
Mix&Slice: Efficient Access Revocation in the Cloud

Enrico Bacis
Università di Bergamo
24044 Dalmine - Italy

enrico.bacis@unibg.it

Sabrina De Capitani di Vimercati
Università degli Studi di Milano

26013 Crema - Italy

sabrina.decapitani@unimi.it

Sara Foresti
Università degli Studi di Milano

26013 Crema - Italy
sara.foresti@unimi.it

Stefano Paraboschi
Università di Bergamo
24044 Dalmine - Italy
parabosc@unibg.it

Marco Rosa
Università di Bergamo
24044 Dalmine - Italy

marco.rosa@unibg.it

Pierangela Samarati
Università degli Studi di Milano

26013 Crema - Italy
pierangela.samarati@unimi.it

ABSTRACT

We present an approach to enforce access revocation on re-
sources stored at external cloud providers. The approach
relies on a resource transformation that provides strong mu-
tual inter-dependency in its encrypted representation. To
revoke access on a resource, it is then sufficient to update a
small portion of it, with the guarantee that the resource as
a whole (and any portion of it) will become unintelligible to
those from whom access is revoked. The extensive experi-
mental evaluation on a variety of configurations confirmed
the effectiveness and efficiency of our solution, which showed
excellent performance and compatibility with several imple-
mentation strategies.

Keywords

Access control; Policy revocation; Resource encryption;
Mix&Slice

1. INTRODUCTION
With the considerable advancements in ICT solutions,

users and companies are finding increasingly appealing to
rely on external services for storing resources and making
them available to others. In such contexts, a promising
approach to enforce access control to externally stored re-
sources is via encryption: resources are encrypted for storage
and only authorized users have the keys that enable their de-
cryption. There are several advantages that justify the use
of encryption for enforcing access control. First, robust en-
cryption has become computationally inexpensive, enabling
its introduction in domains that are traditionally extremely
sensitive to performance (like cloud-based applications and
management of large resources). Second, encryption pro-
vides protection against the service provider itself, which -
while trustworthy for providing access - cannot typically be
considered authorized to know the content of the resources

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24-28, 2016, Vienna, Austria

c© 2016 ACM. ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978377

it stores (honest-but-curious scenario) and hence also to en-
force access control. Third, encryption solves the need of
having a trusted party for policy enforcement: resources en-
force self-protection, since only authorized users, holding the
keys, will be able to decrypt them.

One of the complex aspects in using encryption to enforce
access control policy concerns access revocation. If granting
an authorization is easy (it is sufficient to give the newly au-
thorized user access to the key), revoking an authorization
is a completely different problem. There are essentially two
approaches to enforce revocation: i) re-encrypt the resource
with a new key or ii) revoke access to the key itself. Re-
encryption of the resource entails, for the data owner, down-
loading the resource, decrypting it and re-encrypting it with
a new key, re-uploading the resource, and re-distributing
the key to the users who still hold authorizations. If de-
cryption, re-encryption, and even key management (for this
specific context) can today be considered not an issue, the
big problem is represented by the need of downloading and
re-uploading the resource, with a considerable overhead for
the data owner. This overhead, already an obstacle today,
will become even more so in emerging big data contexts. The
alternative approach of enforcing revocation on the resource
by preventing access to the key with which the resource is
encrypted cannot be considered a solution. As a matter of
fact, it protects the key, not the resource itself, and it is
inevitably fragile against a user who - while having been re-
voked from an access - has maintained a local copy of the
key. Since keys are compact in size, such a threat is indeed
real.

Our approach. In this paper, we present a novel approach
to enforce access revocation that provides efficiency, as it
does not require expensive upload/re-upload of (large) re-
sources, and robustness, as it is resilient against the threat
of users who might have maintained copies of the keys pro-
tecting resources on which they have been revoked access.

The basic idea of our approach is to provide an encrypted
representation of the resources that guarantees complete in-
terdependence (mixing) among the bits of the encrypted
content. Such a guarantee is ensured by using different
rounds of encryption, while carefully selecting their input
to provide complete mixing, meaning that the value of each
bit in the resulting encrypted content depends on every bit
of the original plaintext content. In this way, unavailabil-
ity of even a small portion of the encrypted version of a
resource completely prevents the reconstruction of the re-

217

source or even of portions of it. Brute-force attacks guess-
ing possible values of the missing bits are possible, but even
for small missing portions of the encrypted resource, the re-
quired effort would be prohibitive. The all-or-nothing trans-
form (AONT) [16] considers similar requirements, but the
techniques proposed for it are not suited to our scenario,
because they are based on the assumption that keys are not
known to users, whereas in our scenario revoked users can
know the encryption key and may plan ahead to locally store
critical pieces of information.

Trading off between the potentially clashing need of con-
necting all bits of a resource to provide the wished interde-
pendency of the content on one side, and the potential huge
size of the resources and need to maintain a possible fine-
granularity of access within the resource itself on the other
side, we apply the idea of mixing content within portions
of the resource, enforcing then revocation by overwriting
encrypted bits in every such portion. Before mixing, our
approach partitions the resource in different, equally sized,
chunks, called macro-blocks. Then, as the name hints, it is
based on the following concepts.

• Mix: the content of each macro-block is processed by
an iterative application of different encryption rounds
together with a carefully designed bit mixing, that en-
sures, at the end of the process, that every individual
bit in the input has had impact on each of the bits in
the encrypted output.

• Slice: the mixed macro-blocks are sliced into fragments
so that fragments provide complete coverage of the re-
source content and each fragment represents a minimal
(in terms of number of bits of protection, which we call
mini-block) unit of revocation: lack of any single frag-
ment of the resource completely prevents reconstruc-
tion of the resource or of portions of it.

To revoke access from a user, it is sufficient to re-encrypt
one (any one) of the resource fragments with a new key not
known to the user. The advantage is clear: re-encrypting
a tiny chunk of the resource guarantees protection of the
whole resource itself. Also, the cloud provider simply needs
to provide storage functionality and is not required to play
an active role for enforcing access control or providing user
authentication. Our Mix&Slice proposal is complemented
with a convenient approach for key management that, based
on key regression, avoids any storage overhead for key dis-
tribution.

Outline. The remainder of the paper is organized as fol-
lows. Section 2 illustrates our approach to produce an en-
crypted representation with the desired guarantees. Sec-
tion 3 presents the enforcement of access revocation. Sec-
tion 4 discusses the effectiveness of our solution in providing
revocation. Section 5 illustrates our implementation and the
extensive experimental evaluation confirming its advantages
and applicability. Section 6 discusses related work. Finally,
Section 7 presents our conclusions.

2. MIX & SLICE

2.1 Blocks, mini-blocks, and macro-blocks
The basic building block of our approach is the appli-

cation of a symmetric block cipher. A symmetric crypto-
graphic function operating on blocks guarantees complete

dependency of the encrypted result from every bit of the in-
put and the impossibility, when missing some bits of an en-
crypted version of a block, to retrieve the original plaintext
block (even if parts of it are known). The only possibility to
retrieve the original block would be to perform a brute-force
attack attempting all the possible combinations of values for
the missing bits. For instance, modern encryption functions
like AES guarantee that the absence of i bits from the input
(plaintext) and of o bits from the output (ciphertext) does
not permit, even with knowledge of the encryption key k, to
properly reconstruct the plaintext and/or ciphertext, apart
from performing a brute-force attack generating and verify-
ing all the 2min(i,o) possible configurations for the missing
bits [1].

