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Abstract 
A model for heating and evaporation of non-spherical multicomponent drops is presented, based on the solution 
of energy and species conservation equations in orthogonal curvilinear coordinates, accounting also for the effect 
of convective conditions according to the film theory approach. The instantaneous evaporation rate of 
multicomponent drops is calculated as function of increased surface area due to drop deformation. The model is 
applied to spheroidal drops under quasi-steady and transient conditions, analysing the effect of drop size and 
velocity on the temperature evolution, for a range of drop and gas temperature operating conditions.  
 
Introduction 
The heat and mass transfer phenomena taking place when a liquid drop vaporises in a gaseous environment 
have been the subject of extensive research over many decades, due to their inherent interest in many 
engineering applications, like in spray combustion, spray cooling, spray drying, fire suppression, etc. 
A wide literature became available in the latest years on the modelling of drop evaporation (see [1, 2] for recent 
reviews), analysing the complex physical phenomena involved. 
The need to quantitatively predict such phenomena urged the development of models which on one hand have 
the capability of yielding reliable quantitative predictions of the heat and evaporation rates from a single drop, and 
on the other hand can be efficiently implemented in CFD codes to simulate dispersed flows. This need forced the 
introduction of many simplifying hypotheses, like constant properties of the gas mixture, quasi-steadiness, drop 
sphericity, homogeneous liquid temperature and composition, to cite some of the most common and stringent 
approximations [1]. 
After the simplest model for the mass transport from a particle immersed in a gas flow, proposed by Maxwell back 
in 1877 [3], exclusively based on mass diffusion mechanism, and the improvement reported in [4] to account for 
the importance of the Stefan flow, the model that better combines CPU efficiency, for  dispersed flow applications, 
with a good quantitative accuracy is probably that of Abramzon and Sirignano [5], which was developed for spray 
combustion applications. Due to its numerical efficiency, it is nowadays commonly implemented in CFD codes for 
multi-drop calculations (particularly for sprays and aerosols).  
Detailed numerical approach to the study of more complex physical aspects (drop composition, shape, interaction 
with other drops and/or solid surfaces (see [6, 7] for reference) are also available, but due to the complexity of the 
numerical implementation of these models and the CPU time requested for a single drop test case simulation, 
they cannot be used for multi-drop system predictions, but only as benchmarking for simpler models to be 
developed. 
The above cited models were developed for single component drops, but the importance of understanding the 
phenomena taking place in multicomponent drop evaporation pressed the development of new models to relieve 
that limitation. A far less amount of literature is available on this more complex problem, since in this case the 
simultaneous diffusive–convective mass transfer from the drop to the gas cannot be simply modelled and/or 
experimentally studied. Important attempts can be found in [8-13].  
The cited models all rely on the use of the Fick’s law of diffusion, which is expected to hold only for dilute 
mixtures, and only recently an approach based on the solution of the Stefan-Maxwell equations, which relieves 
that limitation, was proposed in [14].  
Parallel to the theoretical work, experimental work on multicomponent drop evaporation has considerably growth 
in the last years, as witnessed by many works available in the open literature (see [9, 15-17] to cite but a few).  
The importance of taking into account the internal advection and diffusion was recognised, and again the 
necessity to develop CPU efficient models for implementation in CFD codes urged the introduction of an effective 
liquid conductivity and diffusivity of the liquid species, and analytical solution of the time dependent energy and 
conservation equations inside the liquid drop allowed to account for the effect of transport phenomena through the 
liquid drop [1]. 
The large number of component used in some applications (like in engine sprays) has driven the research to find 
method to simplify such multicomponent fuels by introducing the so called quasi-component [18] and the models 
has been applied to the simulation of Diesel, gasoline and bio-fuel droplets [9, 18-20].  
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All the available models dealing with multicomponent evaporation rely on the assumption that drop are spherical, 
thus allowing a simpler solution in spherical coordinates of the energy and species conservation equation. 
However, experimental investigation on liquid drops in multi-particle systems has revealed that they are subject to 
significant shape deformations while interacting with the carrier phase [21-23], due to the interaction of surface 
tension and fluid-dynamic stresses on the drop surface [23]. While surface tension force induces a spherical 
shape, fluid-dynamic forces are the primary sources of drop deformation. This is clearly evident in case of liquid 
drop with Weber number above 2, typical of spray combustion applications, which are appreciably non-spherical 
[22]. These observations were confirmed by numerical studies on liquid deformed drops [24], [25]. In [26] it was 
shown that the aerodynamic interaction with the carrier gas leads to an oblate shape, only partially compensate 
by the liquid circulation inside the drop that induces a deformation towards the prolate shape.  
A drop travelling in a gaseous atmosphere is then subject to deformation [21] and oscillation [27] that to some 
extent may bring to drop break-up. The spherical drop turns out to be an idealisation that does not represent 
correctly the reality, although it allows a simpler approach to modelling.  
In the last years, there was a growing interest in studying the possible effects of deformation on transport 
phenomena like heating and evaporation and some first attempts to relieve the above mentioned simplifying 
hypothesis can be found in the literature [21, 28-32]. These models were developed for single component drops 
and they are still to be assessed against experiments, owing to the difficulty in performing accurate 
measurements on deformed drops.  
It is however of a certain theoretical and practical interest to study the effect of deformation on multicomponent 
drop evaporation, and the present paper is a first attempt in that direction. The following sections report an 
extension of a model for multicomponent spherical drops [12] (previously developed by the authors of the present 
paper) to model evaporation from deformed (ellipsoidal) multicomponent drops by applying a theoretical approach 
recently proposed by the same authors [31].       
 
