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Preface

Real-world problems are always affected by uncertainty. Every day we are
asked to make decisions with respect to a future that has to be yet known. We
cannot completely know or understand the consequences of our choices, but if
we are able to identify a sufficient number of possible realizations of the future,
then we can understand what kind of decisions to make today without being
fully unarmed against the upcoming uncertainty. This is the typical approach
adopted in Stochastic Programming [34], [11].

In this thesis, we introduce the Value of the Right Distribution, a new concept
in Stochastic Programming which allows us to quantify the error when the prob-
lem is solved by assuming a probability distribution while another one realizes
instead. In order to show how it applies, we first study a cost—based variant of
the Newsvendor Problem considering a set of possible probability distributions
for the stochastic demand. Then, we use it alongside other concepts to study
a real case of bike—sharing, a kind of public service that is becoming more and
more popular in metropolitan regions.

In Chapter 1, a variant of the classical Newsvendor problem is studied. This
variant has application in supply chain management and in the supply of public
services, such as bike—sharing and car—sharing services. For this problem, a two—
stage stochastic programming model is formulated and closed—form and approx-
imate expressions of optimal solutions are obtained under different probability
distributions of the demand. A computational study shows, in a systematic way
with respect to the unit costs, how the expected cost and the classical Value of
the Stochastic Solution (VSS) [10] vary when the probability distribution varies.
Finally, a worst—case analysis is carried out, showing the maximum increase in
the expected cost that can be obtained guessing a probability distribution dif-
ferent than the right one.

In Chapter 2, stochastic optimization methods for a bike-sharing problem are in-
vestigated. The problem considered is the one of a bike—sharing service provider

who needs to manage a fleet of bicycles and a set of bike—stations with fixed ca-



pacity in order to serve the rental stochastic demand over space and time. First,
it is shown that this bike—sharing problem is a variant of the Newsvendor prob-
lem with transshipment; then, two—stage and multi-stage models for one-way
and two-way rental systems are proposed. In the one—way problem, models dif-
fer according to the inclusion of the user—transshipment, service—transshipment
and service-level satisfaction. A computational study based on real data of the
one-way bike-sharing system of the city of Bergamo, La BiGi, is provided show-
ing the differences in optimal inventory levels, under different assumptions for
the probability distribution. The Value of the Right Distribution introduced in
the previous chapter and known measures from the literature are computed to
investigate the quality of the expected value solutions under several probability
distributions. Finally, the in—sample stability and the sensitivity analysis over

stock-out cost, time-waste cost and transshipment cost are provided.
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Abstract

The Value of the Right Distribution for the Newsvendor

Problem and a bike—sharing problem

MATTEO CAGNOLARI

In this thesis, we introduce the new concept of Value of the Right Distri-
bution, which measures the importance in Stochastic Programming of knowing
the right probability distribution of the stochastic demand. We also introduce
the new concepts of Recourse Penalty Bound and Maximum Recourse Penalty
bound, which measure respectively the error bound and the worst—case perfor-
mance bound given a certain mismatch between two probability distributions.
In order to show how they apply, we study a cost—based variant of the Newsven-
dor problem. Moreover, we obtain closed—form and approximate expressions for
the optimal quantity to order depending on the probability distribution assumed
for the stochastic demand. Then, we use this new concepts to investigate bike—
sharing problems. Two—stage and multi-stage stochastic optimization models

are proposed. Finally, numerical results are provided.



Symbols and Notations

In this section we include a description of major symbols and notations used
in all the chapters of the current work. Additional notation may be needed
within specific chapter/sections and it is explained when used. To the greatest
extent possible, we have attempted to keep unique meanings for each item. In

those cases where an item has additional uses, they should be clear from context.



Symbol | Definition

+ Superscript indicates the positive part of a real (i.e., a* = max(a,0) )
or unrestricted variable (e.g., y = yTy~,yT > 0,5y~ >0 ) and its
objective coefficients (e.g., ¢ ), subscript as non-negative values
in a set (e.g., RT ) or the right-limit (F*(¢) = lims_F(s))

* Indicates an optimal value or solution (e.g., * )

A First-stage matrix (e.g., Az = b), also used to indicate an event
or subset, A € A C Q

A Collection of subsets

b First-stage right-hand side (e.g., Az = b)

B Matrix, basis submatrix, or index set of a basis

& Exponential distribution

E Mathematical expectation operator

S Probability density/mass function

F Cumulative distribution function

g Function (usually in constraints (g(z) or g;(x)))

h Right-hand side in second-stage (Wy = h — Tz),
also hf(w) in multistage problems

H Number of stages (horizon) in multistage problems

i Subscript index of functions (f;) or vector elements (z;)

1 Identity matrix or index set (i € I) or vector elements (z;)

J Subscript index of functions (g;) or vector elements (z;)

L Log—normal distribution

m Number of constraints (my,ms)

n Numberof variables (ni,ns)

N Set

N Normal distribution

D Probability of a random element (e.g., ps = p[€ = &])

q Second-stage objective vector (q7y)

Q Second-stage (multistage) value function with
random argument (Q(z, &) or Q'(zt, "))




Symbol

Definition
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Second-stage (multistage) expected value

(recourse) function (Q(x) or Qf(x?))

Real numbers

Scenario index

Scenario Set

Superscript stage or period index for multistage
programs (t =1,..., H)

Technology matrix, the transpose of a

matrix or vector, total number of time periods

Uniform distribution

Recourse matrix

First-stage decision vector or multistage decision vector (z*)
feasible set of x

Second—stage decision vector

Objective value (e.g., min z)

Integers

Weight in a linear combination (e.g € € [0, 1])

Parameter of the Log—normal distribution

Parameter of the Log—normal distribution

Random vector with realization 6

Vector of the expected values of all origin—destination pairs
Vector of the expected values for each bike—stations
Dual multiplier, parameter in a convex combination
Random vector with realization &

Support of the random vector &

Dual multiplier, standard deviation or o—field
Summation

Function, density distribution of a standard normal
Function, cumulative distribution of a standard normal
Newly obtained second-stage (multistage) value function

Newly obtained secondfstzagne (multistage) expected value function
o
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1.1 Introduction

Uncertainty characterizes the nature of our reality: every day we are asked
to make decisions to solve problems where some of the parameters are unknown.
Modeling a problem with uncertainty in an appropriate way is critical to have
good solutions. Stochastic Programming (SP) and Robust Optimization (RO)
are two modeling approaches adopted alternatively to face problems with un-
certainties in data, both in single period and multi-period decision—making pro-
cesses. In the former, uncertainties are modeled as random variables with known
probability distributions and the user has informations about the form of the
distribution (see for example Birge and Louveaux (2011) [11], Ruszczynski and
Shapiro (2003) [52]), King and Wallace (2012) [34]). When such information
is not available or hard to obtain, RO allows the user to address the uncer-
tain nature of the problem without making specific assumptions on probability
distributions by assuming that the uncertain parameters belongs to a determin-
istic uncertainty set. This is the general distinction between the approaches
of Stochastic Programming and Robust Optimization. In RO uncertainties are
usually modeled as random variables with distributions that are unknown to
the modeler, but are constrained to lie within a known support. The origi-
nal problem is reformulated as a deterministic convex program by means of a
min—max approach which guarantees the feasibility and optimality of the solu-
tion against all instances of the parameters within the uncertainty set (Ben-Tal
and Nemirovski (1998) [5], Ben-Tal and Nemirovski (1999) [6], Ben-Tal and
Nemirovski (2000) [7], Ben-Tal et al. (2004) [4] and (2009) [3], Bertsimas et
al. (2011) [8], Dupacova (1998) [19]). The deterministic program is therefore
“robust” against perturbations in the model parameters.

Each approach has a main drawback: SP requires specificity in order to know
exactly the true form of the probability distribution describing the uncertainty,
RO is conservative and the optimal solution may have a strong dependence on
the chosen uncertainty set. The min—max stochastic programming approach

aims to bridge the gap between the two: the optimal decisions are sought for
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the worst—case probability distributions within a family of possible probability
distributions, defined by certain properties such as their support and moments
(see for example Goh and Sim (2010)[24]).
We now enlight other drawbacks about the SP and RO approaches in order to
better specify on the goals of this chapter:

e concerning the SP approach, it is not considered the possibility that one
of the pillar assumption of the stochastic model (i.e. the assumption of
the probability distribution for the stochastic process) is false. The use
of a stochastic approach instead of another relies on the fact that one
probability distribution is chosen to describe the historical data, given
that the future will depend on the past. But what if this assumption is
wrong? How large is the error due to our mistake? Which is the worst—case
having the largest error? For example, in Bertsimas and Thiele (2006) [9]
it is shown that, if the assumed probability distribution is in fact different
from the actual distribution, the optimal solution may perform poorly
(in their experiment it is assumed that the probability distribution has
identical first and second moments to the actual one, while we will also

address the case where the latters are different);

e concerning the RO approach, it is too much conservative and it does not
consider the information carried by the probability distributions. Does

exist a way to capture the importance of the ambiguity?

To this extent, in this chapter we introduce the new concepts of Value of the
Right Distribution (VRD), Recourse Penalty Bound (RPB) and Mazimum Re-
course Penalty Bound (MRPB).

In SP, the probability distribution is often selected on the basis of a given time
series. Doing that, it is implicitly assumed that the future will be similar to the
past. So, it can happen that the selected probability distribution is not a good
estimate of the future. To this purpose, we are interested in comparing what
happens when a SP model is solved by assuming a probability distribution with

respect to solving the same model by assuming a different one. In the following,
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we will refer the first distribution as guessed distribution and the second as right
distribution. The Value of the Right Distribution measures the error when a
probability distribution is assumed in a SP model but another one realizes in-
stead. It is the difference in the cost of the optimal solution obtained assuming
a guessed probability distribution with respect to the cost of the optimal solu-
tion with the probability distribution that actually realizes. The cost of both
solutions is computed by using the right probability distribution. The Recourse
Penalty Bound deepens the analysis for those pairs of probability distributions
considered problematic or highly risky. The Maximum Recourse Penalty Bound
is, at last, a worst—case analysis that measures the maximum error or loss de-
riving from a pairs of probability distributions.

For the sake of simplicity, we will compute the above mentioned measures us-
ing the following probability distributions: Uniform, Exponenial, Normal and
Log—normal. To investigate such measures we use as example the Newsvendor
Problem, which is among the most studied problems by the stochastic program-
ming community. The main motivation behind the choice of it, it is not to
understand something new about it but use it as an example to introduce the
before mentioned new concepts.

Our variant of the Newsvendor Problem is referred to as the Cost-based Newsven-
dor Problem, in which our aim is to determine the order quantity of a single
item with stochastic demand over a single period. In the classical Newsvendor
Problem (Birge and Louveaux (2011) [11]), a newsvendor goes to a publisher
every morning and buys a certain quantity of a newspaper at a given unit pur-
chase price. This number is usually bounded above by some limit, representing
either the newsvendors purchase power or a limit set by the publisher to each
newsvendor. The newsvendor then walks along the streets to sell as many news-
papers as possible at a given unit selling price. Any unsold newspaper can be
returned to the publisher at a given unit return price, less than the purchase
price. Demand for newspapers is described by a random variable. The newsven-
dor cannot return to the publisher during the day to buy more newspapers. The

problem is to determine how many newspapers to buy every morning to max-
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imize the expected profit. In the Cost—based Newsvendor Problem we assume
that the selling price is equal to 0 and that the unsold newspapers cannot be
returned to the publisher. The objective function is to minimize the expected
total cost.

This variant has several practical applications. For example, the newsvendor is
an intermediate node in a supply chain or is providing a service, such as bike—
sharing or car—sharing services, where the fair paid by the user is often zero for
some months if the service is new or symbolic (cents of euros per minute) oth-
erwise. In these cases, the focus of the decision—maker is not on maximizing the
profit as in the classical Newsvendor problem, but on minimizing the cost of the
service while ensuring a certain service level. If the service level is measured in
terms of stock-out cost, an optimal solution can be obtained by minimizing the
sum of the cost of the service and of the stock—out cost. For this problem, we
formulate a two—stage stochastic programming model, we first provide optimal
solutions in closed form for several probability distributions and we computa-
tionally compare in a systematic way the optimal cost and the classical Value of
the Stochastic Solution (VSS) (Birge (1982) [10]). These closed form functions
provide the means to analyze both the optimal solutions and associated costs
according to the specific characteristics defining the problem.

As last consideration, we apply the newly developed methodologies to the case
study considered in the second chapter.

This chapter is organized as follows. In Section 1.2 we define the Value of
the Right Distribution and in Section 1.3 we study a cost—based variant of the
Newsvendor Problem in order to show how the VRD applies. In Section 1.4 we
provide guidelines for the use of the VRD and RPB. Section 1.5 concludes the

chapter.
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1.2 The Value of the Right Distribution

A critical assumption adopted in the majority of newsvendor models is that
the demand probability distribution is known. However, such assumption is
rarely justifiable because, upon reality, it is at best be possible to estimate a
few low—order moments or to identify the range and some basic modality and
symmetry properties of the demand distribution (Hanasusanto et al. (2015)
[26]). In such cases there exist multiple distributions that describe the stochastic
demand according to the available information, thus the decision maker cannot
figure out which of them is the true one. If the newsvendor model is solved
chosing arbitrarily one of the possible distributions, the decision maker may
obtain a solution that performs poorly under the true demand distribution. Such
situation may rise also when a probability distribution is assumed to be the true
one for the demand in a stochastic programming model but such assumption
turns out to be false. Our focus is then on those class of problems in which the
support and/or few low—order moments can be identified and the probability
demand distribution is unknown among possible candidates.

In this section, we introduce the concept of Value of the Right Distribution
which measure the error when a certain probability distribution is assumed for
the stochastic demand but another one realizes instead. Such measure can be

adopted in two ways:

e a priori, when we are in presence of multiple probability distributions
which may describe the stochastic demand and we are interested in eval-
uating the possible losses deriving from all the mismatches between the
possible distributions, finding at the same time which mismatch is more

critical;

e a posteriori, to measure the error when a certain probability distribution,
which reaveals to be false, has been already assumed for the stochastic
demand and the obtained solution from solving the model has been already

adopted.
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The Value of the Right Distribution applies not only when two or more proba-
bility distributions may be mismatched, but also when the estimate of the type
of the distribution is correct but its parameters may be wrong. We are refering
in particular to the estimate of the standard deviation. For example, consider
the case where it is assumed normality for the stochastic demand with an es-
timated standard deviation which turns out to be biased and thus wrong: the
probability distribution is the same, but the second moment is different. Along-
side the Value of the Right Distribution we also provide the Recourse Penalty
Bound and Maximum Recourse Penalty Bound which deepen the analysis for
those mismatches that are critical. More details are provided in Section 1.3.4.

The Value of the Right Distribution may be investigated when either a stochas-

tic programming approach or a distributionally robust approach are adopted:

e in the case of stochastic programming, we are interested in a priori or
posteriori analysis. In the former we doubt about the true form of the
distribution or on the estimate of its moments, in the latter we observe
that the assumed distribution or estimation of the moments turns out to

be wrong;

e in the case of distributionally robust optimization, we measure the value
of the ambiguity that exists among each possible pair of the distributions
defining the ambiguity set. We thus obtain more information from the
ambiguity se while seeking at the solution that guarantees the best per-

formance in the worst—case.
Such situations may be observed in the following real situations:

e New services: we can look at services which can be similar to already
existing services in the same city or identical in other cities, but we will
hardly obtain a good estimate of the parameters of the distribution, low—
order moments or even the true form of the distribution fitting for our
case study. Such situation is the case where the demand probability dis-

tribution may be known but the support and/or low—order moments are

28



difficult to be properly estimated. A priori and/or posteriori analysis may

fit for such situation;

e New single products: consider for instance a new game for consoles and
personal computers which is going to be released worldwide in few months.
The form of the distribution may be guessed by analyzing the hystorical
data of games of similar gender sold by the same company. A first esti-
mate of the parameters and low—order moments of the distribution may
instead be given by using the so called pre—order option, which gives to

the company a measure of the future sales;

o Fuailure of automatized processes: failures are typical of automatized pro-
cesses, in particular for clothing and food industries which involves a
massive production. Failures may be described equally well by different
probability distributions given an estimate of the support and low—order

moments.

We now formally introduce the class of problems and methodologies affected
by uncertainty and we show to which of them the concept of VRD can be
applied.

Consider the following generic optimization problems
min{c’ z|Az = b}, (1.1)

where ¢, A b are known data of sizes n x 1, m X n and m X 1, respectively.
The tuple (¢, A, b) represents the numerical values of the entries. For this kind
of problems, the knowledge of (¢, A,b) is assumed to be complete. However,
when facing real-world applications, in the majority of cases the knowledge of
(¢, A,b) is incomplete due to the uncertainty characterizing the problem, and
when a mathematical optimization model is posed, the uncertainty has to be
considered if it is proved to be important for the decision model.

The most difficult part is establishing a decision model such that the uncertainty

is described in an appropriate way without losing information or making wrong
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assumption about it.

According to Ellsberg (Ellsberg (1961) [20]), we distinguish between:

e uncertainty problem, if the probability model is fully known, but the re-
alizations of the random variables are unknown. For example, when a
sample of past data is available, we are able to define a probability model:
we describe the uncertainty as a random variable or a stochastic process by
identifying its probability distribution using statistical methods of model
selection and parameter estimation. Adding the uncertainty in (1.1), these

problems can be described with a stochastic formulation:
min{e"z + B¢[Q(z. £)]| Az = b}, (1.2)

where € € Z C Z™ represents the random vector formed by the coefficient
of the second—stage problem data g, h and by the technology matrix T'
and recourse matrix W. Boldface is used to represent the fact that the
considered data are uncertain. E¢ denotes the mathematical expectation
with respect to & and Q(z,&) = min{q”y|Wy = h—Tx,y > 0}, where y

is the second—stage variable.

e ambiguity problem, if the probability model itself is unknown. For exam-
ple, when there is not just one probability model, but a set of models
P (the ambiguity set), which are all possible descriptions of the reality.
We extend the baseline problem (1.2) to the ambiguity problem with a

distributionally robust formulation:
min %13%({ch + Ep[Q(z, £)]| Az = b}, (1.3)
x Pe

where Ep denotes the mathematical expectation with the respect to P.
(1.3) is of min—max type. An optimal solution to (1.3) is called a distri-

butionally robust solution.

One last case is robust optimization (Ben—Tal and Nemirovski (2009) [3]), which

defines the uncertainty as a collection of programs of a common structure with
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the data (¢, A,b) varying in a given uncertainty set 4. These programs can be

described with a robust formulation:
{min{c"z|Az = b} : (c, A,b) € U}. (1.4)

An optimal solution to (1.4) aims at immunizing against the uncertainty char-
acterizing the problem while remaining feasible whatever the realization of the
data within &. For this reasons, a solution of this kind is called robust feasible.
The best possible robust feasible solution is the one that solves the following

optimization problem:
min{max ¢’ z|Az = b V(c, A,b) € U}. (1.5)

(1.5) is of worst—case type.

Robust optimization ignores the informations given by the scenarios and by the
probability distributions the random parameters may have. On the contrary,
stochastic optimization makes the assumption that the parameter & follow a
probability distribution P such that the functions Q(z, &) become random vari-
ables (Pflug and Pichler (2014) [47].

Figure 1.1 shows the concepts introduced so far, describing as well when a cer-

tain approach has to be used.
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PARAMETRIC OPTIMIZATION

! | !

(¢, A, b) are parameters are (¢, A, b) are uncertain,
completely known randomly distributed (e, A,b) €U
Y Y
DETERMINISTIC ROBUST
OPTIMIZATION OPTIMIZATION
Y A\
only one a set of possible
distribution P distributions P € P
v
STOCHASTIC DISTRIBUTIONALLY
OPTIMIZATION ROBUST OPTIMIZATION

Figure 1.1: Optimization approach to be used depending on the parameters of

the problem.

Depending on the problem parameters, we understand what kind of opti-
mization approach has to be adopted. Thus, the concept of robustness is used
in different ways. For example, minimizing x — Q(z, ) for a fixed ¢ is a de-
terministic optimization problem, minimizing z — max{Q(z,&) : & € E} is
a robust optimization problem while minimizing Q(z,£) in = with & random
variable is a stochastic optimization problem. The ambiguity problem (1.3),
however, does not specify a prior and therefore it has the structure of a dis-
tributionally robust stochastic problem. It is a combination of a robust and a
stochastic problem (Zackova (1966) [65]).

In our work, we do not consider the case where (¢, A,b) are completely known,
nor the case where they vary in a given uncertainty set U/. We are not inter-
ested in deterministic nor in robust optimization. We focus only in those cases

where the parameters are randomly distributed (see Figure 1.1) while facing a
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situation of ambiguity. Our aim is to measure the error deriving from a wrong
assumption of the probability distribution in stochastic programming and to
investigate the value of the ambiguity in presence of multiple probability distri-

butions.

We now formally describe the concept of Value of the Right Distribution.
Consider a stochastic program having random variable £. Let G be the guessed
probability distribution of €& and R be the right probability distribution of &.

The Recourse Problem assuming the quessed distribution G (RPg) is defined
as follows:

RPg = min z5(,¢), (1.6)

where X is the set of feasible decisions = and zg(z, £) is the expected cost com-
puted assuming a guessed distribution G. We denote with z7; the corresponding
optimal solution.

Let the Out-of-distribution value (OD) be the expected cost of x5 computed
on the basis of the right distribution R:

OD = zr(zg, &), (L.7)

where z (x, £) is the expected cost computed by assuming the right distribution
R. This value is referred to as the .

The Recourse problem assuming the right distribution R is defined as follows:
RPr = min zr(x, €). (1.8)

We denote with 2% the corresponding optimal solution.

Definition 1.2.1. The Value of the Right Distribution (VRD) is
VRD = OD — RPx.

Note that VRD is always non—negative.
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1.3 A cost—based variant of the Newsvendor Prob-
lem

In this Section, we study a cost—based variant of the Newsvendor Problem as
example in order to apply the concepts of VRD, RPB and MRP. In Subsection
1.3.1, 1.3.2 and 1.3.3 the problem description, literature review and model for-
mulations are provided, respectively. Then we introduce in Subsection 1.3.4 the
concepts of Recourse Penalty Bound and Maximum Recourse Penalty Bound.

At last, Subsection 1.3.5 shows numerical results.

1.3.1 Problem Description

A supplier replenishes a retailer facing the stochastic demand of a single
item over a single period. The retailer purchases the item at a given unit
procurement cost and tackles unit holding cost for the leftover quantity (surplus)
and unit stock-out cost for the shortfall quantity depending, respectively, on
the positive or negative inventory level in which she will incur after demand
realization. In order to avoid trivialities, we assume that the unit stock—out
cost is strictly greater than the unit procurement cost. The order quantity can
be any nonnegative real number. The delivery is assumed to be instantaneous
(lead—time equal to zero). Backlogging is not allowed. The sequence of the
operations is the following: the order quantity is computed, the ordered units
are shipped and received by the retailer and, at last, the demand that occurs
is satisfied. The aim is to determine the order quantity that minimizes the
expected total cost, given by the sum of the procurement cost, the holding cost

for the leftover quantity and the stock—out cost for the shortfall quantity.

1.3.2 Literature Review

The Newsvendor problem is one of the simplest stochastic inventory prob-
lems, involving a one—time purchase decision and a stochastic sales outcome.

If we rethink it as an investment problem, it can be interpreted as the sim-
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plest stochastic version of the point—in, point—out investment problem of Jevons
(Stanley (2013) [59]). Even if the Newsvendor problem has a simple structure,
human decision-makers systematically make non—optimal decisions (Schweitzer
et al. (2000) [57]). This problem is sometimes also called Single Period Problem
(SPP). A well-known result is proposed in Porteus (1990) [48]: the decision
maker has to determine the order quantity by matching the so—called critical
ratio to the uncertain demand.

We structure our literature review into papers that identify the uncertainty
in customer demands, distinguishing between papers that prefer a stochastic or
a robust approach, providing as well the case of distributionally robust optimiza-
tion. For general comprehension, we also mention some examples where demand
is multi-modal and where a multi—period formulation is adopted. For compre-
hensive reviews of the Newsvendor problem, we refer to Khouja and Moutaz
(1999) [32] and Qin et al. (2011) [49].

In Summerfield and Dror (2012) [60] two—stage decentralized inventory prob-
lems are proposed by using a unifying framework defined as a taxonomy multi-
level graph. This allows to model and link different problems of competing re-
tailers who independently procure inventory in response to uncertain demands.
It is given to the retailers the possibility to coordinate inventory transshipment
to satisfy shortage with overage based on profit sharing agreements.

In Rossi et al. (2014) [51] it is introduced novel strategy to address the issue of
demand estimation which analytically combines confidence interval analysis and
inventory optimisation in single-item single-period stochastic inventory optimi-
sation problems. In their numerical experiments, they assume for the demand
to have a binomial, Poisson, or exponential probability distributions. In Kaki
et al. (2015) [29] the impact of supply uncertainty on newsvendor decisions is
studied. In addition to stochastic demand, stochastic supply yield is introduced.
A closed—form solution for a specific copula—based dependence structure is pro-
vided for the optimal order quantity, when the demand and supply uncertainties
are interdependent. Then, it is shown how dependence impacts the newsvendors

decision, profit and risk level. Experimental results show how difficult newsven-
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dor decisions under supply uncertainty are for human subjects, showing that,
under low—profit conditions, subjects are able to incorporate supply uncertainty
quite well in their decisions, while under high—profit conditions, the deviation
from the optimum is much more significant.

In a stochastic programming framework it would be interestind to consider other
probability distributions along the ones considered in the papers mentioned
above and to derive close—form and approximate expressions for the optimal
order quantity. In a single—period single—item newsvendor problem, such forms
would provide a quick computation of the optimal solution to be compared
assuming different probability distributions.

In Carizzosa et al. (2016) [12] a setting which combines temporal dependence
and tractable robust optimization for the Newsvendor problem is proposed: the
demand is modeled as a time series which follows an autoregressive process and
then a robust distribution—free autoregressive method to maximize the worst—
case revenue is given. A closed—form expression for the optimal solution is pro-
vided for same cases, while for other cases the problem is numerically solved.
Then, the optimal robust solution is compared with the solutions obtained in
three versions of the classic approach, in which either the demand distribution
is unknown, and autocorrelation is neglected, or it is assumed to follow an auto
regressive process with normal error terms. Extension to multiperiod and mul-
tiproduct models are also provided and discussed.

In Lin and Ng (2011) [36] a robust model to determine the optimal order quan-
tity in a multi—item single period problem is provided. The model is a minimax
regret multi-market newsvendor model, where demands are only known to be
bounded within some given intervals. A linear solution method for the classical
version of the problem is proposed and an approximation solution algorithm,
based on integer programming for the capacitated version of the problem, is
implemented. Then, the performance of the proposed minimax regret model is
compared with typical average—case and worst-case models, showing that the
former outperformed the latter in terms of risk-related criteria and mean profit.

In Wu et al. (2014) [64] a risk—averse version of the newsvendor problem with
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quantity and price competitions is proposed in order to obtain optimal quantity
and pricing decisions under the Conditional Value-at—Risk (CVaR) criteria. For
quantity competition, two demand splitting rules are considered (demand allo-
cation and demand reallocation), while for price competition, both additive and
multiplicative demand are considered. It is shown that for certain competitive
environments and for demand reallocation, competition does not result in profit
losses, even if it always leads to overstocking, by avoiding/reducing overstocking
under the risk—neutral criterion. Moreover, it is showed that the order quantity,
sale price, and the expected profit decrease in the degree of risk aversion, both
high price sensitivity and competition intensity force decision makers to lower
their prices and high price sensitivity always reduces the order quantity while
competition can have the opposite effect.

In Khanra et al (2014) [31] a sensitivity analysis is provided, justified by the fact
that, in such problem as the Newsvendor problem, the quality of decisions in in-
ventory management models depends on the accuracy of the estimated stochas-
tic parameters. A lower bound of the cost deviation for symmetric unimodal
demand distributions has been first identified. Then, it is shown that condi-
tions for symmetry/skewness of cost deviation are closely linked with symme-
try/skewness of the demand density function and that the Newsvendor prolem
is sensitive to suboptimal ordering decisions. Moreover, the Newsvendor prob-
lem resulted to be more sensitive than the classical Fconomic Order Quantity
model. The most influential parameter for the optimal order quantity resulted
to be the expected value of the stochastic demand.

As proposed in the above mentioned references, it is typically prefered to
assume for the stochastic demand to follow a unimodal or normal distribution
since unimodality and normality lend themselves to easier mathematical manip-
ulations.

The first distributionally robust newsvendor model has been proposed in Scarf
(1959) [54] in which it is assumed that only the first two—moments of the univari-
ate demand distribution are known. The analytical expression of the optimal

order quantity is then derived. This model was extended in Gallego and Moon
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[23],but still only first and second—order moments were assumed to be known. In
Perakis and Roels (2008) [46] are derived the optimal order quantities that min-
imize the newsvendor’s maximum opportunity cost from choosing a particular
demand distribution within the ambiguity set, mitigating the conservativeness
of the worst—case approach. In Natarajan (2008) [45] is then introduced the
asymmetry into the robust newsvendor problem by using mean, variance and
semivariance to design the ambiguity set.

However, in Vaagen and Wallace (2008) [63] it is demonstrated that unimodality
is inadequate for some classes of product whose demand is affected by certain
characteristics, such as seasonality and fashion trends, because the assumption
of unimodality leads to solutions with unfavourable risk-reward tradeoffs.

In Hanasusanto et al. (2015) [26] are investigated risk—averse multi-dimensional
newsvendor model in which unimodality and normality are not justifiable since
the demands of the products taken into consideration for their model were
strongly correlated and subject to fashion trends that were not fully under-
stood at the time when the orders were placed. They assumed that demand
distribution is known to be multimodal and they proposed a distributionally
robust optimization formulation which admited an efficient numerical solution
in quadratic decision rules.

The newsvendor problem has been also extended to the multi-period for-
mulation. In Kim et al. (2015) [33] it is proposed a multi-stage stochasic
programming model with integer recourse decisions to determine the optimal
inventory control with a non-stationary demand. In Behret and Kahraman
(2010) [2] it is proposed a multi-period newsvendor problem with fuzzy demand
and pre—season extension for innovative products. They determined the best or-
der period and the optimal order quantity that minimizes the fuzzy expected
total cost. At last, in Azad et al (2016) [1] the single—period nesvendor problem
is extended into a multi—period and time-dependent newsvendor problem with

price—dependent stochastic demand.
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1.3.3 Model Formulations

In this subsection we propose model formulations for a cost—based variant
of the Newsvendor Problem. Let us first introduce the following parameters

holding for all the models:

Deterministic parameters

e c € RT: procurement cost per unit of item purchased from the supplier,

where RT denotes the set of the positive real numbers;

e i € RT: holding cost per unit of positive inventory level after demand

realization;

e v € RT: stock—out cost per unit of unmet demand after its realization,

V>

Stochastic parameters
Let (Z,.A, p) be a probability space with Z set of outcomes, o —algebra A, prob-
ability p and £ € = a particular outcome representing the stochastic demand.

We define ¢ € = C Z* the uncertain future demand.

This subsection is organized as follows. In Paragraph 1.3.3.A we provide a
two—stage stochastic programming formulation while in Paragraph 1.3.3.B we
provide a distributionally robust optimization formulation. In both paragraphs,

we consider both continuous and discrete cases.

1.3.3.A A two—stage stochastic programming formulation

Let S be set of scenarios, S = {1,...,5}. We denote with £, the realization
of the stochastic process £ in the scenario s, s € S.
The problem can be formulated as a two—stage stochastic linear program with
recourse. Let us introduce the first—stage and the second—stage decision vari-

ables:
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e 1: first—stage non—negative decision variable corresponding to the order
quantity. We denote with x* the optimal order quantity. This decision

must be taken before the realization of the stochastic demand &;

o [1(€) and I~ (&): second-stage non—negative decision variables represent-
ing, respectively, the positive inventory level (surplus) and the unmet de-

mand (shortage), given the realization of the demand.

The two-stage stochastic linear program can be formulated as follows:

min  z(z,€) = cx + Q(x) (1.9)
z >0,

where

Q(z) = E¢[Q(x, )], (1.10)
and

Q(z,¢&) =min hIT(&) +vI=(€) (1.11)
st. I=(&)—IM(¢&)=¢€—ux, (1.12)
I(€),17(§) > 0. (1.13)

The objective function (1.9) minimizes the expected total cost corresponding to
the non—negative order quantity = and to the recourse function Q(x). Constraint
(1.12) defines the inventory level and (1.13) are the nonnegative constraints for
the second-stage variables. We note that the stochastic program (1.9)—(1.13)
has simple recourse.

Second—stage variables mutually exclude each other, since when one of the two
is strictly positive the other is zero. It is possible to capture that with the

following notation:
hd I+(E) = max(x - 670) = ('I - €)+a

o I7(€) = max(€ —2,0) = (€ — )"
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By substitution, constraint (1.12) is rewritten as
r=&6—(¢—2)" +(z-&T. (1.14)
The following properties for Q(x, &) hold true:

Proposition 1.3.1. (a) The recourse function Q(x,€) is a piecewise linear

convez function in &.

(b) The recourse function Q(x,€) is a piecewise linear convex function in x

Vo >0 and s.t. Q(z,€) < +oo.

Proof. Let d = &€ —2*, y = (yT,y7) = (IT(&),17(£)) be the second-stage
solution vector, g = (g™, q~) = (h, s) be the vector of the coefficient parameters
of the second-stage variables and W = [1 — 1] be the recourse matrix.

To show convexity in (a) and (b) we need to prove that f(d) = min{q?y|W'y =
d} is a convex function in d.

We consider two different values, d; and ds, and a convex combination of the
two, dy = tdy + (1 — t)dy, t € [0,1].

Let y} and y} be two optimal solutions of f(d) = min{qTy|W7Ty = d} for
d = d; and d = da, respectively. Then, ty; + (1 — t)y; is a feasible solution of
the problem f(d;) = min{q”y|W'y = d;}. Now let y; be an optimal solution
of the problem f(d;). Thus, we have:

flde) = ftdi + (1 —t)d2) = q"y; < q" (ty} + (1 —t)y3) =
=tq"y;+ (1 -t)q"y; =

= tf(d1) + (1 —1)f(d2).

This proves convexity of f in d, as required.
Piecewise linearity follows from the existence of finitely many different optimal

bases for the second-stage program. O

We now study the expected total cost function (1.9). Since the first term is

deterministic, we can compute its expected value with respect to & without loss
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of generality. We obtain:
z(x,€) = cBela] + hE¢[(z — €)"] + vE¢[(€ — 2)"]. (1.15)

Note that (1.9) is equivalent to (1.15). We now substitute (1.14) in (1.15). We
obtain:
2(2,8) = cEe[€ + (z — )T — (€ —2) "] + hBe[(x — §) 7] + vE¢[(€ — 2)T] =

= S+ cBe(z — &) 7] — cBe[(§ — 2) "] + hEe¢[( — £)T] + vE[(§ — 2)"] =

=&+ (c+ h)Ee[(z — &) "] + (v — )Ee[(§ — ) T]. (1.16)

Thus, we can rewrite the two-stage stochastic linear program (1.9)—(1.13) as

follows:
min  z(z, &) = c€ + min ¥(z) (1.17)
x>0,
where
V() = Ee[¥(,8)], (1.18)
and
U(z, €)= (c+h)(z—&T+@w—c)(&—2)". (1.19)

If we compare Q(z, &) and ¥(z, &), we can observe that, by replacing the def-
inition of the first—stage variable into the stochastic program (1.9)—(1.13), we
obtain a new definition of the recourse cost function in (1.18) which takes into
consideration all the cost parameters of the problem ¢, h and v. This leads to

the following observations:

e the definition obtained in (1.19) clarifies the reason why we assume that
the stock—out cost parameter v is strictly greater than the procurement

cost ¢;

e we have two definitions of the expected total cost function:
z(x, &) = cx + Q(x),
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and
2(z,€) = € + ¥(x).

Moreover, minimizing c€ + ¥ (z) is equivalent to minimize ¥(z), as c€ is

constant.

We now show that it is possible to compute the expected surplus in terms

of the expected shortage. From (1.14) we define the surplus as:
(z-&" =€+ (€—a)"
Taking the expectation on both sides, we obtain:
B — &) =2 — £+ Ee(€ — 2)". (1.20)
If we replace (1.20) in (1.18), we have:

U(z)=(c+h)(x—&) + (v+h)Ee(€—2z)T. (1.21)

The case with continuous probability distributions

We now study in more detail the two—stage stochastic linear program (1.17)—
(1.19) assuming any continuous probability distribution for the stochastic de-
mand &. Then, we analyze the Uniform, Exponential, Normal and Log—normal
probability distributions to understand how the optimal solution, expected sur-
plus, expected shortage and expected total cost functions depend on which
probability distribution we assume for the stochastic demand.

Assuming any continuous probability distribution, the model can be analytically
solved as follows. Let F¢(z) be the cumulative distribution function (cdf) of the
random variable &€ evaluated at z. By construction, ¥(z) can be computed as:

+o00

o) = (c+h) [ (@~ &)AF(E) + (v o) | e-wire -

x

0
:(c—|—h)x/0 dF(E)—(c—!—h)/O EdF(€)
+o0 +oo

+ (v — c)/ EdF (&) — (v — c)x/ dF'(g). (1.22)
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Since

/I dF (&) = Fe¢(x) and integrating by part /m EAF (&) we have ng(m)—/z F(&)dg,
0 0 0

then:

“+o00o +oo x
/ dF(€) = 1 - Fe() and / EdF(€) = 1 — tFe(a) + /0 F(e)d(e).

x

By replacing it in (1.22), it follows that:
V(o) = (¢ + R)oFe(a) ~ e+ WfaFe(o) - [ F(E)ael+

0= 0l = oFea) + [ FdE] - (0 - 0alt ~ Feo)] =

:u—c—x(v—c)—|—(c—&-h)/OxF(g)dﬁ—f—(v—c)/olF(E)dﬁz

—v—ctalc—v)+ (h+0) /Om F(&)de. (1.23)
Taking the first derivative of (1.23) with respect to z we obtain:

V'(z)=c—v+ (h+v)Fe(x). (1.24)
Setting ¥’ (x) = 0, we obtain:
oo

Fe(a®) = —% (1.25)

v—C

and therefore the optimal solution is z* = Fgl(v+h

). If we denote with «

the retailer’s cost ratio {77, then 2* = Fgl(a). Therefore, the optimal order
quantity z* depends on the retailer’s cost ratio a and on the assumed probability
distribution.

Let us now compute z* in closed—form for some continuous probability dis-

tributions, as a function of the retailer’s cost ratio «.

Uniform distribution The Uniform distribution describes a random vari-
able in which all values in the support [a, b] are equally probable. The probability

density function pdf and the cumulative distribution function cdf are:

e ifa<E<D,

f(&a,b) =

0 otherwise,
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and

§=a jfg < €<,
F(&ab)=4 """ -

0 otherwise.

Since the expected value is & = “T'H), then b = 2¢ — a.
Let us now compute the optimal order quantity xz* in closed form. Since
Fe(z) : R — [0,1] is continuous from the right and stricly increasing in the

interval [0, 1], then it is invertible. By applying the Inverse transform method,

since F¢(x) = $=2 for any x € [a, b], it follows that a = =2. Therefore,
*=a+alb—a)=
=a—aa+ab=
=a—aa+a2f—a)=
=a(l - 2a) + a2€. (1.26)

Let us now explicitly define the recourse function (1.18) in this case. The ex-

pected surplus is:

_ : * 62 : * 52 —
_ggglf b—a(x E_?)_glgrzl+ b—a(x E_?) o
_ z*? 1 ., a? _
- 2(b—a) b—a(ax ?)_
* 2
(;C(b _C;)) : (1.27)

45



while the expected shortage is:

b
Eel(€ —2*)*] = / (€ — 2*)f(£)de =

b 1
= / (€ - x*)mdﬁ =
= lim F(§)— lim F'(¢) =

£—b E—art
S, SR B
9 N %2
- b2(b —2ch - bia(xQ @)
_ (;’(;fa); (1.28)

Let us define the expected surplus (1.27) in terms of the expected shortage (1.28)
and use (1.21) as definition of the recourse cost function. Then, the recourse

cost for z* equal to the value computed in (1.26) is:

(a*) = (c+ h)(a(l - 2a) + a2€ — &) + (v + WEe[(§ —2)*] =
= (c+h)(a(l - 20) + €20 — 1)) + (v + h)Ee[(§ — ) '] =
= (c+h)(€—a)2a—1) + (v+ h)Ee[(€ —2)T]. (1.29)
Therefore, replacing (1.29) in (1.17), we have:
2(z%,€) = c€ + (c+ 1) (€ — a)(2a = 1) + (v + R)Eg[(§ — 2)"] =
= ac+ ah — hé + 2a(c + h)(€ — a) + (v + h)Ee[(€ — 2)T] =

=ac+ (€ —a)2a(c+ h) — k] + (v + h)Ee[(€ — 2)7T]. (1.30)

Exponential distribution The (pdf) of an Exponential distribution is

e e if € >0,
f(&A) =
0 otherwise,
and its cdf is
1—e ¢ if€>0,
F(&A) =

0 otherwise,
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where ) is the rate parameter. We choose A\™' = £, i.e. A = €1, and we
formally describe the pdf and the cdf by using the alternative parametrization.

We obtain:

e e,
feH=1"° 1

0 otherwise,

and

1—e$ '€ ifg>0,
F(&¢) =

0 otherwise.

