Nondeterminism: translation in C++ 96
7.4 Domain definition: translation from UASM to C++ 97
7.5 Rules: translation from UASM to C++ 106
7.6 Terms: translation from UASM to C++ 107

8.1 3D4Amb applications and technologies 113
8.2 Code coverage . 123

9.1 Hemodialysis device phases . 130

165

Bibliography

[1] ISO 13485:2003 – Medical devices – Quality management systems – Require-
ments for regulatory purposes, 2003.

[2] IEC 60601-1:2005 – Medical electrical equipment – Part 1: General require-
ments for basic safety and essential performance, 2005.

[3] IEC 62304:2006 – Medical device software – Software lifecycle processes,
2006.

[4] ISO 14971:2007 Medical devices – Application of risk management to med-
ical devices, 2007.

[5] ISO/IEC 12207:2008 – Systems and software engineering – Software life
cycle processes, 2008.

[6] IEC/TR 80002-1:2009 – Medical device software – Part 1: Guidance on the
application of ISO 14971 to medical device software, 2009.

[7] IEC 61010-1:2010 – Safety requirements for electrical equipment for mea-
surement, control, and laboratory use - Part 1: General requirements, 2010.

[8] IEC 61508-3:2010 – Functional safety of electrical/electronic/programmable
electronic safety-related systems - Part 3: Software requirements, 2010.

[9] ISO/IEC TR 24774:2010 – Systems and software engineering – Life cycle
management – Guidelines for process description, 2010.

[10] IEC/TR 80002-3:2014 – Medical device software – Part 3: Process reference
model of medical device software life cycle processes, 2014.

[11] ISO/IEC 90003:2014 – Software engineering – Guidelines for the application
of ISO 9001:2008 to computer software, 2014.

[12] M. Abadi and L. Lamport. Composing specifications. ACM Transactions
on Programming Languages and Systems, 15(1):73–132, 1993.

167

Bibliography

[13] A.J. Abbate, A.L. Throckmorton, and E.J. Bass. A Formal Task-Analytic
Approach to Medical Device Alarm Troubleshooting Instructions. IEEE
Transactions on Human-Machine Systems, 46(1):53–65, 2016.

[14] R. Alur, D. Arney, E.L. Gunter, I. Lee, J. Lee, W. Nam, F. Pearce, S. Van Al-
bert, and J. Zhou. Formal specifications and analysis of the computer-
assisted resuscitation algorithm (CARA) Infusion Pump Control System.
International Journal on Software Tools for Technology Transfer, 5(4):308–
319, 2004.

[15] P. Arcaini, S. Bonfanti, A. Gargantini, A. Mashkoor, and E. Riccobene.
Formal validation and verification of a medical software critical component.
In Formal Methods and Models for Codesign (MEMOCODE), pages 80–89.
Institute of Electrical and Electronics Engineers Inc., 2015.

[16] P. Arcaini, S. Bonfanti, A. Gargantini, and E. Riccobene. How to assure
correctness and safety of medical software: The hemodialysis machine case
study. In International Conference on Abstract State Machines, Alloy, B,
TLA, VDM, and Z - ABZ 2016, volume 9675, pages 344–359. Springer
International Publishing, 2016.

[17] P. Arcaini, S. Bonfanti, A. Gargantini, and E. Riccobene. Visual notation
and patterns for abstract state machines. In Paolo Milazzo, Dániel Varró,
and Manuel Wimmer, editors, Software Technologies: Applications and
Foundations: STAF 2016 Collocated Workshops: DataMod, GCM, HOFM,
MELO, SEMS, VeryComp, Vienna Austria, July 4-8, 2016, LNCS, pages
163–178. Springer International Publishing, 2016.

[18] P. Arcaini, S.a Bonfanti, M. Dausend, A.o Gargantini, A. Mashkoor,
A. Raschke, E. Riccobene, P. Scandurra, and M. Stegmaier. Unified syntax
for abstract state machines. In Abstract State Machines, Alloy, B, TLA,
VDM, and Z: 5th International Conference, ABZ 2016, Linz, Austria, May
23-27, 2016, LNCS, pages 231–236. Springer International Publishing, 2016.

[19] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. AsmetaSMV: a
way to link high-level ASM models to low-level NuSMV specifications. In
Proceedings of the 2nd International Conference on Abstract State Machines,
Alloy, B and Z (ABZ 2010), volume 5977 of Lecture Notes in Computer
Science, pages 61–74. Springer, 2010.