Clearly, the larger the number of bits that are missing
in the encrypted version of a block, the harder the effort
required to perform a brute-force attack, which requires at-
tempting 2x possible combinations of values when x bits are
missing. Such security parameter is at the center of our ap-
proach and we explicitly identify a sequence of bits of its
length as the atomic unit on which our approach operates,
which we call mini-block . Applying block encryption with
explicit consideration of such atomic unit of protection, and
extending it to a coarser-grain with iterative rounds, our
approach identifies the following basic concepts.

• Block : a sequence of bits input to a block cipher (it
corresponds to the classical block concept).

• Mini-block : a sequence of bits, of a specified length,
contained in a block. It represents our atomic unit of
protection (i.e., when removing bits, we will operate
at the level of mini-block removing all its bits).

• Macro-block : a sequence of blocks. It allows extend-
ing the application of block cipher on sequences of bits
larger than individual blocks. In particular, our ap-
proach operates mixing bits at the macro-block level,
extending protection to work against attacks beyond
the individual block.

Our approach is completely parametric with respect to
the size (in terms of the number of bits) that can be con-
sidered for blocks, mini-blocks, and macro-blocks. The only
constraints are for the size of a mini-block to be a divisor
of the size of the block (aspect on which we will elaborate
later on) and for the size of a macro-block to be a product
of the size of a mini-block and a power of the number of
mini-blocks in a block (i.e., the ratio between the size of a
block and the size of a mini-block). In the following, for
concreteness and simplicity of the figures, we will illustrate
our examples assuming the application of AES with blocks
of 128 bits and mini-blocks of 32 bits, which corresponds to
having 4 mini-blocks in every block and therefore operating
on macro-blocks of size 32 · 4x, with x arbitrarily set. In
the following, we will use msize, bsize, Msize to denote the
size (in bits) of mini-blocks, blocks, and macro-blocks, re-
spectively. We will use bj [i] (Mj[i], resp.) to denote the i-th
mini-block in a block bj (macro-block Mj, resp.). We will
simply use notation [i] to denote the i-th mini-block in a
generic bit sequence (be it a block or macro-block), and [[j]]
to denote the j-th block. In the encryption process, a sub-
script associated with a mini-block/block denotes the round
that produced it.

218

E

E

E

E

E

E

E

E

0 0 0 0
[0] [1] [2] [3]

0 0 0 0
[4] [5] [6] [7]

0 0 0 0
[8] [9] [10] [11]

0 0 0 0
[12] [13] [14] [15]

1 1 1 1
[8] [9] [10] [11]

1 1 1 1
[4] [5] [6] [7]

1 1 1 1
[0] [1] [2] [3]

1 1 1 1
[12] [13] [14] [15]

2 2 2 2
[0] [1] [2] [3]

2 2 2 2
[4] [5] [6] [7]

2 2 2 2
[8] [9] [10] [11] [12] [13] [14] [15]

2 2 22

Figure 1: An example of mixing of 16 mini-blocks
assuming m = 4

2.2 Mixing
The basic step of our approach (on which we will iter-

atively build to provide complete mixing within a macro-
block) is the application of encryption at the block level.
This application is visible at the top of Figure 1, where the
first row reports a sequence of 16 mini-blocks ([0], . . . , [15])
composing 4 blocks. The second row is the result of block
encryption on the sequence of mini-blocks. As visible from
the pattern-coding in the figure, encryption provides mixing
within each block so that each mini-block in the result is
dependent on every mini-block in the same input block. In
other words, each [i]1 is dependent on every [j]0 with (i div
4) = (j div 4).

One round of block encryption provides mixing only at
the level of block. With reference to our example, mix-
ing is provided among mini-blocks [0]0 . . . [3]0, [4]0 . . . [7]0,
[8]0 . . . [11]0, and [12]0 . . . [15]0, respectively. Absence of a
mini-block from the result will prevent reconstruction only
of the plaintext block including it, while not preventing the
reconstruction of all the other blocks. For instance, with
reference to our example, absence of [0]1 will prevent recon-
struction of the first block (mini-blocks [0]0, . . . , [3]0) but
will not prevent reconstruction of the other three blocks
(mini-blocks [4]0, . . . , [15]0). Protection at the block level
is clearly not sufficient in our context, where we expect to
manage resources of arbitrarily large size and would like to
provide the guarantee that the lack of any individual mini-
block would imply the impossibly (apart from performing
a brute-force attack) of reconstructing any other mini-block
of the resource. The concept of macro-block, and accurate
extension of block ciphering to operate across blocks, allows
us to provide mixing on an arbitrarily long sequence of bits
(going much above the size of the block).

The idea is to extend mixing to the whole macro-block
by the iterative application of block encryption on, at each
round, blocks composed of mini-blocks that are represen-
tative (i.e., belong to the result) of different encryptions
in the previous round. Before giving the general defini-
tion of our approach, let us discuss the simple example
of two rounds illustrated in Figure 1, where [0]1, . . . , [15]1
are the mini-blocks resulting from the first round. The
second round would apply again block encryption, con-
sidering different blocks each composed of a representa-
tive of a different computation in the first round. To

Mix(M)
1: for i := 1, . . . , x do /* at each round i */

2: span := mi
/* number of mini-blocks in a mixing */

3: distance := mi−1
/* leg of mini-blocks input to an encryption */

4: for j := 0, . . . , b − 1 do /* each j is an encryption */

/* identify the input to the j-th encryption picking, */

/* within each span, mini-blocks at leg distance */

5: let block be the concatenation of all mini-blocks [l]
6: s.t. (l mod distance) = j and
7: (j · m) div span = l div span

8: [[j]]i := E(k, block) /* write the result as the j-th block in output */

Figure 2: Mixing within a macro-block M

guarantee such a composition, we define the blocks input
to the four encryption operations as composed of mini-
blocks that are at distance 4 (=m) in the sequence, which
corresponds to say that they resulted from different en-
cryption operations in the previous round. The blocks
considered for encryption would then be 〈[0]1[4]1[8]1[12]1〉,
〈[1]1[5]1[9]1[13]1〉,〈[2]1[6]1[10]1[14]1〉,〈[3]1[7]1[11]1[15]1〉. The
result would be a sequence of 16 mini-blocks, each of which
is dependent on each of the 16 original mini-blocks, that is,
the result provides mixing among all 16 mini-blocks, as vis-
ible from the pattern-coding in the figure. With 16 mini-
blocks, two rounds of encryption suffice for guaranteeing
mixing among all of them. Providing mixing for larger se-
quences clearly requires more rounds. This brings us to the
general formulation of our approach operating at the level
of macro-block of arbitrarily large size (the example just il-
lustrated being a macro-block of 16 mini-blocks).

To ensure the possibility of mixing, at each round, blocks
composed of mini-blocks resulting from different encryption
operations of the previous round, we assume a macro-block
composed of a number of mini-blocks, which is the power of
the number (m) of mini-blocks in a block. For instance, with
reference to our running example where blocks are composed
of 4 mini-blocks (i.e., m=4), macro-blocks can be composed
of 4x mini-blocks, with an arbitrary x (x=2 in the example
of Figure 1). The assumption can be equivalently stated in
terms of blocks, where the number of blocks b will be 4x−1.
Any classical padding solution can be employed to guarantee
such a requirement, if not already satisfied by the original
bit sequence in input.