Model equations 
The model described below is an extension of a previous one [12], developed for spherical multicomponent drops, 
to account for the effect of drop deformation on evaporation of multicomponent drops. 
 The theoretical approach developed in [31] is applied to solve the species conservation equations: 

( ) nn jj ,...1,00 ==∇ αα  (1) 

in a general orthogonal coordinate system. Assuming that Soret effect, pression diffusion, and other second order 
effects are neglectful (see [33] for more details), and assuming the Fick's law [33] as commonly accepted 
constitutive equation, the species flux vectors can be written as: 
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where χk is the generic curvilinear coordinate and hk is the the kth scale factor. 
Under uniform boundary conditions on the drop surface and at infinity, the vapour diffusion/convection is one-
dimensional, and the conservation equations (1), accounting for equation (2) can be written in normalised basis: 

( ) ( ) ( )
0, =













∂
∂−

∂
∂

ξ
χρχρ

ξ

α

ξ

αα
h

hh
DUhh vum

vu  (3) 

where ξ is the coordinate normal to the drop. The drop surface is defined by the equation ξ = ξ0, and hu and hv are 

the scale factors for the coordinates u,v along the surface, U is the ξ-component (the only non-nil component in a 

1-D problem) of the Stefan velocity. The total mass conservation is obtained summing equations (1) on α from 0 
to n, and in doing so it should be noticed that the Fick's law terms in equation (2) do not sum up to zero. This is 
due to the fact that Fick's law is an approximation that holds only for dilute components and then it is not expected 

to hold for the main (α=0) component. A more rigorous approach, based on Stefan-Maxwell equation as in [14], 
would eliminate this inconsistency. In the present treatment the correct form of the mass conservation equation is 
assumed and its integration yields: 
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where C(u,v) is an arbitrary function of u and v. 
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The analytical solution 

Consider now the case when hξ/(huhv) is separable, i.e.: 
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that it was shown in [31] to be the sufficient condition for the existence of a 1-D solution. Equations (3), making 
use  of equations (4) and (5), become: 
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and since χ(α) must be function only of ξ : 
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Integrating the species equations (6) yields the analytical solution: 
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where kα and γ (α) are arbitrary constants, which can be found from the Dirichlet B.C.: 
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The evaporation rate 
The local vapour fluxes can be calculated from equations (2): 
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and it can be easily shown that the constants γ(α) are the evaporation rate fractions of the α-components. To 

notice that since the drop surface is still and it is assumed that the gas species (α=0) does not diffuse into the 

liquid, the mass flux ( )0
ξn  is nil at the drop surface and then is nil everywhere, thus ( ) 00 =γ . 