[20] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. Automatic Re-
view of Abstract State Machines by Meta Property Verification. In Proceed-
ings of the Second NASA Formal Methods Symposium (NFM 2010), pages
4–13. NASA, 2010.

[21] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. CoMA: Confor-
mance monitoring of Java programs by Abstract State Machines. In Run-
time Verification, volume 7186 of Lecture Notes in Computer Science, pages
223–238. Springer, 2012.

168

Bibliography

[22] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. Combining
model-based testing and runtime monitoring for program testing in the pres-
ence of nondeterminism. In 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation, Workshops Proceedings, Lux-
embourg, March 18-22, 2013, pages 178–187. IEEE, 2013.

[23] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. Rigorous devel-
opment process of a safety-critical system: from ASM models to Java code.
International Journal on Software Tools for Technology Transfer, pages 1–
23, 2015.

[24] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. SMT-based au-
tomatic proof of ASM model refinement. In Software Engineering and For-
mal Methods: 14th International Conference, SEFM 2016, Held as Part of
STAF 2016, Vienna, Austria, July 4-8, 2016, Proceedings, Lecture Notes in
Computer Science, pages 253–269. Springer International Publishing, Cham,
2016.

[25] Paolo Arcaini, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scan-
durra. A model-driven process for engineering a toolset for a formal method.
Software: Practice and Experience, 41:155–166, 2011.

[26] Paolo Arcaini, Roxana-Maria Holom, and Elvinia Riccobene. ASM-based
formal design of an adaptivity component for a cloud system. Formal Aspects
of Computing, 28(4):567–595, 2016.

[27] D. Arney, J.M. Goldman, S.F. Whitehead, and I. Lee. Improving patient
safety with X-Ray and anesthesia machine ventilator synchronization: A
medical device interoperability case study. Communications in Computer
and Information Science, 52:96–109, 2010.

[28] D. Arney, R. Jetley, P. Jones, I. Lee, and O. Sokolsky. Formal methods based
development of a PCA infusion pump reference model: Generic infusion
pump (GIP) project. In High Confidence Medical Devices, Software, and
Systems and Medical Device Plug-and-Play Interoperability, pages 23–33,
Cambridge, MA, June 2007.

[29] D. Arney, I. Lee, J.M. Goldman, and S.F. Whitehead. Synchronizing an
x-ray and anesthesia machine ventilator: A medical device interoperability
case study. In BIODEVICES 2009 - Proceedings of the 2nd International
Conference on Biomedical Electronics and Devices, pages 52–60, 2009.

[30] M.W. Azeem, M. Ahsan, N.M. Minhas, and K. Noreen. Specification of
e-health system using z: A motivation to formal methods. In Convergence
of Technology (I2CT), International Conference for Convergence for Tech-
nology 2014. Institute of Electrical and Electronics Engineers Inc., 2014.

[31] S.M. Babamir and M. Borhani. Formal verification of medical monitoring
software using Z language: A representative sample. Journal of Medical
Systems, 36(4):2633–2648, 2012.

169

Bibliography

[32] M. Balser, O. Coltell, J. Van Croonenborg, C. Duelli, F. Van Harmelen,
A. Jovell, P. Lucas, M. Marcos, S. Miksch, W. Reif, K. Rosenbrand, A. Sey-
fang, and A. Ten Teije. Protocure: Supporting the development of medical
protocols through formal methods. In Studies in Health Technology and
Informatics, volume 101, pages 103–107, 2004.

[33] R. Banach. Hemodialysis machine in Hybrid Event-B. In M. Butler, K.-D.
Schewe, A. Mashkoor, and M. Biro, editors, International Conference on
Abstract State Machines, Alloy, B, TLA, VDM, and Z - ABZ 2016, volume
9675, pages 376–393. Springer Verlag, 2016.

[34] A. Banerjee, Y. Zhang, P. Jones, and S. Gupta. Using formal methods to
improve home-use medical device safety. Biomedical Instrumentation and
Technology, 47(SPRING):43–48, 2013.

[35] B. Barbot, M. Kwiatkowska, A. Mereacre, and N. Paoletti. Estimation and
verification of hybrid heart models for personalised medical and wearable
devices. In Bourdon J. Roux O., editor, International Conference on Com-
putational Methods in Systems Biology - CMSB 2015, volume 9308, pages
3–7. Springer Verlag, 2015.