Providing mixing of a macro-block composed of b blocks
with b=mx−1 requires x rounds of encryption each composed
of b encryptions. Each round allows mixing among a num-
ber span of mini-blocks that multiplies by m at every round.
At round i, each encryption j takes as input m mini-blocks
that are within the same span (i.e., the same group of mi

mini-blocks to be mixed) and at a distance (mi−1). Figure 2
illustrates the mixing procedure. To illustrate, consider the
example in Figure 1, where blocks are composed of 4 mini-
blocks (m=4) and we have a macro-block of 16 mini-blocks,
that is, 4 blocks (b=4). Mixing requires x = 2 rounds of
encryption (16 = 42), each composed of 4 (b) encryptions
operating on 4 (m) mini-blocks. At round 1, the span is 4
(i.e., mixing operates on chunks of 4 mini-blocks) and mini-
blocks input to an encryption are taken at distance 1 within
each span. At round 2, the span is 16 (all mini-blocks are
mixed) and mini-blocks input to an encryption are taken
at distance 4 within each span. Let us consider, as an an-
other example, a macro-block composed of 64 mini-blocks
(i.e., 16 blocks). Mixing requires 3 rounds. The first two
rounds would work as before, with the second round pro-

219

[63]

[0]

[4][0]

[0][1][2][3]

[8] [12]

[15][16] [63]

[63][62][61][60]

[59][55][51]

[31][32] [47][48]

E

E E

E

E E

round 1

span: 4

distance: 1

round 2

span: 16

distance: 4

round 3

span: 64

distance: 16

Figure 3: Propagation of the content of mini-blocks [0] and [63] in the mix process

ducing mixing within chunks of 16 mini-blocks. The third
round would then consider a span of all the 64 mini-blocks
and mini-blocks input to an encryption would be the ones
at distance 16.

At each round i, mini-blocks are mixed among chunks of
mi mini-blocks, hence ensuring at round x, mixing of the
whole macro-block composed of mx mini-blocks.

Figure 3 captures this concept by showing the mixing of
the content of the first ([0]) and last ([63]) mini-blocks of
the macro-block at the different rounds, given by the en-
cryption to which they (and those mini-blocks mixed with
them in previous rounds) are input, showing also how the
two meet at the step that completes the mixing. While for
simplicity the figure pictures only propagation of the con-
tent of two mini-blocks, note that at any step they (just like
other mini-blocks) actually carry along the content of all
the mini-blocks with which they mixed in previous rounds.
Given a macro-block M with mx mini-blocks (corresponding
to b blocks), the following two properties hold: 1) a generic
pair of mini-blocks [i] and [j] mix at round r with i div mr =
j div mr; and 2) x rounds bring complete mixing. In other
words, the number of encryption rounds needed to mix a
macro-block with m · b mini-blocks is logm(m · b).

An important feature of the mixing is that the number of
bits that are passed from each block in a round to each block
in the next round is equal to the size of the mini-block. This
guarantees that the uncertainty introduced by the absence
of a mini-block at the first round (2msize) maps to the same
level of uncertainty for each of the blocks involved in the
second round, and iteratively to the next rounds, thanks to
the use of AES at each iteration. This implies that a com-
plete mixing of the macro-block requires at least logm(m · b)
rounds, that is, the rounds requested by our technique.

Another crucial aspect is that the representation after
each round has to be of the same size as the original macro-
block. In fact, if the transformation produced a more com-
pact representation, there would be a possibility for a user
to store this compact representation and maintain access
to the resource even after revocation (this is a weakness of
other solutions discussed in Section 6). Since, in our ap-
proach, each round produces a representation that has the
same macro-block size, the user has no benefit in aiming to
attack one round compared to another (see Section 4).

We note that an interpretation of the proposed mixing is
that it extends the ability of protecting the correspondence
between input and output of a block cipher to blocks of ar-
bitrary size. An alternative approach that we considered to
obtain this result was based on the use of a Feistel archi-
tecture [14], which is known to be an effective technique for
the construction of block ciphers. The approach uses, as the
round function of the Feistel architecture, a block cipher.
The approach can be applied iteratively, doubling the block
size at every iteration. The analysis we performed showed
that this approach would lead to less efficiency compared to
the solution proposed in this paper, with a number of invo-
cations of the basic block cipher equal to 2 · logm(m ·b). The
Feistel-based approach can be adopted when the mini-block
size desired for security goes beyond the block size of the
available block cipher. Similarly, symmetric cryptosystems
operating on large blocks can support larger mini-blocks and
also reduce the number of rounds of our approach. For in-
stance, AESQ [3, 4] shuffles 4 AES blocks and could be used
as a 512-block cipher in our structure.

When resources are extremely large (or when access to a
resource involves only a portion of it) considering a whole
resource as a single macro-block may be not desirable. Even
if only with a logarithmic dependence, the larger the macro-
block the more the encryption (and therefore decryption to
retrieve the plaintext) rounds required. Also, encrypting the
whole resource as a single macro-block implies its complete
download at every access, when this might actually not be
needed for service.

Accounting for this, we do not assume a resource to cor-
respond to an individual macro-block, but assume instead
that any resource can be partitioned into M macro-blocks,
which can then be mixed independently. The choice of the
size of macro-blocks should take into consideration the per-
formance requirements of both the data owner (for encryp-
tion) and of clients (for decryption), and the possible need to
serve fine-grained retrieval of content. This requirement can
be then efficiently accommodated independently encrypting
(i.e., mixing) different portions of the resource, which can
be downloaded and processed independently (we will dis-
cuss this in Section 5.2).

Encryption of a resource would then entail a preliminary
step cutting the resource in different, equally sized, macro-
blocks on which mixing operates. To ensure the mixed

220

IVM-1IV
1

IV
0

• • •

cutting

XOR-ing

mixing

• • •

resource

M0

M0 M1 MM-1

M0

M1

M M-1

F0

[0]

F
m -1
x

[m -1]x

(a) (b)

M1 M
M-1

• • •

• • •

. • • •

Figure 4: From resource to fragments

versions of macro-blocks be all different, even if with the
same original content, the first block of every macro-block is
xored with an initialization vector (IV) before starting the
mixing process. Since mixing guarantees that every block in
a macro-block influences every other block, the adoption of
a different initialization vector for each macro-block guar-
antees indistinguishability among their encrypted content.
The different initialization vectors for the different blocks
can be obtained by randomly generating a vector for the
first macro-block and then incrementing it by 1 for each of
the subsequent macro-blocks in the resource, in a way similar
to the CTR mode [9]. Figure 4(a) illustrates such process.

2.3 Slicing
The starting point for introducing mixing is to ensure that

each single bit in the encrypted version of a macro-block de-
pends on every other bit of its plaintext representation, and
therefore that removing any one of the bits of the encrypted
macro-block would make it impossible (apart from brute-
force attacks) to reconstruct any portion of the plaintext
macro-block. Such a property operates at the level of macro-
block. Hence, if a resource (because of size or need of effi-
cient fine-grained access) has been partitioned into different
macro-blocks, removal of a mini-block would only guarantee
protection of the macro-block to which it belongs, while not
preventing reconstruction of the other macro-blocks (and
therefore partial reconstructions of the resource). Resource
protection can be achieved if, for each macro-block of which
the resource is composed, a mini-block is removed. This
observation brings to the second concept giving the name
to our approach, which is slicing. Slicing the encrypted re-
source consists in defining different fragments such that a
fragment contains a mini-block for each macro-block of the
resource, no two fragments contain the same mini-block, and
for every mini-block there is a fragment that contains it.
To ensure all this, as well as to simplify management, we
slice the resource simply putting in the same fragment the
mini-blocks that occur at the same position in the different
macro-blocks. Slicing and fragments are defined as follows.

Definition 2.1 (Slicing and fragments). Let R be
a resource and M0, . . . ,MM−1 be its (individually mixed)
macro-blocks, each composed of (m · b) mini-blocks. Slicing
produces (m·b) fragments for R where Fi = 〈M0[i], . . . ,MM−1[i]〉,
with i = 1, . . . , (m · b).