The evaporation rate for each species can be calculated integrating the species flux over the drop surface, 
yielding: 
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and for the total evaporation rate: 
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since the condition: 
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holds. Equation (14), accounting for equations (10) and (13), is a nonlinear algebraic equation in the sole 

unknown ( )T
evm , and its solution yields ( )T

evm  and then, by equations (10), the partial mass flow rates.  
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The thermal problem 
The heat transfer to the evaporating ellipsoidal drop was analysed in [31] and the following general equation to 
calculate the heat transfer rate was derived: 
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where V is the drop volume. The results of this analysis is independent of the fact that the total evaporation rate is 
made by a mixture of component rather that a single one, than equation (15) can be applied also to the present 
case.  
 
Application to ellipsoidal drops 
Following [31], the cases of spherical, spheroidal (oblate and prolate) and triaxial ellipsoidal drops can be treated 
in a unified way. Equation (14) can be re-written, accounting for equations (10) and (13) in a unique form:  
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where: 
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and the integrals depend only on the coordinate system and the following Table 1 (see [31]) yields the values of 
Req corresponding to the above mentioned drop shapes. 

 

Table 1.Values of Req/R0 for ellipsoidal drops of different kind. 
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In Table 1 ( ) ∫ −−
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 is the incomplete elliptic integral of first kind (see [34]), and ax≥ay≥az (see 

Figure 1) are the ellipsoid half-axes, that for a sphere are equal to R0, whereas for the spheroids they satisfy the 
relation:    
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Figure 1. Definition of the ellipsoid half-axes 

 

It must be noticed that ( )
eq

T
ev R/m is evaluated solving equation (17) and it does not depend on drop shape, then 

the evaporation rate fractions (10) do not depend on drop shape either, although clearly ( )T
evm  does. 

 
Evaporation under convective conditions 
The above developed model holds for a drop floating in a quiescent gaseous environment, but a deformed drop 
under such condition cannot maintain its shape and undergoes shape oscillation. The evaporation from a single 
component oscillating drop was modelled on the basis of a theoretical approach similar to the one used in (see 
[35]. However, a liquid drop can assume a deformed shape when is travelling in a gas due to aerodynamics 
interaction at Re>0 and the oblate shape is an acceptable approximation of the real drop shape under such 
conditions (see [28]). 
To extend the present model to Re>0 conditions, an approach similar to that developed in [5] for single 
component and extended in [12] for multicomponent droplet, based on film theory [36], will be adopted. This 
approach assumes that the evaporating drop is surrounded by different mass diffusional regions, which 
thicknesses may depend on the physical properties of each vapour species. Under such assumption the 
evaporation rate of each species under convective (Re>0) conditions can be related to the one evaluated at Re =0 
by a semi-empirical rule (see [12]): 

( )
( )

( )α
α

α
evcev m

Sh
m

2, =  (20) 

where the Sherwood number for each species Sh(α),following [5] and [12], is found by semi-empirical correlations: 
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being Sc(α)=ν/D(α,m) the Schmidt number for the species α, and the mass transfer number for the gaseous mixture 
is defined as follows [12]: 
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As a consequence, the drop total evaporation rate under convective conditions ( ( )T
c,evm ) can be simply correlated to 

the total evaporation rate ( ( )T
evm ) and evaporation rate fractions ( ( )αγ ) under non convective conditions: 
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The evaporation rate fraction for each species under convective conditions ( )αβc  can then be calculated as : 
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A similar procedure is followed to evaluate the heat rate to the drop. The heat rate under convective conditions 
can be written as: 
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where, following [5] :  
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Results and Discussion 
This section reports the results from the parametrical analysis of the proposed multicomponent model, made to 
enlighten the effect of drop shape on the evaporation characteristics, under different operating conditions. The 
effects of initial drop size and temperature, gas temperature and convective conditions on the temporal variation 
of drop volume and liquid temperature have been investigated. The liquid mixture used in the following analysis is 
made by 50% ethanol and 50% acetone, as in [37]. For all the test cases considered in this section, the vapour 

concentrations are assumed equal to zero at free stream conditions (i.e. ( ) 0=∞
αχ ) . 