[36] E. Bartocci, F. Corradini, R. Grosu, E. Merelli, O. Riganelli, and S.A.
Smolka. StonyCam: A formal framework for modeling, analyzing and regu-
lating cardiac myocytes. Concurrency, Graphs and Models, 5065 LNCS:493–
502, 2008.

[37] A. Blandford, A. Cauchi, P. Curzon, P. Eslambolchilar, D. Furniss, A. Gim-
blett, H. Huang, P. Lee, Y. Li, P. Masci, P. Oladimeji, A. Rajkomar,
R. Rukšėnas, and H. Thimbleby. Comparing actual practice and user man-
uals:A case study based on programmable infusion pumps. In Intl. Work-
shop on Engineering Interactive Computing Systems for Medicine and Health
Care., volume 727, pages 59–64, 2011.

[38] S. Bonfanti, M. Carissoni, A. Gargantini, and A. Mashkoor. Asm2C++:
a tool for Code Generation from Abstract State Machines to Arduino. In
NASA Formal Methods Symposium, 2017.

[39] S. Bonfanti, A. Gargantini, and A. Mashkoor. A preliminary systematic lit-
erature review of the use of formal methods in medical software systems. In
23rd EuroAsiaSPI Conference, Graz University of Technology, Graz, Aus-
tria, 2016.

[40] Silvia Bonfanti, Angelo Gargantini, and Andrea Vitali. A mobile application
for the stereoacuity test. In G. Vincent Duffy, editor, Digital Human Mod-
eling. Applications in Health, Safety, Ergonomics and Risk Management:
Ergonomics and Health: 6th International Conference, DHM 2015, Held as
Part of HCI International 2015, Los Angeles, CA, USA, August 2-7, 2015,
Proceedings, Part II, LNCS, pages 315–326. Springer International Publish-
ing, 2015.

170

Bibliography

[41] Egon Börger and Robert F. Stark. Abstract State Machines: A Method for
High-Level System Design and Analysis. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2003.

[42] J. Bowen and S. Reeves. Modelling user manuals of modal medical devices
and learning from the experience. In EICS’12 - Proceedings of the 2012
ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
pages 121–130, 2012.

[43] J. Bowen and S. Reeves. Modelling safety properties of interactive medical
systems. In ACM SIGCHI symposium on Engineering interactive computing
systems, pages 91–100, 2013.

[44] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Soft-
ware Engineering in Practice. Morgan & Claypool, 2012.

[45] Barrett R Bryant, Jeff Gray, Marjan Mernik, Peter J Clarke, Robert B
France, and Gabor Karsai. Challenges and directions in formalizing the se-
mantics of modeling languages. Computer Science and Information Systems,
8(2):225–253, 2011.

[46] Alessandro Carioni, Angelo Gargantini, Elvinia Riccobene, and Patrizia
Scandurra. A Scenario-Based Validation Language for ASMs. In Proceed-
ings of the 1st International Conference on Abstract State Machines, B and
Z (ABZ 2008), volume 5238 of Lecture Notes in Computer Science, pages
71–84. Springer-Verlag, 2008.

[47] M. Carissoni. Automatic Code Generation from Formal Specification:
UASM to C++ for Arduino. Master’s thesis, University of Bergamo, 2016.

[48] V. Cehlot and E.B. Sloane. Ensuring patient safety in wireless medical
device networks. Computer, 39(4):54–60, April 2006.

[49] L. Cordeiro, B. Fischer, H. Chen, and J. Marques-Silva. Semiformal verifica-
tion of embedded software in medical devices considering stringent hardware
constraints. In Proceedings - 2009 International Conference on Embedded
Software and Systems, ICESS 2009, pages 396–403, 2009.

[50] Council of the European Communities. Council Directive 93/42/EEC, 1993.

[51] P. Curran and K. Norrie. An approach to verifying concurrent systems-
a medical information bus (MIB) case study. In Computer-Based Medical
Systems, pages 74–83, Jun 1992.

[52] P. Curzon, P. Masci, P. Oladimeji, R. Rukšėnas, H. Thimbleby, and
E. D’Urso. Human-Computer Interaction and the Formal Certification and
Assurance of Medical Devices: The CHI+ MED Project. EPSRC Pro-
gramme Grants, 2014.

[53] Z. Daw, R. Cleaveland, and M. Vetter. Formal verification of software-
based medical devices considering medical guidelines. International Journal
of Computer Assisted Radiology and Surgery, 9(1):145–153, 2014.