The distribution is supported on the interval [0,00). Since the stochastic de-
mand in our problem has a finite support [a, b], the pdf must be truncated. A
truncated pdf fi"(£) and a truncated cdf F'"(¢) for the Exponential distribu-

tion in the range [a, b] are as follows:

ftr(f;g,a,b) _ 571675715(1 — 675—11))71 ifa<g&<b

0 otherwise,

and

Ftr(E;gv a, b) =

0 otherwise.

Since F'"(x) : ® — [0,1] is continuous from the right and stricly increasing,
then it is invertible. Therefore, z* = (F'")~!(a). We use the Inverse transform
method to get an explicit expression for * in a closed form. We start by studying

the truncated pdf of the Exponential distribution. We obtain:

Jr@) =& e )T
Then, we study the truncated cdf. We obtain:
Fir(z /51—5 1t1_€’ b)—ldt:
—(1—et )" / Ele=¢ gt =

=(1- e NTE(x).
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By setting F*"(z) = o, we have
a=(1—e€ 11—t

A a(l — efé_lb)

¥ = —€In(1 — ak), (1.31)

where

k=1—e¢ 't

We now want to compute the expected surplus and expected shortage in this

case. The expected surplus is:

k
-l 6~ Jim, 7€) -
e T
e Efllk[f_efg_lg B )
B é—llk[e*f”f* —e e e 1)) =
= g_llk[e—fflf e €@zt —a) — 1)), (1.32)
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and the expected shortage is:

. k
_ sllgl_ Ft?"(&) _ gll)rwrl+ Ftr(s)
e 5*11/4[_5 TR e
AN
1 £ g ¢ 1 —1,.%
= g_ilk[e_f b(é-—lx* _ é——lb _ 1)] _ (_g_lke—f T ) _
= Eillk[eff—lb(gfl(x* B b) . 1) 4 eié—lz*} (133)

Normal distribution The pdf of a Normal distribution is

1 1£6—£)\2

. — = 35

f(&p,0) o :

and the cdf is ~
£—¢
o2

where ¢ is the expectation of the Normal distribution, o is the standard deviation

F(o) = 5l +erf(C=5))

and er f(e) is the error function.
The distribution is supported on R. Since the stochastic demand in our problem
has a finite support [a,b], the pdf must be truncated. A truncated pdf fi" (&)
and a truncated cdf F'" (&) for the Normal distribution in the range [a,b] are
as follows:

=£ b=¢ a—&\\—1
et oy = LAEOC - e ey,

0 otherwise,

and

D(E7E) — B(E)((P55) ~ B(55) 7" i a b
F'(&€,0,a,b) = (2(35%) (N(@(2) (=) <&<b,
0 otherwise.



If £ is normally distributed, then &€ = £ +0Z where Z is the standard normal
random variable. Let ®(z) = p[Z < 2] be the cdf of the standard random

variable. Since o = p[¢ < 2*] = ®(24) and &1 () = z,, it follows that:
T =+ 024 (1.34)

The Normal distribution does not have a closed—form inverse and therefore the
Inverse transform method cannot be applied. We use an approximation method
for the standard normal distribution proposed in Schmeiser (1978) [55], from

which we define:
%135 _ (1 — )0-135

0.1975
for 0.0013499 < « < 0.9986501 which matches the true normal distribution with

(1.35)

Za —

one digit after decimal point. We obtain an approximated expression for x*:

gal 135 — (1 — o)0135
0.1975

Tt €+ (1.36)

We now want to compute the expected surplus and expected shortage in this

case. The expected surplus is:

E¢l(z" — €)T] = Ee[(€ + 020 — €)T] =

= oBel(0 — 2)"] =
—0 L " o = 2)0(2)dZ =

— ofza / dd(Z) — / 2d%(2)] =

— 00 — 00

= 0[2aP(24) — /Z" 2d®(Z)] =

— 0o

= olaze + ¢(24)], (1.37)
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and the expected shortage is:

Eel(€ - )] = Eel(§ — € ~ 0z0)] =
= 0Bel(Z ~ 20)*] =

+oo
=a/ (Z — 20)d(2)dZ =

o

= g[/:oo Z2d¥(Z) — 24 /:OO dd(Z)] =

[ o

“+o0
- a[/ 2d®(Z) = za(1 — ®(2a))] =

a

=0[p(za) — 2a(1 — a)]. (1.38)

We now define the expected surplus (1.37) in terms of the expected shortage
(1.38) and we use (1.20) as definition of the recourse cost function. We compute

the recourse cost in z* by using (1.34). We obtain:

U(x*) = (c+h)(z" = &) + (v+ h)Ee[(§ —2") "] =
= (c+ h)oza + (v+ h)o[p(2a) — 2a(1 — a)] =
= (v+ h)od(2a). (1.39)

Then, we replace (1.39) in (1.17). We obtain:

2(x*,€) = c€ + (v+ h)op(za)- (1.40)

Log—normal distribution The pdf of a Log—normal distribution is

1 _1(11167*5)2

f(&p,0) = Ea\/ﬂe 2 ,

and the cdf is -
In€ — 5)]
ov2

where £ is the expectation of the Lognormal distribution, ¢ is the standard

F(&p,0) = %erfC(—

deviation and er fc(e) is the complementary error function.
The distribution is supported on (0,00). Since the stochastic demand in our

problem has a finite support [a, b], the pdf must be truncated. A truncated pdf
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fi7(€) and a truncated cdf F*"(€) for the Log—normal distribution in the range

¢ € [a,b] are given as follows:

f(&;g,(f)(F(b;g,O’)—F(&;g,g))71 lfaSESb7

0 otherwise,

ft/r(i; 57 0-7 a7 b) =

and
F(&€,0)—F(a;€0) -
F'"(¢,€,0,a,b) = F(bi€,0)—F(a;€,0) fasgsh,
0 otherwise.
If £ is lognormally distributed with parameters ¢ and 7, then In(€) is normally

distributed with mean ¢ and variance n?.

Since In(€) = ¢ +7Z, then £ = e¢+7Z and it follows that:
T = ST, (1.41)

Since Fg(x*) = p[€ < 2], then p[€ < 2*] = p[In(§) < In(z*)] =p[(+nZ < (+
N%a] = PlZ < za] = ®(2a) = . We obtain that £ = e$27" and 02 = £2(e"° —1).
The Log-normal distribution does not have a closed—form inverse and therefore
the Inverse transform method cannot be applied. We can derive an approximate
expression for 2* using (1.35). We obtain:
w0135 _ (1 _ 0135

1* ST, (1.42)

We now want to compute the expected surplus and expected shortage in this

case. In Gallego (1993) [23], the expected surplus is defined as:

Ee[(z* — &)*] = £(®(n — 2a)) — 2" ®(—2za), (1.43)
where
D(—z,) = % (1.44)

and the expected shortage is:

Ee[(€ —2") "] = £(®(n — 2a) — 1) + 2" (1 — ®(~2a)). (1.45)
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The case with discrete probability distributions

When a real-world problem needs to be numerically solved, the assumption of
the discrete distribution is mostly agreed. We study the two-stage stochastic
linear program (1.17)—(1.19) assuming the discretized Uniform, Exponential,
Normal and Log—normal probability distributions to understand how the op-
timal solution, the expected surplus, the expected shortage and the expected
total cost functions are depending on the probability distribution we assume for
the stochastic demand.

When the stochastic demand £ has a very large number of possible realizations,
the standard approach is to give a representation of the random vector’s dis-
tribution trought the uses of scenarios, say s = 1,2,...,S, each representing a
possible realization &, of the stochastic demand & with the corresponding prob-
ability mass ps.

The two-stage stochastic linear program (1.17)—(1.19) is reformulated as the

following Linear Programming problem:

min z(z,€) = € + rnzin ¥ (x) (1.46)
x>0,
where S
() =Y p¥(z,8), (1.47)
s=1
and
U(2,8) = (c+h)(z—&)" +(v—0o)(& —2)". (1.48)

Thus, the recourse function can be written as:

S S

U(x)=(c+h)Y ps(z—&)T+@w—0)) p&— )", (1.49)

s=1 s=1

where Zle ps(z — &)t and Zle ps(&s — x)T are the expected surplus and

expected shortage, respectively.
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Given any discrete probability distribution, the definition of the expected

surplus is:

S
Yopsx—&)t = Y (F(&) = Flé))(x &) =

Siés<z
= 3 (1-F(z+k)), (1.50)
k=0
and the expected shortage is:
s
D ops(é—a)t = (F (&) = F(&s—1))(&s —x) =
s=1 S:és>x
b—z—a
= (1-F(z+k)). (1.51)
k=0

Discretized Uniform distribution If we replace the discretized cdf of

the Uniform distribution in (1.50), the expected surplus becomes:

r—a r—a

S (- Flatk) =Y (- T,

k=0 k=0
and using the property of the arithmetic progression, we obtain:

_x—a)_ x? :(x—a)Q.
b—a 2(b—a) 2(b—a)

which is the same definition obtained in (1.19) in the continuous case. We apply

(x —a)(1 (1.52)

the same for (1.51). The expected shortage becomes:

b—a—zx b—a—zx

S U-Fa+r)= Y (1_%)
k=0 k=0 -
B T —a b—a—x)(b—a—2x)
_(b_a_x)(l_b—a)_ 2(b—a)
— )2
:élzb_i). (1.53)

which is the same definition obtained in (1.20) in the continuous case. We define
the expected surplus in terms of the expected shortage using (1.20) and we use
(1.21) as definition of the recourse cost function. We compute the recourse cost

in 2*. We obtain:

V(") = (c+h)(§—a)(2a—1)+ (v+h) gzb—zi)

. (1.54)
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Then, we substitute (58) into (9). We obtain:

(b— =)

“(a",€) = ac+ (€~ a)20(e + ) Al + (04 h) .

(1.55)

Discretized Exponential distribution If we replace the discretized cdf

of the Exponential distribution in (1.50), the expected surplus becomes:

z—a z—a 1 76 1 757 Hx+k)
d(U-Fl+k)=> (1- - ) =
k=0 k=0
r—a 1 r—a B r—a .
_ - =& (z+k)
B Tk +& Z € ’
k=0 k=0 k=0

and using the property of the arithmetic and geometric progressions, from Birge

and Louveaux (2011) [11], we have:

— Az

S 0o
- e
Zps(aﬁ—§5 Ze Az+k) = (1.56)
s=1 k=0

while

Lz
Zps £ —x)t = |z) +1—eNeleD Ze‘kk = (1.57)

e Aa—12)) _ p=Aa+1) )
1—e 2

= m+1f< (1.58)

Note that the definitions of the expected surplus and expected shortage in the

discrete case are different from the definitions obtained in the continuous case.

1.3.3.B A distributionally robust formulation

In order to complete our analysis, in this section we show a Distributionally
robust formulation for the two—stage stochastic linear program (1.17)—(1.19). In
Scarf (1958) [54] it is derived for the first time a min-max order formula for the
distribution—free risk-neutral newsvendor problem, also addressed as ”Scart’s
ordering rule”. It provides a closed—form expression of the order quantity that
maximizes the worst—case expected profit associated with the demand of a single
product when only the mean and the variance, rather then the full distribution

itself, are known. Then Gallego and Moon (1993) [23] extended his work by
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proposing a study for the distribution—free newsvendor problem and a more
compact proof for the optimality of the Scarf’s ordering rule. In our study, this
corresponds to minimize the maximum expected total cost for all the demand
distributions or equivalently to find the order quantity that minimizes the ex-
pected total cost against the worst possible distribution of the demand with
mean ¢ and variance o2.

Let P be the ambiguity set, a set of many different distributions P, P € P, that
are consinstent with the available information. Then, if we order a certain quan-
tity = and only the mean and standard deviation of the demand distribution

are known, we obtain:

minmax z(z, £) = cx + hEs{(x - €)*] + vEp[(€ — 2)7] (1.59)
s.t.
Epl€] = € (1.60)
Ep[(§ - &)%) = o (1.61)
EeE. (1.62)

For the sake of completeness, we provide the continuous and discrete formulation

of (1.59)—(1.62). The continuous formulation is:

min maxlcr + h £)dP(€) + / Te—ndre)  (1.63)

PeP

st /d}P =1 (1.64)
/: EdP(e) = € (1.65)
/: (& — §dP(E) = o>, (1.66)

We discretize (1.63)—(1.66). We study the support E of the stochastic demand.
It can be defined as

=1 =
==U;15,

from which it follows that



and

b= | e

pi J=,
We use p; and &; to approximate the min—max problem. We obtain:

1]

min %165173([096 +h Z pi(r —&)+v Z pi(& — )] (1.67)
I:¢;<x I:¢,>x
st.  p; >0 Vi=1,...,1 (1.68)

I
> pi=1 (1.69)
=1

I
Z'fipi = (1.70)
i=1

1

> & —&)pi =0 (1.71)

i=1

& e Vi=1,...,1. (1.72)

We want to determine for (1.59) the stockage policy that minimizes the maxi-
mum cost that would occure, considering all distributions with the given mean
and standard deviation.

From paragraph 1.3.3.A, the expected total cost function
2(2,€) = cx + hE[(z — €)"] +vE[(£ — 2)7],
where [(z — €)*] =z — £ + E[(§ — 2)"] , can be rewritten as:
2(x, &) =cx+ hE[x — €+ (£ — 2)T] + vE[(§ —2)T] =
= cx + hx — hé + hE[(§ — 2)T] + vE[(¢ — 2)F] =
=cx+h(z — &) + (h+v)E[(§ —x)T]. (1.73)

In Gallego and Moon (1993) [23] it is showed that the expected shortage can be

defined in function of ¢ and o with the following inequality:

[0® + (x =€)’ — (z = §)
2

E[(¢ —2)"] < (1.74)

Since we are minimizing the expected total cost in the worst case and in (1.73)

the only remaining variable is the expected shortage, we are looking for the case
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where the expected shortage is the largest, that is to consider:

[0*+ @ -8 — (@-§)

E[(¢ — )*] = i
So, problem (1.59) is reduced to minimizing
= h —onl _
s =cr bz -+ "I 4 b - 922 - -9

(1.75)

We compute the first derivative with respect to x and we set it to 0. We obtain

that the optimal quantity to order is:

(2¢+h—v)y/—(c+ h)(c—v)

v=tto 3(c + h)(c— )

(1.76)

Note that —(c+ h)(c—wv) is always positive since v > ¢. (1.76) minimizes (1.59)

against the worst distribution.
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1.3.4 The Recourse Penalty Bound and Maximum Re-

course Penalty Bound

We now focus on the recourse function ¥(z), given that cf is constant.
Let zf% be the optimal solution of the Recourse problem assuming the right
distribution R when the retailer’s cost ratio is a. We define ¥ (2%) to be the
value of the recourse function evaluated in z% by using the right distribution
R. Let zg be the optimal solution of the Recourse problem assuming a guessed
distribution G when the retailer’s cost ratio is . We define ¥z (zg) to be the

value of the recourse function evaluated in xg by using the right distribution R.

Definition 1.3.2.

The Recourse Penalty Bound RPB is:

Ur(xg)
Vg (%)

Definition 1.3.3. The Mazimum Recourse Penalty Bound (M RPB) is:

RPB = —1.

MRPB = max RPB.
0<a<l

MRPB provides the worst—case performance bound for the recourse penalty
cost.
The RPB states the relative value associated to the error regarding the assumed
distribution (i.e., the general concept of the VRD) as a function of the value of
the retailer’s cost ratio (i.e., ). The MRPB measures the maximum value RPB
obtained over the interval 0 < o < 1. These measures help the decision—maker
to determine how much a wrong assumption on the probability distribution for
the stochastic process can prejudicate the performance of the model and which
mismatch among the possible probability distributions is more penalizing for a

certain «, thus the cost structure of the problem, or in the worst case.

Let us consider the Exponential distribution to be the guessed distribution
and the Uniform distribution to be the right distribution. We provide the fol-

lowing theorem.
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Theorem 1.3.4. Let the Exponential distribution £ be the guessed distribution
and the Uniform distribution U be the right distribution. Then,

RPB(a) = §(a)? 1+ 6(a)

1
- ~ 1
4a(l —a) 11—«

Proof. Consider first the Uniform distribution. The expected surplus is:

o _(@—ap® 2 -,
]Elél[(ﬂfu—f)ﬂ—m—zg— a”,

and the expected shortage is:

ooy (=) (26— )
BEIE )" = oy =i

Thus, the recourse function is:

Uy (ay) = (c+ h)éa® + (v — (1 — @) =
=(c+h)éa?+ (v —0c)f(1 —2a +a?) =
= (s+h)éa®+ (v —c)(1 - 2a) =
=¢&[(s +h)a® + (v —¢)(1 — 2a)].
Since o = 2=¢ then:
_ (v —c)? v—c
Yy (wy) = E[(v + h) wrhe (v—e)(1 -2 n )=
_ é—(v —c)’+@w—c)(v+h)
v+ h
= E(v—0)" iZ
Let us now consider the Exponential distribution. Since 2 = —€In(1 — ka)
with k =1 —e2, let be
g = —&6(a),

with d(a) = In((1 — a) + ae™2).
The expected surplus computed by using the right distribution U is:

_ES(a? 1
(e - €1 = 0 — L0
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and the expected shortage computed by using the right distribution U is:

GEHEND_ Lo 4 ga))? = Lea(ar? + &1+ oo,

B¢I(6 —8)"] = = : ;

Thus, the recourse function computed by using the right distribution U is:

Wy (2g) = - (c+h)€d(a)? + %(v —0)€6(a)? + (v — )¢(1 + 6(a)) =

(v+h)&s(a)? + (v —c)&(1 + 6(a))

e

Y6(a)? + (v —¢)(1 + ()]

Il
Caa]
=
=
+
>

Therefore,

i+ h)d(a)’ + (v = e)(L+6(a)) _

g _
ulzg) (v =)

RPB(a) =

_1(+n)*(a)*  (v+h)(1+a) 1= 1 N
4 (w—c)(c+h) (v+h) Cda(l-a) 11—«

Figure 1.2 shows the plot of the function RPB(«) for 0 < a < 1.
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«

Figure 1.2: RPB(«)
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In order to compute MRPB, we numerically solve with Mathematica the

following non-linear optimization problem:

maxiafl(a_) ) + 1;__6(5) -1 (1.77)

0<ax<l (1.78)

The optimal solution of this model is a* = 0.796. Therefore, M RPB ~ 28%.

1.3.5 Numerical Results

In this subsection we propose numerical results of the two—stage and distri-
butionally robust models proposed in the previous subsection. This subsection
is organized as follows. In Paragraph 1.3.4.A the parameter definitions are
provided, in Paragrapgh 1.3.4.B we provide a description of the computational
experiments carried out and of the obtained results. In Paragraph 1.3.4.C we
propose the results of the in—sample stability. In Paragraph 1.3.4.D we measure
the value of the stochastic solution under different demand distributions and
different values of the retailer’s cost ratio. In Paragraph 1.3.4.E we measure the
Value of the Right Distribution and we introduce and describe the Deviation
Test. In Paragraph 1.3.4.F we provide the distributionally robust solution. At

last, we provide and comment the distributionally robust solution.

1.3.4.A. Parameter definitions
We set the problem parameters as follows:

e procurement cost ¢ = 4;

e holding cost h = 1;

e stock—out cost v, v = 4 + 0.27, where 7 = 0,1,...,1000. These values
allow to compute o € (0,1) as shown in Figure 1.3. Note that « is an

increasing function in v.
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e minimum value of the stochastic demand a = 0;
e maximum value of the stochastic demand b = 200;

e expected value of the stochastic demand & = 100.

20 40 60 80 100 120 140 160 180 200
v

Figure 1.3: Graphical representation of a as function of v.

Let U be the Uniform distribution, £ be the Exponential distribution, N
be the Normal distribution and £ be the Log—normal distribution. The corre-

sponding parameters are the following:

e standard deviation of the Uniform distribution, oy = 4/75(b—a)? =
57.74;

e rate parameter and standard deviation of the Exponential distribution,

A=£¢"1=0.01 and o¢ = VA=2 = £ = 100, respectively;
e standard deviation of the Normal distribution, on = /20 = 4.47 ;

e location and scale paramaters of the Log-normal distribution, ¢ = In(£) —
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2In(cv? + 1) = 4.60417 and n = /In(cv? + 1) = 0.0447, respectively,

where cv = o€ 7! is the coefficient of variation.

Figure 1.4 and Figure 1.5 show the comparison of the pdfs f(€) and cdfs
F (&) of the probability distributions, respectively. Note that the stochastic
demand is defined on the same support & € [0,200] with same expected value

€ =100 for all distributions.
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Figure 1.5: Cumulative distribution functions of the stochastic demand &.
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The pdfs and cdfs of the Normal and Log—normal distributions are similar
(almost identical): this is a particular case due to the standard deviation to
which the distributions are initially set. Uniform, Exponential, Normal and

Log—normal distributions are truncated as shown in Paragraph 1.3.3.A.

1.3.4.B Computational experiments

Our aim is to understand how the assumption of a probability distribution
and the estimated variance affect the optimal order quantity to order, the ex-
pected holding cost, the expected stock—out cost and the recourse cost functions.

The following three experiments are carried out:

1. we assume that it is unknown how to compute the optimal order quantity
z*. The aim of the experiment is to understand how the order quantity x

affects the expected total cost;

2. we assume to know how to compute the optimal order quantity x*, given
our analysis in Subsection 1.3.3. The aim of the experiment is to com-
pute the corresponding expected holding cost, expected stock—out cost

and recourse cost depending on the retailer’s cost ratio «;

3. we assume that the standard deviations of the Normal and Log—normal
distributions are equal to the standard deviation of the Uniform and Ex-
ponential distribution, respectively. The aim is to compare the optimal
order quantity £* when the mean and the standard deviation are the same

for all distributions.

Experiment 1 shows the importance of knowing hot to compute exactly the op-
timal order quantity, Experiment 2 shows the key role of the standard deviation
while Experiment 3 shows the importance of knowing the right distribution and

the true standard deviation.

Experiment 1 In this experiment, we assume that it is unknown how to

compute the optimal order quantity x*. Our aim is to understand how the
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expected total cost are affected by the order quantity x. Since we may obtain
different expected total costs depending on « € (0,1), which is given by an
increasing value of v (see the previous paragraph and Figure 1.3), we arbitrarly
choose three values of the retailer’s cost ratio: a = 0.25, @ = 0.5 and o = 0.75.
Figures 1.6a, 1.6b and 1.6c show the expected total cost over the feasible set of
x, assuming for the demand the Uniform, Exponential, Normal and Log—normal

probability distributions, respectively, for fixed values of a.
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Figure 1.6: Expected total cost.

If one does not know how to compute the optimal order quantity and the

unit stock—out cost is low, thus the shortage is not costly (see Figure 1.6a), a

good judgement would lead to buy a low inventory level, possibly below the

mean. For this reason, we observe that as we order more, the expected total

cost increases. The opposite situation can be observed in Figure 1.6¢, where the
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unit stock—out cost is high and the shortage is costly. Figure 1.6b is the average
case, where the surplus and the shortage are equally paid when the Uniform,
Normal and Log—normal distributions realize since they are symmetric around
the mean.

From Experiment 1 we show the importance of knowing how to compute exactly

the optimal order quantity and that even a good judgment may be misleading.

Experiment 2 In this experiment, we assume that it is known how to compute
the optimal order quantity «* depending on the probability distribution assumed
for the stochastic demand &. The aim of this experiment is to compute the
optimal order quantity and the corresponding expected holding cost, expected
shortage cost and recourse cost for o € (0,1). We set for each istance a different
value of v, increased of 0.2 each time. We solve 200 instances and we obtain
the following graphs: Figure 1.7a shows the optimal order quantity, Figure
1.7b shows the expected holding cost function, Figure 1.7c shows the expected

shortage cost function, while Figure 1.7d shows the recourse cost functions.
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Figure 1.7: Optimal order quantity, expected holding cost, expected stock—out

cost and recourse cost functions.
In Figure 1.7a we can observe that to a larger standard deviation corre-

sponds a wider range of variation of the optimal order quantity in order to edge

against the greater uncertainty in the stochastic demand. This is the case under
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the assumption of the Uniform and Exponential distributions. On the contrary,
under the assumption of the Normal and Log—normal distributions, for which
the standard deviation is small, we order around the expected demand in the
entire domain of a.

In Figure 1.7b, the Exponential distribution has the largest standard deviation
but it assigns higher mass probabilities to the first half of possible outcomes of
the stochastic demand, i.e. Zéiol pe > 220:0100 D¢, making a surplus more likely
to realize than assuming a Uniform distribution. For this reason, we observe the
highest expected holding cost under the assumption of the Uniform distribution.
In Figure 1.7c, we observe the highest expected shortage costs assuming the Ex-
ponential distribution due to its highest standard deviation. Note also that the
shapes of the two functions assuming the Normal and Log—normal distributions
are different from the other two: this is due to the smaller standard deviation.
At last, in Figure 1.7d we obtain the highest expected recourse costs assuming
the Uniform distribution, observing that as « tends to 1, the recourse costs
under the assumption of the Uniform and Exponential distributions converges
to 500.

We omit the expected total costs since they are simply shifted upwards by the
value ¢ = 400 (see (1.17)).

Note that when v = 2¢+ h, a = % When the probability density function is

symmetric, we observe the following:

e if v <2c+h, then a € (0,3) and z* < &;

o if v =2c+ h, then a = 5 and z* = ¢;

1
2
e if v > 2c+ h, then a € (%,1) and z* > £.

We now compare the expected total cost obtained using x* with the expected
total cost obtained using « = £ in Figures 1.6a — 1.6¢ to prove the goodness of the
choice of z* instead of £&. We are comparing the solution of the recourse problem
using the optimal solution with the solution of the expected value problem using

the expected value solution. Table 1.1 show the results for o = 0.25, Table 1.2
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for a = 0.5 and Table 1.3 for a = 0.75.

£ u N L

2(x =& €) | 633.39 | 567.5 | 411.84 | 411.84
2(z*,€) | 495.07 | 525.62 | 409.44 | 409.3

savings (%) | 27.94 | 7.97 | 0.59 0.64

Table 1.1: Comparison between expected total costs with a = 0.25 under as-

sumption of Exponential £, Uniform ¢/, Normal N and Log-normal L.

£ u N L

2(x=&,€) | 670.58 | 651.24 | 417.77 | 417.79
2(z*,€) | 615.46 | 651.24 | 417.77 | 417.79

savings (%) | 8.96 0 0 0

Table 1.2: Comparison between expected total costs with a = 0.5 under as-

sumption of Exponential £, Uniform ¢/, Normal N and Log-normal L.

& u N L

sz =E€) | 782.13 | 902.49 | 435.53 | 435.51
z(x*, €) 781.51 | 776.87 | 428.31 | 428.75

savings (%) | 0.08 16.17 1.69 1.58

Table 1.3: Comparison between expected total costs with a = 0.75 under as-

sumption of Exponential £, Uniform U/, Normal A" and Log—normal L.

From Tables 1.1-1.3 we observe that:

e for @ = 0.25, the choice of the optimal order quantity z* determines
lower expected total cost instead of using the expected value . Under the
Normal and Log—normal distributions we observe a tiny difference because
of the lower standard deviation of the two, ad the optimal order quantity

is close to the solutions of experiment 1;
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e for a = 0.5, the choice of x* determines lower expected total cost under
the assumption of the Exponential distribution only, while for the others
it is indifferent since the optimal solution of the stochastic it the expected

value solution, i.e. x* = & = 100;

e for a = 0.75, the choice of z* determines lower expected total cost instead

of using &.

We have shown how the standard deviation characterizes the shape of expected
holding cost, expected shortage cost and recourse cost functions, the range of
variation of the optimal order quantity and the worst—distribution for each class
of cost (holding, stock—out and recourse). In the last experiment, we stress this
fact by setting to higher values the standard deviation and the scale parameter

of the Normal and Log—normal distributions, respectively.

Experiment 3 In this last experiment, we set the standard deviation of the
Normal and Log—normal distributions equal to the ones of the Uniform and Ex-
ponential distributions, respectively. Our aim is to compare the results obtained
for the optimal order quantity and cost functions when the standard deviations
of the distributions are similar, showing the key role of the standard deviation.

The new parameters of the distributions are the following:
e standard deviation of the Normal distribution N7, on1 = oy = 57.74;
e scale parameter of the Log—normal distribution £, ; = 0.536;
e standard deviation of the Normal distribution N3, ono = o¢ = 100;
e scale parameter of the Log—normal distribution L5, 1o = 0.833;

The parameters of the Uniform and Exponential distributions remain the same.
Figure 1.8 shows as example the shapes of the probability density funtions of
Nl, NQ, £1 and £2.
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Figure 1.8: Normal and Log—normal pdfs for increasing values of the standard

deviation.

From Figure 1.8 we observe that as the standard deviation increases, the

skewness of the Log—normal distribution increases and the median shift towards
the left side. As consequence, it is reasonable to expect similar results under
the assumption of the Exponential and Log—normal distributions and of the
Uniform and Normal distributions.
Figures 1.9, 1.10, 1.11 and 1.12 show respectively the optimal order quantity z*,
the corresponding expected holding cost, expected stock—out cost and recourse
cost for a € (0,1). On the left side of the graphs the standard deviation is
o = 58, while on the right side it is o = 100.
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Figure 1.9: Optimal values of z* under assumption of Exponential £, Uniform

U, Normals N7, N5, and Log-normals L1, Ls.
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In Figure 1.9 we observe that z* € [0,200] as « increases from 0 to 1 for all

the distributions: the greater the standard deviation is, the wider is the range
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of values that z* can assume in order to hedge against the greater uncertainty.
From this figure we understand the importance of knowing the true distribution
of the stochastic demand, since we observe different values depending on the
assumed, or guessed, distribution.

In Figure 1.10 we observe that under the assumption of the Uniform distribu-
tion we still obtain the highest expected holding cost when o = 58, except for
particullary large o, which are really unrealistic to be obtained. The assump-
tion of the Exponential distributions, on th contrary, provides the lowest since
it assigns greater mass probabilities to low values of the demand.

From Figure 1.11 we observe that the assumption of the Exponential distribu-
tion still provides the highest expected shortage cost in both cases.

From Figure 1.12 we observe that as « tends to 1, the recourse costs are deter-
mined by the expected holding costs since the expected stock—out costs tend to
be 0.

With this last experiment we have shown that we may obtain very different re-
sults for the optimal quantity to order (and the related costs) depending on the
assumed distribution, the estimated standard deviation, or both. We ask how
large is the error, and the loss, if one mismatches the right distribution with a
wrong one within a set of possible distributions, or if the standard deviation is

badly estimated.

1.3.4.C In—sample stability

In this section, we perform the in—sample stability of the scenario—based two—
stage stochastic linear program (1.46)—(1.48), which is one of the two stability
requirements for testing a scenario generation method.

Figure 1.13 shows the optimal value of the expected total cost computed each

time considering a different number of scenarios with retailer’s cost ratio a = 0.6.
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Figure 1.13: Optimal value of the objective function for a certain scenario tree
under assumption of Exponential £, Uniform U, Normals A/, N7, N, and Log—

normals £, L1, Lo.

Note that considering more than 500 scenarios leads to any sensible reduction

of the variation in the expected total cost.

1.3.4.D The Value of the Stochastic Solution

In this section, we compute the Value of the Stochastic Solution (Birge
(1982), [10]), which we recall to be the gain from solving the stochastic model
instead of its deterministic counterpart.

In order to obtain a numerical comparison under the assumption of different
retailer’s cost ratio o and different probability distributions for &, we now solve
both the RP and EEV for @ = 0,0.1,0.2,...,~ 1, assuming each time for the
stochastic demand £ a different probability distribution among those considered

in this study. Then, we compute the Value of the Stochastic Solution and we
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express it as:

EEV — RP
vsS() = T A 00,

which is the marginal gain from solving the scenario—based two—stage stochastic

linear program instead of considering the the expected value solution.
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Figure 1.14: Value of the Stochastic Solution under assumption of Exponential

&, Uniform U, Normals N, N1, N, and Log-normals £, L1, Lo.

The higher the standard deviation is, the larger is the gain from solving the
stochastic model instead of the deterministic one. Moreover, from Figure 1.14 we
observe that the VSS is strictly monotonically non-increasing in a € (0, F(z(€))]
and strictly monotonically non-decreasing in a € [F(Z(£)), 1).

The obtained results show that solving the scenario—based two—stage stochas-

tic linear program (1.46)—(1.48) is always advantageous than considering the

expected value problem, except when F~!(a) = 2* = z().
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1.3.4.E The VRD and the Deviation Test

In this section, we compute the VRD for all the possible distribution pairs
(right vs. guessed) of the probability distributions considered in this chapter,
given a fixed value of the retailer’s cost ratio a. We want to collect infor-
mation from the distributions and their standard deviations using the VRD,
which provides the opportunity cost values and allows us to investigate how
each distribution is able to hedge the risk associated with errors occurring in
the formulation of the model.

We assign a priori the right distribution for the stochastic programming model
and we compute the optimal order quantity and the associated expected to-
tal cost. Then we choose a guessed distribution to compute the optimal order
quantity and we use such solution to evaluate the expected total cost assuming
the right distribution. We apply such approach for all possible right—guessed
distribution pairs and we construct a table reporting all the VRD. Note that
such table can be constructed for any problem and probability distributions.
Table 1.4 reports the optimal order quantities 7 while Table 1.5 shows the
VRD(%) values assuming one by one as right the Uniform ¢/, Exponential &,
Normals N7, N5, N3 and Log—normals L1, Lo, L3 distributions for a = 0.9.

u £ N | M | My L L1 Lo
’ x;‘a 177 | 200 126 170 200 126 189 194

Table 1.4: Optimal order quantity under assumption of Uniform U/, Exponential

&, Normals N, N1, N5, and Log-—normals £, L1, £, distributions, respectively.
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Guessed distribution G

u & N Ny No L Ly Lo
u - 7.39 37.79 0.66 7.39 37.79 2.26 4.28
& 4.34 - 33.5 6.75 0 33.5 1.66 0.83
Right N | 3561 | 55.46 - 29.57 | 55.46 0 45.97 | 50.28
distribution | N} 0.4 7.09 30.4 - 7.09 30.4 3.3 4.96
R Ny | 11.17 0 68.94 | 16.51 - 68.94 | 4.26 2.06
L | 2825 | 46.52 0 22.79 | 46.52 - 37.63 | 41.63

Ly 1.07 0.08 33.47 2.81 0.08 33.47 - 0

Lo 1.38 0 23.58 | 2.73 0 23.58 | 0.23 -

Table 1.5: Value of the Right distribution (%) assuming respectively as right
the Uniform ¢/, Exponential £, Normals A, N1, N5, and Log-normals £, L1, L

distributions.

From Table 1.5 we observe that for the same probability distribution con-
sidered right, e.g. the Normal distribution N5, we obtain both very small and
very large values for the VRD. This can be explained as follows, recalling that
N3 is a Normal with the standard deviation of the Exponential distribution.
We observe that when N is mismatched with € the VRD is 0 because under
the assumption of both the distributions the optimal order quantity is the same,
x5 = 200 (see Table 1.4). However, this case does not give us any particular
information if we look at % because we are evaluating an objective function in
the same value, even if the optimal order quantities are obtained from different
distributions with different standard deviations.

Now consider £; and Ls: the standard deviations, compared to the one of N3,
are different in the first case (op, = 100, oz, = 57.74) and identical in the
second (o, = oz, = 100). The gap of the two VRD, 2.20, is very small com-
pared to the larger difference of the two standard deviations, oz, = 57.74 and
or, = 100: one should expect a larger gap between the two VRD, as it hap-
pens when mismatching Ny with U (op, = 100, oy = 57.74) and N with &€
(on, = 0g = 100). The reason of the small gap between the VRD of £; and

Lo lies in the similar shape of the tails of the two distributions compared to
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the distribution of A (see Figure 1.8, recalling that o = 0.9). At first sight,
it seems that the factor of dominance for the values of the VRD are the dis-
tributions. However, this is a particular case (with o = 0.9), and the shape a
probability distribution is given by the scale parameter, which is the standard
deviation. Also, the standard deviation determines the range of variation of the
optimal order quantities, which can be similar for close standard deviations, or
even identical, as in the case mentioned above with % = 200 for N3 and &.

The informations gathered from the VRD matrix lead us to believe that the
factor of dominace for the VRD is indeed the standard deviation. However, this
needs to be numerically proved, and for this purpose we propose the folling test,

addressed as Deviation Test.

Deviation Test We now provide a numerical experiment in order to test
how the VRD changes as the standard deviation increases considering different
probability distributions. Our aim is to understand if the VRD is high for some
mismatches or because of the standard deviations of the distributions.

The initial setting for the deterministic paremeters is:
e procurement cost ¢ = 4;
e holding cost h = 1;
e stock—out cost v = 50;

We use a large value for v in order to obtain perceptible values of the right
distributions. We consider the Uniform i/, Exponential £, Normal A" and Log—
normal £ probability distributions and we use the following setting in order to

create several probability models:

e we recall that demand £ is defined on the finite support & € [0, 200] with

expected value & = 100;

e the standard deviation of the Normal distribution is setted to five different

values: 20% of €, 40% of &, 60% of &, 80% of &, &;
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e scale and location paramaters of the Lognormal distribution are computed

respectively with the formulas provided in Section 1.6.1;

e the standard deviation assuming the Uniform distribution is fixed, o3y =

L(b—a)?=57.73

e the standard deviation assuming the Exponential distribution is og =

Aij = &1 =100;

Note that the standard deviations of the Uniform and Exponential distribu-
tions are fixed, given the set of data. Then, we choose the right probability
distributions and we compare it with the possible guesses in order to compute
the VRD(%), even with the same distribution but with different standard de-
viations. Table 1.6 reports the obtained results. Note that, concerning the
standard deviation, on the left column we report the ”true” values assumed for
the probability distributions, while in the row on top we report the values used

for the experiment.

g
N L u &
o(%) | 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.6 1
0.2 0 14.2 | 35.8 | 55.7 | 55.7 0 11.7 | 28 41 51.3 | 34.9| 55.7
N | 0.58 28.8 5 0.1 3.8 3.8 | 288 | 6.5 0.3 0.5 2.6 0 3.8
1 71.1 ] 35.1 | 11.1 0 0 71.1| 38.7| 182 | 7.3 1.8 | 11.8 0
R 0.2 0 9.3 | 28.2| 46.5| 46.5 0 74 | 21.2| 329 | 424 | 275 | 46.5
L | 0.58 14.7 | 1.8 0.1 2.9 2.9 | 147 2.7 0 0.5 2.1 0.1 2.3
1 24 9.2 1.5 0 0 239 | 106 | 3.5 0.7 0 1.7 0
0.58 414 | 10 0.04 | 6.7 6.7 | 41.4| 125 | 0.9 0.7 4.1 0 6.7
& 1 33.5| 15.2 | 4.3 0 0 33.5| 16.8| 7.5 2.9 0.7 4.6 0

Table 1.6: VRD(%) values obtained from the Deviation Test.

From Table 1.6 we understand that two mismatched are relevant for the

VRD:

1. the right and the guessed distribution are the same, but the standard

deviation is different.
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Observe the case where the right distribution is A" with ¢ = 0.58 and the
guessed distribution is another Normal with different standard deviation:
when the distance between the standard deviations is approximatively 0,
the VRD is neglectable. As the distance of the two increases, the VRD
increases. This case may realize when the guessed distribution is right,
but the standard deviation has been badly estimated. Thus the VRD

provides a measure of the error in terms of loss in the objective function;

2. the right and the guessed distribution are different.
Observe the case where the right distribution is £ and the guessed distri-
bution is £: the VRD is neglectable when the standard deviations are the
same (as also the optimal order quantity), while it increases as the stan-
dard deviation of the Log—normal distribution differs from the standard
deviation of the Exponential. This case may realize when the guessed
distribution is wrong, by the standard deviation han been correctly esti-

mated.

We understand that the issue, or the factor of dominace for the VRD, is the
standard deviation. Figures 1.15 and 1.16 show a graphic representation for
some mistmatches. For simplicity of notations, as example, N 2 stands for the

VRD(%) values a Normal distribution with standard deviation o = 0.2 * £.
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VRD(%)

(a) R=N,G=N. b)R=L,G=N

Figure 1.15: Graphical representation of the VRD(%) functions under assump-
tion of the Normal A/ (a) and Log-normal £ (b) distributions.
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Figure 1.16: Graphical representation of the VRD(%) functions under assump-
tion of the Uniform U (a) and Exponential £ (b) distributions.
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When mismatching two distributions, the Value of the Right Distribution
is large if the standard deviation of the right distribution is different from the
standard deviation of the guessued distribution, which can also be the same.
This is equivalent to say that the parameter is badly estimated and different
from its true value, and the VRD measures the loss derived from an error of

estimation.

1.3.4.F The distributionally robust solution

In this paragraph we compute the optimal distributionally robust solution
by means of (1.76), proposed in Paragraph 1.3.3.B. We first show in Figure 1.17
how the optimal solution changes in « € (0,1) for o = 20, o = 58 and o = 100.

200 4
190 +
180 +
170 +
160 +
150 ¢
140 +

s 100 1

(%

---0=20——0 =58 o =100

Figure 1.17: Distributionally robust optimal solution depending on « for differ-

ent values of o.

From Figure 1.17 we observe that when the shortage is not costly (o €

(0,0.15], as the standard deviation increases, the optimal order quantity reduces.
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The reason is that, while facing a greater uncertainty, we prefer to do nothing
since the possible stock—out cost will be low. Note however, as the standard
deviation increases, the inventory level of the optimal order quantity increases
faster in order to hedge against the greater uncertainty. For this reason, we
observe that when o = 58 and ¢ = 100, the choice of the optimal order quantity

cover all the possibile solutions. Moreover:

owhena<%,x*<g;

1 * £

e when a = 3, 2" = ¢;
1 * .

e when a > 3, 2" > §;

Figure 1.17 also enlights the importance of assigning a good estimate of the
standard deviation in order to solve the distributionally robust optimization
model since we obtain very different solutions depending of the chosen o.