Initially, the effect of drop deformation has been analysed under quasi-steady conditions. The instantaneous 
evaporation rate of liquid drops having the same mass and different shapes is calculated. The drop temperature is 
fixed equal to 300K, while the gas phase is assumed stagnant at 500K and 1bar. Figure 2 shows the non-

dimensional instantaneous evaporation rate Y(α) defined as: 
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for the two species (ethanol and acetone) as function of the drop surface area non-dimensionalised  by the 

surface of a spherical drop having the same volume ( 2
04 RAdrop πβ = ). The spheroidal cases of oblate and prolate 

drops are reported, for β ranging from 1 up to 1.5, which corresponds to ε varying from 1 up to about 0.22 for the 
oblate shape and ε varying from 1 up to about 7 for the prolate shape. The figure confirms the increase of the 
evaporation rate as the drop surface increases and, for any given value of drop surface, the evaporation rate of 
the prolate drop is always higher than that of the corresponding oblate drop. To be noticed that the evaporation 
rate for any triaxial ellipsoidal drops with the same surface area ratio β lays between the two spheroidal test 
cases, as shown in [31]. For the oblate drop with β equal to 1.4, which corresponds to a value of ε equal to 0.25, 
the increase of the evaporation rate compared to the spherical case is about 16%, while for the corresponding 
prolate drop is about 28%, independently of the vaporising species. 
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Figure 2. Effect of drop shape on non-dimensional instantaneous evaporation rate Y(α) for ethanol and acetone, as function of 

the non-dimensional drop surface area, for a mixture of 50% ethanol and 50% acetone, Ts=300K, T∞=500K, Re=0.  
 

The following analysis considers the effect of drop shape under transient conditions, and the hypothesis of infinite 
liquid thermal conductivity is imposed, then an homogeneous drop temperature is assumed. 
The comparison between a spherical and an oblate (with ε equal to 0.25) drop having the same volume is 
proposed, varying the drop initial dimension and temperature, the gas temperature and liquid/gas relative velocity. 
The choice to select an oblate drop is motivated by the findings from literature, which reports that drop floating in 
a moderate convective environment usually attain an oblate shape [28]. 
Figure 3 shows the transient profiles of the non-dimensional drop volume ( defined as the ratio between the drop 
volume and its value at the initial time) and liquid temperature for drops vaporising in a stagnant environment 
(Re=0) made of air at 500K and 1 bar. The drop initial temperature is fixed equal to 300K, while three initial radius 

have been selected equal to 5, 10 and 25µm. For the oblate shape, the drop radius is assumed as the 
‘equivalent’ drop radius of a spherical drop having the same volume of the oblate drop. The x-axis for all the 
graphs reports the non-dimensional time, calculated as follows: 
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where ( )nom
vD  is a ‘nominal’ mass diffusion coefficient calculated for the mixture of 50%ethanol-50%acetone in air 

as ( ) ( ) ( )   ∑∑= ααα χχ TrefTref
m
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nom
v DD , (see also [12]), using as reference temperature Tref=367K.  

 
                                                (a)                                                                                 (b)  

 
Figure 3. Effect of drop shape and initial drop size on (a) non-dimensional volume and (b) liquid temperature transient profiles 

for a bi-component drop, Ts=300K, T∞=500K, Re=0. 

The graph of figure 3(a) shows that the instantaneous drop volume and temperature are almost perfectly scaled 