171

Bibliography

[54] N. Decker, F. Kuhn, and D. Thoma. Runtime verification of web services for
interconnected medical devices. In Proceedings - International Symposium
on Software Reliability Engineering, ISSRE, pages 235–244. IEEE Computer
Society, 2014.

[55] J. Ding and X. He. Formal specification and analysis of an agent-based med-
ical image processing system. International Journal of Software Engineering
and Knowledge Engineering, 20(3):311–345, 2010.

[56] Serdar Doğan, Aysu Betin-Can, and Vahid Garousi. Web application testing:
A systematic literature review. J. Syst. Softw., 91:174–201, May 2014.

[57] Nicolas Dulac, Thomas Viguier, Nancy Leveson, and Margaret-Anne Storey.
On the use of visualization in formal requirements specification. In Require-
ments Engineering, 2002. Proceedings. IEEE Joint International Conference
on, pages 71–80. IEEE, 2002.

[58] EU. Directive 2007/47/EC of the European Parliament and of the Council.
Official Journal of the European Union, September 2007.

[59] Giancarlo Facoetti, Angelo Gargantini, and Andrea Vitali. An environment
for domestic supervised amblyopia treatment. In VincentG. Duffy, editor,
Digital Human Modeling. Applications in Health, Safety, Ergonomics and
Risk Management, volume 8529 of Lecture Notes in Computer Science, pages
340–350. Springer International Publishing, 2014.

[60] T. Fayolle, M.a Frappier, F.b Gervais, and R.b Laleau. Modelling a
hemodialysis machine using Algebraic state-Transition Diagrams and B-like
methods. In M. Butler, K.-D. Schewe, A. Mashkoor, and M. Biro, editors,
International Conference on Abstract State Machines, Alloy, B, TLA, VDM,
and Z - ABZ 2016, volume 9675, pages 394–408. Springer Verlag, 2016.

[61] Angelo Gargantini, Mariella Bana, and Flavia Fabiani. Using 3D for rebal-
ancing the visual system of amblyopic children. In Virtual Rehabilitation
(ICVR), 2011 International Conference on, pages 1 –7, june 2011.

[62] Angelo Gargantini, Giancarlo Facoetti, and Andrea Vitali. A random dot
stereoacuity test based on 3d technology. In Proceedings of the 8th Interna-
tional Conference on Pervasive Computing Technologies for Healthcare, Per-
vasiveHealth ’14, pages 358–361, ICST, Brussels, Belgium, Belgium, 2014.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering).

[63] Angelo Gargantini and Elvinia Riccobene. ASM-Based Testing: Coverage
Criteria and Automatic Test Sequence Generation. Journal of Universal
Computer Science, 7:262–265, 2001.

[64] Angelo Gargantini, Elvinia Riccobene, and Salvatore Rinzivillo. Using Spin
to Generate Tests from ASM Specifications. In Abstract State Machines
2003, volume 2589 of Lecture Notes in Computer Science, pages 263–277.
Springer Berlin Heidelberg, 2003.

172

Bibliography

[65] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. A
Metamodel-based Language and a Simulation Engine for Abstract State
Machines. J. UCS, 14(12):1949–1983, 2008.

[66] Angelo Gargantini, Fabio Terzi, Matteo Zambelli, and Silvia Bonfanti. A
low-cost virtual reality game for amblyopia rehabilitation. In Proceedings
of the 3rd 2015 Workshop on ICTs for improving Patients Rehabilitation
Research Techniques, pages 81–84. ACM, 2015.

[67] A.O. Gomes and A. Butterfield. Modelling the haemodialysis machine with
Circus. In M. Butler, K.-D. Schewe, A. Mashkoor, and M. Biro, editors,
International Conference on Abstract State Machines, Alloy, B, TLA, VDM,
and Z - ABZ 2016, volume 9675, pages 409–424. Springer Verlag, 2016.

[68] A.O. Gomes and M.V.M. Oliveira. Formal specification of a cardiac pacing
system. In International Symposium on Formal Methods - FM 2009, volume
5850 LNCS, pages 692–707, 2009.

[69] A.O. Gomes and M.V.M. Oliveira. Formal development of a cardiac pace-
maker: From specification to code. In Brazilian Symposium on Formal
Methods - SBMF 2010: Formal Methods: Foundations and Applications,
volume 6527 LNCS, pages 210–225, 2011.

[70] P. Groot, A. Hommersom, P. Lucas, M. Balser, and J. Schmitt. Experiences
in quality checking medical guidelines using formal methods. In Proceedings
Verification and Validation of Software Systems (VVSS 2007) March 23,
2007, pages 164–78, 2007.