Encrypt

1: cut R in M macro-blocks M0, . . . ,MM−1

2: apply padding to the last macro-block MM−1

3: IV := randomly choose an initialization vector
4: for i = 0, . . . ,M − 1 do /* encrypt macro-blocks */

5: Mi[[1]] := Mi[[1]] ⊕ IV /* xor the first block with the IV */

6: Mix(Mi) /* encrypt the macro-block */

7: IV := IV + 1 /* initialization vector for the next macro-block */

8: for j = 0, . . . ,mx − 1 do /* slicing */

9: Fj[i] := Mi[j]

Figure 5: Algorithm for encrypting a resource R

Figure 4(b) illustrates the slicing process and Figure 5 il-
lustrates the procedure for encrypting a resource R. R is
first cut into M macro-blocks and an initialization vector
is randomly chosen. The first block of each macro-block
is then xor-ed with the initialization vector, which is in-
cremented by 1 for each macro-block. The macro-block is
then encrypted with a mixing process (Figure 2). Encrypted
macro-blocks are finally sliced into fragments.

3. ACCESS MANAGEMENT
Accessing a resource (or a macro-block in the resource,

resp.) requires availability of all its fragments (its mini-
blocks in all the fragments, resp.), and of the key used for
encryption. Policy changes corresponding to granting access
to new users can be simply enforced, as usual, by giving
them the encryption key. In principle, policy changes cor-
responding to revocation of access would instead normally
entail downloading the resource, re-encrypting it with a new
key, re-uploading the resource, and distributing the new en-
cryption key to all the users who still hold authorizations.
Our approach permits to enforce revocation of access to a
resource by simply making any of its fragments unavailable
to the users from whom the access is revoked. Since lack of
a fragment implies lack of a mini-block for each macro-block
of a resource, and lack of a mini-block prevents reconstruc-
tion of the whole macro-block, lack of a fragment equates to
complete inability, for the revoked users, to reconstruct the
plaintext resource or any portion of it. In other words, it
equates to revocation.

Access revocations are then enforced by the data owner by
randomly picking a fragment, which is then downloaded, re-
encrypted with a new key (which will be made known only to
users still authorized for the access), and re-uploaded at the
server overwriting its previous version. While still requesting
some download/re-upload, operating on a fragment clearly
brings large advantages (in terms of throughput) with re-
spect to operating on the whole resource (see Section 5).
Revocation can be enforced on any randomly picked frag-
ment (even if already re-written in a previous revocation)
and a fresh new key is employed at every revoke operation.
Figure 6 illustrates an example of fragments evolution due
to the enforcement of a sequence of revoke operations. Fig-
ure 6(a) is the starting situation with the original fragments
computed as illustrated in Section 2. Figure 6(b-d) is the se-
quence of rewriting to enforce revocations, which involve, re-
spectively, fragment F10, re-encrypted with key k1, fragment
F4, re-encrypted with key k2, and fragment F10 again, now
re-encrypted with key k3. In the following, we use notation
Fj

i to denote a version of fragment Fi encrypted with key kj ,
being F0

i the version of the fragment obtained through the
mixing process. In the figure, the resource is represented in

221

fr
ag
m
en
t

macroblock

F
2

0
F
5

0
F
7

0
F
8

0
F
1

0
F
3

0
F
6

0
F
9

0
F
11

0
F
12

0
F
14

0
F
15

0
F
0

0
F
13

0
F
4

0
F
10

0

key

fr
ag
m
en
t

macroblock

k 0

k 1

F
10

1

F
2

0
F
5

0
F
7

0
F
8

0
F
1

0
F
3

0
F
6

0
F
9

0
F
11

0
F
12

0
F
14

0
F
15

0
F
0

0
F
13

0
F
4

0

(a) (b)

key

fr
ag
m
en
t

macroblock

k 0

k 1

k 2

F
4

2

F
10

1

F
2

0
F
5

0
F
7

0
F
8

0
F
1

0
F
3

0
F
6

0
F
9

0
F
11

0
F
12

0
F
14

0
F
15

0
F
0

0
F
13

0

key

fr
ag
m
en
t

macroblock

k 0

k 1

k 2

k 3

F
4

2

F
10

3

F
2

0
F
5

0
F
7

0
F
8

0
F
1

0
F
3

0
F
6

0
F
9

0
F
11

0
F
12

0
F
14

0
F
15

0
F
0

0
F
13

0

(c) (d)

Figure 6: An example of fragments evolution

a three-dimensional space, with axes corresponding to frag-
ments, macro-blocks, and keys. The re-writing of a fragment
is represented by placing it in correspondence to the new key
used for its encryption. The shadowing in correspondence to
the previous versions of the fragments denote the fact that
they are not available anymore as they are overwritten by
the new versions.

Each revoke operation requires the use of a fresh new key
and, due to policy changes, fragments of a resource might
be encrypted with different keys. Such a situation does not
cause any complication for key management, which can be
conveniently and efficiently handled with a key regression
technique [10]. Key regression is an RSA-based crypto-
graphically strong technique (the generated keys appear as
pseudorandom) allowing a data owner to generate, start-
ing from a seed s0, an unlimited sequence of symmetric keys
k0, . . . , ku, so that simple knowledge of a key ki (or the com-
pact secret seed si of constant size related to it) permits to
efficiently derive all keys kj with j ≤ i. Only the data owner
(who knows the private key used for generation) can perform
forward derivation, that is, from ki, derive keys following it
in the sequence (i.e., kz with z ≥ i). Note instead that,
not knowing the private key, users cannot perform forward
derivation. The cost that users must pay for key derivation
is small. On a single core, the computer we used for the ex-
periments is able to process several hundred thousand key
derivations per second.

With key regression, every user authorized to access a
resource just needs to know the seed corresponding to the
most recent key used for it (s0 if the policy has not changed,
s3 in the example of Figure 6(d)). To this end, there is no
need for key distribution, rather, such a seed can be stored
in the resource descriptor and protected (encrypted) with
a key corresponding to the resource’s acl (i.e., known or
derivable by all authorized users) [2, 6]. Enforcing revoca-

tion entails then, besides re-encrypting a randomly picked
fragment with a fresh new key ki, rewriting its correspond-
ing seed si, encrypted with a key associated with the new acl
of the resource. Figure 7 illustrates the revocation process.

To access a resource, a user then first downloads the re-
source descriptor, to retrieve the most recent seed sl, and all
the fragments. With the seed, she computes the keys nec-
essary to decrypt fragments that have been overwritten, to
retrieve their version encrypted with k0. Then, she combines
the mini-blocks in fragments to reconstruct the macro-blocks
in the resource. She then applies mixing in decrypt mode
to macro-blocks to retrieve the plaintext resource. Figure 8
illustrates the process to access a resource.

Note that the size of macro-blocks influences the perfor-
mance of both revoke and access operations. Larger macro-
blocks naturally provide greater policy update performance
as they decrease policy update cost linearly, with limited im-
pact on the efficiency of decryption, since its cost increases
logarithmically (Section 5).

4. EFFECTIVENESS OF THE APPROACH
In this section, we elaborate on the effectiveness of our

approach for enforcing revocation. For the discussion, we
recall that msize is the size of individual mini-blocks, m is
the number of mini-blocks in a block, b is the number of
blocks in a macro-block, and M is the number of macro-
blocks. Also, we denote with f the number of fragments,
that is, f = m · b.