We now compare the distributionally robust solutions obtained for v = 50,
which corresponds to a = 0.9, reported in Table 1.7 with the ones obtained in
Table 1.4 by solving the stochastic programming model under assumption of all

the four considered distributions.

c=20 | c=58 | o =100
z* 127 178 200

Table 1.7: Optimal order quantities for o = 0.9 for the distributionally robust

formulation assuming different values of the standard deviation.

Comparing Tables 1.4 and 1.7, we understand that when o = 20, the min-
imization of the expected total cost in the worst—case is obtained under the
Normal or Log—normal distributions (which are almost identical when the stan-
dard deviation is low), when ¢ = 58 under the Uniform disitribution and when

o = 200 under the Exponential distribution.
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1.4 Guidelines for the use of VRD and RPB

The Value of the Right Distribution and the Recourse Penalty Bound can
be used to understand to measure the error (loss) in case a guessed probability
distribution assumed for the stochastic process is wrong against the right one,
investigating at the same time if the ambiguity is important.

Here there are now proposed the guidelines of how such measures can be applied

in practice to study the original problem.

e step 1: compute the VRD values. In order to compute the VRD, one has
to assume a priori the right distribution, which is contained in a subset of
possible distributions. Then a table reporting the VRD is constructed for
all possible distribution pairs (guessed vs. right): it provides the oppor-
tunity cost values for all possible distribution pairs. It allows a decision
maker to investigate how each distribution is able to hedge the risk asso-

ciated with errors occurring in the formulation of the model,;

e step 2: compute the RPB and MRPB values. If the VRD values are large
for all or some distribution pairs, then the RPB and MRPB are computed
for those pairs identified as problematic or highly risky as a means to

deepen the analysis applied on the problem.
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1.5 Conclusions

In this chapter, we have introduced the new concepts of Value of the Right
Distribution, Recourse Penalty Bound and Maximum Recourse Penalty Bound.
In order to show how they apply, we have proposed a cost—based variant of
the Newsvendor Problem considering a set of possible probability distributions
for the stochastic demand. We have studied the case where one of the pillar
assumption of stochastic programming is false, which is that the probability dis-
tribution assumed for the stochastic process in a stochastic programming model
is wrong against the true one, and we have shown how to measure the error in
the objective function when such situation realizes (the concept of VRD). Then,
to deepen the analysis for those cases in which the error is large, we have shown
how to compute the loss in the recourse function depending on the parameters
of the problems (the retailer’s cost ratio) and a particular mismatch between
two probability distributions (the concept of RPB). At last, we have shown how
large the maximum error is in the worst—case (the concept of MRPB). We have
understood that the magnitude of the loss in the objective function is mainly
determined by the error in the estimates of the true standard deviation and not
by a particular mismatch between two probability distributions. At last, the
Value of the Right Distribution can also be applied in distributionally robust
optimization to measure the value of the ambiguity.

Moreover, close—form and approximate expressions have been derived to com-
pute the optimal order quantity depending on the assumed demand probabil-
ity distribution. The stochastic programming and distributionally robust ap-
proaches have been adopted to solve the problem and from the comparison of
the solutions it was possible to understand in the distributionally robust formu-
lation under which probability distribution we obtain the minimization of the

expected total cost in the worst—case.
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Chapter 2

Two—stage and Multi—stage

Stochastic Programming
Models for Bike—Sharing

Problems
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2.1 Introduction and Literature Review

This study investigates one-way bike—sharing systems. In these systems,
users arrive at a station, pick up a bike, use it for a while in a short—term
rental, and then return it to another station of their choice.

The first bike—sharing system was installed in Amsterdam in 1965, and since
then such systems have increased their popularity as a new transportation mode
in a large number of cities worldwide, counting more than 1000 operating sys-
tems and more than 300 systems planned, under construction or close to be im-
plemented (DeMaio and Meddin (2014) [16]). Bike-sharing systems contribute
towards obtaining a more sustainable mobility and decreasing traffic and pollu-
tion caused by car transportation.

Bike—stations are strategically located in a geographical region or city, with the
alm to encouraging the user community to participate bike—sharing programs in
order to discourage the use of vehicles of property. The benefits are identified
in Shaheen et al. (2010) [58] in flexible mobility, emission reductions, physical
activity gains, reduced congestion and fuel use, individual financial savings and
support for multimodal transport connections. For these reasons and for the
economic nature and operative structure, for which a detailed description will
be given in further sections, the bike—sharing services are often provided by a
private provider funded by a public authority.

Users that wish to enjoy a bike—sharing program are generally required to pro-
vide credit card details, which act both as a deposit, as well as payment for
registration and usage fees.

In Fishman et al. (2013) [21] the existing literature concerning bike-sharing pro-
grams is extensively analyzed, identifying sustainability challenges, bike—sharing
schemes (e.g., one-way, two—way), mode substitution and impacts, usage rates,
user motivation, preference and purpose, safety concepts and rebalancing.

In bike-sharing systems, bicycles are sometimes concentrated in some areas of
the city while there is sometimes a limited fleet availability: in the first case,

users that reach their final destination may find a bike—station with unavailable
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capacity (and thus they are forced to move forward another bike—station with
available capacity in order to return the bicycle), while in the second case users
may not find available bicycles to rent. In order to avoid the inefficiency created
by full and/or empty stations, the bicycle fleet is redistributed in the system
through rebalancing.

The rebalancing is performed by capacitated vehicles and it is normally required
at the end of the day, when the system is closed. It has a key role for the opti-
mization of the service and requires an operator in order to move the bicycles
across the system from a bike—station to another. In Yang et al. (2011) [62] the
rebalancing is described as a major problem and, in order to reduce its impact
in bike—sharing systems, it is suggested to offer rewards for those that ride bikes
against the flow. In Fishman et al. (2013) [21] is reported that this strategy is
employed by a number of bike—share programs, including Capital Bike Share in
Washington, DC (Capital Bike Share, 2011), although the effectiveness of this
strategy is limited (Virginia Tech, 2012).

In literature, the terms rebalancing and repositioning are used as synonyms.
The Bike-sharing Rebalancing Problem (BRP) is the problem in which a fleet
of capacitated vehicles is employed in order to re-distribute the bicycles with
the objective of minimizing the total cost.

In Dell’Amico et al. (2014) [15], the BRP is viewed as a special one-commodity
pickup—and—delivery capacitated vehicle routing problem. They present four
mixed integer linear programming formulations of this problem. In Dell’Amico
et al (2016) [14], the BRP is approached with a destroy—and-repair metaheuris-
tic algorithm, which makes use of a new effective constructive heuristic and of
several local search procedures.

In Gaspero et al. (2016) [17], the BRP is studied by using of Constraint Pro-
gramming (CP): they first introduce two different CP models, including two
custom branching strategies that focus on the most promising routes, and then
they incorporate both models in a Large Neighbourhood Search (LNS) approach
that is adapted to the respective CP model. At last, they perform an experimen-

tal evaluation of the adopted approaches on three different benchmark sets of
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instances derived from real-world bike—sharing systems. They finally prove that
the pure CP approach outperforms the state-of-the-art MILP on large instances
and that the LNS approach is competitive with other existing approaches.
Another form of the BRP is the Static Balancing Repositioning Problem (SBRP),
in which repositioning is performed when the demand in the system is negligi-
ble, usually at night.

In Chemla et al. (2013) [13], several algorithms are presented to solve the SBRP,
which is proved to be NP-hard. A branch—and—cut algorithm for solving a re-
laxation of the SBRP is proposed and an upper bound of the optimal solution
is obtained by a tabu search when the sequence of the visited vertices is given.
At last, it is proven that building a feasible solution of the problem by using the
one obtained by the relaxation is an NP-hard problem, but an optimal solution
can be often found by a tabu search initialized with the optimal solution of the
relaxation often shows that it is the optimal one.

Ho and Szeto (2014) [27] propose an iterated tabu search heuristic to solve the
SBRP by selecting a subset of stations to visit, sequencing them, and determin-
ing the pick-up/drop—off quantities under the various operational constraints
with the objective to minimize the total penalties incurred at all the stations.
In Forma et al. (2015) [22], it is proposed a 3-step mathematical programming
based heuristic for the SBRP. In the first step, stations are clustered according
to geographic as well as inventory bicycles considerations using a specialized sav-
ing heuristic. In the second step, the repositioning vehicles are routed through
the clusters, while tentative inventory decisions are made for each individual
station, and in the third step the original repositioning problem is solved. The
last two steps are formulated as Mixed Integer Linear Programs.

In Li et al. (2016) [35], a new SBRP in which multiple types of bicycles are
considered is introduced. The problem is formulated as a mixed—integer linear
programming problem to minimize the total cost, which consists of the route
travel cost, penalties for unmet demand, and penalties associated with the sub-
stitution and occupancy strategies. A combined hybrid genetic algorithm is

proposed to solve this problem: (i) a modified version of a hybrid genetic search

92



with adaptive diversity control to determine routing decisions, and (ii) a greedy
heuristic to determine the loading and unloading instructions at each visited
station, the substitution and occupancy strategies.

In literature, rebalancing is sometimes addressed as a form of transshipment.
The transshipment is the shipment of goods to an intermediate destination: in
a bike—sharing system, it is the reallocation of bicycles from bike-stations with
inventory levels above a certain threshold to bike—stations with inventory levels
belove a certain threshold. In our work, rebalancing is a form of transshipment.
In Dong and Rudi (2004) [18] and Zhang (2005) [66] (the latter extends the
contributions proposed in the former) it is proved that when the transshipment
is considered, the optimal solution depends on the unit transshipment cost (i.e.,
on the future rebalancing costs) alongside with the other paramters of the prob-
lem.

We now enlight the state of the art concerning the determination of the optimal
inventory (bicycle) levels for a bike—sharing system.

In Schuijbroek et al. (2016) [56], it is stated that finding the optimal inven-
tory levels is intractable. They use the service level requirements of each bike—
stations in order to design near—optimal vehicle routes to rebalance the inven-
tory levels. To do that, they propose a cluster—first route—second heuristic, in
which a polynomial-size Clustering Problem simultaneously considers the ser-
vice level feasibility and approximates routing costs, showing that the heuristic
outperforms a pure mixed—integer programming formulation and a constraint
programming approach.

In Sayarshad et al. (2012) [53], a mathematical model to optimize a bike-sharing
system is proposed by determining the minimum required bike fleet size that
minimizes simultaneously unmet demand, unutilized bikes and the transport of
empty bikes between rental stations to meet demand. The optimal inventory
level for each bike—station is not considered and the unmet demand is compen-
sated with the transport of empty bicycles. The problem is handled with a
deterministic approach.

In Raviv and Kolka (2013) [50], an inventory model for the management of bike
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rental stations is introduced and a numerical solution method used to solve it.
In order to benchmark the proposed method, the bike-sharing system has been
simulated with three different settings of initial inventories to measure a user
dissatisfaction function. The inventory level of each bike—station is not opti-
mally determined solving a model and it is stated that it should be reviewed by
the operator whenever demand patterns or station capacity change. However,
it is known that human decision—makers systematically make non—optimal de-
cisions [32].

In Lu (2016) [37], a mathematical programming model, the bike fleet allocation
(BFA) model is formulated to determine the number of bicycles deployed at
each station on each day of the week in a bike-sharing system. A time-space
network is first constructed to describe time—dependent bike flows in the system
and then a fleet allocation model, that considers average historical demand and
fixed fleet size, is formulated based on the time—space network.

The literature proposed so far, can be summarized in three groups of contribu-

tion:

1. approaches to face the rebalancing problem: Dell’Amico et al.
(2014,2016) [15, 14], Gaspero et al. (2016) [17], Chemla et al. (2013) [13],
Ho and Szeto (2014) [27], Forma et al. (2015) [22] and Li et al. (2016) [35].
In their works, the authors use the system as it is at the end of the service
as input for the developed rebalacing procedures: they measure inventory
levels but they no further investigate on why and how those levels have
been obtained, nor what it the optimal quantity to place at the beginning
of the service in each bike—stations. Indeed, they just need to know what
is the inventory level to be reached for a certain bike-station in order to

apply the rebalacing procedure (e.g., scheduling, BRP, SBRP);

2. solutions to determine the size of the bicycle fleet: Schuijbroek et
al. (2016) [56], Sayarshad et al. (2012) [53], Raviv and Kolka (2013) [50].
In their works, rebalacing is not considered. Lu (2016) [37] is interested

in computing the number of bicycles to place in each bike—station by
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describing time—dependent bike flows thought time—space networks, but
none of them propose a stochastic mathematical program to determine the
optimal inventory levels of each bike—station considering the repositioning

at the same time;

3. optimal solution in case of transshipment: Dong and Rudi (2004)
[18] and Zhang (2005) [66], from which we understand that in a bike-
sharing system with transshipment, the latter must be considered in order
to compute the optimal inventory level of each bike—station. If not so, the

solution will be non—optimal.

To the best of our knowledge, the two problems, determining the number of bi-
cycles for each bike-station (thus the fleet size) and the rebalacing problem, are
considered disjoinly. Moreover, stochastic mathematical programs have never
been proposed to solve them. The contribution of this chapter is to propose
two—stage and multi—stage stochastic optimization models which consider at the
same time both the problem of determining the optimal inventory levels of each
bike—station and the rebalancing problem. The optimal size of the fleet is con-
sequently derived. We consider the rebalancing part of bike—sharing problems
as a recursive action in order to determine the optimal inventory levels. The
proposed optimization models are non time-dependent bike flows (differently
from [37]) and the unmet demand is lost (differently from [53]). In this work,
we consider the bike—sharing problem as a variant of the newsvendor problem
with transshipment and we investigate the role of the stochasticity through the
tools proposed in the previous chapter.

At last, we adress some research questions to be answered at the end of this

chapter:

1. does the bike—sharing problem need to be studied by means of mathe-
matical formulation in order to achieve a good optimal solution? This
question is justified by the fact that upon reality we may observe cases,
even for bike-sharing, where a mathematical decision model is replaced

with the human judgement. For some bike-sharing services, the common
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(human) choice is to place a set of bike-stations and full their capacity.
For such decision makers, the problem is solved. How bad this solution

can perform?

2. does an optimal solution exists for the bike—sharing problem which con-

sider as well the rebalacing problem?

3. is it possible to decompose the main problem in a class of subproblems of
lower complexity, one for each bike—station, where the aim is to determine

the inventory level of the single bike-station? If so, in which cases?

4. is the transshipment necessary in order to optimize the service level and

thus to increase the customer satisfaction?

5. how the parameters of the bike—sharing problem affect the optimal solu-

tion?
6. how this study can be helpful to a good manager?

This Chapter is organized as follows: Section 2.2 describes the bike-sharing
problem, Section 2.3 provides two-stage and multi-stage model formulations,
Section 2.4 describes the case study analyzed while in Section 2.5 computational
results are discussed. Finally, Section 2.6 concludes the Chapter with managerial

insights and suggestions for future research.

96



2.2 Problem Description

We consider the problem faced by a bike—sharing service provider (hereafter
referred as provider) who needs to manage a fleet of bicycles and a set of bike—
stations with fixed capacity in order to serve the rental stochastic demand over
space and time. The stochastic demand changes over space and time. The
bike—sharing system is a one—way rental system, which allows the user to pick
and return the rented bike at different bike-stations. The provider places the
bicycle at a given unit procurement cost and tackles unit stock—out cost for
the shortfall quantity (shortage) depending on the bike-park level (positive or
negative) in which she will incur after demand realization. The number of bicy-
cles that cannot be returned to a bike—station, due to the lack of vacant locks,
define the overflow, which is paid by the provider as a unit time—waste cost.
Moreover, she tackles unit transshipment cost after the end of the rentals when
the bike-station inventory levels are rebalanced.

Each bike rental demand is defined by an origin—destination pair, where the
destination is unknown to the provider.

A stochastic demand to each origin—destination pair is assigned.

The rent must start at the user—defined time period or it will be lost. A lost
rent determines a shortage for the provider and a reduction of the service level
for the user. The shortage realizes when a rental demand arises in a certain
bike-station but no bicycles is available for the rent: the user quits the service
and looks towards an alternative transportation mode. A shortage causes a cost
increase, a contraction of the service level and a reduction of the likelihood of
receiving future rental requests from users whose demand could not be satisfied
at first.

The rent must end at the user—defined time period. The number of bicycles that
cannot be left in a bike—station with saturated capacity at the end of the rent
determines an overflow and the user cannot quit the service until the bicycles
is redirected and positioned by the user itself in the nearest bike—station with

available capacity. An overflow causes a waste of time for the user and a cost.
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The number of bicycles to place at the beginning of the service in each bike—
station can be any nonnegative integer number, the initial positioning is assumed
to be instantaneous (lead time equal to zero) and backlogging is not allowed.
The optimal solution to this problem defines the optimal number of bicycles to
place in each bike—station and thus the optimal size of the bicycle fleet.

The sequence of the operations is the following: the number of bicycle to place
at the beginning of the service in each bike—station is computed and placed,
stochastic demands realize, the available bicycles are rented, the users drive
the bicycles toward their destinations, a new composition of the fleet over the
entire set of bike-stations is obtained and, at last, the provider reallocates the
bicycles over the bike—stations in order to match the desired bicycle quantity to
be placed for the new incoming stochastic demands or to balance the possible
future overflow.

The aim is to determine the number of bicycles to place in each bike—stations
for each given time period that minimizes the expected total cost over the op-
erational time horizon, where the expected total cost is given by the sum of
the bicycles procurement costs plus the stock-out costs for the unmet demands,
the time—waste costs for the overflows and the transshipment costs for having
adjusted bike—stations inventory levels.

In the literature (see [18],[66]), transshipment is performed at some cost before
satisfying the demand when it is already revealed, in order to offset the short-
ages of some with the surplus of others. In a bike—sharing problem, it is not
possible to offset the shortage of a bike—station with the surplus of another one,
since the user instantly quit the service when there are no bicycles available
for the rental. In this study, the transshipment is intended as a rebalancing
(recursive) action to balance the inventory levels of the bike—stations at the end

of the service when shortages and surpluses are realized.
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2.3 Model Formulation

In the classical newsvendor problem (Birge and Louveaux (2011) [11]) a
newsvendor goes to a publisher every morning and buys a certain quantity of
newspapers at a given unit purchase price. This number is usually bounded
above by some limit, representing either the newsvendors purchase power or a
limit set by the publisher to each newsvendor. The newsvendor then walks along
the streets to sell as many newspapers as possible at a given unit selling price.
Any unsold newspaper can be returned to the publisher at a given unit return
price, less than the purchase price. Demand for newspapers varies over days
and is described by a random variable. It is assumed here that the newsvendor
cannot return to the publisher during the day to buy more newspapers. The
problem is to compute how many newspapers to buy every morning.

We start by studying the actors and the structure of the newsvendor problem in
order to find a syllogism with the bike-sharing problem. Suppose a bike-sharing
system with a single bike—station operating each day.

In the newsvendor problem, we have a newsvendor who is supplied by a pub-
lisher for a certain number of newspapers that cannot exceed the newsvendor’s
capacity. In the bike—sharing problem, we have a bike—station which is supplied
by a provider for a certain number of bicycles that cannot exceed the bike—
station capacity.

In the newsvendor problem, the newsvendor walks around the street in order
to satisfy customer demands. In the bike—sharing problem, users walk around
the streets in order to satisfy their rental demands at the bike—station. The
stochastic demand clearly changes over time in both problems.

In the newsvendor problem, the newsvendor cannot return to the publisher dur-
ing the day to buy more newspapers. In the bike—sharing problem, the provider
cannot instantly supply the bike—station if a rental demand arises and no bicy-
cles are available in order to satisfy it. The rental demand is lost.

In the newsvendor problem, the optimal number of newspapers to be purchased

by the newsvendor is computed. In the bike—sharing problem, we are willing to
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determine the optimal number of bicycles to place at the bike—station.

In the newsvendor problem, the newspapers are bought at a purchase price, sold
at a selling price, returned at a return price. In the bike—sharing problem, the
bicycles are placed at a procurement cost and any possible shortage of bicycles
or of vacant locks are paid at certain penalty costs.

We can state the following similarities for the three actors of both problems:

e newspaper = bicycles, the main actor, for which the optimal inventory

level has to be determined;

e newsvendor = bike-station, the actor that plays as host for newspa-

pers/bicycles;
e publisher = provider, the actor who supplies the host with newspaper/bicycles.

Our first aim is to show that the bike-sharing problem can be written as a cost—
based inventory problem (see Chapter 1) and since the cost—based inventory
problem is a variant of the newsvendor problem, then the bike—sharing problem

is a variant of the newsvendor problem.

2.3.1 Two—stage stochastic optimization models for the

bike—sharing problem

In this section, we formally provide a two-stage model formulation following
the sequence of operations described in Section 2.2.

Let the followings holding true for all the models proposed in this section:

Sets
e 3 : set of bike-stations, B={1,..., B};

e S : set of scenarios, S ={1,...,5};
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Deterministic parameters
e ¢; € RT : procurement cost per bicycle placed in bike-station i € B;
e v; € RT : stock-out cost per bicycle in bike-station i € B;

e w; € RT : time-waste cost per bicycle due to overflow in bike-station

i€ B;

e {;; € R™: unit transshipment cost per bicycle transshiped from bike-

station i to bike—station j, i, € B;
e f € R™: fixed transshipment cost;

e b € 7+ the desired quantity of bicycles to have in bike-station i € B

in scenario s € S at the end of the service;

e k; € ZT: capacity of bike-station i € B.

Stochastic parameters Let (Z,.4,p) be a probability space with = set of
outcomes, o — algebra A, probability p and £ € = a particular outcome repre-
senting the rental demand on each origin—destination pair of bike—stations. We

define:

e ijs € 2 C Z": stochastic rental demand from bike-station i to bike—

station j in scenario s, 4,7 € B, s € S.

We now introduce first—stage and second—stage variables. The first—stage vari-

ables are:

e z;: number of bicycles to be assigned to bike—station i € B at the beginning
of the service. We denote with x} the optimal number of bicycles to place
at bike-station i and with = [z1,...,25]7 the first-stage decision vector
over all bike—stations. The decision must be taken before the realizations

of the random events &;;s.
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After the placement of the bicycles, the stochastic demands §;;s occur on each
origin—destination pair i,j € B and the minimum between the available and
requested bicycles is rented. Then, the possible surplus or shortage follows
immediately in each bike—station.

The second—stage decision variables are:

® [3ijs: number of rented bicycles from bike-station i to bike-station j in

scenario s;

o I;7 = max(z; — Zle Bijs,0) = (x; 72;3:1 Bijs)T: surplus of bicycles that
realizes in bike—station ¢ in scenario s. Note that the surplus does not

involve any cost for the provider;

o I, = max(f3;;s — x;,0) = (Bijs — ;) T: shortage of bicycles that realizes

in each origin—destination pair ¢, j in scenario s.

Figure 2.1 shows the sequence of operations realized at the current time for a

scenario s.

The bicycles are positioned The bicycles are rented

|
i > gijs > ﬁijs
|

The stochastic demand realizes

Figure 2.1: Sequence of operations for the two—stage case.

We study both the cases of a two—way and one-way bike—sharing systems.

1.3.1.A Two—way bike—sharing system

Suppose that the bike—sharing system is two-way: users must start and
terminate the rent at the same bike—station. Our case study, as the greatest
majority of the existing bike—sharing systems, is one—way, but a two—way bike—
sharing system may exist nevertheless. Moreover, suppose that the service is
executed once and the transshipment option is not available: the bicycles are

rented and when they are dropped off the service ends. At the end of the day,
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the number of rented bicycles is equal to the number of returned bicycles, thus
an overflow may not occur.
Let 2B(x, &) be the expected total cost function over the set of bike-stations.

The problem can be formulated as a Two—Stage Integer Stochastic Program as

follows:
B 5 B B
min 2% (2, §) = Zcz‘% +ZPSZZUJ¢;S (2.1)
* i=1 s=1  i=1 j=1
B B
s.t. I - ZL‘}S =T — Z&'js, Vie B,VseS, (2.2)
j=1 j=1
a:z-,]j;,]i;s ezt Vi,j € B,Vs€S. (2.3)

The objective function (2.1) is the minimization of the expected total cost given
by the sum over the set of bike—stations of the procurement cost for the posi-
tioned bicycles and the sum over the set of scenarios and set of bike—stations of
the stock—out cost for shortage. Constraints (2.2) ensure the balance between
the surplus and shortage. Constraints (2.3) define the integrality of first—stage
and second-stage variables.

Comparing (2.1)—(2.3) with (1)—(5) in Chapter 1, we can note that the two
models are equivalent if we consider a single bike-station for (2.1)—(2.3) or mul-
tiple retailers for (1)—(5). Thus, a bike-sharing problem can be considered as
a variant of the newsvendor problem. The only difference between (2.1)—(2.3)
and (1)—(5) lies in the fact that in the bike-sharing problem the surplus is not
costly, thus omitted from the objective function (2.1).

We have observed that a bike—sharing problem, even if in its more general form,
can be written as a cost—based inventory problem, and since the cost—based in-
ventory problem is a variant of the newsvendor problem, then the bike-sharing
problem is also a variant of the newsvendor problem.

For a two—way bike-sharing problem as modelled in (2.1)—(2.3), we state the

following Lemma:

Lemma 2.3.1. Let &, = Zle ijsr Iy = Zle I and zi(x, €) be respectively

the rental demand, expected shortage and expected total cost of the bike—station
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1 € B. Then,

B, &) =) z(x,8).

i=1

Proof. First—stage variable x; is deterministic and therefore can be moved in-

side the expectation without loss of generality. Then we substitute x; with its

definition.

B B

A CRIE Zps Z[Cvl’z +v; Z I =
j=1

=1 =1 =

B B
Ps Z [ci[gijs + IZ-Z - ZIZ}S} + v le;s] =
j=1

1 i=1

®

[
M

Jj=1

@
Il

[Cz'[fz‘s + I - I+ Uiffs] =

I
]
s

Ds
1

[[Cigi] + zS:ps lei i + (vi = Ci)li—s]] -

s=1

w
Il
—_

2

I
'MW

s
Il
-

Il
.Mm

s
I
—

Zi(xvé)v

where
S

zi(@,8) = el + Y poleilf + (vi — eI

s=1

O

Lemma 2.3.1 shows that in a two—way bike—sharing system, when the stations
are independent, the original problem can be decomposed in sub—problems, one

for each bike—station included in B, that can be solved individually.

1.3.1.B One—way bike—sharing system with user—transshipment

Suppose now a one-way bike-sharing system, where users may start and
terminate the rent at different bike—stations.
When the rented bicycles reach their initial destination, they can be dropped off
if the bike station has available capacity. If not, the rented bicycles exceeding the

bike—station capacity have to be redirected to the nearest station with available
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capacity in order to be dropped off. Thus, an overflow may occur.

We introduce the following second-stage variables:

® p;js: number of redirected bicycles from bike-station i to bike-station j

in scenario s, i,j € B,s € S,

B B B
o Of = max(k; — xi + 372 Bijs — 2 Bjis; 0) = (ki — @i + 25— Bijs —
Zle Bjis) Tt residual capacity in bike-station ¢ in scenario s, i,j € B, s €

S;

°* 0, = max(Zle Bijis — ki + @ — Zfd Bijs,0) = (Zle Bijis — ki + @ —

B - L . .
ijl Bijs)T: overflow in bike-station ¢ in scenario s, i,j € B,s € S.

Note that a particular kind of transshipment (named user—transshipment)
realizes at the unit time—waste cost per redirected bicycle instead of a unit
transshipment cost. Thus, the transshipment fixed cost is not charged since the
transshipment option is not adopted even if a repositioning occurs. A graphical

description of repositioning for a generic scenario s is provided in Figure 2.2.

(5)n
BBa

ﬁCA O

Figure 2.2: Redirected quantity pac from A to C of the overflow O} that
realizes from B to A for a generic scenario s. For simplicity of notation, the

index s has been dropped.

Suppose that two users start the rent at the same time from B and C,
respectively, and drive their bicycles towards A. The user that started from B

arrives first and fulls the bike-station capacity in A, represented with a black
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square. Thus, the user arriving from C is forced to drive towards B, where the
bike—station has available capacity, in order to drop—off the bicycle and quit the
service.

If one extends the example proposed in Figure 2.2 to a real case, how does the
renter know where to go in order to redirect himself? This is a technical issue,
depending on the software (app for mobiles) provided alongside the bike-sharing

service. There are two possibile cases:

e the app is dynamic and it gets constantly updated. The renter uses the
app to check if the bike—station depicted as destination has an available
lock. He then moves towards it and in the meanwhile it gets fully locked.
Then he has to check again on the app where is the closest bike—station

with an available lock in order to redirect himself;

e the app is static and it does not provide real-time informations about
bike—stations. The renter moves towards its destination only to discover
once he has arrived that all locks are unavailable. He then redirect himself

”blindly” towards another bike—station.

Figure 2.3 shows the updated sequence of operations realized for a generic sce-

nario s in a one-way bike—sharing system.

The bicycles are positioned

Ty fz‘js > ﬁijs — The bicycles are rented

| |

The stochastic demand realizes . )
Pijs — The bicycles are redirected

Figure 2.3: Sequence of operations for a scenario s in a one—way bike—sharing

system.

The problem can be formulated as a Two—-Stage Integer Stochastic Program

as follows:
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P1. mlnz Zcle +Zpsz Zvllws—l—wl ) (2.4)

i=1 j=1
s.t. ZT; < ki, Vi € B, (25)
Bijs = &ijs — Lijs Vi,j € B,Vs € S,
(2.6)
B
IL_‘; - ZIU«S Zgz]sa Vi € B,VS € S, (27)
j=1
Of = O, = ki —w; + Zﬁm Zﬁm, Vie BVseS, (2.8)
Jj=1 j=1
i, Bije, 115, 154, O35, Oy € T, Vi,j € B,Vs € S.
(2.9)

The objective function (2.4) is the minimization of the expected total cost
given by the sum over the set of bike—stations of the procurement cost for
the positioned bicycles and the sum over the set of scenarios and set of bike—
stations of the stock—out cost for the shortage plus the time-waste cost for
the overflow. Constraints (2.5) enforce the positioned bicycle quantities to be
less then or equal to the bike—station capacity. Constraints (2.6) define the
rented quantities given by the difference between the stochastic demand and the
shortage. Constraints (2.7) ensure the balance between the surplus and shortage
while constraints (2.8) ensure the balance between the residual quantity and the
overflow. Constraints (2.9) define the integrality of first—stage and second-stage
variables.

We now consider the service level (SL), which is a measure for the per-
formance of the bike—sharing system and thus of the bicycle inventory levels.
Generally, service level measures the performance of a system and it fixes the
percentage to which goals (e.g. fill rate, customer satisfaction, rental demands)
should be achieved. A typical use of service level constraints can be observed
in Moon and Choi (1994) [44], Jha and Shanker (2009) [28] and Taleizadeh et
al (2010) [61].
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Let SL € [0, 1] be the desired service level and let £1,¢2 € [0, 1] two weights such
that €1 +e2 =1. Let O,,,, = Zf;l z; — k; be the maximum possible overflow,
which is the overflow in the worst-case scenario (i.e all the rented bicycles have
the same destination). We implement the SL in (2.4)—(2.9) and we obtain the

following Two—Stage Integer Stochastic Program (P2).

B
P2 minz®(x,§) =) cwi+ Zpg Z ZU,I”S + w07 (2.10)
=1 =1 j=1
Bijs = &ijs — I, Vi,j € B,Vs €S,
(2.12)
B B
L= "I =2 =) &, Vie BVseS, (213)
j=1 j=1

B B
Of, =05, =ki—xi+ Y Bijs— > _Bjis, Vi € BYs €S, (2.14)

Jj=1 Jj=1

j=1 é—ijs O;Laz

B _
ﬂijs £ O > SL, Vie B,Vs e S, (215)

i, Bijss 15, 1556, 0%, Ois O € LF, - Vi, j € B,¥s € S.
(2.16)

Constraints (2.15) define the service level greater or equal to a certain value
SL for each bike-station and in each scenario, given by the weighted sum of
the rented quantities over the stochastic demand minus the overflow over the

maximum overflow.

When the redirected bicycles reach their final destination and are dropped
off, a new composition of the fleet is obtained over the set of bike-stations. The
provider may be willing to adopt the transshipment option in order to match
the desired bicycle quantities in each bike—station that have to be in place at
the end of the service.

We introduce the following second-stage variables:
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Tijs: number of transshiped bicycles from bike—station 4 to bike-station j

in scenario s, Vi,j € B,Vs € S;

2

B en. en B
T;5 = max(k; — O} +Zj:1 pjis = b0, 0) = (ki = b5 = O +Zj:1 S

exceed of bicycles in bike-station 4 in scenario s, Vi € B,Vs € S;

- €n B €T B
T = max(bis d—ki-i-O;: _ijl Pijiss 0) = (bw d—k'z'f-O;g _ijl pjis)Jr

5

failure of bicycles in bike—station ¢ in scenario s, Vi € B,Vs € S;

ys: binary variable representing the activation of the transshipment option

in scenario s, Vs € S.

Lot 3oL, 8T > f.

0 if "2, 8T < f

Ys =

The activation of the transshipment option is explained as follows. Ac-
cording to Figure 2.3, after the bicycles have been redirected to the final
bike—station with available capacity, and immediantly before the possibil-
ity of the transshipment, the bicycles in each bike—station and for each

scenario are:

— T if k; — Of + Zle pjis > b, (exceedings);

- T, if ky — O, + Zle pjis < b, (failures).

18

The provider is willing to understand if it is less costly to perform the
transshipment in order to match at the end of the service the stationed
quantities with the desired quantities or to do nothing by accepting as it is
the state of the system. In the latter case, it means that the bike—stations
where T, realizes are going to face the new incoming stochastic demand
with a quantity of bicycles lesser than the desired (optimal) quantity.
Thus, the probability of a shortage increses. It follows that:

— if Zf;l s;T;, > f, (i.e if doing nothing is more costly than perform-
ing the transshipment at the fixed cost f), then the transshipment

option is activated and the transshipment is performed;
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— if Zil s;T;, < f, (i.e if doing nothing is less costly than performing
the transshipment at the fixed cost f), then the transshipment option

is not activated and the transshipment is not performed.

Figure 2.5 shows the whole sequence of operations realized at the end of the

service for a scenario s.

The bicycles are positioned

T > gijs > ﬂijs — The bicycles are rented

| !

The stochastic demand realizes . .
Pijs — The bicycles are redirected

i

’ ‘ ’ Tijs — The bicycles are transshiped

First Stage Second Stage
Figure 2.4: Sequence of operations at the end of the service for a scenario s.
Suppose that the provider is interested in performing the transshipment if
the stationed bicycle quantities do not match the desired (optimal) quantities

to be place at the end of the service and if it is convenient. The problem can

be formulated as the following Two—Stage Integer Stochastic Program.
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P3. mlnz Zc,xz—l—Zps[Z ’UZZI”S + w; O +fys] (2.17)

=1

51]9_§Z]€_ ijs> Vi,jGB,VSGS,
(2.19)
B
Z e =i — Y Lijs, Vie B,VseS, (2.20)
j=1
Oz—z O_ —x; + ZIBUG Z/Bj1€7 Vie B,Vs €S, (221)
B
> pijs =O;, Vie BVseS, (2.22)
j=1
B
> piis < OF, Vie BVse S, (2.23)
j=1
B
T =T =ki— Of + ) pjis — mi, Vie B,VseS, (2.24)
j=1
> Ty, — f = My, <0, Vs e S, (2.25)
ys € {0,1}, Vs €S, (2.26)

xlaﬁzgsypzjsalma 7,]5’0:;70 Tt T EZ+,Vi7j EB,VS e S.

187 18 18

(2.27)
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The objective function (2.17) is the minimization of the expected total cost
given by the sum over the set of bike—stations of the procurement cost for the
positioned bicycle quantities and the sum over the set of scenarios and set of
bike—stations of the stock—out cost for the shortage and the failure plus the time—
waste cost for the overflow plus the fixed transshipment cost if the transshipment
option is activated. Constraints (2.18) enforce the positioned bicycle quantities
to be lesser or equal to the bike-station capacity. Constraints (2.19) define the
rented quantities given by the difference between the stochastic demand and the
shortage. Constraints (2.20) ensure the balance between surplus and shortage
while constraints (2.21) ensure the balance between residual quantity and the
overflow. Constraints (2.22) define the sum of all the redirected bicycle quanti-
ties from a bike—station equal to its overflow while constraints (2.23) guarantee
that the sum of all the redirected bicycle quantities to a bike—station cannot

exceed its residual capacity. Constraints (2.24) ensure the balance between ex-

end
is

ceeding and failure. Note that b has been replaced with x;: we want to have
at the end of the service the number of bicycles placed at the beginning be-
fore demand realization, in each scenario and for each bike—station. Constraints
(2.25) define the activation of the transshipment option using the big—M method
[25]. At last, constraint (2.26) and (2.27) define the integrality of first—stage and
second—stage variables.

Figure 2.5 shows how the constraints of the program P3 are structured according

to the sequence of operations.
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(15) Station Balance (17)

Ti > gijs > Bijs - (16)
‘ l — Redirection Balance (18)
The stochastic demand realizes
Pijs — (19),(20)
l — Transshipment Balance (21)
’ ‘ ’ Tijs — Transshipment Activation (22)
First Stage Second Stage

Figure 2.5: Sequence of operations at the end of the service for a generic scenario

S.

The three sets of balancing constraints, (2.20), (2.21) and (2.24), allow the
program to manage jointly all the phases of the problem in the same stage with-
out losing information. Moreover, they also define the second—stage variables
Bijsapijs and Tijs-

We study the objective function (2.17). Note that

B
=y Gy T 15— I, = G + I - I, (2.28)
j=1
and
B
> Bijs = &is — I, (2.29)
j=1
Since
B
OFf =Ty =Tk +ki+ Y pjis — i,
j=1
and

B B
O’L_b = Ozt - ki + T — Zﬁijs +Zﬁjisa
j=1 j=1
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then
B
O =Ty, —Tit = &is+ I, + Y _(Bjis + pjis)- (2.30)
j=1

Substituting (2.28), (2.29) and (2.30) in (2.17), the objective function becomes:

s B
(€)= Zps [Z[Czwz + il + w0 ] + fys] =

s=1 i=1

S B
Ps [Z[Ci(&s + L5 - L) ol +
=1

s i=1

B
Fwi(Tyy =T = &+ 1+ Y (Bjis + pjis))] + fys] =

=1
B s B
= Z(Cz —w;)&i + Zps Z [Ciﬁg + (vi +wi — i)+
i=1 s=1 =1
B —
+wi (T = TiE+ > (Bjis + Pjis))] + f. (2.31)

j=1

In (2.31) the first term is deterministic, the second term is the newly obtained
recourse function and f is the expected fized transshipment cost, which is the
transshipment cost that will realize on average depending only by the possible

scenarios.

We propose another formulation for the bike—sharing problem with trans-
shipment where the transshipment always realizes each day at the end of the
service, which is expected to be more tractable from a computational point of
view since it does not make use of binary variables.

Suppose that the provider is always willing to perform the transshipment at a
unit transshipment cost ¢;; if the stationed bicycle quantities do not match the
desired (optimal) quantities to be placed at the end of the service. The problem

can be formulated as a Two—Stage Integer Stochastic Program.
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B s B B B
P4.min ZB(:E, &) = Z i + Zps Z[vl Z Iis + w0 + Ztijnjs} (2.32)
m i=1 s=1 =1 j=1 J=1
s.t. z; < ks, Vi € B, (233)
Bijs = fijs - Ii;s7 V’L,] S 87 Vs € 87
(2.34)
B B
L= "I =2 =) &, Vie BVseS, (2.35)
j=1 j=1

B B
Of, =0, =ki—zi+Y Bijs— Y Bjis, Vi€BVseS, (236)
j=1 j=1

B
> pijs = O3, Vie BVseS, (2.37)
j=1
B
> pjis < O, Vie BVseS, (2.38)
j=1
B
T =Ty = ki — O+ pjis — @i, Vie BVseS, (2.39)
Jj=1
B
> g =T%, VieB,WseS, (2.40)
j=1
B
> i =Ty, Vie BVseS, (241)
7j=1

i, Bijsr Pijsr Loy 16, Oik, Opy, T Ty, € 27,0, j € BVs € S.

(2.42)
The objective function (2.32) is the minimization of the expected total cost
given by the sum over the set of bike—stations of the procurement cost for the
positioned bicycle quantities and the sum over the set of scenarios and set of
bike—stations of the stock—out cost for the shortage plus the time—waste cost for
the overflow plus the transshipment cost for the transshipped bicycle quantities.
Constraints (2.33) — (2.39) are identical to program P3. Constraints (2.40) define
the sum of all the transshiped bicycle quantities from a bike—station equal to its

exceed, while constraints (2.41) guarantee that the sum of all the transshiped
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bicycle quantities to a bike—station is equal to its failure. At last, constraints
(2.42) define the integrality of first—stage and second-stage variables.