[71] Yuri Gurevich. Specification and validation methods. In Egon Börger, editor,
Specification and validation methods, chapter Evolving Algebras 1993: Lipari
Guide, pages 9–36. Oxford University Press, Inc., New York, NY, USA, 1995.

[72] M.D.a Harrison, J.C.b Campos, R.c Rukšenas, and P.c Curzon. Modelling
information resources and their salience in medical device design. In Confer-
ence of 8th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, EICS 2016, pages 194–203. Association for Computing Machinery,
Inc, 2016.

[73] Rob Hierons and John Derrick. Editorial: special issue on specification-
based testing. Software Testing, Verification and Reliability, 10(4):201–202,
2000.

[74] Julian PT Higgins and Sally Green. Cochrane handbook for systematic re-
views of interventions, volume 4. John Wiley & Sons, 2011.

[75] T.S.a Hoang, C.a Snook, L.b Ladenberger, and M.a Butler. Validating the
requirements and design of a hemodialysis machine using iUML-B, BMo-
tion studio, and co-simulation. In M. Butler, K.-D. Schewe, A. Mashkoor,
and M. Biro, editors, International Conference on Abstract State Machines,
Alloy, B, TLA, VDM, and Z - ABZ 2016, volume 9675, pages 360–375.
Springer Verlag, 2016.

173

Bibliography

[76] D.H. Hoglund. Validation and verification of WLAN medical devices.
Biomedical instrumentation & technology / Association for the Advancement
of Medical Instrumentation, Suppl:79–83, 2012.

[77] J. Jacky. Specifying a safety-critical control system in Z. IEEE Transactions
on Software Engineering, 21(2):99–106, Feb 1995.

[78] R. Jetley, S.P. Iyer, and P. Jones. A formal methods approach to medical
device review. Computer, 39(4):61–67, 2006.

[79] R. Jetley, S. Purushothaman Iyer, P. Jones, and W. Spees. A formal ap-
proach to pre-market review for medical device software. In Annual Inter-
national Computer Software and Applications Conference, volume 1, pages
169–177, Chicago, IL, 2006.

[80] R.P. Jetley, C. Carlos, and S.P. Iyer. A case study on applying formal
methods to medical devices: Computer-aided resuscitation algorithm. Inter-
national Journal on Software Tools for Technology Transfer, 5(4):320–330,
2004.

[81] Z. Jiang, H. Abbas, K. J. Jang, and R. Mangharam. The Challenges of High-
Confidence Medical Device Software. Computer, 49(1):34–42, Jan 2016.

[82] Z. Jiang, M. Pajic, R. Alur, and R. Mangharam. Closed-loop verification
of medical devices with model abstraction and refinement. International
Journal on Software Tools for Technology Transfer, 16(2):191–213, 2014.

[83] Soon-Kyeong Kim and David Carrington. Visualization of formal specifica-
tions. In Proceedings of APSEC’99, pages 102–109. IEEE, 1999.

[84] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John
Bailey, and Stephen Linkman. Systematic literature reviews in software
engineering - a systematic literature review. Inf. Softw. Technol., 51(1):7–
15, January 2009.

[85] M. Kwiatkowska, H. Lea-Banks, A. Mereacre, and N. Paoletti. Formal mod-
elling and validation of rate-adaptive pacemakers. In Healthcare Informatics
(ICHI) IEEE International Conference on, pages 23–32. Institute of Elec-
trical and Electronics Engineers Inc., 2014.

[86] B. R. Larson. Formal semantics for the PACEMAKER System Specifica-
tion. In ACM SIGAda Ada Letters, pages 47–59. Association for Computing
Machinery, Inc, 2014.

[87] J. Leemans and N. Amálio. Modelling a cardiac pacemaker visually and
formally. In Visual Languages and Human-Centric Computing (VL/HCC),
2012 IEEE Symposium on, pages 257–258. IEEE, 2012.

[88] M. Leucker, M. Schmitz, and D. à Tellinghusen. Runtime verification for
interconnected medical devices. In Margaria T. Steffen B., editor, Interna-
tional Symposium on Leveraging Applications of Formal Methods - ISoLA
2016, volume 9953 LNCS, pages 380–387. Springer Verlag, 2016.

174

Bibliography

[89] C. Li, A. Raghunathan, and N.K. Jha. Improving the trustworthiness of
medical device software with formal verification methods. IEEE Embedded
Systems Letters, 5(3):50–53, Sept 2013.