We consider the threat coming from a user whose access
to the resource has been revoked, and who downloads the
resource from the server. With access policy enforced by
encryption, not being authorized for an access should not
prevent downloading the resource but rather it should pre-
vent reconstruction of its plaintext representation. We then
evaluate the protection against the user’s attempts to recon-

222

Revoke

1: randomly select a fragment Fi of R /* fragment to be rewritten */

2: download Fc
i from the server /* version of the fragment stored */

3: if c > 0 then /* F0
i has been overwritten in a revocation */

4: derive key kc /* derive kc using key regression */

5: F0
i := D(kc,F

c
i) /* retrieve the original version of the fragment */

6: determine the last key kl−1 used /* it is stored in R’s descriptor */

7: generate new key kl

8: Fl
i := E(kl,F

0
i)

9: upload Fl
i overwriting Fc

i /* overwrite previous version */

10: encrypt sl with the key of acl(R) /* limits it to authorized users */

11: update R’s descriptor /* including the new sl */

Figure 7: Revoke on resource R

struct the plaintext resource. In doing so, we consider the
worst case scenario, with respect to key management, where
the user has maintained memory of the last key (or the cor-
responding seed) used for the resource up to the point in
which she was authorized for the access. In other words, we
assume the user to be able to decrypt the fragments that
have been overwritten before she has been revoked access,
and hence to know the original version encrypted with k0
of the fragments that have not been overwritten since she
has been revoked access. Since seeds are compact, such a
threat is indeed realistic. To reconstruct the resource when
missing a fragment, the user would have to perform a brute
force attack attempting all possible combinations of values
of the missing bits, that is, 2msize attempts for each of the M
macro-blocks. If more fragments, let’s say fmiss, are missing,
the user would have to perform 2msize·fmiss attempts for each
of the M macro-blocks.

The inability of the user to reconstruct a resource if some
fragments have been overwritten is because, without such
fragments, the user cannot retrieve the corresponding origi-
nal version (the one encrypted with k0) needed to correctly
reconstruct the resource plaintext. A potential threat can
then come if the user maintains a local storage with the origi-
nal version of part of the resource. We distinguish two cases,
depending on whether the user stores complete fragments or
portions of them across the whole resource.

Local storage of fragments. Suppose a user locally stores
(when authorized) some fragments of the resource. Even
if such fragments are later overwritten for revoking access
to the user, and then their most recent version stored at
the server is unintelligible to her, she has them available
for reconstructing the resource. However, the fragment to
be overwritten in a policy revocation is chosen randomly
by the owner. Therefore, the user can still reconstruct the
resource after one fragment has been overwritten if the frag-
ment that the owner has overwritten is the same fragment
that the user has also stored locally, which has probabil-
ity 1/f to occur. Generalizing the reasoning to the con-
sideration of the user locally storing more than one frag-
ment and the policy naturally changing even after the spe-
cific user revocation, we determine the probability PA of the
user’s ability to access the resource assuming local storage
of floc fragments to be PA = (floc/f)

fmiss . The probability
clearly increases with the number of fragments stored lo-
cally, but quickly reaches extremely low values after a few
updates of the policy, approximating zero even for high per-
centage of fragments locally stored. The low probability
(and the high storage effort requested to the user) essen-
tially makes such attack not suitable: if the user has to

Access

1: download R’s descriptor and all its fragments
2: retrieve seed sl used for the last encryption
3: compute keys k0, . . . , kl

4: for each downloaded fragment Fx
i do

5: if x > 0 then

6: F0
i := D(kx,F

x
i) /* retrieve the original version of fragments */

7: for j = 0, . . . ,M − 1 do /* reconstruct and decrypt macro-blocks */

8: Mj := concatenation of mini-blocks F0
i [j], i = 0, . . . , (m · b) − 1

9: decrypt Mj

Figure 8: Access to resource R

pay a storage cost that approaches the maintenance of the
whole resource, then the user would have stored the plain-
text resource when authorized in the first place. We note
also that a possible extension of our approach could consider
overwriting, instead of pre-defined fragments, a randomly
chosen set of mini-blocks (ensuring coverage of all macro-
blocks), to enforce a revocation. In this case, the probabil-
ity of the user storing mloc mini-blocks per macro-block (also
randomly chosen) to be able to access the resource immedi-
ately after her revocation would be (mloc/(m · b))M , which
would become (mloc/(m · b))M ·mmiss , (i.e., negligible), if she
misses mmiss mini-blocks per macro-block. We note how-
ever that overwriting randomly picked mini-blocks across
the resource would considerably increase the complexity in
the management of fragments, and it would make it harder
to provide an efficient physical structure for fragments (Sec-
tion 5). Given the observations above about the high storage
cost that would be required to the user and the low prob-
ability of her success as policy changes, we argue that the
regular structure for the fragments is preferable.

Keeping portions of all mini-blocks. Instead of locally
storing some selected fragments, a user can opt for using
storage to maintain portions of all the mini-blocks in each
fragment. In this case, whatever the fragment overwritten in
the revocation, the user will have to perform some effort to
realize a brute-force attack to retrieve the missing bits (she
does not have the complete fragment), but such an effort
will be lower, given the availability of the locally stored bits.
For instance, assuming the user to keep 50% (i.e., half of
the bits) of each mini-block, the effort for reconstructing the

resource given a missing fragment would now be 2(msize/2)

attempts for each of the M macro-blocks (in contrast to the
2msize required if all the bits in the fragment were unknown).
However, again, if more fragments are missing, the required
effort would quickly escalate, being equal to 2(msize/2)·fmiss

when fmiss fragments are missing. For each attempt, the
verification that a guess is correct would require to apply all
the decryption rounds until the plaintext is reconstructed,
with a great cost. We note that the user can cut down on
such cost if she locally maintains, in addition to the portions
of the original mini-blocks, also some bits of the partial re-
sults of the computation (which would allow her to test cor-
rectness of a guess without performing all the encryption
rounds). Availability of such partial results can help testing
the guesses for a mini-block if the other mini-blocks in the
same block are available (i.e., when the user misses only one
fragment per block). However, from the birthday paradox,
we note that the probability of two revocations hitting the
same block (but a different fragment) quickly increases with
the number of revocations. Then, after a few updates the
advantage of the user keeping partial results of the compu-

223

tation will become ineffective. In addition to this, we note
that, in this case as well, the storage and computational ef-
forts required to the user do not seem to make this attack
much preferable for her with respect to the choice of locally
storing the whole plaintext resource itself in the first place.

A note on collusion. Collusion can happen when two
users join effort to gain access to a resource that neither
of them can access (we do not consider collusions with
the server, which is assumed trustworthy to enforce the re-
writing requested by the owner). In fact, if one of the users is
authorized for the resource, she has no incentive and there-
fore there is no collusion. Also, the case of users getting
together to grant each other access to resources on which
they individually have authorization cannot be considered
collusion, since merging their knowledge they collectively do
not go beyond their privileges. Collusion is then represented
by users who join effort in maintaining portions of the re-
source (e.g., fragments or parts of mini-blocks as discussed
above). For instance, each of the users could keep half of
the fragments and they can merge their knowledge to patch
for missing fragments. Such a situation does not add any
complication with respect to the previous discussion, as it
simply reduces to consider the group of colluding users as an
individual attacker. We then note again that the collective
effort, in terms of storage and/or computation, required to
gain access would easily approximate the effort of maintain-
ing the original plaintext resource itself. In other words, the
attack strategy does not bring advantage to the user.

5. IMPLEMENTATION
In this section, we discuss the realization of our approach

for its practical deployment. The components that have
to be considered are the client , who decrypts resources to
access them (Section 5.1), and the protocol used for the in-
teraction between client and server. The protocol has a sig-
nificant impact on the profile of the server responsible for
hosting the resources and for authenticating the data owner
who is the only party authorized to modify the data. In
particular, we will consider two options for the realization
of the interaction protocol: i) Overlay (Section 5.2), which
operates on top of a common cloud object service (the server
is unaware of the adoption of our approach and is a standard
object server); and ii) Ad-hoc (Section 5.3), which directly
supports the primitives to update a fragment and to get the
current state of the resource (the server is aware of the fea-
tures of our approach and attention will have to be paid to
its internal structure).