by the choice of the non-dimensional time τ, for both the drop shapes. The comparison between the two drop 
shapes evidences that the increase of drop surface due to the deformation have a relevant effect on the drop 
lifetime (calculated when the drop size reduces to about 1% of the initial drop radius), which reduces of about 
14.3% compared to the spherical case, almost independently of the initial drop size. Figure 3(b) shows the liquid 
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temperature transient profiles for the six cases of figure 3(a). All the cases are characterised by a monotonic 
increase of the drop temperature along the whole drop lifetime, attaining a quasi-asymptotic liquid temperature 
towards the end of the vaporisation process, i.e. when the lighter component is almost totally vaporised and the 
liquid composition is almost mono-component.  
The steeper increase of drop temperature for the oblate case can be explained observing that for the oblate case 
both the sensible heat rate, which is proportional to the gas-drop temperature difference (equation 15), and the 
latent heat rate, which is the product between the evaporation rate and the latent heat of vaporisation, increases 
of the same amount, thus increasing the steepness of the temperature profile. When the drop (oblate and 
spherical) reach the asymptotic temperature, the latent and sensible heat rates almost perfectly balance each 
other, without any detectable effect on the gas-drop temperature difference, since both effects are purely driven 
by the drop deformation (increase of surface area and change of curvature), thus explaining the fact that the 
asymptotic temperature is almost independent of the drop shape. 
This phenomenon is confirmed in the following figure 4, which reports the temporal profiles of the non-
dimensional volume and liquid temperature, for the same test cases of figure 3, but increasing the gas 
temperature up to 1000K. Figure 4(a) shows the same behaviour of figure 3(b), with the drop volume almost 
perfectly scaled with the drop size, independently of the drop shape. Clearly the increase of gas temperature 
accelerates the evaporation for all the test cases, and the lifetime of the oblate drops is again lowered by about 
14.2 %, for all drop sizes. 
The graph of figure 4(c) presents now a different behaviour, compared to the lower gas temperature case (figure 
3b). The liquid temperature initially experiences a marked increase, then the slope of the drop temperature 
reduces until the reaching of a quasi-stationary value. Also in this case, the oblate drops have a higher 
temperatures compared to the spherical ones, but they reach the same asymptotical temperature.  
The difference of the initial temperature slopes for the two cases reported in figure 3(b) and 4(b) are related to the 
relative value of the drop initial temperature compared to the gas temperature. 
                                              

(a)                                                                                 (b) 

   
Figure 4. Effect of drop shape and initial drop size on (a) non-dimensional volume and (b) liquid temperature transient profiles 

for a bi-component drop, Ts=300K, T∞=1000K, Re=0.  

 

Figure 5 reports the transient temperature profiles for spherical and oblate drops with initial radius equal to 10µm, 

vaporising in stagnant air (Re=0) at 500K, fixing the initial drop temperature equal to 295, 300 and 305K. The 
graph evidenced that the initial reduction or rapid increase  of drop temperature only depends on the 
instantaneous difference between the gas and liquid temperatures.  
When the initial drop temperature is relatively high (ex. Ts,0=305K), both drop shapes experiences this 
phenomenon, which is due to the fact that at the initial stage of evaporation the latent heat rate is greater than the 
sensible heat rate . As the evaporation proceeds, the evaporation rate reduces (due to the lowering of the liquid 
temperature) then there is a point where the latent heat equals the sensible heat (which corresponds to the 
instant when the minimum liquid temperature is reached). From this point, the drop has a temperature that 
corresponds to a sensible heat always higher than the latent heat and the monotonic increase of liquid 
temperature is shown. 
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Figure 5. Effect of drop shape and initial drop temperature on liquid temperature transient profiles for a bi-component drop, 

R0=10µm, T∞=500K, Re=0.  

 
The following graphs report the effect of convection on the evaporation characteristics for spherical and oblate 
drops. Figure 6 shows the transient profiles of non-dimensional drop volume and liquid temperature for spherical 

and oblate drop with initial equivalent radius equal to 10µm, vaporising in air at 500K. The drop/gas relative 
velocity, U0, is fixed, through the whole drop lifetime, equal to 0, 10 and 20m/s, with the initial Reynolds number 
equal to 0, 7.8 and 15.6, respectively.  
The presence of convective heat and mass transfer introduces a new effect that destroys the almost perfect 

scaling of the phenomena by the non-dimensional time τ. The drop lifetime reduces increasing Re, which 
increases the evaporation rate for both shapes (induced by the increased Sherwood number).  
However, the lifetime reduction of the oblate drop relative to the spherical one is still around 14.3%, almost 
independently of the Reynolds number.  
To be noticed that now, with U0 equal to 10 and 20m/s, all drops experience the initial liquid temperature 
reduction, due to the increased latent heat rate (induced by the increased Sherwood number), which is not 
compensated by the increase of the sensible heat rate (induced by the increased Nusselt number). 
Figure 7 shows the same test cases of figure 6, increasing the gas temperature up to 1000K. The reduction of the 
drop lifetime for the oblate drop, compared to spherical, is again around 14.3%, almost independently of the 
convective conditions, but (see figure 6 b) the initial drop temperature reduction is substituted by and initial steep 
increase.   
These results evidence that the drop deformation, increasing the instantaneous evaporation rate due to the 
increased surface area, accelerate the drop evaporation, although toward the end of the process the same 
asymptotic temperature is reached, owing to the coupling between heat and mass transfer phenomena.  
 