[90] S. Lämmermann, J. Ruf, A. B. L. Pielawa, J. T. Kropf, W. R. Schlemminger,
and A. Hein. Heterogeneous Assertion-Based Verification for Medical De-
vices Development. In 17th Workshop on Synthesis And System Integration
of Mixed Information Technologies (Sasimi 2012), 2012.

[91] P. C. Ölveczky. Towards formal modeling and analysis of networks of em-
bedded medical devices in Real-Time Maude. In Proc. 9th ACIS Int. Conf.
Software Engineering, Artificial Intelligence, Networking and Parallel/Dis-
tributed Computing, SNPD 2008 and 2nd Int. Workshop on Advanced In-
ternet Technology and Applications, pages 241–248, Phuket, 2008.

[92] John J. Majikes, Rahul Pandita, and Tao Xie. Literature Review of Testing
Techniques for Medical Device Software. In Proceedings of the Medical Cyber
Physical Systems Workshop, 2013.

[93] P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, and H. Thimbleby.
Model-based development of the generic PCA infusion pump user interface
prototype in PVS. In International Conference on Computer Safety, Relia-
bility, and Security - SAFECOMP 2013: Computer Safety, Reliability, and
Security, volume 8153 LNCS, pages 228–240, 2013.

[94] P. Masci, P. Curzon, M.D. Harrison, A. Ayoub, I. Lee, and H. Thimbleby.
Verification of interactive software for medical devices: PCA infusion pumps
and FDA regulation as an example. In EICS 2013 - Proceedings of the ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, pages
81–90, 2013.

[95] P. Masci, R. Rukšėnas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li, P. Cur-
zon, and H. Thimbleby. The benefits of formalising design guidelines: a case
study on the predictability of drug infusion pumps. Innovations in Systems
and Software Engineering, 11(2):73–93, 2015.

[96] P. Masci, Y. Zhang, P. Jones, P. Curzon, and H. Thimbleby. Formal veri-
fication of medical device user interfaces using PVS. In Conference of 17th
International Conference on Fundamental Approaches to Software Engineer-
ing, FASE 2014 - Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2014, volume 8411 LNCS, pages 200–214,
Grenoble, 2014. Springer Verlag.

[97] A. Mashkoor. Model-driven development of high-assurance active medical
devices. Software Quality Journal, 24(3):571–596, 2016.

[98] A. Mashkoor and M. Biro. Towards the Trustworthy Development of Active
Medical Devices: A Hemodialysis Case Study. IEEE Embedded Systems
Letters, 8(1):14–17, March 2016.

175

Bibliography

[99] A. Mashkoor, M. Biro, M. Dolgos, and P. Timar. Refinement-based devel-
opment of software-controlled safety-critical active medical devices. In Soft-
ware Quality. Software and Systems Quality in Distributed and Mobile En-
vironments - 7th International Conference, SWQD 2015, Vienna, Austria,
January 20-23, 2015, Proceedings, volume 200 of Lecture Notes in Business
Information Processing, pages 120–132, 2015.

[100] Atif Mashkoor. The hemodialysis machine case study. In Abstract State
Machines, Alloy, B, TLA, VDM, and Z: 5th International Conference, ABZ
2016, Linz, Austria, May 23-27, 2016, Proceedings, pages 329–343, Cham,
2016. Springer International Publishing.

[101] M.J. May, W. Shin, C.A. Gunter, and I. Lee. Securing the drop-box archi-
tecture for assisted living. In Proceedings of the Fourth ACM Workshop on
Formal Methods in Security Engineering, FMSE’06. A workshop held in con-
juction with the 13th ACM Conference on Computer and Communications
Security, CCS’06, pages 1–12, 2006.

[102] Dominique Méry and Neeraj Kumar Singh. Automatic code generation from
event-B models. In Proceedings of the Second Symposium on Information
and Communication Technology, page 179. ACM Press, 2011. 00054.

[103] Huaikou Miao, Ling Liu, and Li Li. Formalizing UML models with Object-Z.
In Formal Methods and Software Engineering, volume 2495 of Lecture Notes
in Computer Science, pages 523–534. Springer Berlin Heidelberg, 2002.

[104] D. Méry and N.K. Singh. Formal Development and Automatic Code Gen-
eration Cardiac Pacemaker. In International Conference on Computers and
Advanced Technology in Education, Beijing, China, November 2011.