Similarly to (2.17), we study the objective function (2.32) substituting (2.28),
(2.29) and (2.30). It becomes:

B

S B
ZB(IB,g) = ZPS[Z[CVTCZ + UzI;s + ’LUZO;} + ZtijTijs:I =
s=1 j=1

i=1

S B
S S et 1 - 1) i

s=1 i=1

B B
+wilTy; = T — s + I + ) (Bjis + pjis)] + Ztiﬂz‘js] =
j=1 j=1

B S
= Z(Cl — wz)é + Zps Z [CZIZ-: + (’Uz' —+ w; — Ci)li_s+
1 s=1

=1
B B
+wil T =T+ (Byis + pyis)] + Y tz‘ﬂijs] : (2.43)
j=1 j=1

In (2.43) first term is deterministic while second term is the newly obtained
recourse function. Comparing (2.43) with (2.32), as for (2.31), bike-stations
result to be dependent since the optimal number of bicycle to place in bike—

station ¢ depends also on the stochastic demands of bike—station j.

The bike—sharing problems described in programs P3 and P4 are variants of
the newsvendor problem where the recourse action is the transshipment.
From Dong and Rudi [18] we understand that in a bike—sharing problem with
transshipment the optimal inventory level for each bike-station is obtained from
the so called critical fractile, given by a combination of the cost parameters ¢;, v;
and w; for program P3 and ¢;, v;, w; and t;; for program P4. It follows that in
program P4 the optimal inventory levels depends also on the unit transshipment
cost t;;.

Finally, we can conclude that the optimal inventory levels in program P3 and
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P4 depends of the transshipped quantities (program P3) and of the unit trans-
shipped cost (program P4), thus for both programs the transshipment compo-
nent cannot be consider asunder from the more generic bike-sharing problem
in order to determine the optimal inventory levels.
Moreover, from Zhang [66], we understand that the optimal inventory level of
each bike-station with transshipment depends on the multivariate demand dis-
tribution through the marginal distributions and the distribution of the sum of
the demands. Thus, the critical fractile is expression of the marginal distribu-
tions and of the distribution of the sum of the demands.

We no further investigates the objective functions of programs P3 and P4
in order to obtain a critical fractile for the optimal quantity to order since it
has no use for the computational analysis in Section 2.5 and its been extesively

analyzed in Zhang [66].

2.3.2 Multi-stage stochastic optimization models for a one—
way bike—sharing system

In this section, we formulate a multi-stage stochastic model. The aim of
the model is the same, that is to determine, for each bike—station, the optimal
number of bicycles to place in order to minimize the system expected total cost
taking into account of the dynamic nature of rental demands over the day.

The major difference between the two—stage and multi-stage models is that
in the latter, we have to model the structure of the underlying scenario tree.
This can be done in two ways: we can either model the problem by scenarios and
then add a set of so—called non-anticipativity constraints, or write the model
in terms of nodes of the scenario tree and describe the tree structure by giving
to each node (except the root of the tree) a pointer to its parent, i.e. the node
immediately preceding it (Maggioni et al. [41]). We need the following notation,

in addition to the one introduced in Section 2.3.1:

e N :={n:n =0,...,N} : ordered set of nodes of the scenario tree

structure;
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0 € N : the root of the tree, which represents the time instant for which

we want to determine the number of bicycles to place;

e F:i={n:n=N-F+1,...,N} C N : the set of the leaves of the
tree, that is the nodes in the last stage of the model; since the number of

scenarios S is equal to the number of leaves, we get S = F = |F|;
e pa(n): the parent of node n € N\ {0};

e z,;0: total number of bicycles to assign in bike—station i € B at the beginnig

of the service 0 € N;

e p,: the probability of node n € N; we have considered the leaves (and

therefore the scenarios) to be equiprobable, so that

‘—}.l if neF,

EmEN\{O},pa(m):npm if ne .A/'\]:

In order to obtain multi-stage model formulations for a one—way bike—
sharing problem, the daily rental demand of each origin—destination pair into
three rental demands, respectively for morning, afternoon and evening periods.
The recourse realizes at the end of the last stage, only at night, when the service
is not available for the user community. It consists in rebalancing the bicycle
fleet through the transshipment of bicycles from bike—stations with an excess to
bike—stations with a failure. We believe that it is realistic and reasonable to ad-
mit the recourse only at night because it is coherent with the reasons and politics
that justify the bike—sharing service, such as reducing pollution and congestion.
Transshipment could be operated during the day at the end of each period, but
it woud consist in deploying three times a fleet of vehicles which contribute to
increment the daily pollution and congestion, which is clearly against the idea
of bike—sharing.

The multi-stage model corresponding to program P3 can be then formulated
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as follows:

mln xz, &) = Zcleo + an[z [v; ZIZM + w;0;,] + fyn] (2.44)

s.t. Tio < ki, Vi € B, (245)
Bijn gijn - zgn’ VZ,] € B,Vn S N\ {O}, (246)
B
I — Zfi;n =i — Y _ &ijns Vi€ B,Yn € N\ {0}, (2.47)
j= =1
B B
Of, =05, = ki —wio + Y Bijn— > Bjin, Vi € BYn € N\ {0}, (2.48)
j=1 j=1
B
> pijn=0;,, Vi € B,Yn € N\ {0}, (2.49)
B
> piin < OF, Vi € B,Yn € N\ {0}, (2.50)
Ty —Tp = ki — Of, + ijm — Tio, Vi€ B,Yn € F, (2.51)
B
> iy, — f = My, <0, Vie B,Yn e F, (2.52)
zio € 27, Vi € B, (2.54)

ﬁijn» Pijns Tijn,

1= 0f O T T e Zt, Vi,j € B,¥Yn € N'\ {0}. (2.55)

n? Tignd Yind Yind Tin?

The objective function (2.44) is the minimization of the expected total cost
given by the sum over the set of bike—stations of the procurement cost for the
positioned bicycles at the beginning of the day and the sum over the set of nodes
and set of bike—stations of the stock—out cost for the shortage and the failure
plus the time—-waste cost for the overflow plus the fixed transshipment cost if
the transshipment option is activated. Constraints (2.45) enforce the positioned
bicycle quantities at the beginning of the day to be lesser or equal to the bike—
station capacity. Constraints (2.46) define the rented quantities given by the
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difference between the stochastic demand and the shortage. Constraints (2.47)
ensure the balance between surplus and shortage, while constraints (2.48) ensure
the balance between residual quantity and the overflow. Constraints (2.49) de-
fine the sum of all the redirected bicycle quantities from a bike—station equal to
its overflow while constraints (2.50) guarantee that the sum of all the redirected
bicycle quantities to a bike-station cannot exceed its residual capacity. Con-
straints (2.51) ensure the balance between exceeding and failure. Constraints
(2.52) define the activation at the end of the day of the transshipment option
using the big-M method [25]. Finally, (2.53) — (2.55) define the integrality of

the first—stage and recourse variables.

The multi-stage model corresponding to program P4 can be then formulated
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as follows:

B B
mln x, &) = Zczajzo + an[Z[UZZIZ;n +w;0;,, + ZtijTijn]] (2.56)
=1 j—=1 j=1

s.t. Ti0 < ki, Vi € B, (2.57)
ﬂijn 67]7: 1]71’ VZ,] S B, Vn € N\ {0}, (258)

B
Z ijn = Tio — Z&jn, Vi € B,Vn € N'\ {0}, (2.59)

o), — O_—k;—xzo—i—z&m Zﬁjm,VzeBVnE/\/’\{O}@GO)

j=1 j=1
B
> pijn=0;,, Vi € B,¥n € N'\ {0}, (2.61)
j=1
B
> piin < OF, Vi € B,Yn € N\ {0}, (2.62)
j=1
T~ T = ot me Zio, Vi € B,¥n € F, (2.63)
B
> Tign =T, Vi € B,¥n € N'\ {0}, (2.64)
j=1
B
> Tjin =T, Vi € B,Yn € N\ {0}, (2.65)
j=1
Ti0 € Z+, Vi€ B,Vn € N\]: (266)

ﬁijm Pijns Tigns

Lt of O T T, 7", Vi,j € B,Vn € N'\ {0}.(2.67)

in? Tignd Yind Yind Tin) Tin

The objective function (2.56) is the minimization of the expected total cost
given by the sum over the set of bike—stations of the procurement cost for the
positioned bicycles at the beginning of the service and the sum over the set of
scenarios and set of bike—stations of the stock—out cost for the shortage plus
the time—waste cost for the overflow plus the transshipment cost for the trans-
shipped bicycles. Constraints (2.57) — (2.63) are identical to the ones in program
P3. Constraints (2.64) define the sum of all the transshipped bicycles from a
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bike—station equal to its exceed, while constraints (2.65) guarantee that the sum
of all the transshiped bicycles to a bike—station is equal to its failure, both at the
end of the service. Finally, constraints (2.66) and (2.67) define the integrality

of the first—stage and recourse variables, respectively.
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2.4 The Case Study: the bike—sharing service
'La BiG{’

In this section, we present the case study used for testing program P4, both
in its two—stage and multi-stage model formulations proposed in Section 2.3.
In 2013, July 10, the City Council of Bergamo approved the Traffic Urban Plan,
known as Piano Urbano del Traffico (PUT).
The PUT, among many other topics about the revaluation of the territory and
the growth of new inland activities, promotes the bicycle mobility, identified as
an effective and sustainable solution to the needs of mobility in urban areas and
peri-urban of Bergamo.
In line with the strategic directions of network development, already defined
by the Territory Govern Plan, known as Piano di Governo del Territorio, new
operational guidelines are defined for the interconnection and completion of the
existing cycle network, the "hinge’ auctions, which are activated progressively in
the period of the Plan, and safety. These guidelines will form the basis for the
development in the management phase and for the scheduling of the activities.
The phases of the development of the bike—sharing network 'La BiGi’ are defined
through a greater spreading of the stations (up to double the current network)
with the aim of progressively expanding the coverage and the capillarity of the
service in the city center and in the main corridors of urban mobility. Moreover,
concerning the car parkings in public or private facility with less then 150 units
for which a fee must be paid, the Municipal Administration reserves the right
to ask for the activation of one or up to five bike-stations (if the number of
parkings exceeds the 150 units), which costs have to be charched up to the
bike—sharing service provider.
The phase of implementation of the the bike-sharing was focused in addition
to improving the infrastructure, to the upgrade of the bike—sharing ”"La BiGi”,
according to two phases of implementation: to improve the existing network by

doubling the number of bike—stations with the aim to expanding progressively
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the coverage of the service.

In particular, the installation of two new bike—stations is planned in the vicinity
of Tramway Bergamo-Albino. The bike-stations have been built in the end of
2013 as part of a project funded by the Ministry for the Environment, Land and
Sea. In order to support the expansion and maintenance of the bike—sharing
network, politics of coverage of the investments capable to help the network
economic sustainability will have to be promoted.

At the current time, September 2016, 22 bike—stations are operative. Figure 2.6

shows where the bike-stations are located on the city jurysdiction of Bergamo.
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Figure 2.6: Map of the bike—station locations provided by ’La Bigi’.

The aim of our study is to determine the optimal size of the bicycle fleet given
by the optimal number of bicycles to place in each bike—station, minimizing the

expected total cost of the bike-sharing service, ”La BiGi”.

124



2.5 Numerical Results

In this section, we present numerical results from the case described in Sec-
tion 2.4, based on historical data from period May 2013 to December 2015
reported in the Appendix in Tables 2.23 — 2.54.

This section is organized as follows: in Subsection 2.5.1 we analyse the real
data and how scenarios are generated; in Subsection 2.5.2 we investigate and
comment computational times, in—sample stability and optimal inventory levels,
under different assumption for the probability distribution. In Subsection 2.5.3
we analyze the quality of the Expected Value Solution by computing several
well-known measures in Stochastic Programming and the Value of the Right
Distribution (VRD). In Subsection 2.5.4 we perform a sensititity analysis on
the cost parameters of the problem, while in Subsection 2.5.5 we test a set of

instances.

2.5.1 Data Analysis, Scenario Generation and Instances

Parameters

Bike—sharing service in Bergamo, named ”La Bigi”, started in May 2013 with
18 bike-stations. 22 stations are currently operative but not all of them were
activated at the same time. In February 2015 the station of Auchan was opened,
in September Bianzana and San Fermo and, at last, in December Ospedale Papa

Giovanni. Table 2.1 reports labels assigned to each bike—station.
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BIKE-STATION

LABEL

Alpini

Auchan

Battisti

Bianzana

Borgo Palazzo

Cavour

Coghetti

Don Bosco

T Ql"H|lH|g|a

Maj

—

Matteotti

Oberdan

Ospedale Papa Giovanni

Paleocapa

Palma Il Vecchio

Pirovano

Rezzara

San Fermo

Sant’anna

Santo Spirito

Sant’Orsola

Tironi

Viale Emanuele

<laln|w|lm|lo|v|lolz|z|0|=®]|«

Table 2.1: Bike—stations labeling.
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We have at our disposal monthly usage data given by total rentals between
each pair of bike-stations for each month from May 2013 up to December 2015.
We use them as real data. We cannot know if a bicycle moved from A to C

initially had B as destination and then it was forced to be redirected. This is




a technical issue which depends by the software provided alongside the bike—
sharing service: it could be solved by an app for mobiles which queries the user
for knowning the initial and final destinations in case of redirection.

Since the provider of the bike—sharing system is interested in daily data, we
estimate daily demands in order to test program P4. We divide the monthly
rentals of each origin—destination pair by the number of day in a mounth, ob-

month

day _ & 5—> Where D is the number of

taining an average daily rental (e.g., &ij

days in a month and 5?;”’ and 5{}“’"” are daily and monthly rentals for couple
i,j € B, respectively).

Bike-sharing service in Bergamo is relatively young and during year 2015 4 bike—
stations were added: no data are available for these bike—stations in the years
2013-2014. Moreover, due to the limited size of the available historical data,
time—series models cannot be used to generate scenarios of demand.

We consider winter and summer demands. For the first, we collect the sam-
ples of the following months: October, November and December 2013, January,
February, March, October, November, December 2014 and January, February,
March, October, November, December 2015 for a total of 15 scenarios. For
the second, we collect the samples of the following months: May, June, July,
August, September 2013, April, May, June, July, August, September 2014 and
April, May, June, July, August, September 2015 for a total of 17 scenarios.
From the set of historical data, the following parameters are estimated for the

winter demand:

e minimum m;; = min(£72013, ¢Nov2013 | ¢Bec2015) (see Table 2.55 in
Appendix);

e maximum Mij = max(ggCﬂOlS, i]}{'ov20137 . Z_lj)_ecQOlS) (see Table 2.56 in
Appendix);

e expected value &;; = (ggcmom’ Nova0is | gPec2015) = S (see Table 2.58

in Appendix);

ij ij

e standard deviation o;; = \/[( Oct2013 _ £.)2 4 ... 4 (£Pec2015 _ gij)g] 51
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(see Table 2.61 in Appendix);

Note that the rental demand for each origin—destination pair under the assump-
tion of each possible distribution is defined on the same finite support and has
the same expected value, i.e. &; € [m, M] and E[¢;;] = &;;,Vi,j € N and for all
probability distributions of &;;.

In Subsection 2.5.3 we will compute the Value of the Right Distribution for the
case study proposed in this chapter. We will use the same probability distri-
butions considered in Chapter 1 because they are among the most studied and
it will result easier for the reader to understand the numerical results since the
same matches for the probability models have already been tested. However,
for the sake of completeness, we report that in Dell’Amico et al. (2014) [15],
for the case study they proposed about the bike—sharing of Reggio Emilia, the
Normal distribution is depicted as the fittest, given their time series.

The four distributions for each possible origin—destination pair rental demands

are:
e Uniform distribution;
e Exponential distribution;
e Normal distribution;
e Log—rnormal distribution;
for which we estimate the following parameters:

e standard deviation of the Uniform distribution, 0¥t = /& (M;; —m;)?

(see Table 2.62 in Appendix);

e standard deviation of the Exponential distribution, ¢f; = Aij = {Zl (see

ij
Table 2.63 in Appendix);

e location parameter of the Log—normal distribution, ¢;; = In(&;;) — % In(1+

cvfj) (see Table 2.59 in Appendix);
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e scale parameter of the Log-normal distribution, 7;; = In(1 + cvfj)% (see

Table 2.60 in Appendix);

We create four probability models, one for each possibile probability distribution
considered in this experiment, and we generate the corresponding scenario tree
with increasing scenario cardinality up to 1000. A similar approach has been
adopted also for summer demand.

In our computational experiment we use the following values:
e procurement cost ¢; = ¢; = 2;
e stock—out cost v; = v; = 4;

e time-waste cost w; = w; = 8;

uni transshipment cost t;; = t;; = 1;

bike-station capacity k; = k; = 30;

Note that results reported in the following sections refer to the winter de-
mand. It will be specified when a comparison with the summer demand is

proposed.

2.5.2 Computational time, in—sample stability and opti-

mal inventory levels for a two—stage formulation

In this Section we provide the computational times required to solve program
P4, study the in-sample stability (Kaut and Wallace (2003) [30]) and describe
the optimal quantity to place in each bike—station. We compute well-known
stochastic measures in Stochastic Programming, we perform a sensitivity analy-

sis on the cost parameters of the problem and, finally, we test a set of instances.

Computational Time All computations were performed on a machine In-
tel(R) Core(TM) i7 CPU @ 2.67GHz, overclockable up to 3.2 GHz with 12G
RAM.
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Table 2.2 and Figure 2.7 show the average computational time over 20 is-

tances required to solve program P4 for an increasing number of scenarios

S = 100, ..., 1000.

NUMBER OF SCENARIOS S | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000

Cowmp. TIME (secs) 8 17 32 85 135 | 192 | 275 | 355 | 461 597

Table 2.2: Computational time required to solve program P4.

700 %
650 +
600 +
550 |
500 +
450 +
400 +
350 +
300 +
250 |
200 +
150 ¢
100 +

50 T

Computational Time (secs)

[ t t t t t t t {
100 200 300 400 500 600 700 800 900 1,000
Cardinality of the scenarios set S

Figure 2.7: Computational time required to solve program P4.

Note that the largest instance considered (S = 1000) required on average

approximatively 10 minutes.

In—sample stability We denote with zzlj (z, &) the expected total cost ob-
tained under the assumption of the Uniform distribution, with 22 (z, &) the one
obtained under the assumption of the Exponential distribution, with z}\g/(ac, &)
the one obtained under the assumption of the Normal distribution and with

zg’ (z, &) the one obtained under the assumption of the Log—normal distribu-
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tion.

Table 2.3 and Figure 2.8 show the obtained results.

Scenario Trees 1 2 3 4 5 6 7 8 9 10
Number of Scenarios S 100 200 300 400 500 600 700 800 900 1000
zzlj (x, &) 488 484 484 483 486 484 484 485 485 484
zg(w, &) 1079 | 1070 | 1072 | 1073 | 1076 | 1079 | 1083 | 1076 | 1080 | 1076
zf[(:c, £) 497 496 496 496 497 495 497 496 497 497
z? (x, &) 484 489 490 489 488 489 489 488 488 487

Table 2.3: In—sample stability for the expected total cost.

’+Exponential ‘ ’+Uniform%Normal+Logfnormal
1,100 & 525
1,075 \//\/\ 500
w w
B 8
Q Q
N N
1,050 | 475
1,02 vt 450 ——tr—
1 23 45 6 7 8 910 1 23 45 6 78 910
Scenario tree T Scenario tree T
(a) (b)

Figure 2.8: In—sample stability for the expected total cost under assumption
of Exponential distribution (a) and Uniform, Normal and Log-normal distribu-

tions (b).

From Table 2.3 and Figure 2.8 we can observe that the stability performs well
after 500 scenarios for the considered probability distributions. The assumption
of the Exponential distribution provides the highest expected total costs, while

the assumption of the Uniform distribution provides the lowest. This is justified
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by the previous considerations about standard deviations of Uniform and Expo-
nential distributions proposed in Section 2.5.1 (see Tables 2.62 and 2.63 in the
Appendix): using the estimated parameters obtained from real data analysis,
the scenario generation produces rental demands with highest variability across
the bike-sharing system assuming an Exponential distribution, while the lowest
variability is obtained assuming a Uniform distribution. In the following sec-
tion, we investigate how this fact also affects the choice of the optimal inventory

levels.

Optimal quantity to place We now study the optimal number of bicycles
z* to place in each bike—station under different probability distributions. We
denote with 7, the optimal quantity obtained under the assumption of the Uni-
form distribution, with =% the optimal quantity obtained under the assumption
of the Exponential distribution, with z7i, the optimal quantity obtained under
the assumption of the Normal distribution and with z7. the optimal quantity
obtained under the assumption of the Log—normal distribution.

Table 2.4 and Figure 2.9 show the obtained results.

StatioN: | A | B| C | D | E F G | H I J K
x 30| 0 2 3 3 |11 |28 3 6 | 28 | 11
T3 15 3 10 6 14 | 26 14 | 18 | 18 | 23 | 20
Thr 30| 0 2 3 3 112 (28| 3 6 | 28 | 11
z 30 0 2 3 3 11 | 28 3 6 28 11
StatioN i | L | M N (6] P Q R S T U A\
oy 0| 2 5 7116 | 2 9 |12 ] 6 | 13| 6
T3 0 8 14 | 19 | 23 9 23 | 27 | 22 | 25 18
TR 0| 2 5 7116 | 3 9 |12 6 | 13| 6
x7 0| 2 5 7116 | 2 8 |12 | 5 | 13| 5

Table 2.4: Optimal number of bicycles to place x* in each bike—station 1.
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Figure 2.9: Optimal number of bicycles to place in each bike—station i for the

winter demand.

From Table 2.4 and Figure 2.9 we note that the optimal number of bi-
cycles to place is similar under the assumption of the Uniform, Normal and
Log—normal distributions, while under the assumption of the Exponential dis-
tribution we have a different behaviour: when under the formers we place more,
under the latter we place less, and viceversa. This is due to the standard de-
viation obtained assuming an Exponential distribution (compare Tables 2.61 —
2.63 in Appendix): as the expected value of the stochastic demand decreses,
the standard deviation of the Exponential distribution increases (recalling that
afj = \j = 751). When the expected value &; is close to 0, the standard
deviation of the Exponential distribution is sensibly large compared to the ones
obtained the other three distributions. Note that the optimal inventory level of
station L is 0 for all the distributions because it is the last activated station (Os-

pedale Papa Giovanni, December 2015): we have no historical available data,

except for December, and demand is low.
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The results proposed in Table 2.4 and Figure 2.9 use the origin and destination
sets which are given from the current bike—sharing system in Bergamo. We
use the network, and the usage data, as they are, without further investigating
on why some bike—stations have been located in a particular area. This is not
our concern. Our concern is to determine the optimal number to place in each
bike—stations accordingly to the usage data we have. If for a bike—stations the
optimal number of bicycles is 0 or approximatively 0, this can be due by the

following reasons:

e demand has been badly estimated during the strategic phase, when bike—

stations had to be located on the urban territory;

e the available usage data are not enough to determine correctly the optimal

number of bicycles to place (the case of station L);

e Bergamo is a clustered city, with a small but highly dense—populated city
center with satellite low populated areas around it. Clearly, demands in
the satellites are sensibly small compared to the ones in the city center,
and it may results, expecially during the summer or winter peaks, that
a small number of bicycles is required in the satellite stations in order to

satisfy demands (stations B, D, E, H, L, Q).

Figure 2.10 shows the optimal number of bicycles that is placed on average

across the bike—sharing system under the assumption of each distribution, i.e.

B *
Ox Zi:lmi
§F = i=1i
B
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Figure 2.10: Average placed quantity &* = #

We observe that under the assumption of the Uniform, Normal and Log—
normal distributions the average number of bicycles is 9, while under the as-
sumption of the Exponential distribution the model is more prudential placing
more bicycles. Once again, this result is justify by the different standard devia-
tion we get assuming the four considered distributions. Note that, independently
of the assumed distribution among Uniform, Normal and Log—normal, we place
on average the same quantity and we expect to be not penalized heavyly if we
mismatch among Uniform, Normal and Log—normal distributions.

We now consider the summer demand. Table 2.5 shows the expected total
costs considering 500 scenarios while Table 2.6 and Figure 2.11 give the optimal

number of bicycles to place.
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DISTRIBUTION u £ N L
2B(x, &) 492 | 1164 | 500 | 490

Table 2.5: Expected total cost under under assumption of Uniform U/, Expo-

nential £, Normal A" and Log-normal L.

STATION 7 | A B|C|D]|E F G H I J K
xg 27 2 1 12 | 26 4 6 27 | 12
Tg 18 | 17 6 5 16 | 26 | 25 | 19 | 24 | 24 | 21
TR 27 | 1 2 3 |12 (26| 4 6 | 27 | 12
zy 27 1 2 1 2 12 | 26 4 6 27 | 11
Stations | L | M | N | O | P | Q| R S T | U |V
x 0 2 7 8 |17 ] 0 8 |12 | 11 | 11 | 6
g 0 19 | 22 | 21 | 24 2 24 | 20 | 26 | 22 | 21
x_’,‘\, 0 2 7 8 17 0 8 13 | 11 11 6
z} 0 2 6 8 |17 ] 0 8 |13 ] 10| 11 | 6

Table 2.6: Optimal number of bicycles to place z* in each bike-station i.
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Figure 2.11: Optimal number of bicycles to place z* in each bike—station i for

the summer demand.

From Tables 2.3 and 2.5 we observe that expected total costs of winter and
summer demands are similar, as also for the optimal number of bicycles to
place (Tables 2.4 and 2.6 and Figures 2.9 and 2.11). This results could be jus-
tified by the compensation between warm months (June, July and August) and
cold months (December, january and Fabruary) for which other transportation
modes are preferred. Moreover, during the remaining months of the year, the
bike—sharing service is used without particoular difference among warm and cold
season. For this reason, one could further consider a single demand, without

discriminating between summer and winter.

2.5.3 Stochastic measures in Stochastic Programming

In this section we provide numerical results of well-known stochastic mea-
sures in Stochastic Programming (Maggioni et al. (2014) [39], Maggioni and
Pflug (2016) [42]).
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We start from the Expected Result of using the Rxpected Value Solution (EEV)
(Birge and Louveaux (2011) [11]). In order to compute the EEV, we first con-
sider the following problem where all the stochastic rental demands &;;, are

replaced with their expected value f_ij:

EV = min ZN(:B,E),
from which we obtain an optimal first-stage solution Z;(&;;), Vi, called the Ez-
pected Value Solution. Table 2.7 shows the expected number of bicycles placed

in each bike—station.

Stationt | A | B|C|D|E|F | G |H|IT| J|K
(&) |21|lo0| 1|2 |1 |2|2|1]|0|19]|4

StatioN: | L | M| N | O | P | Q|R|S|T|U|V

2 |o| 122100 |3|5|1]6]2

Table 2.7: Expected Value Solution Z;(§).

We now insert the first—stage expected value solution in the original problem
(the recourse problem RP) by assuming the 4 possible probability distributions
(Uniform, Exponential, Normal and Log-normal) for the stochastic rental de-

mands (Maggioni et al. (2014) [38]). We obtain:
EEVy = minEe[2f; (#:(€), €)),
EEVe = minE¢[2£(2:(£),€)),
EEVy = minE¢[25(2:(€), €)),
EEV; = minEe[f (#:(£), £)].
Table 2.8 shows the expected values for using the expected value solutions under

the assumption of the Uniform, Exponential, Normal and Log—normal distribu-

tions.
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DISTRIBUTION u £ N L
EEV 631 1482 641 628

Table 2.8: Expected results for using the Expected Value Solution under the
assumption of Uniform U, Exponential £, Normal N and Log-normal £ prob-

ability distributions.

We now compute the Value of the Stochastic Solution (VSS) (Birge (1982)

[10]), which is the gain from solving the two—stage integer stochastic program:
VSS=FEEV — RP.

Table 2.9 shows the Values of the Stochastic Solutions obtained under the four

distributions and the corresponding penalty (%), computed as % x 100.
DISTRIBUTION U & N L
VSS 145 406 144 140
% 29.8 | 37.7 29 28.7

Table 2.9: Value of the Stochastic Solution under the assumption of Uniform

U, Exponential £, Normal A/ and Log-normal £ probability distributions.

From Table 2.9 we note that adopting the Expected Value Solution we have
the worst performance with the Exponential distribution. This result is again
explained by the standard deviation (compare Table 2.63 in Appendix) we get
assuming the Exponential distribution.

Let us now measure the Wait-and-See solution (WS) (Birge and Louveaux
(2011) [11]) obtained by solving a sequence of deterministic problems obtained

by relaxing the non—anticipativity constraints and taking the expectation:
WS = E¢[min 25 (z, £)).
€T

Table 2.10 shows the Wait—and—See solution under the assumption of the four

distributions.
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DISTRIBUTION u £ N L
WS 449 931 454 443

Table 2.10: Wait—and—See solutions under the assumption of Uniform U/, Expo-

nential £, Normal N and Log-—normal £ probability distributions.

The difference between the optimal values of the here-and—now solution and

the wait—and-—see solution
EVPI=RP-WS,

is referred to as the Fxpected Value of Perfect Information. Table 2.11 reports
this value for the four probability distributions and the corresponding gain (%),

WS
computed as 73 x 100.

DISTRIBUTION u E N L
EVPI 37 145 43 45
% 7.6 13.4 | 87 | 9.2

Table 2.11: Expected Value of Perfect Information under the assumption of
Uniform U, Exponential £, Normal A and Log—normal £ probability distribu-

tions.

From Table 2.11 we understand that knowing in advance the information
about the future realization of the demand is valuable for all the considered dis-
tributions, expecially in the case of the Exponential due to its greater variability
described by the higher standard deviation. However, for this case study, at the
moment, it is not possible to have in advance the information about the future
rental demands. This is a technical issue: the software provided alongside the
bike—sharing service does not queries the users about their future movements.
From Table 2.7 we can observe that in the Expected Value Solution some first-
stage variables are set to zero. Let J be the set of indices for which the compo-

nents of the expected value solution Z;(£) are at zero. Then let 2 be the solution
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of:

s.t. (Ej:i'j(g), ]Gj

We then compute the Ezpected Skeleton Solution Value (Maggioni and Wallace
(2012) [43))
ESSV =E¢[z5(2,€)].

Table 2.12 show it under the assumption of the Uniform, Normal, Log—normal

and Exponential distributions.

DISTRIBUTION u E N L
ESSV 502 1132 | 511 504

Table 2.12: Expected Skeleton Solution Value under the assumption of Uniform
U, Exponential £, Normal N and Log—normal £ probability distributions.

We now compare results obtained in Table 2.12 with the here-and-now so-

lution and we measure the Loss of Using the Skeleton Solution:
LUSS = ESSV — RP.

Table 2.13 reports the obtained results and shows the penalty (%), computed

LUSS

=5~ % 100, for having used the skeleton solution.

as

DISTRIBUTION | U £ N L
LUSS 16 56 14 66
% 33 | 52| 28 | 3.3

Table 2.13: Loss Using the Skeleton Solution under the assumption of Uniform
U, Exponential £, Normal N and Log—normal £ probability distributions.

From Table 2.13 we observe that the LUSS is positive under the four con-
sidered distributions but not large. We try to investigate the reason of this

behaviour. The deterministic model produced the right non—zero variables Z;,
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but set to be 0 some variables that are positive in the here—and—now solution
(compare stations B,I,L,Q in Table 2.4 and Table 2.7). Since in the here—and-
now solution the optimal inventory level, depending on the assumed distribution,
is close to 0 or 0 for stations B, L and Q, the resulting LUSS is not large, but
still positive. This could justify a better understanding of the Expected Value
Solution and the possible links between the deterministic and stochastic ones
by using the Generalized Loss Using the Skeleton Solution (GLUSS) (Maggioni
et al. (2015) [40]): a measure of the badness/goodness of deterministic solution
based on the information brought by the reduced costs of the continuous relax-
ation of the deterministic one.

We now consider the Expected Value Solution Z;(£), Vi, as a starting point
(input) to (2.32) of program P4 and we compare, in terms of objective func-
tions, to (2.32) without such input. This is equivalent to adding in program P4

constraints x; > ;(£), Vi and hence solve the following problem with solution

X

minEE[zB(ac, &),

We then compute the Ezpected Input Value (Maggioni and Wallace (2012) [43])
EIV = E¢[5(,€)).

Table 2.14 shows the Expected Input Values under the four considered distri-

butions.

DISTRIBUTION u & N L
EIV 486 1088 | 497 | 489

Table 2.14: Expected Input Value under the assumption of Uniform U, Expo-
nential £, Normal N and Log-normal £ probability distributions.

We now compare results obtained in Table 2.14 with the stochastic solu-

tion proposed in Table 2.3, measuring the Loss of Upgrading the Deterministic
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Solution:

LUDS = EIV — RP.

Table 2.15 reports the obtained results and shows the penalty (%), computed

LUDS
as = gp

x 100, for having upgraded the deterministic solution.

DISTRIBUTION | U | € | N | L
LUDS 0 12 0 1
% 0 1 0 0

Table 2.15: Loss of Upgrading the Skeleton Solution under the assumption of
Uniform U, Exponential £, Normal A" and Log—normal £ probability distribu-

tions.

From Table 2.15 we observe that the Expected Value Solution is upgradeable
to become good in the stochastic setting for all the four considered distributions,
expecially under the assumption of the Uniform, Exponential and Log—normal
distributions.

Recall now the concepts of guessed and right distributions and the associated
measures defined in Chapter 1. We now insert an optimal solution xf;, obtained
assuming a guessed distribution, inside the recourse problem assuming the right
distribution (RP%). We do it for the four probability distributions (e.g., the
Uniform distribution is considered the right one and we compute the expected
total cost by using the optimal solutions obtained assuming the Exponential,
Normal and Lognormal distributions, respectively). Then, we compute the
Out—of-Distribution value (OD), which is the value for having fixed the opti-
mal first—stage solution obtained assuming a wrong distribution in the recourse
problem with the right distribution. Table 2.16 reports the obtained Out-of-

Distribution values.
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oD u E | N c
(R=U) - | 877 | 486 | 487
(R=E&) | 1348 | - | 1344 | 1355
(R=N) | 495 | 877 | - 496
(R=L) | 489 | 879 | 490 -

Table 2.16: Out—of-Distribution values under the assumption of Uniform U,

Exponential £, Normal A and Log-normal £ probability distributions.

We then compute the Value of the Right Distribution (VRD),
VRD = OD — RPg,

which is the loss from solving the two—stage integer stochastic program assuming
a wrong distribution and a measure of the importance of ambiguity in stochastic
optimization.

Table 2.17 reports the obtained Values of the Right Distribution.

g
VRD u | € | N | ¢
(R=uU) | - [391]| 0 1
(R=¢&) | 22| - | 268 | 279
(R=N)| 0 | 380 | - 0
(R=c) | 1 |391] 2 -

Table 2.17: Value of the Right Distribution under the assumption of Uniform
U, Exponential £, Normal A/ and Log-normal £ probability distributions.

From Table 2.17 we observe that the ambiguity plays an important role
only when the Exponential distribution is considered as possible candidate to
be both right and wrong: the penalties for having assumed the Exponential as
right distribution or the penalty for having assumed right another distribution
while the right one was the Exponential, are very large. The VRD is negligible
for all the other possible mismatches between distributions. These results are

justified with the following reasons:
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1. the optimal first—stage solutions obtained assuming the Uniform, Normal

and Log-normal distributions are similar (see Table 2.4);

2. the average number of placed bicycles in the bike—sharing system is the

same assuming the Uniform, Normal and Log—normal distributions;

3. the standard deviation of the Exponential distributions is sensibly large

with respect to the ones of the other three distributions;

4. the Deviation Test proposed in Section 1.6.5. of Chapter 1 shows that the
issue is not the Exponential distribution itself but its standard deviation
which is very far from the standard deviations of the other probability

distributions (which are similar).

The uncertainty of the future, described by the standard deviation of the as-
sumed distributions for the stochastic process, plays a crucial role for determin-

ing the Value of the Right Distribution.

2.5.4 Sensitivity Analysis

In this section we perform a sensitivity analysis on the stock—out cost v, the
time—waste cost w and the transshipment cost ¢ to understand how the expected
total cost function is sensible to a variation in cost parameters. As before, we

consider different probability distributions.

Stock—out cost The initial setting of the instance is the following:

e c=2;
e s=25;
o w = 25;
e t=1
We perform a sensitivity analysis on s = 5,...,55. We then compute the

expected total cost function for each instance. Figure 2.12 shows the obtained

results.
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Figure 2.12: Sensitivity analysis of expected total cost versus stock—out cost
s=25,...,b5. (a) refers to the Exponential distribution while (b) refers to the

Uniform, Normal and Log—normal distributions.

From Figure 2.12 we can observe that when s = w, the slopes of the expected
total cost functions, under the assumption of the four considered distributions,
change. Note that when s = w, expected shortage and expected overflow are

equally paid. Expected total cost are monotonitically increasing.

Time—waste cost The initial setting of the instance is the following:

e c=2;
o 5 =25;
e w=2>5;
e t=1
We perform a sensitivity analysis on w = 5,...,55. We then compute the

expected total cost function for each instance. Figure 2.13 shows the obtained

results.
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Figure 2.13: Sensitivity analysis of expected total cost versus time—waste cost
w=75,...,55. (a) refers to the Exponential distribution while (b) refers to the

Uniform, Normal and Log—normal distributions.

From Figure 2.13 we can observe that for w > s, the expected total cost
function, under the four considered distributions, become constant. This result
can be explained as follows. Suppose an extreme case, for some w > s, such
that a single unit of overflows costs more than full shortages of all stations,
i.e. I, =¢&s, Vi € Band Vs € S: the optimal first-stage decision is to leave
the bike—stations empty, in order to reduce the probability of an overflow to 0.
We understand that the optimal solution and the resulting expected total cost

depend also on the link between rental demands and available capacities.

Transshipment Cost We test two different initial settings to measure the
sensitivity of the expected total cost function. The initial setting of the first

instance is the following:

® c=2;
® 5=275;
o w = 2b;
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o t=1.

We perform a sensitivity analysis on t = 1,...,51. We then compute the ex-
pected total cost function for each instance. Figure 2.14 shows the obtained

results.

6 11 16 21 26 31 36 41 46 51
Transshipment cost ¢

’ —— Uniform -~ Exponential - - - Normal - - - - Log—normal

Figure 2.14: Sensitivity analysis of expected total cost versus transshipment

cost t =1,...,51 with s =25 and w = 5.

From Figure 2.14 we observe that the slope of the expected total cost function
changes initially at ¢ = s and then at ¢ = 2s under the assumption of the four
considered distributions. For ¢ > 2s, the expected total cost is constant. This
result can be explained similarly to the time—waste cost. Suppose an extreme
case, for some ¢ > s+w, such that a single unit of transshipment costs more than

shortages plus overflows, or full shortages, or full overflows (this strictly depends
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on the values of the cost parameters): the optimal first—stage decision is to leave
the bike—stations empty, in order to reduce the probability of transshipment to
0 (note that we tested our instances using program P4, were the transshipment
is mandatory. If it is not, cleary an optimal decision is to perform not the
transshipment).

We understand that the optimal solution and the resulting expected total cost
also depend on the distributions the rental demands across the bike-sharing
system.

The initial setting of the second instance is the following:

e c=2;
o 5 =25;
o w=275;
e t=1
We perform a sensitivity analysis on t = 1,...,51. We then compute the ex-

pected total cost function for each instance. Figure 2.15 shows the obtained

results.
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Figure 2.15: Sensitivity analysis of expected total cost versus transshipment cost
t=1,...,51 with s =5 and w = 25. (a) refers to the Exponential distribution,

while (b) refers to the Uniform, Normal and Log-normal distributions.

From Figure 2.15 we can observe that for t > s, the expected total cost func-
tion, under the four considered distributions, becomes constant. This result can
be explained as follows. Suppose an extreme case, for some t > s, such that a
single unit of transshipment costs more than shortages: the optimal first—stage
decision would be to leave the bike—stations empty, in order to reduce the proba-
bility of transshipment to 0. In our experiment this is not due to the same reason
of the previous one, since the cost parameter under investigation is the same.
However, we understand something more: the transshipment is linked only with
the shortage and not with the overflow. This result is justified as follows. The
overflow is redirected by user itself: it is a form of user—transshipment which
realizes independently of the value to which the cost parameter of the trans-
shipment is setted. On the contrary, transshipment has the goal to balance the
system at the end of the service accordingly to the optimal quantities needed

for the next one in order to reduce the shortage of the next service.
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2.5.5 Testing other instances

It is impossible to investigate every combination in the values of the cost

parameters of the problem. In this section, we test 8 instances given by a com-

bination of the cost parameters ¢, s, w and . We identify each instance with a

number from 1 to 8 and we set the values for the parameters of the first instance

withe=s=w=t=>5.

Tables 2.18 reports the results obtained for the expected total costs under the

Uniform, Exponential, Normal and Log—normal distributions. Table 2.19 re-

ports the optimal number of bicycles to place in bike-stations A, B, J and

P depending on the assumed distributions. We have chosen to report 4 bike—

stations over 22, selecting those with the highest rentals demands, thus with the

highest inventory levels.