                                                (a)                                                                                 (b)  

 
Figure 6. Effect of drop shape and initial drop velocity on (a) non-dimensional volume and (b) liquid temperature transient 

profiles for a bi-component drop, R0=10µm, Ts=300K, T∞=500K.  
 
 
 
 
 



ILASS – Europe 2016, 4-7Sep. 2016, Brighton, UK 

                                                (a)                                                                                 (b)  

 
Figure 7. Effect of drop shape and initial drop velocity on (a) non-dimensional volume and (b) liquid temperature transient 

profiles for a bi-component drop, R0=10µm, Ts=300K, T∞=1000K. 
 

 
Conclusions 
A model for heating and evaporation of non-spherical multicomponent drops was developed, extending a model, 
previously developed by the same authors, for multicomponent spherical drop to ellipsoidal drops through the 
solution of energy and species conservation equations in orthogonal curvilinear coordinates. The case of 
ellipsoidal (triaxial, prolate and oblate spheroids) drops is reported. The present analysis also extends the model 
developed (by the same authors) for single component ellipsoidal drops to convective conditions. 
The model allows to evaluate the heat rate and the species evaporation rates through the solution of a single non-
linear algebraic equation. The effect of deformation on the instantaneous evaporation rates of each single species 
was evaluated as a function of drop surface area, showing that a prolate drop experiences the largest evaporation 
rate compared to other ellipsoidal drops of the same volume and surface area.  
An example of application to a double component oblate drops is reported, studying the drop size and the 
temperature evolution, for a range of drop size and temperature, gas temperature and drop-gas relative velocity.  
It is found that the deformed drop attains the same asymptotic temperature but in a shortest time compared to the 
spherical case, almost independently of the drop size. The effect is enhanced by the increase of gas temperature 
and Reynolds number. 
The coupling of heat and mass transfer phenomena causes a reduction of the oblate drop lifetime (of about 14% 
for this particular drop composition), compared to the spherical one, almost independently of the initial drop size, 
gas temperature, initial drop temperature and Reynolds number.      
 
Nomenclature 
ax, ay, az  ellipsoid half-axes [m2] 
BM,BT  Spalding mass and heat transfer numbers [-] 
cp  specific heat [J/kg K] 
C  arbitrary function of u and v, equation (4) [-] 
D  diffusion coefficient  [m2/s] 
f  function of ξ, equation (5)  [-] 
F(x,k)  incomplete elliptic integral of first kind [-] 

FM  non-dimensional function, equation (23)  [-] 
h  scale factors  [m] 
H  function of u and v, equation (5)  [-] 

mev  evaporation rate  [kg/s] 

M1  constant, equation (7)  [-] 
n  vapour flux  [kg/m2s] 
Nu  Nusselt number  [-] 
Pr  Prandtl number  [-] 

Qɺ   heat rate  [W] 

Re  Reynolds number  [-] 

Req  deformation length, equation (18)  [m] 

R0  equivalent drop radius  [m] 
Sc  Schmidt number  [m] 
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Sh  Sherwood number  [-] 
T  temperature  [K] 
u,v  curvilinear coordinates along the drop surface [-] 
U  Stefan velocity  [m/s] 

U0  drop-gas relative velocity  [m/s] 
V  volume  [m3] 
Y  non-dimensional evaporation rate  [-] 
Greek symbols 

β  non-dimensional drop surface area [-] 
γ  evaporation rate fractions [-] 
ε  drop deformation parameter, Table 1 [-] 
ξ  curvilinear coordinate [-] 
ρ  mass density [kg/m3] 
Φ  non-dimensional parameter, equation (30) [-] 
τ  non-dimensional time [-] 
χ  species mass fraction [-] 
Superscripts 
m  mixture 
nom  nominal 
α  vapour species 
*  modified 
Subscripts 
c  convective 
l  liquid 
ref  reference conditions 
s  at drop surface 
∞  at infinity 
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