[105] D. Méry and N.K. Singh. Medical protocol diagnosis using formal methods.
In International Symposium on Foundations of Health Informatics Engineer-
ing and Systems - FHIES 2011, volume 7151 LNCS, pages 1–20, 2012.

[106] D. Méry and N.K. Singh. Formal specification of medical systems by proof-
based refinement. Transactions on Embedded Computing Systems, 12(1),
2013.

[107] A. Murugesan, M.W. Whalen, S. Rayadurgam, and M.P.E. Heimdahl. Com-
positional verification of a medical device system. In ACM SIGAda Ada
Letters, pages 51–64, 2013.

[108] E. Neufeld and N. Kuster. Verification & Validation Benchmarks for As-
sessing and Demonstrating the Credibility of Computational Medical Device
Evaluation. In 2015 9th European Conference on Antennas and Propagation,
EuCAP 2015. Institute of Electrical and Electronics Engineers Inc., 2015.

[109] C. Poerschke, D.E. Lightfoot, and J.L. Nealon. A formal specification in B
of a medical decision support system. In ZB 2003: Formal Specification and
Development in Z and B, volume 2651, pages 497–512, 2003.

176

Bibliography

[110] Matteo Pradella, Matteo Rossi, and Dino Mandrioli. ArchiTRIO: A UML-
compatible language for architectural description and its formal semantics.
In Proceedings of FORTE 2005, pages 381–395. Springer Berlin Heidelberg,
2005.

[111] Jugnoo S Rahi, Stuart Logan, Christine Timms, Isabelle Russell-Eggitt, and
David Taylor. Risk, causes, and outcomes of visual impairment after loss
of vision in the non-amblyopic eye: a population-based study. The Lancet,
360(9333):597–602, August 2002.

[112] Elvinia Riccobene and Patrizia Scandurra. A formal framework for service
modeling and prototyping. Formal Asp. Comput., 26(6):1077–1113, 2014.

[113] R. Rukšėnas, P. Curzon, A. Blandford, and J. Back. Combining human
error verification and timing analysis: A case study on an infusion pump.
Formal Aspects of Computing, 26(5):1033–1076, 2014.

[114] Joachim Schmid. Compiling abstract state machines to c++. Journal of
Universal Computer Science, 7(11):1068–1087, 2001.

[115] S. Shuja, S.K. Srinivasan, S. Jabeen, and D. Nawarathna. A formal verifica-
tion methodology for DDD mode pacemaker control programs. Journal of
Electrical and Computer Engineering, 2015, 2015.

[116] L.C. Silva, H.O. Almeida, A. Perkusich, and M. Perkusich. A model-based
approach to support validation of medical cyber-physical systems. Sensors
(Switzerland), 15(11):27625–27670, 2015.

[117] A. Simalatsar and G. De Micheli. Medical guidelines reconciling medical
software and electronic devices: Imatinib case-study. In Bioinformatics
Bioengineering (BIBE), pages 19–24, Nov 2012.

[118] N.K. Singh, M. Lawford, T.S. Maibaum, and A. Wassyng. Formalizing the
Cardiac Pacemaker Resynchronization Therapy. In HCI (17), volume 9185
of Lecture Notes in Computer Science, pages 374–386. Springer, 2015.

[119] N.K. Singh, H. Wang, M. Lawford, T.S. Maibaum, and A. Wassyng. Step-
wise formal modelling and reasoning of insulin infusion pump requirements.
In Duffy V.G., editor, Conference of 6th International Conference on Dig-
ital Human Modeling, DHM 2015 Held as Part of 17th International Con-
ference on Human-Computer Interaction, HCI International 2015, volume
9185, pages 387–398. Springer Verlag, 2015.

[120] E.B. Sloane and R. Schrenker. Conceptual design and resources for a general-
purpose safety and performance Verification and Validation Toolkit (V2T)
for life-critical Wireless Medical Device Networks (WMDN). In Annual In-
ternational Conference of the Engineering in Medicine and Biology Society,
volume 7 VOLS, pages 178–181, 2005.

[121] Colin Snook and Michael Butler. UML-B: Formal modeling and design aided
by UML. ACM Trans. Softw. Eng. Methodol., 15(1):92–122, January 2006.

177

Bibliography

[122] Á. Sobrinho, P. Cunha, L. D. Da Silva, A. Perkusich, T. Cordeiro, and
J. Rêgo. A simulation approach to certify electrocardiography devices.
In International Conference on E-health Networking, Application Services
(HealthCom), pages 86–90, Oct 2015.