25 (z, €)
Label Parameters u & N L
1 c=s=w=t 1057 | 2015 | 1068 | 1036
2 c=w=t,s=5c 1400 | 3544 | 1436 | 1424
3 c=s=t,w=>5¢c 10567 | 2015 | 1068 | 1037
4 c=s=w,t=5c 1057 | 2015 | 1068 | 1037
5 | s=2cw=3ct=1c| 1207 | 2637 | 1228 | 1198
6 § =3c,w = 2¢c,t = %C 1270 | 2953 | 1298 | 1274
7 | s=2w=3tc=1t | 382 | 1215 | 395 | 396
8 | s=38tw=2tc=1t| 412 | 1398 | 425 | 432

Table 2.18: Expected total cost for a given combination of cost parameters

under the assumption of Uniform U/, Exponential £, Normal A/ and Log-normal

L probability distributions.
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instance | A G J P A G J P A G J P A G J P
1 18 | 17 | 17 | 8 4 3 6 6 |16 | 17 | 14 | 9 4 4 3
2 30 {30 |30 |18 |19 | 20 | 30 | 30 | 30 | 30 | 30 | 19 | 30 | 30 | 30 | 18
3 10 | 11 12 9 4 3 6 4 8 6 6 4 10 | 13 | 14 9
4 12 | 15 | 15 9 4 3 6 6 11 13 | 14 9 12 | 18 | 16 9
5 30 [ 28 |29 | 17 | 16 | 15 | 24 | 25 | 30 | 28 | 28 | 17 | 30 | 28 | 28 | 16
6 30 [ 28 |30 | 18 | 18 | 17 | 28 | 28 | 30 | 29 | 29 | 18 | 30 | 29 | 29 | 17
7 30 (29|30 |19 |19 |18 | 28 |28 | 30 | 30|29 |19 | 30 |29 |29 | 18
8 30 (30|30 |19 |21 |22|30]|30|30|30]|30|20]|30]|30]|30] 19

Table 2.19: Optimal number of bicycles to place in bike-stations A,G, J and P
for a given combination of cost parameters under the assumption of Uniform U,

Exponential £, Normal N and Log-normal £ probability distributions.

From Table 2.18 and 2.19 we observe that the optimal first—stage decisions
and the corresponding expected total cost vary depending on the relationship
between the cost parameters of the problem. The obtained results enforce the
fact that the optimal inventory levels are dependent from the ratio between
¢, s,w and t, with this analysis we also understand that &* also depends on the
distribution of the demands across the set of bike—stations and of their capacity.
In particular, in Table 2.19 for instance 3, the optimal invetory levels to the
minimum realization of the demand in station A, G, J and P according to the
scenarios on which program P4 is solved, while instance 8 sets them to the

maximum realization (or available capacity).

2.5.6 The multi—stage case

In this Section we study the in—sample stability (Kaut and Wallace (2003)
[30]) and we describe the optimal quantity to place in each bike-station of the
multi-stage formulation of program P4. We split each day (24 hours) in three

time periods, defined as follows:

e time period 1: from 6 am to 12 am;
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e time period 2: from 12 am to 6 pm;

e time period 3: from 6pm to 00 am.

The time period that goes from 00 am to 6 am is reserved to transshipment

operations. Even if time is not explicitly included in the model (due to the

node formulation), we denote by T the number of stages and introduce a time

index t =0,1,...,T, with t = 0 corresponding to the root of the scenario tree.

In—sample stability We tested the program on different scenario trees, for

an increasing number of scenarios, constructed as shown in Table 2.20. The

branching at each node is constant and corresponds to the number of nodes of

the second stage for each scenario tree.

Scenario Trees 1 2 3 4 5 6
Nodes of the second stage 5 6 7 8 9 10
Total nodes 155 | 258 | 399 | 589 | 819 | 1110
Leafs (scenarios) 125 | 216 | 343 | 512 | 729 | 1000

Table 2.20: Structure of the scenario trees adopted for testing the multi-stage

formulation of program P4.

Table 2.21 and Figure 2.16 show the obtained results.

Scenario Trees 1 2 3 4 5 6
zﬁ(w, &) 469 578 569 571 570 570
zg(z, &) 1919 | 1883 | 1900 | 1916 | 1909 | 1906
zf/(w, £) 763 749 764 761 759 760
zg(zc, &) 685 668 673 679 682 680

Table 2.21: In—sample stability for the expected total cost.
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Figure 2.16: In—sample stability for the expected total cost the under assump-
tion of Exponential distribution (a) and under assumption of the Uniform, Nor-

mal and Log—normal distributions (b) probability distributions.

From Table 2.3 and Figure 2.8 we can observe that in—sample stability per-
forms better in the two—stage formulation, but the expected total costs appear
to be stable even in the multi-stage formulation. Under the assumption of the
Exponential distribution a larger number of scenarios should be considered to
get in—sample stability. We set the scenario tree 7* = 4, which corresponds to
512 scenarios. The assumption of the Exponential distribution provides again
the highest expected total costs, while the assumption of the Uniform distribu-
tion provides the lowest. This behaviour is justified by the standard deviations
of the distributions as for the two—stage model formulation (see Tables 2.61 —

2.63 in Appendix).

Optimal quantity to place We now study the optimal number of bicycles x*
to place at the beginning of the service in each bike—station, which corresponds

to node 0 (the root of the scenario tree) under different assumption on the
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demand probability distribution. Table 2.22 and Figure 2.17 show the obtained

results.

STATION 1 A B|C|D]J|E]|F G H | I J K
xa 10 0 1 1 1 2 8 1 2 8 2

22 12 0 1 2 1 4 4 1 3 14 3
x}‘\, 11 0 1 1 2 3 10 2 1 9 3

rz 10 0 1 2 2 2 8 1 2 7 2
StatioN: | L|{ M| N|O|P|Q|R|S|T|U|V

a3, ol 1|11 |5]0of2]|3|1]3]1

zk 02|33 |4|0]2]4|3]4]2

x;‘v 0 0 1 1 5 1 2 4 2 4 1

m*ﬁ 0 1 1 1 3 0 1 2 1 2 0

Table 2.22: Optimal number of bicycles to place z* in each bike—station 1.
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Figure 2.17: Optimal number of bicycles to place x* in each bike—station 7 in

the multi—stage case.
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From Table 2.4 and Figure 2.9 we observe that the optimal quantity to place
for all bike—stations are lower than the ones of the two—stage model formulation
proposed in Table 2.22 and Figure 2.17. This result in justied as follows: the
optimal solution of the multi—stage formulation is less myopic compared to the
one of the two—stage in the sense that bicycles assigned at the beginning of
the service can be rented in the three time periods. The program considers
that a single bicycle can be used multiple times. For example, a user rent a
bicycles at 09:00 am from station B to get to station C at 09:15 am. Then,
a new user rent the same bicycle at 09:20 to get to station F at 09:50. In
the afternoon, another user rent the same bicycles to ge to station G at 16:00.
Thus, the inventory levels are reduced according to the ability of the multi—
stage formulation to consider not only the possible realizations of ’tomorrow’,
but also of the subsequent futures and the dynamic nature of the fleet. We
observe at last that the optimal inventory levels obtained under the assumption
of the Exponential distribution are sized equal to the ones obtained assuming

the other distributions, differently from the two—stage formulation.
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2.6 Conclusions

In Chapter 2 we have proposed two—stage and multi—stage stochastic formu-
lations for a bike-sharing problem and studied the real case of the bike—sharing
system in Bergamo ’La BiGi’. Optimal solutions for the two—stage and multi—
stage models have been provided under different assumptions of probability
distributions for the rental demand for each origin-destination pair. It is given
to the provider the possibility to rebalance the inventory level in each bike—
station by transshipping a certain number of bicycles from a bike—station to
another according to the optimal inventory levels required at a bike—stations.

The obtained results lead to the following managerial insights:

1. Why a recourse action? A recourse action, identified in the trans-
shipment of bicycles between bike—stations, is required in order to match
the optimal inventory levels at the beginning of the next service or in a
certain period of the day. In our case study, the recourse action is taken
at night after the realizations of the rental demands and when the ser-
vice is not available for the user community. However, a recourse action
could be taken during the service at the end of a certain period of the day
(e.g., noon or end of the working time), by using a multi-stage stochastic
formulation where the daily rental demand is decomposed according to
certain periods (e.g. morning, afternoon, evening). In our case study, the
recourse is mandatory for the optimization of the service in order to edge
against the fluctation of the inventory level of each bike-station which can
lead to a level far from the optimal number of required bicycles. In such
case, if no action is taken, even after a small interval of time after the
beginning of the service, a bike-station may come up in a shortage (if the
inventory level is far below its optimum) or an overflow (if the inventory

level is far below).

2. Two—stage vs. Multi—stage. A two—stage stochastic formulation con-

sider the entire day as a single period, only one optimal inventory level is

157



determined for each bike—station and the optimal number of bicycles to
have at the end of the service must be the same to have at the beginning
of the next day. The model does not consider inventory levels during the
day, increasing the probability to incure in a shortage of bicycles at some
bike—stations. A multi-stage stochastic formulation is proposed by split-
ting the running day into three periods. As result, more than one optimal
inventory levels to have at the end of each period are determined for each
bike—station. In our case—study, the recourse action is available only at
the end of the service, but the provider could adopt it more than once
during the day in order to match the optimal inventory levels to have at
the end of each time period. Moreover, a multi-stage formulation catches
the movement of the bicycles fleet among the bike—stations in different
instants of time during the day, considering in the determination of the

optimal inventory levels the incoming and outcoming bicycles.

3. One or more recourse actions? Bike—sharing services, or more gener-
ally vehicle—sharing services, have been introduced in the city life in order
to reduce pollution and traffic congestion, becoming through time part
of the culture of our society. In our case study, when a recourse action
is adopted, a fleet of vehicles is deployed at night on the city streets to
realize the transshipment, picking up some bicycles at those bike—station
which inventory levels are above their optimum in order to compensate
the shortages of others. When a recourse action is taken multiple times
during the day, multiple times a fleet of vehicles is deployed on the city
streets already congestioned by the daily traffic. Moreover, the pollution
produced by the vehicles concurs to increase the overall city pollution, re-
sulting both against the original goals for which bike—sharing system have
been introduced. Due to this facts, the recourse action should be adoped
only once at night, in order to not interfere with the city congestion during

the working day.

In the introduction of this chapter we have addressed some research questions.
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At the end of this study, we are able to provide them an answer.

1. the bike—sharing problem is not trivial and it must be studied by means of
mathematical modelling formulations in order to achieve a good optimal
solution. From the case study and the numerical results we understand
that the human judgment may lead to critical inefficiency, very low user
sastifaction level and high total cost. The number of bicycles to assign to
each bike—station cannot be decided arbitrarely, nor be identical for each of
them: each bike—station requires a specific number of bicycles determined

by a mathematical program;

2. an optimal solution for the bike—sharing problem with rebalancing can be

determined by means of a stochastic programming approach;

3. we have shown that it is possible to decompose the main problem in a
class of subproblems only when the bike—stations are independent from

each other;

4. the transshipment is mandatory in order to increase the service level: it
reallocates the bicycles fleet at the end of the service according to the
optimal number of bicycles to have at the beginning of the service of the
next day. It reduces the probability of a shortage and, as consequence, it

increases the customer level satisfaction;

5. we have shown that the parameters of the problem, and the ratio between
them, play a key roles in determining the optimal solutions. The sensitiv-
ity analysis carried out in the numerical results explains that, for certain
values or relationship among the parameters, the optimal solution does

not change and the expected total cost is constant;

6. this study helps to manage the problem of the bike—sharing in many ways.
A manager can determine the optimal number of bicycles for each bike—
station, she can observe how the optimal solution changes if a parameters

is setted to a particular value (e.g., in order to reduce the shortage or
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to allow it to be higher, to admit a greater overflow or to decrease it, to
reduce the number of transshiped bicycles at the end of the service or to
increase it). At last, by means of the newly introduced concept of the
Value of the Right Distribution, a manager can measure the loss in the
expected total cost when another distribution realizes instead of the one

assumed for the demand.

The numerical results proposed in Chapter 2 validate the utility of the Value
of the Right distribution proposed in Chapter 1, being addressed as a tool to
measure a priori the errors when mismatching the right distribution or the true
standard deviation. It is also helpfull to understand the importance of the
ambiguity between the considered probability distributions. Moreover, the De-
viation Test proposed in Chapter 1 confirm our conclusions about the standard
deviation being the real issue, and not the mismatching between probability
distributions.

However, the VRD is only applied on instances where all the stochastic parame-
ters are formulated using a single type of distribution and the principal moments
of the demand distributions (i.e., means and standard deviations) are assumed
known. From a higher point of view, multiple types of distributions may be
present in a given instance and the moments associated to the distributions of
the stochastic parameters may not be known with certainty. We address such

cases as possible avenues for future research.
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Appendix

In this appendix we collect real data of rental demads of bike—sharing system

'LaBigi’ and the estimated parameters.

A B C D E F G H I J K L M N (0] P Q R S T U \4
A 0.63] 0.00] 0.47| 0.00, 0.07| 0.93] 2.73] 0.40| 0.43| 0.33] 2.10, 0.00| 0.03] 0.80] 0.23] 0.73] 0.00] 1.40, 2.33] 0.33] 2.40| 0.97]
B 0.00] 0.00| 0.00, 0.00, 0.00, 0.00] 0.00] 0.00] 0.00, 0.00] 0.00] 0.00] 0.00] 0.00, 0.00, 0.00, 0.00] 0.00] 0.00, 0.00] 0.00] 0.00]
C 0.50, 0.00] 0.17| 0.00, 0.00, 0.33] 0.07| 0.00] 0.00, 0.13] 0.00] 0.00, 0.00] 0.13] 0.00, 0.10, 0.00, 0.00, 0.10, 0.00, 0.00| 0.17]
D 0.00] 0.00| 0.00, 0.00, 0.00, 0.00] 0.00] 0.00] 0.00, 0.00] 0.00] 0.00] 0.00] 0.00, 0.00, 0.00, 0.00, 0.00] 0.00, 0.00, 0.00] 0.00]
E 0.07| 0.00| 0.00, 0.00, 0.03] 0.30, 0.03] 0.00] 0.13] 0.03] 0.00] 0.00] 0.00] 0.03] 0.00, 0.03 0.00, 0.03] 0.13] 0.17] 0.00| 0.03]
F 0.93] 0.00, 0.37| 0.00] 0.10, 1.23] 0.77| 0.50, 0.33] 0.17| 1.20, 0.00| 0.00] 0.10, 0.33] 1.03] 0.00] 0.47| 0.47| 0.17| 0.93| 0.17]
G 3.03] 0.00| 0.00, 0.00, 0.00, 0.87] 1.50, 0.03] 0.37] 4.20, 0.20, 0.00, 0.00] 0.07| 0.00, 2.57| 0.00, 0.30] 0.50, 0.80| 0.80| 0.63]
H 0.03] 0.00, 0.00, 0.00] 0.03] 0.43 0.17] 0.17| 0.00, 1.37| 0.00] 0.00, 0.03] 0.00, 0.00, 0.03] 0.00, 0.00] 0.03] 0.57] 0.20| 0.60]
I 0.47| 0.00, 0.17| 0.00| 0.20, 0.07| 0.23] 0.00] 0.23] 0.33] 0.10, 0.00, 0.07| 0.17| 0.47| 0.07| 0.00, 0.10, 0.03] 0.13] 0.00| 0.03]
J 0.70, 0.00| 0.23] 0.00, 0.10, 0.27| 4.27| 1.60, 0.53] 0.67| 0.63] 0.00, 0.07| 0.60, 0.17| 0.57| 0.00, 0.47| 1.20, 0.10, 0.57| 0.23]
K 1.53 0.00] 0.10[ 0.00[ 0.00f 2.13f 0.40[ 0.00 0.07 0.77| 0.27 0.00 0.00 0.20[ 0.03f 0.27( 0.00[ 0.10[ 0.37| 0.13[ 0.07| 0.13
L 0.00] 0.00| 0.00, 0.00| 0.00, 0.00] 0.00] 0.00] 0.00, 0.00] 0.00] 0.00] 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00 0.00]
M 0.00] 0.00] 0.00, 0.00, 0.00, 0.00] 0.07| 0.07| 0.00, 0.07| 0.03] 0.00, 0.13] 0.00, 0.00, 0.13] 0.00, 0.00, 0.03] 0.00, 0.10| 0.07]
N 1.17 0.00f 0.00 0.00[ 0.03f 0.10f 0.03/ 0.07] 0.07] 0.77| 0.10f 0.00[ 0.00[ 0.13f 0.00[ 0.33f 0.00[ 0.03f 0.33[ 0.10[ 0.10[ 0.30|
o 0.40, 0.00| 0.03] 0.00, 0.00, 0.40, 0.10, 0.00, 0.27] 0.10, 0.03] 0.00, 0.00, 0.00, 0.07| 0.03] 0.00, 0.07| 0.03] 0.07] 0.00] 0.10
P 0.67| 0.00| 0.00, 0.00, 0.03] 0.50, 2.50, 0.27| 0.17| 0.20] 0.27] 0.00, 0.03] 0.33] 0.07| 0.87] 0.00, 0.13] 1.33] 0.23] 0.57] 0.23]
Q 0.00, 0.00| 0.00, 0.00, 0.00, 0.00] 0.00] 0.00] 0.00] 0.00] 0.00] 0.00] 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00] 0.00]
R 1.27] 0.00 0.00 0.00[ 0.00f 0.80 0.17| 0.03f 0.13f 0.23 0.03 0.00f 0.00 0.37| 0.13f 0.30[ 0.00[ 0.47 0.57| 0.17| 0.27| 0.20|
S 2.33] 0.00, 0.17| 0.00, 0.13] 0.40| 0.40| 0.10| 0.00| 1.43] 0.87| 0.00| 0.13] 0.20, 0.20, 0.67| 0.00, 0.47| 0.70, 0.73] 0.33] 0.27]
T 0.30] 0.00| 0.03] 0.00, 0.00, 0.10, 1.27| 0.43] 0.07| 0.07| 0.10, 0.00, 0.07| 0.13] 0.07| 0.13] 0.00, 0.03] 0.30, 1.00, 0.20/ 0.10]
18] 2.50, 0.00| 0.00, 0.00| 0.00, 0.23 0.73] 0.17| 0.00, 0.57| 0.10, 0.00, 0.00, 0.00, 0.00, 0.37] 0.00, 0.17| 0.60, 0.07| 0.27| 0.13]
v 0.63] 0.00, 0.03] 0.00, 0.03] 0.00] 1.17/ 0.50, 0.00, 0.10, 0.10, 0.00, 0.10, 0.33] 0.00, 0.17| 0.00, 0.37] 0.23] 0.10, 0.17| 0.20]

Table 2.23: May 2013: average daily rentals for each origin—destination pair.
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A B C D E G H K L M O R S
A 0.33] 0.00] 0.70[ 0.00[ 0.17] 1.07| 3.67| 0.10[ 0.47] 0.73 2.57| 0.00[ 0.10[ 0.77] 0.57| 1.20/ 0.00[ 1.67] 2.73] 0.50, 2.30| .00
B 0.00] 0.00] 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00| .00 .00 .00
C 0.33] 0.00, 0.00f 0.00[ 0.00] 0.83] 0.17| 0.00[ 0.00] 0.30] 0.03] 0.00[ 0.00[ 0.07] 0.00] .17 0.00[ 0.00[ 0.23 0.17] 0.07| .03]
D 0.00] 0.00] 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00[ 0.00] 0.00] 0.00| 0.00[ 0.00] 0.00] 0.00, 0.00| .00
E 0.17| 0.00, 0.00[ 0.00[ 0.00] 0.10, 0.03] 0.00[ 0.53| .23 0.03[ 0.00[ 0.00] 0.03 0.00/ 0.10[f 0.00] 0.07| 0.07| 0.17 0.13| .03]
F 0.90| 0.00, 0.37| 0.00[ 0.07] 0.80] 1.50/ 0.50[ 0.33| .27 1.73[ 0.00[ 0.00| .10 0.57| 0.73[ 0.00] 0.73] 0.57| 0.27| 1.67| .23
G 4.40[ 0.00[ 0.07] 0.00] 0.03] .27 0.87 0.27 0.37] 5.90, 0.47| 0.00[ 0.13] 0.17] 0.03] 3.70 0.00[ 0.37] 0.43] 1.37| 0.80| .73
H 0.10] 0.00, 0.00f 0.00[ 0.00] 0.60] 0.43] 0.30[ 0.00] 1.10[ 0.03] 0.00[ 0.10[ 0.07] 0.03] 0.27| 0.00[ 0.00] 0.00] 0.40, 0.10| .70
I 0.93 0.00, 0.07| 0.00 0.60] 0.20] 0.57| 0.07| 0.43] 0.73] 0.07| 0.00[ 0.07] 0.03] 0.40, 0.30, 0.00[ 0.33] 0.17] 0.17| 0.03| .27
J 1.03| 0.00] 0.37 0.00] 0.03[ 0.20] 6.30[ 2.17| .63 0.70[ 1.23[ 0.00] 0.17| 1.07| 0.30[ 0.77] 0.00] 0.43] 1.53| 0.17] 1.03| .20
K 2.07| 0.00, 0.10f 0.00[ 0.07] 2.37| 0.70, 0.07 0.10] 0.83] 0.33] 0.00[ 0.03/ 0.03 0.03] 0.67| 0.00[ 0.13] 0.70] 0.27| 0.23 .07
L 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[f 0.00] 0.00 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00 .00
M 0.03| 0.00/ 0.00] 0.00f 0.00] 0.00f 0.17] 0.07] 0.00, 0.03f 0.00, 0.00] 0.03 0.10] 0.07| 0.13] 0.00[ 0.07 0.10[ 0.10] 0.07 .10
N 1.03| 0.00] 0.03[ 0.00] 0.00f 0.13] 0.17] 0.00, 0.10[f 0.57 0.10f 0.00, 0.03] 0.20/ 0.23] 0.30[ 0.00] 0.10[ 0.50] 0.33[ 0.13] .27
(0] 0.97] 0.00/ 0.07 0.00f 0.03] 0.33 0.03 0.03f 0.63] 0.13 0.07] 0.00[ 0.00, 0.13] 0.07] 0.27] 0.00, 0.00] 0.03f 0.13] 0.00 .03
P 0.83 0.00, 0.10, 0.00[ 0.03] 0.83] 4.43] 0.43[ 0.13] 0.53] 0.77] 0.00 0.10[ 0.37] 0.40] 0.97| 0.00[ 0.10[ 1.07] 0.07] 0.77 .47
Q 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[f 0.00] 0.00 0.00, 0.00] 0.00, 0.00[ 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00 .00
R 1.87| 0.00] 0.03[ 0.00] 0.03f 0.90] 0.13f 0.03] 0.30f 0.60, 0.17] 0.00, 0.10[ 0.27 0.20[ 0.30| 0.00] 0.67| 0.43] 0.37 0.17| .27
S 2.43| 0.00/ 0.07 0.00f 0.20[ 0.50[ 0.60| 0.00[ 0.20] 1.23] 1.43] 0.00] 0.20, 0.33] 0.17] 0.90] 0.00, 0.23] 0.47 0.73] 0.90 .60
T 0.37 0.00/ 0.17 0.00f 0.00] 0.20[ 1.80] 0.50[ 0.23] 0.03] 0.13 0.00] 0.10 0.20[ 0.13f 0.20[ 0.00[ 0.17] 0.63] 0.87 0.27 .10
18] 1.97 0.00] 0.10[ 0.00] 0.10f 0.80] 0.77| 0.07 0.10f 0.37/ 0.23 0.00, 0.17] 0.17/ 0.07] 1.40/ 0.00] 0.20/ 0.70] 0.20[ 0.37| .57
\4 0.63| 0.00/ 0.03] 0.00f 0.03] 0.17 1.23 0.43[ 0.47| 0.10f 0.10, 0.00] 0.10, 0.13] 0.07| 0.40f 0.00, 0.40 0.30[ 0.20] 0.80 .37
Table 2.24: June 2013: average daily rentals for each origin—destination pair.
A B C D E F G H I J K L M N (@] P Q R S T U A\

A 0.73| 0.00 0.63] 0.00f 0.03 1.10[ 4.17| 0.10[f 1.03| 1.27| 3.33] 0.00f 0.10, 1.40[f 1.30, 1.67| 0.00, 2.40| 2.80/ 0.43| 3.47 1.37|
B 0.00] 0.00/ 0.00] 0.00/ 0.00] 0.00] 0.00] 0.00 .00 .00 0.00f 0.00] 0.00f 0.00] 0.00 00| 00[ 0.00] 0.00]| .00 .00| 0.00]|
C 0.37] 0.00 0.13] 0.00f 0.00] 0.47| 0.17] 0.00[ 0.00] 0.40[ 0.10, 0.00] 0.00 0.00[ 0.00/ 0.10| 00 0.10, 0.13] 0.17/ 0.13] 0.17|
D 0.00] 0.00/ 0.00{ 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00] 0.00[ 0.00, 0.00[ 0.00 0.00[ 0.00 0.00| 00[ 0.00, 0.00[ 0.00, 0.00] 0.00|
E 0.30] 0.00/ 0.00{ 0.00f 0.03] 0.23] 0.03 0.00f 0.33] 0.17] 0.00, 0.00[ 0.00 0.03] 0.10, 0.03| 00[ 0.13] 0.23] 0.07 0.00[ 0.10|
F 1.40/ 0.00] 0.23[ 0.00] 0.10[ 0.43| 1.50 1.17] 0.53[ 0.53] 1.40[ 0.00, 0.03] 0.40, 0.53] 1.17| 00| 2.03] 0.60[ 0.37| 1.37 0.13
G 5.67] 0.00 0.13] 0.00f 0.00] 1.60[ 1.87] 0.37| 0.63| 7.87| 0.23] 0.00f 0.20 0.37| 0.17] 4.00| 00[ 0.20, 0.43] 1.20, 1.00[ 1.40|
H 0.13| 0.00/ 0.00{ 0.00f 0.00] 1.37| 0.43] 0.23[ 0.00] 1.67| 0.03] 0.00[ 0.30, 0.10[ 0.07] 0.50| 00| 0.03] 0.17] 0.50, 0.23] 0.90|
I 0.93| 0.00/ 0.00{ 0.00f 0.47| 0.47 0.67| 0.13] 1.03] 0.63] 0.13] 0.00[ 0.03] 0.03] 1.73] 0.30| 00[ 0.70, 0.23] 0.57| 0.07] 0.43|
J 0.87] 0.00[ 0.43] 0.00 0.30] 0.30[ 6.90] 2.63[ 0.77 1.37| 1.23] 0.00] 0.23] 1.37| 0.47] 0.90| 00| 0.70, 1.60] 0.40, 1.50] 0.50|
K 2.87 0.00 0.13] 0.00f 0.00] 1.73[ 0.60] 0.07| 0.20] 1.10[ 0.63] 0.00[ 0.07 0.13] 0.07] 0.33 00| 0.07] 0.73] 0.47| 0.37 0.57|
L 0.00] 0.00[ 0.00[ 0.00f 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[ 0.00, 0.00[ 0.00 0.00[ 0.00/ 0.00| 00| 0.00, 0.00[ 0.00/ 0.00] 0.00|
M 0.03| 0.00/ 0.00f 0.00f 0.00] 0.10[ 0.27] 0.30[ 0.00] 0.10[ 0.07] 0.00] 0.23 0.10[ 0.13] 0.50| 00| 0.00, 0.17] 0.67] 0.23] 0.40|
N 1.60, 0.00{ 0.27] 0.00] 0.00f 0.43] 0.33 0.07] 0.10f 0.77 0.37] 0.00, 0.13] 0.50, 0.10] 0.53 00| 0.27] 0.57] 0.30| 0.60] 0.33
(e} 1.33] 0.00] 0.00[ 0.00] 0.03[ 0.53] 0.17| 0.07] 1.60[ 0.13] 0.17] 0.00, 0.10] 0.03] 0.20[ 0.23 00[ 0.57] 0.30[ 0.00, 0.07] 0.20|
P 0.90 0.00[ 0.07] 0.00f 0.10] 0.90[ 4.90| 0.70[ 0.53] 1.03[ 0.57] 0.00[ 0.60, 0.63] 0.07] 2.43| 00 0.53] 1.43] 0.13] 1.50 1.57|
Q 0.00] 0.00[ 0.00[ 0.00f 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[ 0.00, 0.00[ 0.00 0.00[ 0.00/ 0.00| 00[ 0.00, 0.00[ 0.00/ 0.00] 0.00|
R 2.47 0.00 0.13] 0.00[ 0.03] 1.53] 0.50] 0.07| 0.80] 1.00[ 0.17] 0.00[ 0.17] 0.50 0.73] 0.33 00| 0.47] 0.77] 0.33] 0.20[ 0.20|
S 2.57| 0.00] 0.23] 0.00[ 0.20] .47 0.93[ 0.10| 10, 1.23[ 1.17 0.00[ 0.13] 47 0.50/ 0.90| 00| 0.93] 1.77 1.33] 0.50] 0.43]
T 0.33[ 0.00] 0.10/ 0.00[ 0.03] 0.33] 1.43] 0.63| 0.43/ 0.07] 0.33] 0.00, 0.80[ 0.20[ 0.07] 0.33] 00| 0.37] 1.00[ 1.37] 0.33] 0.17
192 2.90| 0.00, 0.00f 0.00[ 0.07 0.90, 0.77| 0.23[ 0.07] 1.20[ 0.27| 0.00[ 0.33] 0.43| 0.13] 2.07| 00| 0.27| 0.67 0.23] 1.23] 0.77
v 0.97] 0.00, 0.10/ 0.00[ 0.00] 0.17] 1.87 0.53| 0.63] 0.37] 0.37| 0.00, 0.17| 0.63] 0.10] 1.43] .00 0.33[ 0.40] 0.27| 1.20, 0.33
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Table 2.25: July 2013: average daily rentals for each origin—destination pair.



A B C D E F G H I J K L M N O P Q R S T U \Y%
A 0.57| 0.00] 1.73 0.00[ 0.70] 1.57| 4.20, 0.33| 1.33] 1.30] 2.87| 0.00, 0.07| 2.30] 1.90] 1.37| 0.00| 2.87| 3.50] 0.47| 3.63] 1.50|
B 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00] 0.00|
C 0.77] 0.00] 0.03 0.00[ 0.03 0.57| 0.13] 0.03[ 0.00] 0.37] 0.07| 0.00[ 0.13] 0.03 0.00] 0.10/ 0.00[ 0.00] 0.03] 0.13] 0.20[ 0.17|
D 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00] 0.00|
E 0.67| 0.00] 0.00f 0.00[ 0.03 0.03] 0.23] 0.03[ 0.47] 0.17] 0.07| 0.00[ 0.00[ 0.00] 0.00] 0.10, 0.00[ 0.10] 0.20] 0.07| 0.00[ 0.07|
F 2.23| 0.00, 0.10/ 0.00[ 0.20] 0.57] 1.07| 0.80[ 0.73] 0.53] 1.40, 0.00, 0.07 0.20] 0.47] 1.07| 0.00| 1.93[ 0.70] 0.87| 1.87| 0.13
G 5.00] 0.00, 0.07| 0.00f 0.10f 1.57| 1.33] 0.13| 0.73] 10.00 0.70] 0.00, 0.47| 0.37 0.90] 5.37| 0.00| 0.00[ 0.57] 2.17| 1.30, 0.93
H 0.10] 0.00, 0.00/ 0.00[ 0.00] 0.90] 0.37| 0.13] 0.00[ 2.13] 0.23] 0.00, 0.23[ 0.10[ 0.10] 0.27| 0.00/ 0.17| 0.03] 0.10] 0.23] 0.60|
I 1.57| 0.00] 0.03] 0.00] 0.03 0.50[ 0.77] 0.07] 0.83 0.73[ 0.00] 0.00] 0.13] 0.07| 1.63[ 0.27] 0.00] 0.70, 0.13[ 0.17] 0.27 1.17|
J 1.27| 0.00] 0.20] 0.00] 0.23| 0.23[ 9.57] 3.00] 0.70, 1.10f 2.10[ 0.00] 0.33] 0.87| 0.43[ 1.17] 0.00] 0.90, 2.33] 0.30[ 1.03] 0.57|
K 3.87 0.00, 0.13] 0.00f 0.13] 1.10[ 0.93] 0.17] 0.00] 1.43] 0.63] 0.00] 0.00, 0.13] 0.20, 0.33] 0.00 0.30] 0.63[ 0.40] 0.43[ 1.13|
L 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
M 0.03| 0.00/ 0.00] 0.00f 0.00] 0.10[ 0.30] 0.13f 0.10, 0.57] 0.10, 0.00] 0.30, 0.33] 0.07| 0.43] 0.00 0.23] 0.00[ 0.57] 0.33[ 0.03|
N 1.17| 0.00] 0.17[ 0.00] 0.00[f 0.37] 0.20[ 0.17] 0.10[ 0.80| 0.30] 0.00, 0.40 0.53[ 0.10] 1.20[ 0.00] 0.33[ 0.17] 0.37] 0.33] 0.10|
(0] 1.70 0.00] 0.03[ 0.00] 0.00f 0.37 0.60[ 0.00 1.63f 0.50, 0.20[ 0.00, 0.07] 0.00 0.50] 0.17 0.00] 0.43[ 0.37 0.37| 0.13] 0.87
P 1.60 0.00] 0.07] 0.00] 0.00f 1.43 5.17] 0.37] 0.30] 1.17 0.70] 0.00, 0.43] 0.80[ 0.20[ 2.53[ 0.00] 0.60[ 1.23] 0.30] 1.30, 1.10|
Q 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[ 0.00
R 2.27| 0.00, 0.07] 0.00f 0.00] 1.47| 0.27] 0.10f 0.70, 1.03] 0.23] 0.00] 0.20, 0.53] 0.43] 0.73] 0.00 0.83] 0.77| 0.53] 0.13[ 0.20
S 2.93| 0.00/ 0.13] 0.00f 0.23 0.40[ 1.13] 0.10f 0.10, 1.97| 0.97] 0.00f 0.13] 0.13] 0.30, 1.20[ 0.00, 0.60] 1.17| 1.13] 0.47 0.17
T 0.50 0.00/ 0.13] 0.00f 0.00] 0.37| 2.00] 0.43f 0.23] 0.13] 0.63] 0.00] 0.57| 0.47] 0.63] 0.13] 0.00 0.53] 0.90[ 1.63] 0.60[ 0.23]
18] 3.40| 0.00/ 0.00] 0.00f 0.00] 1.00f 1.23 0.17] 0.33] 0.90] 0.20, 0.00] 0.40 0.43 0.10, 1.70] 0.00 0.10] 0.50[ 0.67] 0.70[ 0.60|
\4 1.87| 0.00] 0.03[ 0.00] 0.07| 0.33] 1.73] 0.43] 1.37| 0.23] 0.50] 0.00, 0.10] 0.33] 0.63] 0.73] 0.00] 0.13[ 0.20[ 0.30[ 0.80] 0.37
Table 2.26: August 2013: average daily rentals for each origin—destination pair.
A B C D E F G H I J K L M N (@] P Q R S T U A\
A 0.57] 0.00/ 0.33] 0.00f 0.50] 0.40[ 1.93| 0.53[ 0.30] 0.70 2.30, 0.00] 0.07 0.90] 0.87 0.50{ 0.00[ 1.37 1.03[ 0.20] 2.10[ 0.90|
B 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
C 0.23| 0.00, 0.07 0.00f 0.00] 0.17| 0.07] 0.00[f 0.03] 0.33 0.03 0.00] 0.00, 0.10] 0.00, 0.00] 0.00f 0.07 0.00[ 0.07] 0.00[ 0.10|
D 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00[ 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00
E 0.60 0.00/ 0.03] 0.00f 0.23 0.13[ 0.03] 0.03f 0.17] 0.10[ 0.00, 0.00f 0.07] 0.03] 0.03 0.03 0.00, 0.03] 0.43 0.00] 0.00[ 0.07
F 0.63| 0.00/ 0.00{ 0.00f 0.13] 0.33 0.60[ 0.93f 0.33] 0.43] 1.10, 0.00f 0.17] 0.23] 0.13] 0.53] 0.00, 0.83| 0.57| 0.47| 0.70[ 0.07
G 1.73| 0.00] 0.20[ 0.00] 0.00[f 0.97] 1.20[ 0.07] 0.37] 5.97 0.33] 0.00, 0.20{ 0.10[ 0.00] 2.17 0.00, 0.03[ 0.07] 0.70] 0.50, 0.63
H 0.20{ 0.00/ 0.00] 0.00f 0.00] 0.83 0.17] 0.13[ 0.00, 1.63] 0.03 0.00f 0.10, 0.10] 0.03] 0.30] 0.00 0.07| 0.00[ 0.33] 0.07| 0.83]
I 0.40| 0.00, 0.00{ 0.00f 0.30] 0.10[ 0.30| 0.03f 0.30, 0.77] 0.13 0.00] 0.07| 0.07] 1.40, 0.33] 0.00 0.10{ 0.17 0.20] 0.07| 0.37
J 0.80] 0.00, 0.30] 0.00f 0.17] 0.23[ 5.57 1.60[ 0.50, 1.03] 1.23] 0.00] 0.20, 0.60] 0.63] 1.47| 0.00 0.57] 1.33[ 0.17] 1.47| 0.20
K 2.20{ 0.00, 0.03] 0.00[ 0.03] 1.60[ 0.40, 0.07 0.17] 1.37| 0.43] 0.00] 0.00, 0.10] 0.10, 0.47] 0.00 0.27 0.17| 0.13] 0.33[ 0.17
L 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[f 0.00, 0.00] 0.00, 0.00[ 0.00, 0.00] 0.00, 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00|
M 0.00] 0.00/ 0.00] 0.00f 0.07] 0.03[ 0.07 0.13f 0.07 0.27] 0.00, 0.00[ 0.13 0.13] 0.00, 0.07] 0.00[ 0.13| 0.00[ 0.07 0.27| 0.10|
N 0.67] 0.00/ 0.03] 0.00[ 0.00] 0.07] 0.53] 0.00f 0.07] 0.37] 0.07] 0.00] 0.03 0.50] 0.03] 0.43] 0.00 0.30] 0.27| 0.27] 0.07| 0.10|
(e} 0.57] 0.00/ 0.00] 0.00[f 0.00] 0.33[ 0.00] 0.00f 1.33] 0.37| 0.20] 0.00[ 0.03] 0.00] 0.20, 0.03] 0.00/ 0.03] 0.20/ 0.33] 0.00[ 0.27
P 0.60| 0.00/ 0.03] 0.00[ 0.00] 0.80[ 2.60, 0.67| 0.13] 0.63] 0.53] 0.00] 0.23] 0.50] 0.00| 1.43] 0.00 0.33] 0.60[ 0.30] 1.00[ 0.60
Q 0.00] 0.00| 0.00{ 0.00[ 0.00] 0.00[ 0.00, 0.00[f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[ 0.00|
R 1.30 0.00] 0.00[ 0.00] 0.03f 0.53] 0.10f 0.07] 0.10[ 0.17 0.40f 0.00, 0.17] 0.20[ 0.13| 1.27 0.00] 0.60[ 0.27] 0.47] 0.10, 0.10|
S 0.80| 0.00, 0.10/ 0.00[ 0.43 0.50] 0.17| 0.07| 0.07] 1.43] 0.40, 0.00, 0.07 0.03/ 0.20] 0.50, 0.00[ 0.17 0.87 1.03] 0.30| 0.10|
T 0.23| 0.00, 0.03f 0.00f 0.00] 0.17| 0.77| 0.30[ 0.07] 0.13] 0.23] 0.00[ 0.17] 0.23 0.30] 0.13] 0.00[ 0.97] 0.73] 1.03] 0.03[ 0.07|
192 1.93[ 0.00f 0.00] 0.00, 0.00/ 0.63f 0.47] 0.17| 0.10, 1.30[ 0.27 0.00] 0.03] 0.07| 0.00[{ 1.07] 0.00] 0.00, 0.23[ 0.03] 0.23] 0.63]
v 0.90| 0.00, 0.03 0.00[ 0.00] 0.10[ 0.87| 0.63[ 0.57] 0.30] 0.30] 0.00, 0.03f 0.27] 0.13] 0.43] 0.00/ 0.10[ 0.30] 0.07| 0.47| 0.20|