We found from this analysis that the client is able to make
use of our approach without restrictions, with a performance
in the application of the technique for a common personal
computer that makes it compatible with any network band-
width. For the protocol, when the technique is applied in
a transparent way on top of existing object storage solu-
tions (Overlay), we observe several orders of magnitude in
performance improvement for some configurations. The re-
alization of the technique using an ad-hoc protocol further
improves the benefits with its greater flexibility, but it also
requires to consider the mapping of the logical structure to
its physical representation, and we show how to identify an
adequate solution. All these results prove the applicabil-
ity of the technique in the current technological landscape

and the benefits that it can provide for many application
domains.

It is important to observe that the parameters that mainly
influence the performance are the size msize of mini-block
and the number f of fragments. While the size of mini-blocks
represents our security parameter and must be chosen by the
data owner based on her security requirements, the number
of fragments is chosen considering performance only. In the
following, we will then focus on the tuning of the number
of fragments, considering resources of variable sizes. (Note
that the choice of the number of fragments implies also the
definition of the number of macro-blocks, as the product of
the number of macro-blocks by the number of fragments is
equal to the number of mini-blocks of the resource.)

The evaluation of the best value for the number of frag-
ments will have to consider a number of aspects that char-
acterize the application domain. The major ones are: fre-
quency of policy updates; frequency and average size of get
requests; network bandwidth, for the upload and download
direction. All these aspects have a direct impact on the over-
all throughput offered by our solution, which confirms its
advantage in the prompt enforcement of revoke operations,
measured by the average transfer rate for get requests.

The experimental results illustrated in this section have
been obtained using, for the client, a machine with Linux
Ubuntu 16.04 LTS, Intel i7-4770K, 3.50 GHz, 4 cores. For
the server, we used an Amazon EC2 m4.large instance, with
4 CPUs and 8 GB of RAM. The client was connected to the
Internet by a symmetric 100 Mbps connection.

5.1 Client
Our approach requires the client to execute a more com-

plex decryption compared to the use of AES with a tradi-
tional encryption mode (e.g., CTR or CBC). The cost of
decryption (which is comparable to the cost of encryption
by the data owner) is nearly logm(m · b) times the cost of
applying a single AES decryption, while the impact of reor-
ganizing the data structure at each round is limited. Thanks
to the high performance provided by modern processors in
the execution of block ciphers, this logarithmic cost factor is
not critical. Also, decryption can be parallelized on multi-
core CPUs, making the client processing even more efficient.

An aspect that has to be considered in the implementation
of the client is the possible need to keep large amounts of
data in memory. This may occur when fragments are down-
loaded one after the other and decryption can start only
after the last fragment has been downloaded, which, for ex-
ample, happens with the Overlay solution. If the resource
size exceeds the available memory at the client, this leads
to an extremely significant performance hit. The configura-
tion of the system can (and should) avoid this possibility by
splitting the resource into sub-resources (Section 5.2).

5.1.1 Experiments on the client

All code has been written in Python, because for all the
functions the computational performance is not a constraint.
The only component written in C was the invocation of the
mixing for encryption and decryption functions. Since most
current Intel x86 CPUs offer the support for a hardware
implementation of AES, named AES-NI, we considered its
adoption in our experiments. Figure 9 shows that the cost
of decryption is compatible with all reasonable scenarios for
the application of our technique. In particular, the figure

224

 1

 10

 100

 1000

 10000

1 2 4 8

th
ro

u
g

h
p

u
t

(M
B

/s
)

number of threads

AES-NI, msize=32, Msize=4096
AES-NI, msize=64, Msize=4096

AES, msize=32, Msize=4096
AES, msize=64, Msize=4096

Figure 9: Throughput varying the number of
threads

illustrates the throughput obtained, varying the number of
threads, by the application of our approach in different con-
figurations characterized by macro-blocks of size (Msize) 4
KiB, mini-blocks of size (msize) 32 and 64 bits (which im-
ply 5 and 9 encryption rounds, resp.), when using AES-
NI and when not using it (AES). Mixing was applied on
data that were already available in memory. We notice that
even the single-threaded 9-round non-hardware-supported
implementation (line ‘AES, msize=64, Msize=4096’) offers
a throughput that is greater than 100 Mbps. For the AES-
NI multi-threaded 5-round implementation we reach a 2.5
GB/s throughput (line ‘AES-NI, msize=32, Msize=4096’).
The figure also shows that, increasing the number of threads,
we reach a performance level that is 4 times the one obtained
by the single-threaded implementation. This is consistent
with the presence of 4 physical cores in the CPU we used,
each with a dedicated AES-NI circuitry.

The performance, even for a large number of fragments,
shows to be orders of magnitude better than the band-
width of current network connections. Even without the
hardware support (lines ‘AES, msize=32, Msize=4096’ and
‘AES, msize= 64, Msize=4096’), the application of the cryp-
tographic transformation shows greater throughput than the
data transfer rate of most Internet connections. An exper-
iment on 1 GiB size macro-blocks and 32 bit mini-blocks
showed the expected slow down in throughput, managing
the decryption in less than 5 seconds (still above the band-
width of long-distance connections).

5.2 Overlay solution
The Overlay solution is analyzed using as a reference the

Swift service. Swift has been selected due to its popularity,
availability as open source, and technical features that are
good representatives of what is offered by a modern object
storage service for the cloud (resources are called objects in
this discussion, to align with the Swift terminology). The
Swift server instance has been installed on the Amazon EC2
platform. We consider two main alternatives for the realiza-
tion of our approach on Swift1 without any changes to the

1Swift organizes objects within containers. The current
structure of Swift supports access control only at the level
of containers. The analysis we present can be immediately
adapted to the management of the access policy at the con-
tainer granularity rather than the object granularity. We

server.2 The first option assumes to manage each fragment
as a separate object. The second option makes use of the
ability to access portions of objects and specifically considers
the use of Dynamic Large Objects (DLOs). Our experiments
show that this latter option provides significant benefits in
performance with respect to managing fragments as separate
objects. DLOs deserve then to be used when available.

Fragments as atomic separate objects. This approach
is the most adaptable one, as it can be used with any ob-
ject storage service. Also, the support for a policy update
will be immediate, as it will be mapped to a single update
to the object containing the corresponding fragment. How-
ever, these advantages come together with some potential
restrictions. The client would be responsible for managing
mixing and slicing. The approach requires the introduction
of some metadata associated with each of the fragments or
stored in a dedicated supporting object. The client has to
be able to concurrently access all the fragments of the object
to exhibit good performance when accessing large resources.
If there are many fragments, this requires to create and keep
open a large number of connections with the server.

Use of DLOs. The DLO service of Swift has been intro-
duced to support the management of large objects, going
beyond the size limits of storage devices and providing finer
granularity in the access. When using DLOs, an object is
separated into a number of sub-objects that can be down-
loaded with a single request. The fragments of our approach
can then be stored into separate DLO fragments. The Swift
server is responsible for the management of the mapping
from an object to its fragments, splitting a request for down-
loading an object into a number of independent requests
to the server nodes that are responsible to store the data
(the Swift architecture has a server node directly offering an
interface to the clients and uses a number of independent
storage nodes; this architecture provides redundancy and
availability). In this way, the client only generates a single
get request for the object, independently from the number
of fragments. The descriptor of the object can be extended
with the representation of the version of each fragment. A
similar approach can be realized when the object service of-
fers the flexibility to operate with get and put only on a
portion of the object.