[123] Á. Sobrinho, P. Cunha, L.D. Da Silva, A. Perkusich, T. Cordeiro, and
J. Rego. A methodology for modeling and simulation of biomedical signal
acquisition devices. In International Conference on E-health Networking,
Application & Services, pages 227–231, 2015.

[124] Maria Spichkova. Design of formal languages and interfaces: “formal” does
not mean “unreadable”. Emerging Research and Trends in Interactivity and
the Human-Computer Interface, pages 301–314, 2014.

[125] M. Sun and J. Meseguer. Distributed Real-Time Emulation of Formally-
Defined Patterns for Safe Medical Device Control. In RTRTS, volume 36 of
EPTCS, pages 158–177, 2010.

[126] H.M. Tahir, M. Nadeem, and N.A. Zafar. Specifying electronic health system
with vienna development method specification language. In 2015 National
Software Engineering Conference, NSEC 2015, pages 61–66. Institute of
Electrical and Electronics Engineers Inc., 2015.

[127] A. Ten Teije, M. Marcos, M. Balser, J. Van Croonenborg, C. Duelli,
F. Van Harmelen, P. Lucas, S. Miksch, W. Reif, K. Rosenbrand, and A. Sey-
fang. Improving medical protocols by formal methods. Artificial Intelligence
in Medicine, 36(3):193–209, 2006.

[128] U.S. Food and Drug Administration (FDA). General Principles of Software
Validation; Final Guidance for Industry and FDA Staff, January 2002.

[129] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools
Approach. Morgan-Kaufmann, 2006.

[130] Andrea Vitali, Giancarlo Facoetti, and Angelo Gargantini. An environment
for contrast-based treatment of amblyopia using 3D technology. In Inter-
national Conference on Virtual Rehabilitation 2013 - August 26-29, 2013 in
Philadelphia, PA, U.S.A., 2013.

[131] Ann L. Webber and Joanne Wood. Amblyopia: prevalence, natural his-
tory, functional effects and treatment. Clinical and Experimental Optometry,
88(6):365–375, November 2005.

[132] Yi Zhang, Raoul Jetley, Paul L Jones, and Arnab Ray. Generic Safety Re-
quirements for Developing Safe Insulin Pump Software. Journal of Diabetes
Science and Technology, 5(6):1403–1419, November 2011. 00008.

178

	Acknowledgements
	Introduction
	Research questions and Objective

	I State of the Art
	Standards and regulations for the certification of medical devices software
	IEC 62304: Software Development Life Cycle
	FDA: General Principles of Software Validation
	Conclusion

	Systematic Literature Review
	The SLR Process
	Papers selection
	Classification and Synthesis

	Conclusion

	II Abstract State Machines
	ASM-based development process
	ASMs Modelling, Validation & Verification
	Compliance of the ASMs process with regulations
	Compliance of Abstract State Machines process with IEC 62304
	Compliance of Abstract State Machines process with FDA principles

	Unified Syntax for ASM to Xtext
	UASM Header
	Transition Rules Definition
	Type Definition
	Functions definition
	Terms
	Header
	Terminals
	Implementation: from UASM to Asmeta
	Coffee Vending Machine

	Visualization for Abstract State Machines
	A visual notation for Abstract State Machines
	Visual Trees
	Visual Patterns
	Structural patterns
	Semantic Patterns

	Tool
	Preliminary evaluation of visual notation

	Automatic Code Generator
	Model transformation
	Model-to-Text
	Model-to-Model

	Microcontrollers
	Design choices
	Transformation process
	Tool implementation
	Code Generation
	Hardware configuration
	The Asm2C++ Eclipse Plugin

	Illustrative example
	Modelling
	Validation & Verification
	Hardware
	From UASM to C++ code

	III Case studies
	3D4Amb: diagnosis and treatment for visual diseases
	Stereoacuity test
	3D4Amb projects
	StereoAcuity Test
	Modelling and refinement
	Validation & Verification of the SAM
	Scenario and test generation

	Hemodialysis machine case study
	Requirements
	Hemodialysis machine architecture
	Hemodialysis therapy

	Modelling by refinement
	Ground model
	First refinement: preparation phase
	Second refinement: initiation phase
	Third refinement: ending phase

	Conformance checking
	Related Work
	Conclusions

	Conclusion
	Appendix IEC and ISO deliverables
	Appendix Publications
	Bibliography