Table 2.27: September 2013: average daily rentals for each origin—destination

pair.
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A B C D E F G H I J K L M N O P Q R S T U \Y%
A 0.90| 0.00, 0.87| 0.00 0.70] 0.97| 5.03] 0.27| 0.87] 2.00] 4.57| 0.00, 0.07| 2.17 1.10] 2.20, 0.00| 3.63| 3.40] 1.13| 4.87 1.83
B 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00] 0.00|
C 1.13| 0.00 0.07] 0.00, 0.03 0.33[ 0.10[ 0.07] 0.13] 0.50[ 0.03] 0.00] 0.00] 0.00, 0.03f 0.07] 0.00] 0.07| 0.10[ 0.03[ 0.10] 0.07|
D 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00] 0.00|
E 0.33 0.00, 0.00/ 0.00[ 0.67] 0.37] 0.03] 0.03f 0.50 0.23 0.07| 0.00, 0.07 0.03] 0.03] 0.13] 0.00/ 0.13[ 0.37] 0.10] 0.10] 0.20|
F 1.03[ 0.00f 0.27] 0.00] 0.13] 0.40[ 1.50] 0.57| 0.50, 0.20[ 1.33] 0.00] 0.10] 0.33] 0.30[ 0.83] 0.00] 0.83] 0.67| 0.47 1.43| 0.30]
G 5.33| 0.00, 0.07| 0.00 0.07 1.17] 1.40, 0.33| 1.07 6.67] 0.30], 0.00, 0.30[ 0.37] 0.10] 4.17| 0.00/ 0.13[ 0.30] 1.07| 0.40, 1.30|
H 0.23| 0.00, 0.03 0.00[ 0.00] 1.47| 0.27| 0.20[ 0.00[ 1.33] 0.03] 0.00, 0.20[ 0.03] 0.00] 0.20, 0.00/ 0.00[ 0.00] 0.37] 0.30, 0.23|
I 0.53| 0.00, 0.17| 0.00f 0.73] 0.23] 1.20, 0.13[ 0.77] 0.87] 0.37| 0.00[ 0.13] 0.03] 1.50, 0.43] 0.00[ 0.30] 0.20] 0.30, 0.77| 0.17|
J 1.83| 0.00] 0.43] 0.00, 0.37| 0.30[ 8.07] 2.33] 0.93] 1.33| 1.40[ 0.00] 0.30] 1.60/ 0.43[ 1.23] 0.00] 1.97| 1.90[ 0.23] 2.30] 0.30]
K 5.03] 0.00, 0.13] 0.00[ 0.07] 1.83] 0.80, 0.07| 0.20[ 1.40{ 0.40, 0.00, 0.10[ 0.20[ 0.37] 0.33] 0.00/ 0.20[ 0.80] 0.27| 0.70, 0.40|
L 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
M 0.03| 0.00/ 0.00] 0.00f 0.00] 0.03f 0.17] 0.23f 0.07 0.27] 0.13] 0.00] 0.20, 0.30] 0.00, 0.43] 0.00 0.07| 0.07| 0.00] 0.30[ 0.13]
N 1.73| 0.00] 0.00] 0.00, 0.00, 0.43/ 0.10] 0.00] 0.03] 1.10f 0.33] 0.00] 0.27] 0.97| 0.10[ 0.67] 0.00] 0.17| 0.30[ 0.73] 0.17] 0.23]
(0] 1.50, 0.00] 0.07] 0.00] 0.00f 0.37] 0.03] 0.00 1.17] 0.27 0.33] 0.00, 0.00] 0.03[ 0.33] 0.07| 0.00] 0.23[ 0.40] 0.40[ 0.00| 0.00|
P 1.40, 0.00] 0.13[ 0.00] 0.13f 0.57 5.37| 0.43] 1.03f 1.17/ 0.57] 0.00, 0.43] 0.73] 0.10] 1.20[ 0.00] 0.27| 0.87] 0.20[ 2.50, 0.77
Q 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[ 0.00
R 2.93| 0.00/ 0.07 0.00f 0.07 0.57| 0.13] 0.00f 0.20] 1.57| 0.67] 0.00f 0.10, 0.77] 0.57| 1.00] 0.00, 0.53| 0.53| 0.07] 0.47| 0.17
S 2.87 0.00, 0.17 0.00f 0.23 0.17] 0.47| 0.10f 0.20] 2.07| 1.40, 0.00f 0.10, 0.47] 0.20, 1.27] 0.00, 0.70| 1.40f 0.83] 0.77| 0.37|
T 0.80] 0.00, 0.00] 0.00f 0.03] 0.33 1.00 0.67 0.33] 0.13] 0.23 0.00] 0.10, 0.80] 0.17 0.17 0.00 0.20[ 0.67| 0.57] 0.27| 0.10]
18] 4.93] 0.00] 0.07 0.00] 0.03 0.47] 0.67| 0.13] 0.57| 1.70, 0.67] 0.00, 0.07] 0.10, 0.00] 2.50/ 0.00] 0.23[ 0.97] 0.27| 0.80] 0.77|
\4 1.00, 0.00] 0.20[ 0.00] 0.07| 0.03] 0.97] 0.83] 0.20[ 0.20, 0.43] 0.00, 0.30] 0.40[ 0.33] 0.63[ 0.00] 0.10[ 0.23] 0.27] 0.57] 0.23
Table 2.28: October 2013: average daily rentals for each origin—destination pair.
A B C D E F G H I J K L M N (@] P Q R S T U A\
A 0.27] 0.00/ 1.43| 0.00f 0.17] 0.83 3.90| 0.13f 0.30] 1.53| 3.47] 0.00f 0.03] 1.93] 0.73] 1.50[ 0.00/ 1.97] 2.30| 0.93] 3.93| 1.37|
B 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
C 1.57| 0.00] 0.13[ 0.00] 0.00[f 0.37] 0.20[ 0.03] 0.00[ 0.40, 0.00] 0.00, 0.00] 0.00f 0.00] 0.13[ 0.00] 0.00[ 0.00] 0.00[ 0.10, 0.00|
D 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00[ 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00
E 0.30] 0.00, 0.03] 0.00f 0.10[ 0.13[ 0.03] 0.03f 0.57] 0.23 0.07/ 0.00] 0.00, 0.00] 0.07| 0.00] 0.00 0.10{ 0.37| 0.07] 0.00[ 0.03|
F 0.63| 0.00/ 0.20{ 0.00f 0.03] 0.63[ 0.90| 0.53f 0.10, 0.13] 1.33] 0.00] 0.00, 0.30] 0.87 0.80] 0.00 0.70| 0.27 0.10] 1.37| 0.03|
G 4.53] 0.00] 0.10/ 0.00] 0.07| 0.57 0.93[ 0.10[ 0.87| 6.37 0.30[ 0.00, 0.23 0.37] 0.07] 5.23 0.00f 0.17 0.27] 0.83] 0.37] 1.03|
H 0.20[ 0.00/ 0.00] 0.00f 0.00] 1.13[ 0.20] 0.07| 0.07/ 1.10[ 0.07/ 0.00] 0.17/ 0.00] 0.03] 0.13] 0.00 0.03] 0.03[ 0.13] 0.17| 0.70
I 0.50 0.00, 0.10{ 0.00f 0.40{ 0.23[ 1.10; 0.03f 0.80] 0.50] 0.67] 0.00] 0.03 0.10] 1.43| 0.27 0.00 0.17 0.17 0.23] 0.37| 0.00
J 1.27| 0.00] 0.30[ 0.00] 0.13[ 0.33] 6.57| 2.03] 0.43] 0.70, 0.80] 0.00, 0.30] 1.00[ 0.23] 0.70[ 0.00] 1.00[ 0.90] 0.20[ 2.33] 0.17
K 3.27| 0.00, 0.07] 0.00[ 0.00] 1.93[ 0.40, 0.03f 0.37] 0.77] 0.27] 0.00f 0.00, 0.17] 0.17| 0.17 0.00 0.13| 0.63[ 0.30] 0.97| 0.30
L 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[f 0.00, 0.00] 0.00, 0.00[ 0.00, 0.00] 0.00, 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00|
M 0.00] 0.00/ 0.00{ 0.00f 0.03] 0.03[ 0.10, 0.10[f 0.07] 0.13] 0.00, 0.00] 0.20, 0.10] 0.03] 0.23] 0.00[ 0.00] 0.00[ 0.10] 0.13[ 0.03|
N 1.63| 0.00] 0.00[ 0.00] 0.00f 0.17] 0.17] 0.07] 0.13] 0.97 0.27] 0.00, 0.03] 0.43[ 0.00] 0.50[ 0.00] 0.03[ 0.40, 0.33] 0.10, 0.20|
(e} 0.87] 0.00/ 0.03] 0.00[ 0.07] 0.77| 0.07| 0.00[ 0.87 0.23] 0.10, 0.00f 0.00, 0.07] 0.10, 0.13] 0.00, 0.37] 0.23] 0.40[ 0.07| 0.27
P 1.07| 0.00{ 0.03[ 0.00] 0.07| 0.40, 6.03] 0.43] 0.83 0.63] 0.30] 0.00, 0.10f 0.43] 0.13] 1.07| 0.00] 0.23[ 1.17 0.03[ 2.27] 0.87|
Q 0.00] 0.00| 0.00{ 0.00[ 0.00] 0.00[ 0.00, 0.00[f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[ 0.00|
R 2.47 0.00/ 0.17] 0.00[ 0.03] 0.53[ 0.10[ 0.03[ 0.33] 1.03[ 0.30] 0.00[ 0.07] 0.03] 0.67| 0.57] 0.00, 0.37] 0.30| 0.27] 0.17 0.07|
S 2.50| 0.00, 0.10/ 0.00[ 0.20] 0.27| 0.47| 0.03[ 0.23/ 1.43 0.90, 0.00, 0.07 0.27 0.23 0.87| 0.00/ 0.33[ 0.80] 0.37] 0.60| 0.20|
T 0.70] 0.00, 0.03f 0.00[ 0.03 0.13] 0.63] 0.20[ 0.37 0.10] 0.30, 0.00[ 0.03f 0.47] 0.20, 0.10, 0.00[ 0.20] 0.33] 0.33] 0.33[ 0.17|
192 3.23| 0.00, 0.03f 0.00[ 0.03 0.67| 0.60, 0.17| 0.50 1.57| 0.40, 0.00[ 0.03] 0.13 0.00] 2.57| 0.00[ 0.10] 0.67| 0.17| 0.50[ 1.07|
v 0.73 0.00, 0.10f 0.00[ 0.03 0.03] 0.97| 1.00[ 0.10f 0.13] 0.17| 0.00[ 0.07] 0.33 0.20], 0.57| 0.00[ 0.03] 0.17| 0.10, 0.73[ 0.17|

Table 2.29: November 2013: average daily rentals for each origin—destination

pair.
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A B C D E F G H I J K L M N O P Q R S T U \Y%
A 0.50] 0.00] 0.93 0.00[ 0.07] 0.43] 3.20, 0.23[ 0.50[ 1.17] 3.10, 0.00, 0.03[ 1.53] 0.37] 1.27| 0.00| 1.60[ 1.57] 0.80| 2.50, 0.70|
B 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00] 0.00|
C 0.73 0.00, 0.07| 0.00[ 0.00] 0.27] 0.07| 0.03f 0.07] 0.37] 0.00] 0.00, 0.00[ 0.03f 0.00] 0.00, 0.00/ 0.00[ 0.07] 0.07] 0.03] 0.00|
D 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00] 0.00|
E 0.10] 0.00, 0.00/ 0.00[ 0.27] 0.17] 0.03] 0.03[ 0.33] 0.30] 0.03] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.13[ 0.47] 0.07] 0.00, 0.03
F 0.23 0.00] 0.13f 0.00[ 0.07] 0.33] 0.63] 0.33[ 0.10] 0.23] 1.13] 0.00[ 0.03] 0.20] 0.57| 0.23] 0.00[ 0.67] 0.23] 0.03] 0.60[ 0.07|
G 3.93| 0.00, 0.07| 0.00[ 0.00] 0.33] 0.63] 0.17| 0.57] 6.50] 0.50, 0.00, 0.03[ 0.20] 0.00] 4.27| 0.00| 0.07| 0.20] 0.73] 0.23] 0.93
H 0.17] 0.00, 0.00/ 0.00[ 0.00] 1.20] 0.50, 0.03f 0.10[ 0.60] 0.03] 0.00, 0.23[ 0.03 0.10] 0.10, 0.00/ 0.03f 0.03 0.10] 0.27| 0.23|
I 0.33] 0.00, 0.00/ 0.00 0.20] 0.17] 0.87| 0.07| 0.43/ 0.53 0.17| 0.00, 0.03[ 0.03] 0.87] 0.63] 0.00/ 0.13f 0.07] 0.17] 0.53] 0.23
J 1.40[ 0.00 0.13] 0.00, 0.00, 0.10f 6.87] 1.37| 0.63] 1.10[ 0.77 0.00] 0.07] 0.97| 0.57| 0.80] 0.00] 1.07| 1.00[ 0.00] 1.67] 0.13]
K 3.00] 0.00/ 0.10{ 0.00f 0.07] 0.97 0.53] 0.00[ 0.03] 0.93] 0.07] 0.00f 0.07] 0.03] 0.23 0.40f 0.00, 0.13] 0.30 0.17] 0.33 0.17|
L 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
M 0.03| 0.00/ 0.00] 0.00f 0.00] 0.03f 0.20] 0.13f 0.03] 0.00f 0.00, 0.00] 0.03 0.10] 0.00, 0.13] 0.00f 0.13] 0.03f 0.03] 0.13[ 0.00]
N 1.37 0.00] 0.03[ 0.00] 0.00[f 0.13] 0.30] 0.07] 0.10] 1.03] 0.07] 0.00, 0.00] 0.40f 0.03] 0.13[ 0.00] 0.03[ 0.27] 0.30] 0.03] 0.13
(0] 0.70 0.00/ 0.03] 0.00f 0.03] 0.53[ 0.00] 0.07| 0.60, 0.50] 0.20, 0.00] 0.00, 0.00] 0.03/ 0.03 0.00 0.50] 0.23[ 0.27] 0.07| 0.20
P 0.97] 0.00, 0.10/ 0.00[ 0.00] 0.30] 4.70, 0.07| 0.57] 0.90] 0.37| 0.00, 0.20[ 0.33] 0.10] 0.93] 0.00/ 0.17] 0.90] 0.00] 1.80] 0.20|
Q 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[ 0.00
R 1.90/ 0.00] 0.00[ 0.00] 0.00f 0.63] 0.07] 0.00, 0.10f 1.07 0.13] 0.00, 0.07 0.07| 0.67] 0.43[ 0.00] 0.43[ 0.23] 0.23] 0.20] 0.20|
S 2.00{ 0.00/ 0.07] 0.00f 0.27] 0.23] 0.43] 0.00f 0.20] 1.03] 0.57] 0.00] 0.07/ 0.30] 0.07| 0.57] 0.00/ 0.20{ 0.50[ 0.33] 0.57| 0.20
T 0.63| 0.00 0.00] 0.00f 0.03 0.10[ 0.57 0.00f 0.30] 0.07| 0.17] 0.00f 0.03 0.53] 0.10, 0.00] 0.00/ 0.40 0.30/ 0.20[ 0.17| 0.07
18] 2.10] 0.00/ 0.07 0.00f 0.00] 0.37] 0.37] 0.20[ 0.53] 1.37| 0.23] 0.00] 0.10, 0.10] 0.03] 2.40{ 0.00 0.03| 0.40[ 0.23] 0.53[ 0.63|
\4 0.57] 0.00/ 0.00] 0.00f 0.03 0.03 0.67 0.80[ 0.07] 0.10[ 0.07] 0.00f 0.07/ 0.30] 0.37| 0.17] 0.00, 0.07] 0.20/ 0.03] 0.53| 0.17|
Table 2.30: December 2013: average daily rentals for each origin—destination
pair.
A B C D E F G H I J K L M N O P Q R S T U Y%
A 0.27| 0.00] 1.43/ 0.00[ 0.03 0.50, 4.07| 0.07 0.30] 0.97] 2.77| 0.00[ 0.10[ 1.87 0.70] 1.27| 0.00[ 2.00] 1.63] 0.97| 2.13[ 0.87|
B 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
C 1.13| 0.00] 0.00[ 0.00] 0.00[f 0.13] 0.27] 0.00 0.00] 0.27 0.03] 0.00, 0.03] 0.00[ 0.00] 0.03f 0.00] 0.00[ 0.03] 0.00] 0.03] 0.13
D 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
E 0.10] 0.00/ 0.00] 0.00f 0.13] 0.13[ 0.00] 0.00f 0.13] 0.27] 0.03] 0.00] 0.00, 0.00] 0.03/ 0.03 0.00f 0.03 0.33 0.10] 0.07| 0.03|
F 0.73| 0.00, 0.17] 0.00f 0.00] 0.17 1.17] 0.40[f 0.03] 0.10f 1.00, 0.00] 0.10 0.13] 0.37| 0.43] 0.00 0.20[ 0.17| 0.07] 0.43[ 0.00]
G 4.93] 0.00[ 0.10] 0.00] 0.03] 0.40f 0.47 0.23] 0.67| 7.73| 0.30[ 0.00] 0.03] 0.13] 0.03[ 4.17] 0.00] 0.20] 0.13] 0.53[ 0.17 0.67|
H 0.10] 0.00/ 0.03] 0.00f 0.00] 1.07| 0.53] 0.20[f 0.03] 0.63] 0.03] 0.00] 0.07/ 0.07] 0.10, 0.00] 0.00f 0.07| 0.03f 0.13] 0.13[ 0.50
I 0.37] 0.00/ 0.00] 0.00f 0.10] 0.07| 0.77] 0.03f 0.27] 0.67] 0.20, 0.00] 0.00, 0.03] 1.03] 0.23 0.00f 0.10] 0.03[ 0.10] 0.27| 0.10]
J 1.07| 0.00] 0.40[ 0.00] 0.03f 0.10] 7.17 1.53] 0.50[ 0.77/ 0.77 0.00, 0.07] 0.77 0.23 0.60[ 0.00] 0.83[ 1.00] 0.07 1.13] 0.17
K 3.13| 0.00, 0.03] 0.00f 0.00] 0.97| 0.23] 0.03f 0.07/ 1.03] 0.13 0.00] 0.00, 0.03 0.07| 0.13] 0.00f 0.17 0.27| 0.03] 0.10[ 0.13]
L 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
M 0.03| 0.00, 0.00] 0.00f 0.00] 0.10[ 0.07] 0.10[f 0.00, 0.07] 0.00, 0.00] 0.07/ 0.10] 0.03] 0.13] 0.00 0.03] 0.00[ 0.07] 0.20[ 0.00|
N 1.43| 0.00] 0.03[ 0.00] 0.00f 0.07/ 0.13 0.07/ 0.13] 1.03 0.07] 0.00, 0.10{ 0.33 0.03] 0.17| 0.00] 0.07] 0.07] 0.33] 0.27] 0.03
(@] 0.87] 0.00, 0.07] 0.00f 0.00] 0.43[ 0.03] 0.03f 0.67/ 0.57] 0.10, 0.00] 0.00, 0.00] 0.07| 0.10f 0.00f 0.23] 0.47| 0.27] 0.03[ 0.10]
P 0.67] 0.00/ 0.03] 0.00f 0.03 0.23[ 4.57 0.10f 0.33] 0.63] 0.33] 0.00f 0.10, 0.30] 0.13] 0.83] 0.00, 0.20[ 0.97| 0.03] 1.03| 0.27
Q 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
R 2.60 0.00/ 0.00] 0.00f 0.03] 0.17[ 0.10, 0.03f 0.00, 0.43 0.17/ 0.00] 0.13 0.03] 0.43] 0.33] 0.00 0.40| 0.23[ 0.17] 0.10[ 0.10|
S 1.40/ 0.00] 0.00[ 0.00] 0.13f 0.13] 0.27] 0.07] 0.03] 1.30, 0.53] 0.00, 0.00] 0.33 0.33] 0.67 0.00] 0.23[ 0.67] 0.17] 0.43] 0.13
T 0.73| 0.00 0.00{ 0.00f 0.03] 0.03[ 0.70, 0.13f 0.47] 0.03] 0.07] 0.00] 0.03 0.40f 0.17 0.10f 0.00 0.07 0.23[ 0.10] 0.10[ 0.00|
U 1.43| 0.00] 0.03[ 0.00] 0.03f 0.60] 0.17| 0.13] 0.40f 0.87 0.17] 0.00, 0.07] 0.33] 0.00] 1.23] 0.00] 0.13[ 0.63] 0.07| 0.13] 0.47|
Y% 0.60| 0.00, 0.00] 0.00f 0.00] 0.00[ 0.93] 0.80[ 0.17] 0.03] 0.07/ 0.00] 0.00, 0.30] 0.60, 0.10{ 0.00[ 0.03] 0.07| 0.03] 0.53[ 0.13]

Table 2.31: January 2014:

average daily rentals for each origin—destination pair.
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A B C D E F G H I J K L M N O P Q R S T U \Y%
A 0.43/ 0.00, 0.87| 0.00, 0.03] 0.43 2.97 0.07| 0.13] 0.77| 3.43/ 0.00, 0.03] 1.33 0.77| 1.03 0.00, 1.77| 2.27| 0.97| 2.17| 1.23]
B 0.00, 0.00| 0.00, 0.00| 0.00, 0.00] 0.00] 0.00] 0.00, 0.00] 0.00] 0.00] 0.00] 0.00, 0.00, 0.00, 0.00] 0.00, 0.00, 0.00, 0.00] 0.00]
C 0.87| 0.00, 0.07| 0.00, 0.00, 0.20, 0.20, 0.03] 0.03] 0.27] 0.03] 0.00, 0.00, 0.00, 0.03 0.07] 0.00, 0.03] 0.00, 0.07| 0.10, 0.13]
D 0.00, 0.00| 0.00, 0.00, 0.00, 0.00] 0.00] 0.00] 0.00, 0.00] 0.00] 0.00] 0.00, 0.00, 0.00, 0.00, 0.00, 0.00] 0.00, 0.00, 0.00] 0.00]
E 0.13] 0.00, 0.00, 0.00, 0.03] 0.37] 0.00, 0.00] 0.17] 0.37] 0.03] 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00] 0.20, 0.07| 0.03] 0.03]
F 0.37] 0.00] 0.20, 0.00, 0.17| 0.20] 1.03] 0.33] 0.10, 0.10, 0.80| 0.00, 0.00, 0.07| 0.67| 0.27| 0.00, 0.67| 0.30, 0.07| 0.57| 0.07]
G 4.37| 0.00 0.10[ 0.00 0.00[ 0.47| 0.73[ 0.13f 0.77| 8.63/ 0.40[ 0.00[ 0.13f 0.20[ 0.00[ 3.87| 0.00[ 0.13f 0.30[ 0.73[ 0.40[ 0.43
H 0.03] 0.00] 0.03] 0.00] 0.00, 0.97| 0.37| 0.07| 0.03] 0.60, 0.07| 0.00, 0.10, 0.00, 0.03] 0.07| 0.00, 0.00, 0.00] 0.03] 0.33] 0.37]
I 0.13] 0.00, 0.13] 0.00, 0.00, 0.13] 1.07| 0.03] 0.63] 0.63] 0.20, 0.00, 0.00, 0.03] 0.60, 0.20, 0.00, 0.13] 0.10, 0.23] 0.27| 0.03]
J 0.47| 0.00, 0.07| 0.00, 0.17| 0.10, 8.23 1.23] 0.50, 1.07| 0.60, 0.00| 0.07| 0.47| 0.67| 0.33] 0.00, 0.83] 0.80| 0.17| 1.17| 0.13]
K 3.77| 0.00| 0.00, 0.00, 0.03] 0.73] 0.57] 0.00, 0.10, 0.83] 0.27] 0.00, 0.00, 0.07| 0.13] 0.03] 0.00, 0.10, 0.40, 0.07| 0.23] 0.23]
L 0.00] 0.00] 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00, 0.00f 0.00f 0.00] 0.00] 0.00] 0.00
M 0.00] 0.00, 0.07| 0.00[ 0.00] 0.00] 0.27| 0.03f 0.03f 0.00] 0.00] 0.00, 0.10f 0.43/ 0.00] 0.20, 0.00f 0.07| 0.00] 0.10] 0.23] 0.03
N 0.97| 0.00| 0.00, 0.00, 0.00, 0.13] 0.03] 0.03] 0.20, 0.73] 0.00, 0.00] 0.13] 0.20, 0.07| 0.23] 0.00, 0.13] 0.07] 0.50, 0.03] 0.03]
o 1.13[ 0.00] 0.03] 0.00, 0.00 0.67 0.07 0.00] 0.43 0.67| 0.20[ 0.00] 0.00] 0.10, 0.07f 0.13] 0.00] 0.30] 0.33 0.53[ 0.03] 0.17|
P 0.43] 0.00, 0.00, 0.00, 0.07| 0.17| 4.27| 0.17| 0.20, 0.30| 0.27| 0.00| 0.20, 0.17| 0.10, 0.73] 0.00, 0.17| 0.50, 0.03] 1.37| 0.87]
Q 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00] 0.00
R 1.80[ 0.00] 0.00] 0.00, 0.03 0.37| 0.13] 0.00] 0.07| 0.70[ 0.20[ 0.00] 0.13] 0.13] 0.53f 0.43] 0.00] 0.20] 0.33 0.17| 0.40] 0.17|
S 2.17 0.00, 0.07| 0.00 0.37 0.20] 0.27| 0.07 0.03f 1.10f 0.20, 0.00, 0.00f 0.13] 0.17 0.40, 0.00f 0.20[ 0.43] 0.07] 0.23] 0.10|
T 0.87] 0.00, 0.00f 0.00[f 0.00] 0.20] 0.70, 0.03f 0.40 0.10] 0.13] 0.00f 0.20[ 0.50] 0.13] 0.07| 0.00[ 0.20[ 0.17] 0.10, 0.00f 0.07
U 1.57| 0.00f 0.10{ 0.00] 0.00/ 0.47| 0.47] 0.20] 0.10, 0.83f 0.40f 0.00] 0.17] 0.17| 0.20[ 1.47] 0.00] 0.30, 0.50[ 0.03] 0.23] 0.53]
v 0.57] 0.00, 0.10f 0.00[ 0.00] 0.03] 0.90, 0.57| 0.00] 0.03] 0.07| 0.00f 0.03f 0.13 0.37] 0.63] 0.00[ 0.07] 0.10] 0.03] 0.60[ 0.07|
Table 2.32: February 2014: average daily rentals for each origin—destination
pair.
A B C D E F G H I J K L M N O P Q R S T U Y%
A 0.87] 0.00] 0.70/ 0.00[ 0.23] 0.93] 4.33] 0.20[ 0.90] 1.33] 4.77| 0.00, 0.27 1.93] 1.07] 1.63] 0.00| 2.97| 2.80] 1.23] 3.20, 1.30|
B 0.00] 0.00] 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00] 0.00
C 0.93| 0.00, 0.07| 0.00 0.00] 0.23] 0.10, 0.00f 0.10[f 0.17 0.00, 0.00, 0.03f 0.00f 0.00] 0.10, 0.00f 0.10[ 0.07] 0.00] 0.03] 0.00
D 0.00 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00f 0.00] 0.00] 0.00, 0.00f 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00] 0.00
E 0.27] 0.00, 0.00/ 0.00f 0.20] 0.70] 0.07| 0.07| 0.43/ 0.40] 0.00, 0.00, 0.10[ 0.00[ 0.03] 0.03] 0.00f 0.10[f 0.20[ 0.10] 0.00] 0.10|
F 1.17| 0.00 0.10f 0.00] 0.20, 0.47 1.70] 0.50] 0.63] 0.20[ 1.50 0.00] 0.23] 0.17| 0.93f 0.37] 0.00] 1.10, 0.47| 0.47 1.37 0.40]
G 5.77 0.00, 0.00f 0.00[f 0.00f 0.67| 0.87| 0.23f 1.17 9.80] 0.50, 0.00f 0.23f 0.30] 0.17] 5.30, 0.00[ 0.27] 0.20] 1.30, 0.53[ 0.97
H 0.23| 0.00, 0.00f 0.00 0.00] 1.40{ 0.53] 0.07 0.00 1.17] 0.03] 0.00, 0.07 0.13] 0.00] 0.10, 0.00f 0.07| 0.00] 0.57] 0.27| 0.23
I 0.70] 0.00, 0.03f 0.00[f 0.47 0.23] 1.53] 0.03f 1.17] 0.83] 0.50, 0.00f 0.03f 0.07 1.23] 0.27| 0.00[ 0.43] 0.10] 0.53] 0.73[ 0.67
J 1.33| 0.00] 0.20{ 0.00] 0.13 0.20[ 9.80] 2.30] 0.83 2.23 1.17 0.00] 0.30] 1.20, 0.87 0.90| 0.00] 1.57| 1.67| 0.53[ 1.77 0.37|
K 4.30/ 0.00[ 0.03] 0.00] 0.00 2.10f 0.37 0.03 0.33 1.37| 0.27| 0.00] 0.03] 0.07| 0.20[ 0.37 0.00] 0.13] 0.73[ 0.10[ 0.90] 0.60]
L 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00f 0.00] 0.00] 0.00, 0.00f 0.00f 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00] 0.00|
M 0.07] 0.00, 0.00f 0.00[f 0.00f 0.03] 0.47| 0.13f 0.13] 0.37] 0.10, 0.00f 0.03f 0.17 0.07] 0.20, 0.00[ 0.30] 0.03] 0.17| 0.63[ 0.17
N 1.60[ 0.00] 0.00] 0.00] 0.00f 0.23f 0.33 0.00] 0.10, 1.00f 0.00[ 0.00f 0.20] 0.33] 0.10[ 0.27] 0.00] 0.33] 0.20[ 0.43[ 0.30] 0.17|
(] 1.37| 0.00] 0.03] 0.00, 0.17| 1.17 0.23 0.00] 0.97 0.93 0.17 0.00] 0.13] 0.33] 0.30[ 0.47] 0.00] 0.27| 0.23| 0.60 0.07] 0.33]
P 1.00[ 0.00] 0.00] 0.00, 0.00 0.57| 6.20] 0.27| 0.40, 0.73[ 0.37 0.00] 0.23] 0.40/ 0.23f 0.90] 0.00] 0.37| 0.67| 0.13] 0.87 0.43]
Q 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00, 0.00, 0.00f 0.00f 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00] 0.00|
R 2.60] 0.00, 0.03f 0.00f 0.07 1.07 0.23 0.03f 0.20[ 1.17] 0.30, 0.00f 0.37] 0.17] 0.40, 0.53] 0.00[ 0.33] 0.50] 0.43] 0.47| 0.17|
S 2.13| 0.00, 0.07| 0.00 0.63 0.60] 0.60, 0.03f 0.10f 2.27] 0.77| 0.00, 0.13f 0.13] 0.40[ 0.77| 0.00/ 0.30[ 0.63] 0.43] 0.17| 0.13
T 0.70] 0.00, 0.07| 0.00[ 0.03 0.27 1.50, 0.63f 0.80] 0.17] 0.20, 0.00f 0.23f 0.57] 0.17] 0.17| 0.00[ 0.53] 0.37| 0.67| 0.33[ 0.07
19) 3.30] 0.00, 0.03f 0.00[f 0.03 0.57] 0.37| 0.23f 0.63] 2.07| 0.83] 0.00[ 0.37] 0.30] 0.13] 1.07| 0.00[ 0.33] 0.47| 0.17| 0.87 1.07|
\4 1.43[ 0.00f 0.07 0.00, 0.00/ 0.17 1.10] 0.80] 0.30, 0.27| 0.30[ 0.00] 0.10, 0.37| 0.53[ 0.30] 0.00] 0.10, 0.23[ 0.30] 0.97] 0.27

Table 2.33: March 2014: average daily rentals for each origin—destination pair.
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A B C D E F G H I J K L M N O P Q R S T U \Y%
A 0.73] 0.00] 0.40[ 0.00[ 0.13 0.97| 4.03] 0.33[ 0.93] 1.40{ 4.03] 0.00[ 0.07] 2.00] 1.23] 1.60, 0.00[ 2.50] 2.67| 1.17| 2.07| 1.37|
B 0.00, 0.00| 0.00, 0.00| 0.00, 0.00] 0.00] 0.00] 0.00, 0.00] 0.00] 0.00] 0.00] 0.00, 0.00, 0.00, 0.00] 0.00, 0.00, 0.00, 0.00] 0.00]
C 0.63] 0.00, 0.00, 0.00, 0.00, 0.20, 0.10, 0.03] 0.03 0.37] 0.10, 0.00, 0.00, 0.20, 0.07| 0.10, 0.00, 0.00, 0.03] 0.10, 0.10| 0.10]
D 0.00, 0.00| 0.00, 0.00, 0.00, 0.00] 0.00] 0.00] 0.00, 0.00] 0.00] 0.00] 0.00, 0.00, 0.00, 0.00, 0.00, 0.00] 0.00, 0.00, 0.00] 0.00]
E 0.37] 0.00, 0.00/ 0.00[ 0.17] 0.37] 0.00, 0.00[ 0.30[ 0.20] 0.13] 0.00, 0.03[ 0.00] 0.17] 0.07| 0.00/ 0.00[ 0.33 0.07] 0.13] 0.03
F 1.00[ 0.00[ 0.07] 0.00, 0.20/ 0.77| 1.87] 0.67| 0.43] 0.43[ 1.17 0.00] 0.33] 0.17| 1.03[ 0.73] 0.00] 0.90, 0.53| 0.50] 1.50] 0.03]
G 5.87| 0.00] 0.27| 0.00 0.00] 0.90] 1.50, 0.23| 1.03/ 9.73 0.63] 0.00, 0.47| 0.50] 0.27| 6.27| 0.00| 0.40[ 0.30] 1.60] 0.97| 1.03|
H 0.37| 0.00] 0.03] 0.00, 0.00, 1.30, 0.50, 0.17| 0.10, 1.80| 0.10| 0.00| 0.03] 0.00, 0.03] 0.27| 0.00, 0.03] 0.07| 0.73] 0.50| 0.07]
I 0.70, 0.00| 0.03] 0.00] 0.30, 0.30, 0.90, 0.07| 0.80, 0.90| 0.20, 0.00, 0.17| 0.10, 1.67| 0.37| 0.00, 0.37| 0.07] 1.03] 0.70| 0.50]
J 1.50 0.00] 0.30] 0.00, 0.13] 0.60[ 10.87 3.13] 0.97| 2.13[ 1.13] 0.00] 0.50, 1.07| 0.67| 1.20] 0.00] 1.03] 1.80[ 0.20] 2.90] 0.40]
K 3.63| 0.00, 0.03 0.00[ 0.07] 1.80] 0.60, 0.03| 0.33] 1.30] 0.63] 0.00, 0.13[ 0.13] 0.33] 0.40, 0.00| 0.13[ 0.70] 0.30] 1.30, 0.30|
L 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
M 0.03| 0.00/ 0.03] 0.00f 0.03 0.03f 0.63] 0.10f 0.10, 0.20[ 0.20, 0.00] 0.17/ 0.07 0.10, 0.27] 0.00 0.17] 0.00[ 0.37] 0.30[ 0.13]
N 1.13| 0.00 0.07] 0.00, 0.00, 0.27 0.23 0.07] 0.07| 1.17 0.30[ 0.00] 0.07] 0.37| 0.07| 0.33] 0.00] 0.13] 0.30[ 0.73] 0.47] 0.13]
(0] 1.43| 0.00] 0.00[ 0.00] 0.00[f 1.00] 0.43f 0.03] 1.30f 0.47| 0.17] 0.00, 0.17] 0.03] 0.20[ 0.27 0.00] 0.30[ 0.47| 0.50[ 0.27] 0.37
P 1.07| 0.00] 0.07] 0.00] 0.03f 0.87 7.23 0.27] 0.67] 1.03] 0.60] 0.00, 0.13] 0.77| 0.13] 2.10[ 0.00] 0.50[ 0.63] 0.43] 1.50, 0.90|
Q 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[ 0.00
R 2.53| 0.00/ 0.07 0.00f 0.07 0.90[ 0.17] 0.20[{ 0.13] 1.17| 0.13] 0.00] 0.23 0.23] 0.57| 1.03] 0.00, 0.63| 0.20/ 0.23] 0.60[ 0.17|
S 2.37 0.00, 0.10{ 0.00f 0.53] 0.57| 0.47| 0.10f 0.17/ 1.67] 1.13] 0.00] 0.07| 0.10] 0.53] 0.63] 0.00 0.30] 0.53[ 0.67] 0.47| 0.30
T 0.80] 0.00/ 0.10{ 0.00f 0.10] 0.13[ 1.73] 0.80[ 1.30] 0.33] 0.17] 0.00f 0.30, 0.53] 0.20, 0.20[ 0.00, 0.63] 0.60 0.70] 0.57| 0.17|
18] 2.23| 0.00, 0.03] 0.00f 0.13] 1.03f 0.97 0.37| 0.43] 2.07] 1.03] 0.00] 0.17 0.23 0.17/ 2.03 0.00 0.57 0.33 0.57] 0.80[ 1.13|
\4 1.20, 0.00] 0.07] 0.00] 0.00f 0.10] 1.37] 0.50, 0.13] 0.40, 0.43] 0.00, 0.23] 0.53 0.30] 0.50[ 0.00] 0.13[ 0.17] 0.13] 0.80 0.23
Table 2.34: April 2014: average daily rentals for each origin—destination pair.
A B C D E F G H I J K L M N (@] P Q R S T U A\

A 0.87 0.00 0.60{ 0.00f 0.17] 0.97| 4.80] 0.53[ 0.73] 1.33] 5.23 0.00f 0.10, 1.87] 1.23] 2.10f 0.00, 1.77 4.50 0.63] 2.60[ 1.67|
B 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
C 0.80] 0.00/ 0.20{ 0.00f 0.00] 0.40[ 0.10[ 0.07| 0.07 0.20[ 0.10, 0.00f 0.03 0.03] 0.00, 0.10f 0.00, 0.07] 0.13] 0.07 0.37 0.17|
D 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00[ 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00
E 0.67] 0.00/ 0.03] 0.00f 0.00] 0.27[ 0.13] 0.07| 0.37] 0.33] 0.07] 0.00f 0.03 0.07] 0.10, 0.27] 0.00, 0.07] 0.30 0.20[ 0.23| 0.17]
F 0.83| 0.00/ 0.30] 0.00f 0.43] 0.57 2.13| 0.80[ 0.37] 0.53] 1.97] 0.00f 0.10, 0.43] 0.57| 1.50/ 0.00, 1.00f 0.77| 0.50] 1.30[ 0.47|
G 6.60] 0.00/ 0.20{ 0.00f 0.00] 1.73[ 1.73| 0.33 0.50, 12.43 0.40, 0.00[ 1.13] 0.33] 0.13] 8.00f 0.00, 0.30] 0.23] 1.53] 0.93| 1.27|
H 0.37] 0.00, 0.00] 0.00f 0.00] 1.57 0.70, 0.23f 0.03] 1.50] 0.07] 0.00] 0.03 0.10] 0.03] 0.20[ 0.00 0.00] 0.10[ 1.00] 0.20[ 0.23|
I 0.60| 0.00/ 0.23] 0.00f 0.43] 0.17[ 0.33] 0.07] 1.10, 0.80] 0.17] 0.00] 0.17/ 0.10] 1.33] 0.80] 0.00 0.30] 0.07| 0.67] 0.63[ 0.53]
J 1.73| 0.00] 0.13[ 0.00] 0.07| 0.37] 12.3)7 2.73] 0.90] 2.63] 1.53] 0.00, 0.27] 1.83 0.93] 1.77| 0.00] 1.53[ 1.77| 0.47] 2.23| 0.30|
K 4.67| 0.00] 0.07| 0.00] 0.03] 2.87 0.83 0.03 0.17f 2.27| 0.97| 0.00] 0.40[ 0.37] 0.20[ 0.83 0.00[ 0.37 1.23] 0.13] 1.27 0.37|
L 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[f 0.00, 0.00] 0.00, 0.00[ 0.00, 0.00] 0.00, 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00|
M 0.07] 0.00/ 0.00] 0.00f 0.07] 0.10[ 0.93] 0.03f 0.10, 0.37] 0.23 0.00] 0.23 0.30] 0.03] 0.47] 0.00[ 0.13| 0.03[ 0.27] 0.50[ 0.33]
N 1.33] 0.00] 0.07] 0.00] 0.00[ 0.27] 0.37] 0.27] 0.07] 1.40, 0.90] 0.00, 0.20{ 0.97 0.10] 0.50[ 0.00] 0.23[ 0.57] 0.63] 0.37] 0.40|
(e} 1.27 0.00{ 0.00[ 0.00] 0.07 0.43] 0.20[ 0.00] 1.40[f 1.00, 0.13] 0.00, 0.03] 0.33] 0.43] 0.33] 0.00] 0.27[ 0.23] 0.63[ 0.13] 0.27
P 1.97| 0.00{ 0.03[ 0.00] 0.10f 1.13] 8.10[ 0.50, 1.00[f 1.43] 0.80] 0.00, 0.47] 1.03] 0.57] 2.97 0.00] 0.23[ 1.13| 0.23[ 2.40, 0.77|
Q 0.00] 0.00| 0.00{ 0.00[ 0.00] 0.00[ 0.00, 0.00[f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[ 0.00|
R 2.20{ 0.00/ 0.03] 0.00[ 0.07 1.07| 0.17] 0.07 0.30] 1.13[ 0.37] 0.00[ 0.23] 0.17] 0.40, 0.37] 0.00, 0.63| 0.43] 0.60] 0.60[ 0.27]
S 3.97| 0.00] 0.20[ 0.00[ 0.77 0.37] 0.50, 0.07| 0.03] 2.20] 1.43] 0.00[ 0.10[ 0.17] 0.23] 1.07| 0.00[ 0.50] 1.17| 0.63] 0.63[ 0.37|
T 0.93| 0.00] 0.20/ 0.00[ 0.07 0.37] 1.60, 0.90[ 0.67] 0.20] 0.37| 0.00, 0.57| 0.80] 0.60] 0.57| 0.00/ 0.40[ 0.57] 0.60| 0.60] 0.13
192 2.50| 0.00, 0.00/ 0.00f 0.17 1.10[ 0.77| 0.20[ 0.53/ 1.97] 1.03] 0.00, 0.07 0.50] 0.30] 2.30| 0.00/ 0.73[ 0.37 0.43] 0.83] 0.83
v 1.43[ 0.00[ 0.23] 0.00, 0.00/ 0.13f 1.77 0.57| 0.27| 0.40[ 0.20[ 0.00] 0.40, 0.37| 0.23[ 0.63] 0.00] 0.37| 0.23] 0.47 0.87 0.47|