The major constraint of this approach is the need to wait
for the download of all the fragments before the decryption
of the first macro-block can start. As anticipated in Sec-
tion 5.1, this causes delays and requires the client to keep
available in RAM the complete encrypted representation of
the object before it can be processed. To mitigate this prob-
lem, fragments can also be split into sub-fragments. In this
way, the download will be organized with a serial down-
load of all the sub-fragments representing the same set of
macro-blocks. This is consistent with approaches used in
cloud storage, where there is a common guideline to split
resources larger than a few GiB (Swift forces a split at 5
GiB in its standard configuration). Experiments confirm
that beyond 1 GiB, the throughput remains stable even for
configurations with a large number of fragments.

keep the analysis at the level of object to be consistent with
the discussion in the paper.
2We had to change a parameter in the server, to support a
large number of fragments in the DLO mode.

225

 0.01

 0.1

 1

 10

 100

 1000

64KB 256KB 1MB 4MB 16MB 64MB 256MB 1GB

ti
m

e
 (

s
)

object size

number of fragments
1024
256

64
16
4
1

Figure 10: Time for the execution of get requests on
Swift

5.2.1 Experiments on the Overlay solution

We built a Swift client application in Python that imple-
ments the get and put_fragment methods that character-
ize our technique. We followed two implementation strate-
gies, one using fragments as atomic separate objects, and
the other adopting the DLO support offered by Swift.

Figure 10 compares, for different numbers of fragments,
the time required for the execution of get requests assum-
ing to map each fragment to a separate object. The lines
correspond to distinct values for the number f of fragments
(i.e., 1, 4, 16, 64, 256, and 1024). The parameters that drive
the performance are the network bandwidth and the over-
head imposed by the management of each request. For get
requests, the overhead introduced by the management of
one request for each fragment dominates when the resource
is small, whereas the increase in object size makes the net-
work bandwidth the bottleneck. The profile of put requests
uploading the complete resource proved to be identical to
the profile of get requests using a single fragment. The exe-
cution of put_fragment requests grows linearly with the size
of the fragment.

The identification of the best number of fragments re-
quires to consider the profile of the scenario. We evaluated
the behavior of a system on a collection of 1000 objects
where, after each put_fragment request, a sequence of 50
get requests were executed on objects in the collection, all
of the same size. Figure 11 reports the results of these ex-
periments. As objects become larger, the benefits of frag-
mentation in the application of policy updates compensate
for the overhead imposed on the retrieval of the objects. It
is to note that the performance of the solution that does not
use our technique corresponds to the line with one fragment.
The throughput of the configurations using fragments is or-
ders of magnitude higher already for medium-size objects.
The graph also shows that the best number of fragments
depends on the resource size. The identification of the value
to use requires to consider the configuration of the system
and the expected workload.

A second set of experiments followed the same approach,
but considering the use of DLOs in Swift. The number of
fragments still has a significant impact on the performance
of the get request, because the server has to generate in-
ternally the mapping for the single request originating from
the client and the multiple requests addressed to the stor-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

64KB 256KB 1MB 4MB 16MB 64MB 256MB 1GB

th
ro

u
g

h
p

u
t

(M
B

/s
)

object size

number of fragments
1024
256
64
16
4
1

Figure 11: Throughput for a workload combining
get and put_fragment requests on Swift

age nodes. The application of the same workload considered
for the experiments in Figure 10, which interleaves get and
put_fragment requests, produces the results presented in
Figure 12. Comparing the cost with and without DLO we
notice a significant benefit deriving from the use of DLOs.

5.3 Ad-hoc solution
The use of an ad-hoc protocol is able to provide the full

range of benefits of our approach. The protocol will have to
support the basic primitives to upload (put) and download
(get) a resource. The put primitive, when used to upload
the initial state of the resource, will have to provide a re-
source descriptor that defines: the identifier of the key k0
used by the owner to encrypt the resource; the size of mini-
blocks and the number of fragments (which determine the
size of the macro-block); an array with an element for every
fragment describing its version. In addition to the put prim-
itive, the server will recognize the put_fragment primitive,
which will allow the owner to update a fragment. Parame-
ters of this primitive, in addition to the resource identifier
and fragment content, will be the identifier of the fragment
and its version number. The put_fragment primitive re-
quires the authentication of the user issuing the request, in
the same way as the put primitive.

The get primitive can return to the user the resource,
one macro-block after the other. The client will be able to
immediately start the decryption of macro-blocks, after a
preliminary decryption with key ki of the mini-blocks be-
longing to the fragments at version i > 0. In this way, the
client does not have to wait for the completion of the down-
load of all the fragments. The answer to the get request
always provides first the resource descriptor, with the rep-
resentation of the version of each of the fragments. Among
the parameters of the get primitive we have the option to
retrieve only a specific portion of the resource.

For this solution, we have to dedicate attention to the
mapping of the logical structure to the physical represen-
tation of data. At the logical level, the resource is divided
into fragments, and the content is represented by a sequence
of macro-blocks. At the physical level, the resource can be
stored as a collection of separate fragments or as a sequence
of macro-blocks. In addition to these two options, there is
a range of intermediate alternatives, with the interleaved
representation of multiple fragments.

226

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

64KB 256KB 1MB 4MB 16MB 64MB 256MB 1GB

th
ro

u
g

h
p

u
t

(M
B

/s
)

object size

number of fragments
1024
256
64
16
4
1

Figure 12: Throughput for a workload combining
get and put_fragment requests with Swift DLOs

5.3.1 Experiments on the Ad-hoc solution

The advantage of a dedicated server is the ability to use
an efficient protocol. The use of an ad-hoc server makes
the management of fragments more flexible and avoids the
overheads associated with the generation of a number of in-
dependent get requests equal to the number of fragments
that are produced by the Overlay solution. Still, the use of
a potentially large number of fragments can introduce non-
negligible costs. In the extreme case where a large resource
is managed with a single macro-block (i.e., the number of
fragments corresponds to the number of mini-blocks of the
whole resource). The client will have to wait the complete
download to start decryption, and decryption will involve
a high number of rounds. Also, when only a portion of the
resource is needed, our approach requires the client to down-
load the macro-blocks that contain the portion of interest; if
macro-blocks are large, this may lead to a significant over-
head. As already discussed, the identification of the optimal
number of fragments has to consider several features of the
application domain. In the current technological scenario,
we notice that the use of an ad-hoc server can support a
number of fragments larger than what is adequate for the
Overlay solution, but extreme values cause inefficiencies.

As mentioned above, an important aspect that the imple-
mentation of the ad-hoc server has to consider is the map-
ping from the logical structure to its physical representa-
tion. In this analysis, we will consider a traditional scenario
where the server uses the functions of the operating system
to access the storage ability of mass memory devices. In
the experiments we used the Amazon EC2 instance and its
access to the Elastic Block Storage. The operating system
offers an interface that allows to read and write physical
blocks, typically a few KiB in size. The mapping of the
bidimensional logical structure with macro-blocks and frag-
ments to the concrete physical structure realized by a se-
quence of physical blocks can follow several strategies. To
compare these alternatives, we assume a scenario where we
have 1024 fragments and map the structure to 4KiB physi-
cal blocks. A first strategy consists in storing the resource
one macro-block after the other. The dual strategy consists
in storing the resource one fragment after the other. Be-
tween these two extremes, we have strategies that split each
macro-block into a number of parts and store contiguously
into a physical disk block all the macro-block portions that

 0.1

 1

 10

 100

 1000

1 2 4 8 16 32 64 128 256 512 1024

ti
m

e
 (

s
)

number of fragment partitions

cost
get

update

Figure 13: Configurations for physical blocks

correspond to the mini-blocks in the same position. The ra-
tionale is that the organization along macro-blocks will be
the most efficient to support get requests, but it will require
to access all the physical disk blocks when a put_fragment

request is received. The representation based on fragments
will instead be the most efficient to support put_fragment

requests, but it will introduce a significant overhead when
managing get requests. For small resources these aspects do
not have a large impact, whereas for large resources the per-
formance benefit can be significant. Figure 13 illustrates the
results obtained on a container with 1000 files, each of 1 GiB
in size. The horizontal axis denotes the number of shares of
each macro-block (1 represents the strategy with the macro-
blocks stored in sequence, and 1024 represents the strategy
with fragments stored in sequence). For a workload that in-
terleaves a get request for every put_fragment request, the
total cost is minimized when we use a solution with 256 frag-
ments. Interestingly, the two extremes with this workload
do not represent the best option. In these experiments, we
measured the time required to access the data from storage.
In most systems we expect the network to be the bottleneck
that limits the performance and the choice of physical rep-
resentation will rarely be observed by the clients, but the
performance benefit that is shown by the experiment can
lead to a more efficient implementation of the server.

6. RELATED WORK
The idea of making the extraction of the information

content of an encrypted resource dependent on the avail-
ability of the complete resource has been first explored
by Rivest [16], who proposed the all-or-nothing transform
(AONT). The AONT requires that the extraction of a re-
source where n bits of its transformed form are missing
should require to attempt all the possible 2n combinations.
The AONT can be followed by encryption to produce an all-
or-nothing encryption schema. In [16], the author proposes
the package transform, which realizes an AONT by apply-
ing a CTR mode using a random key k. The ciphertext is
then suffixed with the used key k xor-ed with a hash of
all the previous encrypted message blocks. In this way, a
modification on the encrypted message limits the ability to
derive the encryption key. This technique works under the
assumption that the user who wants to decrypt the resource
has never accessed the key before, but fails in a scenario
where the user had previously accessed the key and now the

227

access must be prevented (i.e., revocation of privileges on
encrypted files). The user, in fact, could have stored key
k and so she would be able (depending on the encryption
mode used) to partially retrieve the plaintext. Key k can
be seen as a digest: it is compact and its storage allows a
receiver to access the majority of the file, even if one of the
blocks was destroyed.

Most approaches for efficient secure deletion [5, 8] rely on
the fact that the key is a digest for a resource and its content
can be securely deleted by deleting the specific disk location
that stores a piece of information that permits to derive
the key used to encrypt the resource. Such approaches are
already used by commercial storage devices [17] and recent
proposals have considered the integration of such approaches
with flexible policies [5]. All these approaches are not appli-
cable in our scenario, where the encrypted resource is stored
on a server that does not have access to (and hence does
not store) the key and it is the user who has to decrypt the
resource. Making the encryption key unavailable to the user
does not limit her access.

Other approaches for enforcing access control in the cloud
through encryption have been developed along two research
lines: attribute-based encryption (ABE) and selective en-
cryption approaches. ABE approaches (e.g., [11, 13, 15, 18])
provide access control enforcement by ensuring that the key
used to protect a resource can be derived only by the users
that satisfy a given condition on their attributes (e.g., age,
role). The main shortcoming of these solutions is due to
their evaluation costs (they rely on public key encryption),
and to the hardness in the support of revocations [13, 18].
Approaches based on selective encryption (e.g., [6, 7, 12])
assume to encrypt each resource with a key that only au-
thorized users know or can derive. In this scenario, policy
updates are then either managed by the data owner, with
considerable overhead, or delegated to the server through
over-encryption [6, 7]. Although over-encryption guarantees
a prompt enforcement of policy updates and demonstrates
to offer good performance, it requires stronger trust assump-
tions on the server, which must provide dedicated support.
On the contrary, our technique can be used also if the server
is completely unaware of its adoption.

7. CONCLUSIONS
We presented an approach for efficiently enforcing ac-

cess revocation on encrypted resources stored at external
providers. Our solution enables data owners to effectively
revoke access by simply overwriting a small portion of the
(potentially large) resource and is resilient against attacks
by users locally maintaining copies of previously-used keys.
Our implementation and experimental evaluation confirm
the efficiency and effectiveness of our proposal, which enjoys
orders of magnitude of improvement in throughput with re-
spect to resource re-writing, and confirms its compatibility
with current cloud storage solutions, making it also imme-
diately applicable to many application domains.

8. ACKNOWLEDGMENTS
This work was supported by the EC within the H2020 un-

der grant agreement 644579 (ESCUDO-CLOUD) and within
the FP7 under grant agreement 312797 (ABC4EU).

9. REFERENCES
[1] E. Andreeva, A. Bogdanov, and B. Mennink. Towards

understanding the known-key security of block
ciphers. In Proc. of FSE, Hong Kong, Nov. 2014.

[2] M. Atallah, K. Frikken, and M. Blanton. Dynamic and
efficient key management for access hierarchies. In
Proc. of CCS, Alexandria, VA, USA, Nov. 2005.

[3] A. Biryukov and D. Khovratovich. PAEQ:
Parallelizable permutation-based authenticated
encryption. In Proc. of ISC, Hong Kong, China, Oct.
2014.

[4] A. Biryukov and D. Khovratovich. PAEQ reference
v1. Technical report, CryptoLUX, University of
Luxembourg, 2014.

[5] C. Cachin, K. Haralambiev, H. Hsiao, and
A. Sorniotti. Policy-based secure deletion. In Proc. of
CCS, Berlin, Germany, Nov. 2013.

[6] S. De Capitani di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati. Over-encryption:
Management of access control evolution on outsourced
data. In Proc. of VLDB, Vienna, Austria, Sept. 2007.

[7] S. De Capitani di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati. Encryption policies
for regulating access to outsourced data. ACM TODS,
35(2):12:1–12:46, April 2010.

[8] S. Diesburg and A. Wang. A survey of confidential
data storage and deletion methods. ACM Computer
Surveys, 43(1), Dec. 2010.

[9] M. Dworkin. Recommendation for block cipher modes
of operation, methods and techniques. Technical
Report NIST Special Publication 800-38A, National
Institute of Standards and Technology, 2001.

[10] K. Fu, S. Kamara, and Y. Kohno. Key regression:
Enabling efficient key distribution for secure
distributed storage. In Proc. of NDSS, San Diego, CA,
USA, Feb. 2006.

[11] V. Goyal, O. Pandey, A. Sahai, and B. Waters.
Attribute-based encryption for fine-grained access
control of encrypted data. In Proc. of CCS,
Alexandria, VA, USA, Oct.-Nov. 2006.

[12] I. Hang, F. Kerschbaum, and E. Damiani. ENKI:
Access control for encrypted query processing. In
Proc. of SIGMOD, Melbourne, Australia, May 2015.

[13] J. Hur and D. Noh. Attribute-based access control
with efficient revocation in data outsourcing systems.
IEEE TPDS, 22(7):1214–1221, July 2011.

[14] M. Luby and C. Rackoff. How to construct
pseudorandom permutations from pseudorandom
functions. SIAM J. Comp., 17(2):373–386, Apr. 1988.

[15] Z. Peterson, R. Burns, J. Herring, A. Stubblefield, and
A. Rubin. Secure deletion for a versioning file system.
In Proc. of FAST, San Francisco, CA, USA, Dec. 2005.

[16] R. Rivest. All-or-nothing encryption and the package
transform. In Proc. of FSE, Haifa, Israel, Jan. 1997.

[17] TCG storage security subsystem class: Opal, Aug.
2015.

[18] S. Yu, C. Wang, K. Ren, and W. Lou. Attribute based
data sharing with attribute revocation. In Proc. of
ASIACCS, Beijing, China, April 2010.

228