Table 2.35: May 2014: average daily rentals for each origin—destination pair.
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A B C D E F G H I J K L M N O P Q R S T U \Y%
A 1.10 0.00[ 1.27] 0.00] 0.23 0.83 3.43 0.33] 0.87] 2.00[ 4.10[ 0.00] 0.10] 1.50, 1.33[ 2.40| 0.00] 2.63] 4.03[ 0.67| 2.07| 1.73]
B 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00] 0.00|
C 0.83| 0.00, 0.10/ 0.00[ 0.03 0.67] 0.20, 0.03f 0.07] 0.43 0.07| 0.00, 0.20[ 0.17] 0.10] 0.13] 0.00/ 0.10[ 0.07] 0.20] 0.27| 0.00|
D 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00] 0.00|
E 0.60] 0.00, 0.03 0.00[ 0.10f 0.30] 0.13] 0.00[ 0.57] 0.13 0.13] 0.00, 0.00[ 0.03/ 0.07] 0.37| 0.00/ 0.13[ 0.20[ 0.07] 0.13] 0.03
F 0.93| 0.00, 0.50[ 0.00[ 0.17] 0.73] 1.80, 0.47 0.33] 0.23] 1.60, 0.00[ 0.13] 0.40 0.57| 0.70, 0.00[ 0.87 0.53] 0.37| 1.07| 0.17|
G 4.13[ 0.00[ 0.17] 0.00] 0.00, 1.37| 1.23] 0.50] 0.53] 10.4{7 0.60[ 0.00] 1.47| 0.33] 0.27| 5.63] 0.00] 0.20| 0.47| 1.30] 0.80| 0.83]
H 0.40| 0.00, 0.00/ 0.00f 0.03 1.13] 0.77| 0.27| 0.03/ 1.27] 0.13] 0.00, 0.03[ 0.27] 0.10] 0.30, 0.00/ 0.07| 0.10] 0.47| 0.07| 0.13|
I 1.00[ 0.00[ 0.07] 0.00] 0.73 0.23[ 0.70] 0.00] 0.50, 0.80[ 0.20[ 0.00] 0.17| 0.13] 1.03[ 0.87 0.00] 0.37| 0.13] 0.73[ 0.57] 0.17|
J 1.97 0.00] 0.53[ 0.00] 0.17| 0.33] 9.27| 2.40, 1.03] 1.63] 1.13] 0.00, 0.30] 1.57 0.97] 1.67| 0.00] 1.10[ 1.87] 0.27] 1.67] 0.23
K 4.30, 0.00[ 0.13] 0.00] 0.07 1.70[ 0.50[ 0.10] 0.13] 0.97| 0.50[ 0.00] 0.30] 0.53] 0.47| 0.50 0.00] 0.30] 0.50| 0.27| 1.03] 0.37|
L 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
M 0.10] 0.00/ 0.10{ 0.00f 0.13 0.07] 0.80] 0.03f 0.03] 0.20[ 0.43] 0.00f 0.47| 0.10f 0.10, 0.43/ 0.00 0.17 0.07| 0.30] 0.43[ 0.17
N 1.53| 0.00] 0.07] 0.00] 0.03f 0.27] 0.23] 0.23] 0.10f 2.13] 0.30] 0.00, 0.13] 0.33] 0.07 1.00 0.00] 0.13[ 0.57] 0.60[ 0.23] 0.57
(0] 1.37| 0.00] 0.00] 0.00, 0.00 0.60[ 0.27] 0.10] 0.93] 0.80[ 0.53] 0.00] 0.13] 0.23] 0.27 0.20] 0.00] 0.47| 0.73[ 0.20[ 0.07] 0.13]
P 1.53| 0.00] 0.17[ 0.00] 0.13f 0.80] 7.30] 0.43] 1.87] 0.90| 0.63] 0.00, 0.20{ 1.00 0.37 1.50[ 0.00] 0.43[ 0.67] 0.37| 1.30, 0.60|
Q 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[ 0.00
R 3.67| 0.00, 0.17] 0.00f 0.03] 0.53[ 0.13] 0.07] 0.20] 1.20[ 0.23] 0.00] 0.20, 0.27] 0.47| 0.40{ 0.00 0.57] 0.53[ 0.30] 0.57| 0.03|
S 3.63| 0.00/ 0.23] 0.00f 0.77] 0.33] 0.43] 0.20[ 0.10] 1.53] 0.97] 0.00] 0.03] 0.43] 0.57| 1.03] 0.00 0.57 1.00[ 0.67] 0.37| 0.13]
T 0.80] 0.00, 0.17 0.00f 0.00] 0.40[ 1.90| 0.27| 0.37] 0.07] 0.47] 0.00] 0.40, 0.63] 0.30 0.23] 0.00 0.63] 0.47| 1.03] 0.47 0.23|
18] 1.83] 0.00] 0.20[ 0.00] 0.07| 0.53] 0.63] 0.20, 0.67] 1.33] 1.00] 0.00, 0.13] 0.27 0.17] 1.47| 0.00] 0.40[ 0.40, 0.30[ 1.00| 1.00]|
\4 0.87 0.00/ 0.03] 0.00f 0.00] 0.13[ 1.73] 0.30[ 0.17] 0.13] 0.20] 0.00[f 0.27] 0.40[ 0.23] 0.43] 0.00, 0.03] 0.10/ 0.40{ 1.10f 0.27
Table 2.36: June 2014: average daily rentals for each origin—destination pair.
A B C D E F G H I J K L M N (@] P Q R S T U A\

A 1.13] 0.00] 0.90[ 0.00] 0.20[ 1.00] 3.10 0.27] 0.47] 1.53] 4.83] 0.00, 0.10] 1.83[ 1.13| 2.53[ 0.00] 2.03[ 4.63] 0.87] 2.63] 1.00]|
B 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
C 1.00, 0.00] 0.70[ 0.00] 0.00f 0.77] 0.20[ 0.00, 0.07] 0.73] 0.10] 0.00, 0.03] 0.07/ 0.10[ 0.27 0.00, 0.03[ 0.10] 0.23] 0.10, 0.23
D 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00[ 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00
E 0.20 0.00/ 0.03] 0.00f 0.13] 0.43[ 0.03 0.00f 0.77/ 0.17] 0.07/ 0.00] 0.07/ 0.03] 0.13] 0.07] 0.00 0.07 0.20[ 0.00] 0.13[ 0.13]
F 1.37| 0.00] 0.67] 0.00] 0.30[ 0.43] 1.40f 0.57] 0.40[ 0.17 1.50] 0.00, 0.13] 0.27 0.63| 1.10[ 0.00] 0.77 0.50, 0.47] 0.57] 0.20|
G 3.57| 0.00, 0.27] 0.00[ 0.03] 1.07| 1.90| 0.47 0.37 13.3[7 0.37| 0.00] 1.80 0.23 0.13 7.17 0.00 0.23] 0.73[ 2.10] 0.77| 0.80
H 0.33| 0.00/ 0.00] 0.00f 0.00] 0.87] 0.83 0.27| 0.10, 1.50 0.10, 0.00[ 0.23 0.27] 0.10, 0.47| 0.00, 0.10f 0.03| 0.43] 0.17 0.17
I 0.57| 0.00/ 0.13| 0.00f 0.50; 0.13[ 0.63] 0.07| 0.37] 0.53] 0.17] 0.00] 0.43] 0.20[ 1.47 0.53] 0.00 0.17] 0.00[ 0.40; 0.57| 0.30
J 1.37| 0.00{ 0.70[ 0.00] 0.10[ 0.47] 12.0[7 2.40, 0.70] 2.30| 1.37] 0.00, 0.40{ 0.80[ 0.77| 1.40[ 0.00] 1.43[ 1.40, 0.23] 1.80 0.23
K 5.27| 0.00/ 0.07] 0.00f 0.03] 1.73[ 0.60, 0.10[ 0.10, 1.07] 0.80, 0.00] 0.43 0.07] 0.53] 0.40{ 0.00[ 0.07| 0.63[ 0.23] 0.93[ 0.27
L 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[f 0.00, 0.00] 0.00, 0.00[ 0.00, 0.00] 0.00, 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00|
M 0.13| 0.00/ 0.10{ 0.00f 0.00] 0.13[ 1.23] 0.23f 0.17] 0.17] 0.03] 0.00] 0.50, 0.20[ 0.20| 0.20{ 0.00[ 0.13| 0.23[ 0.17] 0.43[ 0.30
N 1.70, 0.00] 0.13[ 0.00] 0.03( 0.37 0.13f 0.17] 0.07] 1.13] 0.03] 0.00, 0.30] 0.50, 0.20{ 0.63] 0.00] 0.10[ 0.47| 0.63[ 0.13] 0.17|
(e} 1.40/ 0.00] 0.03[ 0.00] 0.07f 0.87] 0.30] 0.00, 0.77] 0.60| 0.60] 0.00, 0.20{ 0.23[ 0.13] 0.27[ 0.00] 0.63[ 0.83] 0.17] 0.07] 0.43|
P 1.57| 0.00{ 0.13[ 0.00] 0.07 1.03 7.77| 0.37] 1.57| 1.03] 0.50] 0.00, 0.13] 0.77 0.17] 3.10[ 0.00, 0.53[ 0.87] 0.27] 1.43] 0.50|
Q 0.00] 0.00| 0.00{ 0.00[ 0.00] 0.00[ 0.00, 0.00[f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[ 0.00|
R 3.00] 0.00/ 0.07] 0.00[ 0.00] 0.73[ 0.27| 0.10[ 0.10] 0.90] 0.23] 0.00f 0.10, 0.57] 0.30, 0.63] 0.00 0.37] 0.73] 0.27] 0.30[ 0.07|
S 3.37] 0.00] 0.20/ 0.00[ 0.57 0.37] 0.83 0.03f 0.07] 2.10] 1.07| 0.00, 0.17 0.23/ 0.77] 1.23] 0.00 0.67 0.77 1.13] 0.37| 0.30|
T 0.93| 0.00, 0.07| 0.00[ 0.03 0.37] 2.23] 0.40[ 0.33] 0.37] 0.40, 0.00, 0.10[ 0.87 0.10] 0.27| 0.00/ 0.37] 0.73] 1.37| 0.50, 0.13
192 1.87 0.00f 0.10{ 0.00, 0.03 0.33f 0.47] 0.13] 0.60, 2.07| 0.60[ 0.00] 0.27] 0.10/ 0.10[ 1.33] 0.00] 0.43] 0.20[ 0.63] 0.87] 1.03|
v 1.07| 0.00f 0.17] 0.00, 0.03 0.13f 1.10] 0.27| 0.10, 0.23[ 0.27 0.00] 0.27] 0.30/ 0.17 0.83] 0.00] 0.07| 0.17| 0.27] 0.80] 0.30]

Table 2.37: July 2014: average daily rentals for each origin—destination pair.
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A B C D E F G H I J K L M N O P Q R S T U \Y%
A 0.73 0.00] 0.23 0.00f 0.10] 0.27] 1.63] 0.53| 0.43/ 0.67] 2.77| 0.00, 0.10[ 0.63] 0.60] 0.60, 0.00/ 1.13[ 1.90] 1.03| 1.40, 0.53
B 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00] 0.00|
C 0.40| 0.00, 0.37| 0.00[ 0.03 0.17] 0.23] 0.00[ 0.03/ 0.33 0.03] 0.00, 0.33[ 0.03 0.00] 0.23] 0.00/ 0.07| 0.07] 0.07] 0.00, 0.03
D 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00] 0.00|
E 0.10] 0.00, 0.00f 0.00[f 0.10f 0.07| 0.03 0.00[ 0.13] 0.10] 0.03] 0.00[ 0.10[ 0.03] 0.07] 0.00| 0.00[ 0.00] 0.13] 0.00, 0.27| 0.57|
F 0.70] 0.00] 0.23] 0.00 0.00] 0.50] 0.93] 0.33 0.23/ 0.13] 1.43] 0.00, 0.10[ 0.20[ 0.37] 0.53] 0.00| 0.80[ 0.50] 0.20] 0.33] 0.03
G 1.43[ 0.00] 0.13] 0.00, 0.03 0.83f 1.20] 0.47| 0.27| 7.43[ 0.37 0.00] 0.87] 0.13] 0.07| 4.60] 0.00] 0.20, 0.27| 0.83] 0.50] 0.90]
H 0.30] 0.00, 0.00/ 0.00[ 0.07] 0.63] 0.57| 0.53| 0.00] 1.07] 0.07] 0.00, 0.20[ 0.03] 0.00] 0.20, 0.00/ 0.17] 0.10] 0.23] 0.17| 0.10|
I 0.33] 0.00, 0.00/ 0.00[ 0.00] 0.27] 0.40, 0.07| 0.27] 0.40{ 0.07| 0.00, 0.07 0.13] 0.67] 0.47| 0.00/ 0.20[ 0.00] 0.30] 0.07| 0.13|
J 1.30 0.00 0.50] 0.00] 0.10/ 0.23f 8.23] 1.47| 0.40, 0.63[ 0.97 0.00] 0.23] 0.57| 0.60[ 0.77] 0.00] 0.83] 0.87| 0.17] 1.20] 0.30]
K 2.63| 0.00, 0.03] 0.00[ 0.03] 1.40[ 0.70, 0.03| 0.03/ 0.83 0.77| 0.00, 0.43[ 0.03] 0.33] 0.40, 0.00| 0.33[ 0.37] 0.23] 0.53] 0.20|
L 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
M 0.03| 0.00, 0.23 0.00f 0.10f 0.17] 0.73] 0.17 0.10[ 0.10f 0.47| 0.00, 0.13[ 0.03] 0.00] 0.20, 0.00| 0.10[ 0.00] 0.00] 0.07| 0.20|
N 0.37] 0.00, 0.00] 0.00f 0.00] 0.33 0.23] 0.03f 0.03/ 0.37] 0.03] 0.00] 0.10, 0.27 0.00, 0.30] 0.00 0.07| 0.40[ 0.23] 0.10[ 0.13]
(0] 0.73| 0.00/ 0.03] 0.00f 0.07 0.27| 0.07 0.03f 0.40; 0.30[ 0.37] 0.00[ 0.00, 0.00] 0.27| 0.20[ 0.00/ 0.27 0.23] 0.17 0.03[ 0.27
P 0.63| 0.00, 0.07] 0.00f 0.03] 0.70[ 5.30, 0.27| 0.70, 0.60] 0.67] 0.00] 0.27 0.27] 0.13] 2.10] 0.00 0.47| 0.70[ 0.07] 0.70[ 0.40
Q 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[ 0.00
R 1.80 0.00] 0.10[ 0.00] 0.00[f 0.80] 0.07] 0.00 0.03] 0.63] 0.23 0.00, 0.20[ 0.13( 0.17] 0.50[ 0.00] 0.77| 0.30] 0.13] 0.10, 0.13
S 1.20, 0.00] 0.27 0.00] 0.23f 0.30] 0.40f 0.17] 0.00] 1.03] 0.60] 0.00, 0.07 0.77| 0.37 0.63 0.00] 0.33 0.83] 0.33] 0.27] 0.20|
T 0.97] 0.00, 0.03] 0.00f 0.00] 0.07 1.20] 0.17] 0.03] 0.30] 0.17] 0.00] 0.17/ 0.20[ 0.13] 0.13] 0.00 0.00] 0.27| 0.63] 0.23[ 0.00
18] 0.97] 0.00/ 0.03] 0.00f 0.13 0.27[ 0.27 0.10f 0.13] 1.43] 0.50, 0.00[ 0.13] 0.20[ 0.03 0.73] 0.00, 0.03] 0.37| 0.13] 0.37| 0.37|
\4 0.33| 0.00, 0.03] 0.00f 0.20[ 0.10[ 0.67| 0.13f 0.13 0.13 0.10, 0.00] 0.10, 0.37] 0.30, 0.47] 0.00 0.07 0.10[ 0.07] 0.43[ 0.30
Table 2.38: August 2014: average daily rentals for each origin—destination pair.
A B C D E F G H I J K L M N (@] P Q R S T U A\
A 0.80 0.00/ 1.07 0.00f 0.17] 0.83 5.97 0.13] 1.40, 1.60 5.37] 0.00] 0.23 1.67] 1.77| 1.80] 0.00f 3.03| 5.27| 1.53] 3.43[ 1.33|
B 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
C 1.03| 0.00] 0.37] 0.00] 0.00f 0.77/ 0.17] 0.07/ 0.07] 0.67| 0.10] 0.00, 0.07 0.03[ 0.03] 0.20[ 0.00, 0.07] 0.17] 0.27] 0.13] 0.23
D 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00[ 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00
E 0.27| 0.00, 0.00{ 0.00f 0.13] 0.53[ 0.03] 0.03f 0.13] 0.53] 0.10, 0.00] 0.03 0.10] 0.13] 0.10f 0.00 0.00] 0.17 0.00] 0.07| 0.50
F 1.60 0.00] 0.63[ 0.00] 0.13f 1.10] 2.00] 0.53] 0.47] 0.27 2.27] 0.00, 0.20{ 0.33[ 0.77 0.80[ 0.00] 1.20[ 0.80] 0.63] 0.87 0.13
G 5.17] 0.00, 0.30] 0.00f 0.07 1.33[ 1.57] 0.30[ 0.30] 13.5B3 0.63] 0.00] 0.97 0.43] 0.40, 7.37 0.00[ 0.10] 0.43[ 1.30] 1.23[ 1.73|
H 0.10] 0.00/ 0.10{ 0.00f 0.00] 0.93[ 0.43] 0.17| 0.17] 0.73] 0.00, 0.00[ 0.20, 0.40[ 0.10, 0.77| 0.00, 0.10f 0.20 0.67] 0.37| 0.07
I 1.27 0.00] 0.07] 0.00] 0.13f 0.53] 0.87] 0.47] 1.10f 0.47 0.13] 0.00, 0.17 0.17[ 1.03] 0.83[ 0.00 0.30[ 0.07] 0.87] 0.70, 0.37
J 1.60 0.00] 0.43[ 0.00] 0.33( 0.47 11.7]7 1.87 1.10[ 2.03] 1.33] 0.00, 0.47| 1.83 0.87 1.60[ 0.00] 2.00[ 1.70] 0.43] 1.87] 0.37
K 4.57| 0.00] 0.27 0.00] 0.10f 2.87 0.77[ 0.07 0.07f 0.67] 0.93 0.00, 0.07] 0.20, 0.70] 0.60, 0.00] 0.33] 1.33] 0.27| 1.03] 0.87|
L 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[f 0.00, 0.00] 0.00, 0.00[ 0.00, 0.00] 0.00, 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00|
M 0.03| 0.00/ 0.10{ 0.00f 0.00] 0.13[ 0.83 0.30[ 0.07] 0.13] 0.07/ 0.00[ 0.10, 0.33] 0.13] 0.30[ 0.00 0.10] 0.07| 0.27] 0.47| 0.20
N 2.23| 0.00, 0.07] 0.00f 0.00] 0.67 0.33] 0.23f 0.13] 1.10f 0.13] 0.00] 0.07 0.47 0.37| 0.90] 0.00 0.37] 0.80[ 0.47| 0.10[ 0.73|
(e} 1.80 0.00] 0.07[ 0.00] 0.07f 0.90| 0.57| 0.07] 1.00f 0.77 0.53] 0.00, 0.03] 0.40[ 0.63| 0.47 0.00] 0.60[ 0.87] 0.20[ 0.17] 0.23
P 1.87 0.00] 0.20[ 0.00] 0.03[ 0.93] 7.70] 0.23] 1.83] 0.93 0.73 0.00, 0.37 0.77] 0.23] 2.17 0.00] 0.40[ 1.10, 0.20[ 1.10, 0.60]|
Q 0.00] 0.00| 0.00{ 0.00[ 0.00] 0.00[ 0.00, 0.00[f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[ 0.00|
R 4.03| 0.00/ 0.07] 0.00[ 0.00] 0.97 0.30] 0.07| 0.27] 1.70] 0.33] 0.00] 0.43] 0.60] 0.67| 0.50{ 0.00[ 0.70| 0.60[ 0.23] 0.43[ 0.23|
S 5.13 0.00, 0.17| 0.00[ 0.57] 0.80] 0.63] 0.30[ 0.07] 1.87] 1.33] 0.00, 0.10[ 0.60] 0.67] 1.07| 0.00/ 0.63f 1.53] 0.73 1.27| 0.43
T 1.77| 0.00f 0.10{ 0.00, 0.00/ 0.17 2.43 0.57] 0.27| 0.23[ 0.30] 0.00] 0.17] 0.50, 0.17 0.27] 0.00] 0.43] 0.47| 0.67 0.73] 0.10]
192 2.67| 0.00, 0.10/ 0.00[ 0.10f 0.40{ 0.93] 0.37| 0.90 2.07] 1.07| 0.00, 0.33[ 0.33] 0.27] 1.27| 0.00 0.67 1.37] 0.43] 1.13] 1.60|
v 1.33| 0.00 0.40{ 0.00, 0.37| 0.10[ 1.63 0.37| 0.17| 0.40[ 0.37 0.00] 0.17] 1.10/ 0.13[ 0.73 0.00] 0.07| 0.27| 0.23] 1.40] 0.50]

Table 2.39: September 2014: average daily rentals for each origin—destination

pair.
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A B C D E F G H I J K L M N O P Q R S T U \Y%
A 0.87] 0.00] 1.17| 0.00[ 0.67 1.50] 5.37| 0.20[ 1.60 1.67] 5.00, 0.00, 0.07| 1.77 1.00] 3.00, 0.00| 2.53[ 5.97| 1.40| 3.37| 1.03
B 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00] 0.00|
C 1.27| 0.00] 0.67] 0.00] 0.03 0.93f 0.20] 0.07] 0.07| 0.60[ 0.00] 0.00] 0.03] 0.00/ 0.23f 0.17] 0.00] 0.07| 0.27| 0.10[ 0.10] 0.40]
D 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00] 0.00|
E 0.63| 0.00] 0.00f 0.00[ 0.10f 0.50, 0.03] 0.03[ 0.03] 0.83] 0.13] 0.00[ 0.03] 0.03 0.03] 0.03 0.00[ 0.13] 0.13] 0.10, 0.03[ 0.47|
F 1.60[ 0.00] 0.83] 0.00] 0.30, 1.03f 2.27] 0.50, 0.50, 0.17| 2.53] 0.00] 0.10] 0.63] 1.33[ 0.93] 0.00] 1.03] 0.77| 0.83] 0.90] 0.10]
G 5.20| 0.00, 0.27| 0.00 0.00] 1.43] 2.03] 0.20[ 0.50] 13.6[7 0.40| 0.00, 1.13[ 0.47] 0.10] 6.33] 0.00 0.37| 0.40] 1.50| 1.20, 1.63
H 0.13] 0.00, 0.07| 0.00[ 0.03 0.97] 0.37| 0.17| 0.10 1.47] 0.13] 0.00, 0.40[ 0.17] 0.13 0.37| 0.00/ 0.13[ 0.07] 0.60] 0.27| 0.20|
I 1.57| 0.00] 0.13] 0.00, 0.13 0.30[ 0.87] 0.30] 1.50, 0.90[ 0.30[ 0.00] 0.27| 0.10, 0.77 1.10] 0.00] 0.27] 0.03[ 0.57| 0.60] 0.37|
J 1.47| 0.00] 0.80] 0.00, 0.70, 0.30[ 12.73 2.47| 1.27| 1.70[ 1.47 0.00] 0.37] 1.63| 0.53[ 1.83] 0.00] 1.87| 2.20[ 0.37] 1.23] 0.43]
K 5.03] 0.00, 0.03 0.00[ 0.03 2.87| 0.77| 0.10[ 0.17] 0.90] 0.53] 0.00[ 0.07] 0.17] 0.73] 0.23] 0.00[ 0.20] 0.97| 0.40, 1.27| 0.57|
L 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
M 0.10] 0.00/ 0.00] 0.00f 0.00] 0.07| 0.97] 0.43] 0.13] 0.07] 0.17/ 0.00] 0.13 0.03] 0.03] 0.20[ 0.00[ 0.07| 0.20[ 0.13] 0.53[ 0.10]
N 1.57| 0.00] 0.00] 0.00, 0.00 0.97| 0.23 0.03] 0.03] 1.20[ 0.17] 0.00] 0.07] 0.63] 0.27 0.93 0.00] 0.07| 0.37| 0.47| 0.27] 0.73]
(0] 1.40/ 0.00] 0.03[ 0.00] 0.13f 1.57 0.20[ 0.00, 1.00f 0.37 0.63] 0.00, 0.00] 0.17 0.23] 0.30[ 0.00] 0.63] 0.30] 0.27] 0.07] 0.10|
P 2.13| 0.00/ 0.23] 0.00f 0.10] 0.87| 7.17] 0.30[ 2.30] 1.30] 0.60, 0.00] 0.13 0.80] 0.07| 1.67] 0.00 0.43| 0.83[ 0.40] 0.80[ 0.80
Q 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[ 0.00
R 3.47 0.00 0.10{ 0.00f 0.00] 1.07| 0.30[ 0.03f 0.30] 1.83] 0.50, 0.00[ 0.07] 0.47] 0.60, 0.40] 0.00, 0.53| 0.77| 0.23] 0.37| 0.27
S 4.87| 0.00] 0.37| 0.00] 0.53] 0.83] 0.93 0.30] 0.07| 1.80] 0.83f 0.00 0.13 0.30, 0.47] 0.80, 0.00f 1.37 1.17] 1.17| 1.23] 0.53|
T 1.30, 0.00] 0.10[ 0.00] 0.03f 0.63] 2.37| 0.67 0.33 0.23] 0.67] 0.00, 0.10f 0.90| 0.13] 0.27 0.00] 0.40[ 0.97| 1.10[ 0.60, 0.17|
18] 2.47 0.00 0.13] 0.00f 0.03 0.50[ 1.03] 0.50[ 0.50, 1.53| 1.07] 0.00[ 0.43] 0.23 0.20, 0.90] 0.00, 0.50] 1.23| 0.37 1.30[ 1.17|
\4 1.20, 0.00] 0.47 0.00] 0.27| 0.10] 2.00] 0.27] 0.13] 0.23] 0.37] 0.00, 0.20{ 0.90[ 0.27] 0.63[ 0.00] 0.23[ 0.33] 0.33] 1.13] 0.40|
Table 2.40: October 2014: average daily rentals for each origin—destination pair.
A B C D E F G H I J K L M N (@] P Q R S T U A\
A 0.33| 0.00, 0.63] 0.00f 0.63] 0.50[ 2.93] 0.17| 0.43] 0.93] 3.90, 0.00] 0.00 1.27] 0.40, 1.07] 0.00f 1.73| 3.33[ 0.67] 1.70[ 0.73]
B 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
C 0.73| 0.00 0.30] 0.00f 0.00] 0.37| 0.20] 0.07| 0.00, 0.37] 0.03] 0.00] 0.00, 0.00] 0.13] 0.03 0.00f 0.00] 0.27| 0.03] 0.03[ 0.10]
D 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00[ 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00
E 0.60| 0.00 0.00] 0.00f 0.13] 0.53[ 0.07] 0.00f 0.03] 0.67] 0.10, 0.00] 0.00, 0.00] 0.00, 0.20{ 0.00/ 0.10] 0.33[ 0.13] 0.00[ 0.20]
F 0.97] 0.00, 0.47] 0.00f 0.23 0.17| 1.57 0.40[ 0.10, 0.13] 1.07] 0.00] 0.07 0.43] 0.67| 0.57] 0.00 0.47| 0.30[ 0.13] 0.47| 0.00|
G 2.90| 0.00/ 0.07 0.00f 0.00] 1.17 1.00[ 0.20f 0.07] 7.87| 0.27] 0.00f 0.30, 0.13] 0.07| 3.83] 0.00, 0.10f 0.17| 0.47 0.30[ 0.97
H 0.27] 0.00/ 0.20{ 0.00f 0.00] 0.43[ 0.27] 0.10[ 0.03] 0.60[ 0.00 0.00[ 0.20, 0.17] 0.07| 0.00f 0.00, 0.07] 0.20/ 0.23] 0.33] 0.07
I 0.47| 0.00, 0.00{ 0.00f 0.07 0.27[ 0.10, 0.00f 0.27] 0.23] 0.07] 0.00] 0.07| 0.03] 0.40, 0.30f 0.00[ 0.13| 0.03[ 0.53] 0.17| 0.10|
J 0.90| 0.00/ 0.27] 0.00f 0.63] 0.13[ 8&8.53] 1.30[ 0.40, 0.77] 0.73] 0.00f 0.03 1.10] 0.30, 0.60] 0.00[ 1.20[ 1.00[ 0.23] 1.37| 0.13|
K 2.77 0.00/ 0.03] 0.00[ 0.07] 2.00[ 0.47| 0.07f 0.10, 0.73] 0.17/ 0.00] 0.07| 0.13] 0.57| 0.10f 0.00[ 0.13| 0.40[ 0.20] 0.73[ 0.10|
L 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[f 0.00, 0.00] 0.00, 0.00[ 0.00, 0.00] 0.00, 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00|
M 0.00] 0.00/ 0.00] 0.00f 0.00] 0.20[ 0.30] 0.13f 0.03] 0.07] 0.03 0.00[ 0.03 0.07] 0.03] 0.03 0.00 0.07| 0.10[ 0.03] 0.00[ 0.00
N 1.17| 0.00{ 0.03[ 0.00] 0.03f 0.63] 0.07] 0.17] 0.00[ 1.07 0.03] 0.00, 0.03] 0.27[ 0.10] 0.47 0.00] 0.20[ 0.07] 0.00] 0.23] 0.30|
(e} 0.97] 0.00/ 0.00{ 0.00f 0.00] 0.57] 0.20[ 0.00[ 0.20] 0.23] 0.27] 0.00f 0.00, 0.07] 0.03 0.23 0.00, 0.13] 0.40[ 0.50{ 0.00[ 0.07
P 0.80 0.00/ 0.13| 0.00[ 0.07] 0.60[ 3.97| 0.17| 0.43] 0.57] 0.27] 0.00] 0.03] 0.30] 0.03] 0.97] 0.00 0.17] 0.23[ 0.13] 0.73[ 0.53|
Q 0.00] 0.00| 0.00{ 0.00[ 0.00] 0.00[ 0.00, 0.00[f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[ 0.00|
R 2.27| 0.00/ 0.00] 0.00[ 0.00] 0.37| 0.07 0.13[ 0.17] 0.90] 0.10, 0.00] 0.03] 0.40[ 0.20| 0.23] 0.00[ 0.27] 0.47 0.23] 0.27| 0.10
S 3.57| 0.00] 0.23 0.00[ 0.47] 0.43] 0.20, 0.40[ 0.03] 0.80] 0.33] 0.00[ 0.07] 0.03 0.33] 0.37| 0.00[ 0.70] 0.97| 0.50, 0.93[ 0.17|
T 0.70] 0.00, 0.07| 0.00[ 0.07 0.23] 0.80, 0.23f 0.53] 0.17] 0.33] 0.00[ 0.03f 0.17] 0.23] 0.17| 0.00[ 0.20] 0.27| 0.50, 0.30[ 0.07|
192 1.27| 0.00f 0.03] 0.00] 0.00/ 0.30[ 0.53] 0.03] 0.20, 1.47| 0.63] 0.00] 0.13] 0.23] 0.00[ 0.63 0.00] 0.30, 0.63[ 0.13] 0.50] 0.90]
v 0.57] 0.00, 0.17| 0.00[ 0.07 0.00] 1.50, 0.10f 0.13] 0.13 0.03] 0.00, 0.07 0.30] 0.07] 0.10, 0.00/ 0.03f 0.07 0.07] 0.83] 0.10|

Table 2.41: November 2014: average daily rentals for each origin—destination

pair.
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A B C D E F G H I J K L M N O P Q R S T U \Y%
A 0.53| 0.00] 0.93 0.00[ 0.40] 0.27| 2.53] 0.07| 0.23/ 0.97] 2.87| 0.00, 0.00[ 0.97] 0.77] 1.27| 0.00| 1.67| 2.87| 0.40| 1.23] 0.50|
B 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00] 0.00|
C 0.70] 0.00] 0.20/ 0.00[ 0.00] 0.23] 0.17| 0.00[ 0.00[ 0.50] 0.00] 0.00, 0.03f 0.00] 0.00] 0.17| 0.00/ 0.03f 0.03 0.03] 0.07| 0.13
D 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00] 0.00|
E 0.80| 0.00, 0.00/ 0.00[ 0.23 0.50] 0.00, 0.03f 0.03/ 0.50] 0.03] 0.00, 0.00[ 0.00] 0.00] 0.07| 0.00/ 0.03f 0.10[ 0.07] 0.00, 0.00|
F 0.73] 0.00] 0.13 0.00[ 0.53] 0.23] 1.57| 0.40[ 0.17] 0.10] 1.07| 0.00[ 0.07] 0.33 0.50, 0.50, 0.00[ 0.40] 0.43| 0.30, 0.17| 0.07|
G 2.53| 0.00, 0.07| 0.00 0.00] 1.23] 0.73] 0.10[ 0.40[ 8.23] 0.07| 0.00, 0.60[ 0.03] 0.00] 3.13] 0.00/ 0.13[ 0.20] 0.43| 0.37| 0.33|
H 0.20] 0.00, 0.13/ 0.00[ 0.00] 0.37| 0.33 0.27 0.03] 1.17] 0.07| 0.00[ 0.17] 0.27] 0.00] 0.03] 0.00[ 0.23] 0.03] 0.03] 0.17| 0.07|
I 0.30] 0.00] 0.00f 0.00[ 0.03 0.07] 0.20, 0.00[ 0.20] 0.20] 0.03] 0.00[ 0.10[ 0.00] 0.27] 0.20, 0.00[ 0.13] 0.03] 0.57| 0.17| 0.17|
J 0.80] 0.00, 0.30[ 0.00[ 0.43] 0.10] 8.43 1.33[ 0.30] 0.60] 1.03] 0.00[ 0.13] 0.93 0.30] 0.70, 0.00[ 0.83] 0.90] 0.13] 1.43[ 0.07|
K 2.07| 0.00, 0.07| 0.00[f 0.10f 1.60, 0.30, 0.00[ 0.07] 0.70] 0.07| 0.00f 0.00[ 0.13] 0.57] 0.17| 0.00[ 0.17] 0.57| 0.37| 0.70[ 0.27|
L 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
M 0.03| 0.00| 0.00] 0.00f 0.00] 0.03f 0.57 0.23f 0.00 0.03 0.10, 0.00] 0.07/ 0.07 0.03 0.07 0.00 0.00] 0.10[ 0.00] 0.17| 0.03|
N 0.77 0.00 0.00] 0.00f 0.00] 0.33 0.00] 0.37] 0.03 1.03 0.17/ 0.00] 0.10 0.30] 0.27 0.27 0.00 0.13] 0.07| 0.20] 0.10[ 0.23|
(0] 0.87 0.00/ 0.10{ 0.00f 0.03] 0.40[ 0.00[ 0.00f 0.13] 0.30[ 0.40, 0.00f 0.07 0.13] 0.07] 0.13] 0.00, 0.30] 0.47| 0.57 0.03[ 0.07
P 0.43| 0.00, 0.10{ 0.00f 0.13] 0.47 3.73] 0.20[ 0.23] 0.40[ 0.33] 0.00] 0.03 0.27 0.20/, 1.17] 0.00 0.20[ 0.77| 0.03] 0.53[ 0.50
Q 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[ 0.00
R 2.67 0.00 0.03] 0.00f 0.10] 0.33[ 0.17] 0.10[f 0.13] 0.63] 0.07/ 0.00[ 0.00 0.27] 0.10, 0.17] 0.00, 0.50 0.23] 0.33] 0.33] 0.27|
S 2.80 0.00/ 0.20{ 0.00f 0.30] 0.23[ 0.23] 0.20[{ 0.13] 0.80] 0.63 0.00] 0.07| 0.17] 0.37| 0.50{ 0.00f 0.47| 0.90[ 0.40] 0.33[ 0.33]
T 0.50 0.00/ 0.07 0.00f 0.10] 0.10[ 0.80] 0.23f 0.40, 0.13] 0.27] 0.00f 0.00, 0.07] 0.17/ 0.17] 0.00, 0.27 0.40 0.57] 0.17| 0.07|
18] 1.37| 0.00] 0.10[ 0.00] 0.00f 0.27] 0.47| 0.23] 0.13] 1.20, 0.50[ 0.00, 0.03] 0.13] 0.00] 0.37| 0.00] 0.33[ 0.43] 0.13[ 0.20] 1.17|
\4 0.53| 0.00/ 0.17 0.00f 0.00] 0.07] 0.70[ 0.13f 0.03] 0.07] 0.33] 0.00f 0.07] 0.30] 0.00, 0.47] 0.00, 0.20[ 0.10/ 0.17] 0.90[ 0.17]
Table 2.42: December 2014: average daily rentals for each origin—destination
pair.
A B C D E F G H I J K L M N O P Q R S T U Y%
A 0.27] 0.00/ 0.90] 0.00f 0.60] 0.27| 3.00] 0.10[f 0.43] 0.60] 3.47] 0.00] 0.00, 0.87 0.20 1.40{ 0.00f 1.50 3.87| 0.60] 2.13| 0.63|
B 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
C 1.07| 0.00] 0.23[ 0.00] 0.00[f 0.20] 0.17] 0.00, 0.00] 0.33] 0.13] 0.00, 0.00] 0.10[ 0.00] 0.03f 0.00] 0.07] 0.03] 0.00[ 0.00] 0.13
D 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
E 0.87| 0.00, 0.00/ 0.00[ 0.03 0.53] 0.03] 0.00f 0.07] 0.73 0.10, 0.00, 0.00[ 0.03] 0.03] 0.07| 0.00/ 0.03f 0.27] 0.10] 0.03] 0.00|
F 0.60] 0.00/ 0.33] 0.00f 0.57 0.27[ 1.77 0.37| 0.13] 0.17] 1.27] 0.00f 0.03] 0.73] 0.73] 0.67] 0.00, 0.50 0.43| 0.20[ 0.73[ 0.07|
G 3.30] 0.00/ 0.10{ 0.00f 0.07 1.07| 0.77] 0.07] 0.03] 9.10f 0.13 0.00] 0.13 0.07 0.10, 3.33] 0.00 0.13] 0.47| 0.63] 0.37| 0.23|
H 0.10] 0.00/ 0.00] 0.00f 0.00] 0.63[ 0.37] 0.13 0.00] 1.43] 0.00, 0.00] 0.10 0.20[ 0.07| 0.00] 0.00f 0.10] 0.10f 0.10] 0.33[ 0.30]
I 0.30] 0.00/ 0.03] 0.00f 0.00] 0.07] 0.03] 0.07f 0.10] 0.27| 0.07] 0.00[ 0.03 0.00] 0.33 0.20[ 0.00, 0.00] 0.13] 0.53] 0.37 0.17|
J 0.57] 0.00, 0.43| 0.00f 0.83 0.37| 8.67| 1.40[ 0.63] 0.47| 0.73] 0.00] 0.07 1.27 0.37| 0.70] 0.00 0.97 1.20[ 0.20] 0.93[ 0.13]
K 2.77 0.00/ 0.20{ 0.00f 0.00] 1.43f 0.43] 0.07| 0.07/ 0.87] 0.37] 0.00] 0.03 0.07] 0.60| 0.20{ 0.00/ 0.23] 0.57| 0.00] 0.80[ 0.10]
L 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
M 0.03| 0.00, 0.03] 0.00f 0.00] 0.07[ 0.13] 0.17] 0.00, 0.13] 0.00, 0.00] 0.07| 0.00] 0.00, 0.03] 0.00f 0.13] 0.03[ 0.00] 0.10[ 0.03|
N 0.97] 0.00, 0.00] 0.00f 0.00] 1.23f 0.07] 0.37| 0.00 1.10f 0.00, 0.00] 0.00, 0.17] 0.30, 0.33] 0.00 0.13] 0.10[ 0.13] 0.07| 0.30]
(@] 0.87 0.00/ 0.03] 0.00f 0.00] 0.47| 0.03] 0.03f 0.23] 0.50[ 0.40, 0.00f 0.00, 0.13] 0.03 0.23 0.00, 0.13] 0.63] 0.73] 0.07| 0.07
P 0.70 0.00, 0.00] 0.00f 0.07 0.63 5.13 0.23 0.10, 0.67] 0.27] 0.00] 0.00, 0.30] 0.07 1.03] 0.00 0.17 0.47| 0.00] 0.97| 0.53|
Q 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
R 2.33| 0.00/ 0.03] 0.00f 0.00] 0.70[ 0.17] 0.10f 0.10; 0.83] 0.13] 0.00f 0.23 0.27] 0.23 0.07] 0.00, 0.33] 0.20 0.30] 0.17| 0.07
S 3.13| 0.00/ 0.13] 0.00f 0.33] 0.30[ 0.73] 0.07| 0.00] 1.70[ 0.50, 0.00f 0.07/ 0.17] 0.57| 0.83] 0.00, 0.60| 0.50/ 0.43| 0.73[ 0.47|
T 0.33| 0.00/ 0.03] 0.00f 0.00] 0.17[ 0.73] 0.30[ 0.33] 0.13] 0.17/ 0.00f 0.00, 0.23 0.13 0.07] 0.00, 0.27] 0.57| 0.57] 0.17| 0.07|
U 1.80/ 0.00] 0.03[ 0.00] 0.03f 0.43] 0.50[ 0.03] 0.20{ 1.10, 1.00[ 0.00, 0.03] 0.20, 0.13] 0.47 0.00] 0.20[ 1.07| 0.10[ 0.40, 0.97
Y% 0.60| 0.00, 0.03] 0.00f 0.00] 0.00[ 0.47| 0.17] 0.00, 0.13] 0.33 0.00f 0.03 0.57] 0.23] 0.77 0.00[ 0.07 0.07| 0.00] 1.03[ 0.10|

Table 2.43: January 2015:

average daily rentals for each origin—destination pair.
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A B C D E F G H I J K L M N O P Q R S T U \Y%
A 0.57| 0.00] 1.33] 0.00] 0.57| 0.40| 2.20| 0.20| 0.40, 0.73| 3.70, 0.00| 0.03] 1.27| 0.60| 1.40| 0.00, 2.03] 3.90, 0.77| 2.80| 0.67]
B 0.00, 0.00, 0.00, 0.00, 0.00, 0.03 0.03 0.00] 0.00, 0.00] 0.00] 0.00] 0.00] 0.00, 0.00, 0.03 0.00, 0.00] 0.00, 0.00, 0.00] 0.00]
C 0.97| 0.00, 0.30] 0.00, 0.00, 0.70, 0.13] 0.00, 0.00, 0.30] 0.07] 0.00, 0.00, 0.03] 0.03 0.00, 0.00, 0.10, 0.13] 0.03] 0.07| 0.23]
D 0.00, 0.00| 0.00, 0.00, 0.00, 0.00] 0.00] 0.00] 0.00, 0.00] 0.00] 0.00] 0.00, 0.00, 0.00, 0.00, 0.00, 0.00] 0.00, 0.00, 0.00] 0.00]
E 0.60] 0.00, 0.00, 0.00, 0.03] 0.63 0.00, 0.00] 0.10, 1.20, 0.00] 0.00, 0.00, 0.07| 0.00, 0.07| 0.00, 0.00] 0.20, 0.13] 0.00| 0.03]
F 0.40, 0.00| 0.43] 0.00, 0.53] 0.37] 1.93] 0.20, 0.03] 0.30] 1.03] 0.00, 0.00] 0.73] 0.83 0.37] 0.00, 0.50, 0.33] 0.27| 0.87| 0.00]
G 2.80, 0.10, 0.03] 0.00, 0.00, 1.57| 0.67| 0.17| 0.07] 8.60, 0.17] 0.00, 0.07| 0.10, 0.00, 3.10, 0.00, 0.20, 0.47| 0.90| 0.30 0.20]
H 0.10, 0.00| 0.00, 0.00, 0.00, 0.47| 0.33] 0.20, 0.00, 1.10, 0.00, 0.00, 0.10, 0.33] 0.00, 0.03] 0.00, 0.07| 0.07] 0.13] 0.30| 0.13]
I 0.27| 0.00, 0.07| 0.00, 0.03] 0.07] 0.07| 0.03] 0.00] 0.23] 0.17| 0.00, 0.00, 0.07| 0.50, 0.10| 0.00, 0.20, 0.03] 0.27| 0.63| 0.17]
J 0.80] 0.00| 0.27| 0.00] 0.93] 0.10, 9.17| 1.93] 0.47| 0.90| 0.70, 0.00| 0.03] 0.80| 0.40, 0.57| 0.00, 0.93] 1.17| 0.23] 1.43| 0.20]
K 3.00, 0.00, 0.17| 0.00, 0.10, 1.40, 0.53] 0.00, 0.07] 0.33] 0.50, 0.00| 0.00] 0.00] 0.50, 0.40, 0.00, 0.20, 0.27| 0.03] 0.77| 0.33]
L 0.00] 0.00] 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00, 0.00f 0.00f 0.00] 0.00] 0.00] 0.00
M 0.00] 0.00, 0.00f 0.00[ 0.00] 0.03] 0.00, 0.00f 0.00f 0.10] 0.00] 0.00, 0.07f 0.03f 0.03 0.03 0.00f 0.07| 0.00] 0.03] 0.33] 0.03
N 1.23( 0.00f 0.00] 0.00, 0.03 1.17| 0.17] 0.27] 0.00, 1.17| 0.03f 0.00] 0.00] 0.07| 0.10[ 0.20[ 0.00] 0.00] 0.03f 0.13[ 0.17 0.37
o 1.13 0.00] 0.00[ 0.00f 0.07 0.60[ 0.07| 0.03 0.50 0.33 0.20 0.00[ 0.00[ 0.03f 0.20[ 0.13f 0.00[ 0.13f 0.70[ 0.50[ 0.03[ 0.03|
P 0.87| 0.00| 0.13] 0.00, 0.00, 0.53] 4.17| 0.07| 0.07] 0.20, 0.17] 0.00, 0.13] 0.37] 0.13] 0.97] 0.00, 0.10, 0.37] 0.10, 0.53] 0.60]
Q 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00] 0.00
R 2.13| 0.00, 0.00f 0.00 0.07 0.57] 0.23 0.03f 0.03 0.60] 0.17] 0.00, 0.20[ 0.30] 0.13] 0.13] 0.00/ 0.10[ 0.50] 0.23] 0.43] 0.03
S 4.00/ 0.00[ 0.27] 0.00] 0.20, 0.30[ 0.50[ 0.23] 0.00, 1.27| 0.63f 0.00] 0.00] 0.13] 0.83f 0.47| 0.00] 0.50, 0.57| 0.33[ 0.53] 0.07|
T 0.67] 0.00, 0.03 0.00f 0.00f 0.17] 1.00, 0.10f 0.43/ 0.10] 0.13] 0.00, 0.07 0.23 0.13 0.17 0.00f 0.13f 0.37 0.50] 0.27| 0.00|
U 2.77 0.00, 0.00/ 0.00f 0.00] 0.30] 0.47| 0.20[ 0.33] 2.00] 0.63] 0.00, 0.10[ 0.20[ 0.03] 0.43] 0.00/ 0.47| 0.63] 0.20] 0.40, 0.93|
v 0.63| 0.00, 0.10f 0.00[f 0.00f 0.00, 0.27| 0.17 0.07] 0.13] 0.50, 0.00f 0.00[ 0.37] 0.10] 0.40, 0.00f 0.00] 0.10[ 0.20, 1.17| 0.07|
Table 2.44: February 2015: average daily rentals for each origin—destination
pair.
A B C D E F G H I J K L M N O P Q R S T U Y%
A 0.90] 0.40, 0.97| 0.00[ 0.47] 1.13] 4.40, 0.03[ 0.87 1.43] 4.27| 0.00[ 0.07] 1.87] 0.87] 1.70, 0.00[ 3.70| 5.30] 0.57| 3.53[ 1.17|
B 0.13] 0.07] 0.00/ 0.00[ 0.00] 0.00] 0.03 0.00f 0.00f 0.27] 0.03] 0.00, 0.00[ 0.03f 0.03 0.30, 0.00f 0.03f 0.00] 0.00] 0.07| 0.00
C 0.80] 0.00] 0.13 0.00 0.00] 0.50] 0.07| 0.07| 0.00] 0.40{ 0.07] 0.00, 0.00f 0.07 0.00] 0.27| 0.00f 0.03f 0.10f 0.03] 0.03] 0.43
D 0.00 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00f 0.00] 0.00] 0.00, 0.00f 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00] 0.00
E 0.73] 0.00, 0.03f 0.00f 0.13 0.70] 0.03 0.00f 0.10f 1.43] 0.10, 0.00f 0.03f 0.03 0.03] 0.07| 0.00[ 0.40] 0.60] 0.13] 0.00[ 0.07
F 0.70] 0.43] 0.30, 0.00[ 0.83 0.37] 3.03 0.40[ 0.33] 0.60] 1.67| 0.00, 0.00f 1.03] 1.43] 0.73] 0.00/ 0.70[ 0.47] 0.57] 0.60, 0.13
G 5.00] 0.07] 0.20, 0.00[ 0.00] 2.83] 1.27| 0.20[ 0.07] 9.63] 0.47] 0.00, 0.17 0.23/ 0.10] 5.03] 0.00f 0.10[ 1.30] 1.47] 0.67| 0.43|
H 0.23| 0.03] 0.00f 0.00f 0.00] 0.53] 0.47| 0.33[ 0.00] 1.83 0.03] 0.00f 0.17] 0.53] 0.03] 0.13] 0.00[ 0.00] 0.00] 0.07| 0.63[ 0.17
I 0.53| 0.00, 0.07| 0.00f 0.30] 0.17] 0.10, 0.07f 0.17] 0.70] 0.10, 0.00f 0.23f 0.03 0.87] 0.27| 0.00[ 0.40] 0.10] 0.50, 0.47| 0.07|
J 1.40[ 0.43] 0.30] 0.00] 0.77| 0.20[ 10.40 2.90] 1.10, 0.73[ 1.40[ 0.00] 0.20] 1.50, 1.20{ 0.83] 0.00] 1.07| 1.60[ 0.20[ 1.53] 0.30]
K 4.37| 0.07] 0.17] 0.00] 0.00 2.40[ 0.57 0.07 0.13 1.17| 0.53f 0.00] 0.03] 0.17| 0.70[ 0.53] 0.00] 0.53] 0.50[ 0.17] 1.37] 0.20]
L 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00f 0.00] 0.00] 0.00, 0.00f 0.00f 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00] 0.00|
M 0.00] 0.03] 0.00/ 0.00[ 0.03 0.07] 0.33 0.07| 0.03f 0.03 0.00] 0.00, 0.10f 0.03f 0.00] 0.10, 0.00f 0.13f 0.00] 0.00] 0.13] 0.10|
N 1.57| 0.07] 0.10{ 0.00, 0.00/ 0.97| 0.10] 0.50] 0.03] 1.33[ 0.20[ 0.00] 0.03] 0.23] 0.20[ 0.60] 0.00] 0.20, 0.20[ 0.27] 0.13] 0.70]
(] 1.60[ 0.03] 0.03 0.00, 0.10/ 0.77 0.27 0.00] 0.67| 1.13[ 0.63] 0.00] 0.00] 0.10/ 0.50[ 0.30] 0.00] 0.33] 0.93 0.47| 0.10] 0.23]
P 1.10 0.43] 0.10] 0.00, 0.03 0.67 5.93 0.30] 0.40, 0.77| 0.50[ 0.00] 0.13] 0.20, 0.17 1.57 0.00] 0.37| 1.03[ 0.07] 1.63] 0.30]
Q 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00, 0.00, 0.00f 0.00f 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00] 0.00|
R 4.17| 0.00[f 0.10f 0.00[ 0.00, 1.13f 0.23/ 0.03 0.07| 0.60/ 0.50[ 0.00] 0.30] 0.27| 0.50[ 0.43| 0.00] 0.40, 0.83 0.33[ 0.83] 0.17
S 5.00] 0.03] 0.07| 0.00[f 0.60] 0.40, 0.90, 0.33f 0.03] 2.03 0.70, 0.00f 0.10[f 0.23] 1.03] 1.07| 0.00[ 0.97 0.67| 1.13] 0.93[ 0.37
T 0.83| 0.07 0.03 0.00f 0.07 0.17 1.50, 0.30f 0.73] 0.20] 0.40, 0.00, 0.00f 0.23/ 0.13 0.30, 0.00f 0.07| 1.07 0.50] 0.40| 0.10|
19) 3.20] 0.13] 0.03f 0.00[ 0.03 0.87] 0.73] 0.43[ 0.37 2.33] 0.83] 0.00[ 0.37] 0.40 0.03] 0.87| 0.00[ 0.57] 0.83] 0.30, 0.80[ 1.37|
\4 0.93| 0.00, 0.33 0.00[f 0.03 0.10[ 0.33 0.17 0.07] 0.30] 0.90, 0.00, 0.07 0.50 0.27] 0.33] 0.00/ 0.20[{ 0.20[ 0.10] 1.17| 0.20|

Table 2.45: March 2015: average daily rentals for each origin—destination pair.
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A B C D E F G H I J K L M N O P Q R S T U \Y%
A 0.87] 0.67] 0.57| 0.00[ 0.53] 1.20[ 4.10, 0.30[ 0.73] 1.30] 4.40, 0.00, 0.07| 2.40 1.37] 1.07| 0.00| 2.83f 5.27| 0.80| 3.57| 1.73
B 0.23] 0.00, 0.23/ 0.00] 0.03] 0.03 0.13 0.07] 0.00, 0.20] 0.10, 0.00, 0.03] 0.00, 0.10, 0.87] 0.00, 0.03] 0.00, 0.03] 0.10| 0.03]
C 0.70, 0.30| 0.43] 0.00, 0.10, 0.67| 0.07| 0.00, 0.03] 0.50, 0.13] 0.00, 0.00, 0.03] 0.03 0.17| 0.00, 0.13] 0.07| 0.03] 0.07| 0.40
D 0.00, 0.00| 0.00, 0.00, 0.00, 0.00] 0.00] 0.00] 0.00, 0.00] 0.00] 0.00] 0.00, 0.00, 0.00, 0.00, 0.00, 0.00] 0.00, 0.00, 0.00] 0.00]
E 0.77] 0.00, 0.07| 0.00[ 0.03 0.83] 0.10, 0.00[ 0.53/ 0.97] 0.23] 0.00, 0.33[ 0.00] 0.13] 0.13] 0.00/ 0.20[ 0.50] 0.13| 0.03] 0.23
F 1.97 0.27] 0.53] 0.00] 0.67| 0.40[ 2.37] 0.50] 0.30, 0.23[ 1.73] 0.00] 0.03] 1.00, 0.63[ 0.40| 0.00] 0.47| 0.67| 0.40[ 0.47 0.17
G 5.30] 0.23] 0.10/ 0.00[ 0.03] 2.13] 1.53] 0.17| 0.20[ 9.77] 0.67| 0.00, 0.33[ 0.03] 0.13] 4.93] 0.00| 0.23[ 0.60] 1.60| 0.43] 0.90|
H 0.40 0.13] 0.00f 0.00[ 0.00] 0.17] 0.50, 0.07 0.00] 1.63] 0.10, 0.00[ 0.13] 0.23 0.17] 0.20, 0.00f 0.10] 0.13] 0.13] 0.33[ 0.17|
I 0.63| 0.00, 0.13] 0.00[ 0.13] 0.23] 0.40, 0.10f 0.00[ 0.87 0.07| 0.00, 0.17 0.17 0.87] 0.43] 0.00 0.33[ 0.10] 0.63] 0.17| 0.13|
J 1.43[ 0.60 0.30] 0.00] 0.80| 0.30[ 10.93 2.00] 1.03] 1.47| 2.10[ 0.00] 0.20] 1.67| 1.60[ 0.73] 0.00] 0.93] 1.20[ 0.43[ 2.03| 0.37|
K 4.87| 0.30 0.10] 0.00] 0.10, 2.43[ 0.70] 0.03] 0.17| 1.40[ 0.57| 0.00] 0.13] 0.23] 0.77| 0.53] 0.00] 0.53] 0.77| 0.23] 1.10] 0.63]
L 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
M 0.07] 0.03] 0.03] 0.00f 0.40{ 0.07| 0.50, 0.13f 0.07 0.07] 0.03 0.00] 0.27 0.03] 0.13] 0.17] 0.00 0.20[ 0.00[ 0.03] 0.27| 0.03|
N 1.80 0.00[ 0.10{ 0.00, 0.00/ 1.20[ 0.23 0.10] 0.17| 2.20[ 0.17] 0.00] 0.03] 0.37| 0.07| 0.57] 0.00] 0.17| 0.20[ 0.33] 0.73] 0.93]
(0] 1.50 0.10[ 0.00] 0.00, 0.00| 0.53f 0.20] 0.13] 1.03] 1.40[ 0.60[ 0.00] 0.07] 0.07| 0.50[ 0.30] 0.00] 0.20, 0.77| 0.23] 0.00] 0.10]
P 0.77 0.93] 0.27 0.00f 0.13 0.60[ 5.87| 0.50[ 0.50, 0.90| 0.47] 0.00f 0.10, 0.73] 0.03] 1.60[ 0.00 0.13] 0.80 0.13] 1.03[ 0.97|
Q 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[ 0.00
R 2.67| 0.00, 0.23] 0.00f 0.00] 0.73[ 0.50, 0.07| 0.13] 0.80] 0.53] 0.00] 0.60, 0.33] 0.67| 0.23] 0.00 0.53] 0.67| 0.20] 0.37| 0.03|
S 4.23 0.00] 0.17 0.00] 0.47| 0.40{ 0.73[ 0.17/ 0.03f 1.33] 0.93 0.00, 0.07] 0.27 1.17 1.23] 0.00] 1.00[ 0.80] 0.77| 0.57] 0.37
T 0.63| 0.17 0.10{ 0.00f 0.03] 0.13[ 2.33] 0.17| 0.63] 0.13] 0.33] 0.00f 0.00, 0.40f 0.20, 0.17] 0.00, 0.20[ 0.57| 0.93] 0.13[ 0.07|
18] 2.73| 0.03] 0.07 0.00f 0.03 0.77] 0.53] 0.23f 0.03] 2.07| 0.80 0.00f 0.23 1.13] 0.03] 1.13] 0.00, 0.40f 0.37| 0.20[ 1.00[ 1.17|
\4 0.83| 0.03] 0.30] 0.00f 0.17] 0.03[ 1.07 0.27| 0.03] 0.30] 0.93 0.00] 0.07/ 1.03 0.17 1.10f 0.00 0.07 0.23[ 0.10] 1.37| 0.10]
Table 2.46: April 2015: average daily rentals for each origin—destination pair.
A B C D E F G H I J K L M N (@] P Q R S T U A\

A 0.57] 0.97| 1.07 0.00f 0.80] 1.53| 3.50, 0.53| 1.03] 2.07| 4.33] 0.00] 0.23 2.00] 1.63] 1.30{ 0.00f 2.13| 5.33[ 1.03] 4.20[ 1.60|
B 0.30] 0.03] 0.03] 0.00f 0.00] 0.00[ 0.40, 0.00f 0.00, 0.30] 0.73 0.00] 0.00, 0.07] 0.03 0.70] 0.00 0.03] 0.07| 0.10] 0.33[ 0.00
C 0.90 0.00/ 0.60 0.00f 0.00] 0.83 0.23] 0.00f 0.13] 0.97] 0.17/ 0.00f 0.00, 0.03] 0.00, 0.13] 0.00, 0.07] 0.17| 0.13] 0.03[ 0.07
D 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00[ 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00
E 1.17| 0.00] 0.00[ 0.00] 0.13f 0.60] 0.00] 0.00, 0.57] 0.97 0.27] 0.00, 0.50{ 0.00 0.17] 0.33[ 0.00] 0.13[ 0.40, 0.10[ 0.03] 0.23
F 2.27| 0.50, 0.60| 0.00[ 0.60] 0.57| 2.23| 0.40[ 0.53] 0.40[ 2.47] 0.00] 0.00, 0.40 1.17 0.70f 0.00[ 1.17 0.90[ 0.57] 0.43[ 0.10|
G 4.50, 0.50[ 0.17 0.00[ 0.07 1.97 1.33[ 0.47] 0.30[ 10.10 0.50[ 0.00, 0.40 0.00, 0.20]{ 4.47| 0.00] 0.27 0.97 1.67| 0.37] 0.67
H 0.23| 0.03] 0.00] 0.00f 0.00] 0.20[ 0.77] 0.33 0.03] 1.80[ 0.17] 0.00f 0.30, 0.53] 0.07| 0.30] 0.00, 0.13] 0.07| 0.20[ 0.43[ 0.27
I 0.73| 0.00, 0.17 0.00f 0.27 0.23[ 0.37 0.17| 0.33] 0.87] 0.20, 0.00] 0.57 0.10] 0.83] 0.37] 0.00 0.23] 0.13[ 0.50] 0.13[ 0.10|
J 1.40/ 0.37 0.60[ 0.00] 0.57 0.20] 9.07] 1.80, 0.73] 1.07| 1.77 0.00, 0.33] 1.40f 1.37 1.13[ 0.00] 1.37| 2.03] 0.23] 1.60 0.20|
K 5.33| 0.67| 0.10{ 0.00[ 0.10[ 3.07| 0.67] 0.13[ 0.07] 1.30] 1.23] 0.00] 0.03 0.40] 0.67| 0.70] 0.00 0.67| 0.63[ 0.63] 1.30| 0.63|
L 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[f 0.00, 0.00] 0.00, 0.00[ 0.00, 0.00] 0.00, 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00|
M 0.07] 0.00/ 0.00] 0.00f 0.50] 0.00[ 0.50, 0.27 0.13] 0.20[ 0.07] 0.00[ 0.10, 0.13] 0.30, 0.30[ 0.00 0.10] 0.13[ 0.07] 0.33[ 0.10
N 1.87| 0.13] 0.03[ 0.00] 0.03f 0.83] 0.33 0.37] 0.03] 1.47| 0.43] 0.00, 0.00] 0.30[ 0.43| 0.83[ 0.00] 0.23[ 0.40, 0.33] 0.37] 1.03|
(e} 1.47 0.03] 0.07] 0.00] 0.13[ 1.03] 0.20[ 0.00, 1.00[f 1.50, 0.93] 0.00, 0.37] 0.33] 0.33] 0.33] 0.00] 0.07[ 0.67| 0.33[ 0.13] 0.17|
P 1.17| 1.00] 0.03[ 0.00] 0.33( 0.77 6.40[ 0.60, 0.57| 0.57 0.50[ 0.00, 0.10f 0.83] 0.27 1.17[ 0.00] 0.70[ 1.30] 0.23[ 0.97] 0.87|
Q 0.00] 0.00| 0.00{ 0.00[ 0.00] 0.00[ 0.00, 0.00[f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[ 0.00|
R 2.67| 0.07 0.10{ 0.00[ 0.17 1.23[ 0.23] 0.10[ 0.20] 0.93] 0.47] 0.00] 0.50, 0.63] 0.53] 0.57| 0.00 0.63| 0.43[ 0.30] 0.30[ 0.13]
S 4.43| 0.03] 0.40/ 0.00[ 0.57] 0.33] 0.60, 0.03f 0.00[ 2.47] 1.27| 0.00, 0.07 0.50 0.83] 1.63] 0.00/ 1.17 1.37 0.87] 0.77| 0.23|
T 1.13| 0.33] 0.03[ 0.00] 0.00/ 0.33f 2.07] 0.37] 0.53] 0.10[ 0.60[ 0.00] 0.03] 0.43] 0.03[ 0.17] 0.00] 0.20, 0.80[ 0.90] 0.23] 0.13]
192 3.10] 0.27| 0.03/ 0.00[ 0.00] 0.77] 0.33] 0.33 0.10[ 1.57] 0.90, 0.00, 0.30[ 0.50] 0.33] 1.10, 0.00/ 0.23f 1.23] 0.07| 1.00] 1.40|
v 1.20[ 0.03] 0.13] 0.00, 0.10/ 0.13f 0.83 0.33 0.17] 0.30[ 0.70] 0.00] 0.10] 0.93] 0.20[{ 0.67] 0.00] 0.17| 0.30[ 0.17] 1.43] 0.10]

Table 2.47: May 2015: average daily rentals for
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A B C D E F G H I J K L M N O P Q R S T U \Y%
A 0.77] 0.90, 0.97| 0.00[ 0.27] 1.23] 4.50, 0.47| 1.13] 2.40[ 2.23] 0.00[ 0.07] 2.10 1.13] 0.97| 0.00[ 2.27| 4.33] 0.63] 2.90[ 0.97|
B 0.43| 0.00, 0.03f 0.00[ 0.00] 0.00] 0.03 0.03f 0.00] 0.47] 0.13] 0.00[ 0.03] 0.50] 0.00] 0.43] 0.00[ 0.00] 0.03] 0.07| 0.23[ 0.07|
C 0.80| 0.07] 0.57| 0.00[ 0.03 0.87| 0.10, 0.00[ 0.00[ 1.43 0.30], 0.00, 0.00[ 0.07] 0.10] 0.17| 0.00/ 0.13f 0.10f 0.17| 0.10, 0.13|
D 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00] 0.00|
E 0.57| 0.00, 0.10/ 0.00[ 0.13] 0.47| 0.23] 0.00[ 0.07] 0.77] 0.23] 0.00, 0.37| 0.00] 0.03] 0.07| 0.00| 0.20[ 0.60] 0.03] 0.13] 0.03
F 1.53| 0.20 0.67] 0.00] 0.40, 0.37 2.27] 0.47| 0.23] 0.37| 1.57| 0.00] 0.10, 0.23] 0.90[ 1.00] 0.00] 0.80, 0.67| 0.30] 0.70] 0.13]
G 4.33] 0.07] 0.10] 0.00] 0.30, 1.93[ 1.30] 0.07] 0.60, 10.08 0.43f 0.00] 0.93] 0.20, 0.30[ 4.83] 0.00] 0.30| 0.53[ 1.73] 0.20] 0.40]
H 0.17] 0.03] 0.00f 0.00f 0.00] 0.03] 0.33] 0.23[ 0.03] 1.43] 0.00, 0.00[ 0.10[ 0.33] 0.00] 0.30, 0.00[ 0.10] 0.03] 0.07| 0.13[ 0.27
I 0.83] 0.00, 0.07| 0.00 0.10] 0.20] 0.40, 0.03| 0.43/ 0.37] 0.20] 0.00, 0.23[ 0.10[ 0.90] 0.53] 0.00| 0.20[ 0.07] 0.23] 0.43] 0.00|
J 1.63| 0.53] 0.70] 0.00] 0.43 0.27 10.1]7 1.70] 0.63] 1.23[ 1.70] 0.00] 0.47| 1.57| 1.20[ 1.17] 0.00] 1.33] 2.47| 0.37] 1.03] 0.10]
K 3.37 0.20/, 0.17] 0.00f 0.03] 1.87| 0.47| 0.07| 0.13] 0.87] 0.83] 0.00] 0.00, 0.27] 1.43 0.57 0.00 0.67] 0.90[ 0.60] 0.93f 0.53|
L 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
M 0.07] 0.00| 0.03] 0.00f 0.57] 0.03 0.63] 0.13f 0.07 0.23 0.07 0.00] 0.07| 0.20[ 0.13] 0.17] 0.00 0.30] 0.10[ 0.07] 0.43[ 0.00]
N 2.00] 0.73] 0.13 0.00[f 0.07] 0.27] 0.17 0.33[ 0.17] 1.50] 0.20] 0.00, 0.13[ 0.37] 0.17] 0.93] 0.00/ 0.20[ 0.20] 0.40| 0.33] 0.73|
(0] 0.77 0.03] 0.03] 0.00f 0.10] 1.13[ 0.20] 0.00f 1.13] 1.60 1.17] 0.00] 0.20, 0.03] 0.40, 0.10f 0.00 0.37 0.63[ 0.33] 0.13[ 0.10]
P 1.13| 0.53] 0.23[ 0.00] 0.03f 0.80] 5.53] 0.60, 0.70] 0.77 1.07] 0.00, 0.07 0.40[ 0.10] 1.57| 0.00] 0.60[ 0.80] 0.17] 0.97] 0.60|
Q 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[ 0.00
R 2.53| 0.00/ 0.10{ 0.00f 0.03 1.03[ 0.17] 0.03f 0.13] 0.83] 0.63] 0.00f 0.47| 0.53] 0.23] 0.50] 0.00, 0.70| 0.80/ 0.30] 0.33[ 0.07
S 3.63| 0.10, 0.30] 0.00f 0.50] 0.30[ 0.60, 0.07| 0.03] 2.73] 1.20, 0.00] 0.10 0.23 0.77| 1.67] 0.00 0.57 0.63[ 0.67] 0.77| 0.23]
T 0.83| 0.17 0.07 0.00f 0.00] 0.20[ 2.27| 0.03f 0.20] 0.10f 0.57] 0.00] 0.13 0.50] 0.27| 0.13] 0.00 0.20[ 0.67| 0.43] 0.30[ 0.13]
18] 2.27| 0.20/ 0.03] 0.00f 0.00] 0.83 0.23] 0.13f 0.27] 1.43] 0.67] 0.00] 0.37 0.30] 0.27| 0.80] 0.00[ 0.20{ 0.73[ 0.30] 0.90[ 1.00|
\4 0.50 0.00, 0.07] 0.00f 0.03] 0.03[ 0.43] 0.27| 0.03] 0.23 0.60, 0.00] 0.17 1.00] 0.30, 0.40{ 0.00 0.10] 0.20[ 0.20] 0.67| 0.33]
Table 2.48: June 2015: average daily rentals for each origin—destination pair.
A B C D E F G H I J K L M N (@] P Q R S T U A\

A 0.17] 0.13] 0.57 0.00f 0.03] 0.60[ 1.63| 0.20[ 0.60, 0.90] 1.13] 0.00] 0.03 0.67] 0.47 0.27 0.00 0.77 1.20[ 0.23] 1.60[ 0.60
B 0.03| 0.07 0.00] 0.00f 0.00] 0.00[ 0.10, 0.00f 0.00, 0.20f 0.00, 0.00] 0.00, 0.20[ 0.00, 0.13] 0.00 0.00] 0.00f 0.03] 0.03f 0.13]
C 0.33| 0.00/ 0.20{ 0.00f 0.00] 0.27 0.03] 0.00f 0.03] 0.53] 0.07] 0.00] 0.00, 0.00] 0.03] 0.03 0.00f 0.07 0.10[ 0.00] 0.00[ 0.00
D 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00[ 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00
E 0.43| 0.00/ 0.00{ 0.00f 0.00] 0.33 0.03 0.00f 0.10, 0.57] 0.10, 0.00] 0.37 0.03] 0.00, 0.00f 0.00 0.07 0.13[ 0.00] 0.00[ 0.00|
F 1.00/ 0.07] 0.23[ 0.00] 0.23f 0.30] 0.43] 0.10, 0.20[ 0.07 0.60] 0.00, 0.00] 0.10f 0.37] 0.37| 0.00] 0.23] 0.23] 0.10[ 0.13] 0.00|
G 2.40| 0.07 0.00] 0.00f 0.07| 0.37| 0.40, 0.00f 0.17] 4.07] 0.10, 0.00] 0.17 0.13] 0.03] 2.60[ 0.00 0.00] 0.20[ 0.57] 0.10[ 0.00|
H 0.07] 0.00, 0.00] 0.00f 0.00] 0.07| 0.23] 0.17] 0.00, 0.70f 0.00, 0.00] 0.03 0.07] 0.00, 0.10f 0.00[ 0.00] 0.07 0.00] 0.00[ 0.13]
I 0.53| 0.00/ 0.03] 0.00f 0.00] 0.00[ 0.10, 0.03f 0.03 0.37] 0.07/ 0.00] 0.07/ 0.17] 0.37| 0.10f 0.00 0.07] 0.03[ 0.07 0.13[ 0.10]
J 0.83| 0.13] 0.23] 0.00[ 0.47| 0.23[ 3.47| 0.77| 0.27] 0.77] 0.50, 0.00] 0.10, 0.57] 0.33] 0.60[ 0.00 0.73| 0.90[ 0.07] 0.57| 0.30
K 1.23| 0.00] 0.00[ 0.00] 0.00[f 0.77] 0.13] 0.03] 0.03] 0.53] 0.20[ 0.00, 0.00] 0.03[ 0.57] 0.10[ 0.00] 0.30[ 0.47| 0.20[ 0.40, 0.37
L 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[f 0.00, 0.00] 0.00, 0.00[ 0.00, 0.00] 0.00, 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00|
M 0.00] 0.00/ 0.00] 0.00f 0.43] 0.03[ 0.23] 0.03f 0.00, 0.10f 0.00, 0.00] 0.07| 0.07] 0.00, 0.03] 0.00[ 0.07| 0.00[ 0.00] 0.13[ 0.00|
N 0.77] 0.13] 0.03] 0.00[ 0.00] 0.03[ 0.00] 0.27 0.13] 0.53] 0.03] 0.00] 0.03 0.03 0.13 0.10f 0.00 0.00] 0.07 0.23] 0.03[ 0.13]
(e} 0.53| 0.00/ 0.03] 0.00[ 0.07] 0.43[ 0.13] 0.00[ 0.50, 0.53] 0.47] 0.00] 0.03 0.20[ 0.23] 0.07] 0.00 0.17] 0.07 0.00] 0.10[ 0.00|
P 0.07] 0.27| 0.03] 0.00[ 0.00] 0.10[ 2.70{ 0.10[f 0.07] 0.37] 0.33] 0.00f 0.07] 0.10f 0.10, 0.50] 0.00, 0.17] 0.40[ 0.10] 0.13[ 0.27
Q 0.00] 0.00| 0.00{ 0.00[ 0.00] 0.00[ 0.00, 0.00[f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[ 0.00|
R 0.93| 0.00/ 0.00{ 0.00[ 0.00] 0.23[ 0.03] 0.03f 0.03 0.57] 0.10, 0.00] 0.07 0.23 0.33] 0.10f 0.00[ 0.30] 0.33[ 0.07 0.07| 0.10]
S 0.90| 0.00, 0.03 0.00[ 0.20] 0.10[ 0.20, 0.03f 0.03/ 1.03f 0.93] 0.00, 0.07 0.00] 0.23 0.33] 0.00/ 0.23f 0.37 0.27] 0.33] 0.10|
T 0.27| 0.03] 0.03f 0.00[ 0.00] 0.07] 0.77| 0.07 0.03/ 0.07] 0.20, 0.00[ 0.00[ 0.20] 0.03] 0.10, 0.00[ 0.10] 0.27| 0.43] 0.13[ 0.07|
192 1.20[ 0.00[ 0.00] 0.00, 0.00/ 0.07f 0.07] 0.07] 0.03] 0.40[ 0.17 0.00] 0.10, 0.03 0.17 0.13 0.00] 0.03] 0.27| 0.20[ 0.30] 0.23]
v 0.27| 0.13] 0.00/ 0.00[ 0.00] 0.00] 0.13] 0.40[ 0.07] 0.03 0.33] 0.00, 0.03f 0.17] 0.10] 0.40, 0.00/ 0.07 0.07] 0.10] 0.13] 0.03

Table 2.49: July 2015: average daily rentals for each origin—destination pair.
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A B C D E F G H I J K L M N O P Q R S T U \Y%
A 0.23| 0.47] 0.30[ 0.00[ 0.00] 0.87] 1.37| 0.23[ 0.37 1.00] 1.00, 0.00[ 0.10[ 0.43| 1.00] 0.43] 0.00[ 0.20] 1.50] 1.23] 1.37| 0.47|
B 0.37] 0.03] 0.00/ 0.00[ 0.00] 0.00] 0.37| 0.00[ 0.00[ 0.03 0.00], 0.00, 0.13[ 0.03] 0.03] 0.17| 0.00/ 0.00[ 0.23] 0.00] 0.23] 0.00|
C 0.30] 0.00] 0.20/ 0.00[ 0.03 0.37] 0.17| 0.00[ 0.03/ 0.37] 0.03] 0.00, 0.03[ 0.00] 0.00] 0.03] 0.00/ 0.03f 0.00] 0.10] 0.07| 0.10|
D 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00, 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.00] 0.00] 0.00, 0.00/ 0.00[ 0.00] 0.00] 0.00] 0.00|
E 0.27| 0.00, 0.07| 0.00[ 0.33] 0.43] 0.03 0.00[ 0.10f 0.80] 0.23] 0.00, 0.17 0.07] 0.13] 0.20, 0.00/ 0.07| 0.20[ 0.20] 0.00, 0.03
F 0.97] 0.40, 0.20/ 0.00[ 0.37] 0.40] 0.97| 0.53| 0.20[ 0.07] 1.40, 0.00, 0.10[ 0.27] 0.67] 0.47| 0.00| 0.20[ 0.67] 0.50, 0.37| 0.03
G 1.57| 0.23] 0.17] 0.00, 0.00 0.87 1.03 0.10] 0.10, 7.07| 0.30] 0.00] 0.57| 0.27| 0.03[ 3.50| 0.00] 0.77| 0.13] 0.30[ 0.33] 0.27|
H 0.27| 0.03] 0.00/ 0.00[ 0.07] 0.47] 0.20, 0.23| 0.03] 1.40{ 0.10, 0.00, 0.03[ 0.07] 0.00] 0.07| 0.00/ 0.27 0.03 0.00] 0.03] 0.03|
I 0.37] 0.03] 0.00/ 0.00[ 0.17] 0.07] 0.07| 0.13[ 0.07] 0.27] 0.10, 0.00, 0.07 0.03[ 0.70] 0.30, 0.00/ 0.10[ 0.20[ 0.07| 0.03] 0.03|
J 1.00, 0.20{ 0.50[ 0.00] 0.87| 0.20] 6.80] 1.20] 0.43f 1.47 1.37] 0.00, 0.23] 0.63] 1.07 1.30 0.00] 0.53[ 1.43| 1.93] 1.63] 0.17
K 0.57| 0.00, 0.13] 0.00[ 0.07] 1.80] 0.27| 0.10[ 0.03] 1.10[ 0.90, 0.00, 0.13[ 0.00] 0.47] 0.40, 0.00| 0.20[ 0.37] 0.80] 0.70, 0.40|
L 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
M 0.10] 0.07 0.07 0.00f 0.30] 0.10[ 0.73] 0.07| 0.03] 0.07] 0.10, 0.00] 0.03] 0.17] 0.07] 0.30] 0.00, 0.00] 0.07 0.20[ 0.13[ 0.07|
N 0.67] 0.10/ 0.03] 0.00f 0.00] 0.07] 0.33] 0.03f 0.07 0.63] 0.07/ 0.00] 0.07| 0.33] 0.03] 0.93 0.00[ 0.10] 0.13[ 0.80] 0.03f 0.43|
(0] 0.63| 0.00/ 0.00] 0.00f 0.17] 0.70[ 0.07| 0.00f 0.63] 1.07| 0.67] 0.00f 0.03 0.17] 2.30, 0.13] 0.00, 0.03] 0.37| 0.30] 0.23[ 0.07|
P 0.67] 0.37 0.13] 0.00f 0.20[ 0.10[ 3.83] 0.50[ 0.27] 0.80] 0.33 0.00] 0.17/ 0.73] 0.30, 0.93 0.00 0.13] 0.57| 1.07 0.30[ 0.33]
Q 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00[ 0.00
R 0.27] 0.07| 0.10{ 0.00f 0.03 0.07] 1.13] 0.43f 0.00] 0.07] 0.27] 0.00f 0.13 0.13] 0.17/ 0.10f 0.00, 1.10[ 0.30/ 0.37 0.20[ 0.07|
S 1.77| 0.13] 0.03[ 0.00] 0.20[ 1.03] 0.07] 0.10, 0.20[f 1.03] 0.33] 0.00, 0.13] 0.07| 0.63] 0.40[ 0.00] 0.17| 0.90| 0.60[ 0.03] 0.17
T 1.10, 0.07 0.13[ 0.00] 0.37| 0.20] 0.47| 0.07 0.10[f 1.50, 0.87 0.00, 0.17] 0.67 0.60] 1.13] 0.00] 0.37| 0.60] 0.50[ 0.43] 0.27
18] 0.80] 0.27| 0.03] 0.00f 0.00] 0.33 0.27] 0.00f 0.00, 1.17] 0.70, 0.00] 0.27 0.10] 0.23] 0.30[ 0.00[ 0.27] 0.03[ 0.43] 0.03[ 0.30
\4 0.23| 0.00, 0.03] 0.00f 0.07 0.00[ 0.20] 0.03f 0.00 0.13 0.37] 0.00] 0.03 0.57] 0.13] 0.23] 0.00 0.03] 0.13[ 0.23] 0.23[ 0.50
Table 2.50: August 2015: average daily rentals for each origin—destination pair.
A B C D E F G H I J K L M N (@] P Q R S T U A\
A 0.57] 0.30 0.87 0.27| 0.80] 1.07| 3.87] 0.17| 2.00] 2.53] 4.80, 0.00] 0.20 1.43] 2.50, 1.27] 0.13| 0.73| 2.67| 3.90] 3.03[ 1.63|
B 0.40| 0.07| 0.00] 0.00f 0.00] 0.03[ 0.47] 0.00f 0.00, 0.33 0.03 0.00f 0.17| 0.00] 0.00, 0.40{ 0.00 0.03] 0.13[ 0.17] 0.80[ 0.10|
C 1.13| 0.00] 0.60[ 0.00] 0.00f 0.50, 0.13] 0.00, 0.07] 0.40, 0.17] 0.00, 0.07 0.07/ 0.17 0.03[ 0.00, 0.10[ 0.17] 0.10] 0.03] 0.33
D 0.27] 0.00/ 0.00] 0.10f 0.03] 0.10[ 0.03] 0.00f 0.00, 0.60f 0.17/ 0.00] 0.10, 0.03] 0.00, 0.07] 0.03 0.13] 0.03[ 0.07 0.00[ 0.23]
E 0.80| 0.00/ 0.00{ 0.03f 0.10[ 1.17| 0.17] 0.03f 0.13] 1.37] 0.20, 0.00] 0.47 0.00] 0.17 0.27 0.03 0.17 0.37| 0.30] 0.23[ 0.13]
F 1.27| 0.60 0.47 0.13] 0.80[ 0.57] 2.23 0.57 0.37] 0.37| 2.17] 0.00, 0.10] 0.63[ 1.00] 1.20[ 0.03] 0.20[ 1.07| 0.70[ 0.40, 0.10|
G 5.93| 0.47 0.10{ 0.00f 0.23] 2.13[ 1.13] 0.20[ 0.30] 12.9[7 0.67|] 0.00] 1.60 0.27] 0.37| 6.43] 0.00[ 1.20{ 0.20[ 1.03| 0.93[ 0.40
H 0.20{ 0.00/ 0.07 0.03[ 0.00] 0.63[ 0.07 0.17| 0.00, 1.57| 0.10, 0.00f 0.07] 0.23 0.10, 0.17] 0.03] 0.40| 0.00 0.10[ 0.20[ 0.07
I 1.43| 0.07 0.17[ 0.00] 0.03f 0.33] 0.20[ 0.10, 0.17] 0.90, 0.23] 0.00, 0.20{ 0.03[ 0.83] 0.40[ 0.03] 0.53[ 0.20] 0.20[ 0.30, 0.20|
J 2.80] 0.60| 0.53] 0.57| 1.23] 0.33] 13.40 1.93 0.87 1.33] 1.73] 0.00] 0.33 2.13] 2.07| 1.13] 0.20[ 0.33| 1.70[ 2.73| 2.50[ 0.33]
K 4.47| 0.10] 0.07| 0.20{ 0.03] 2.40[{ 1.10[ 0.20[ 0.20[ 0.83] 1.17| 0.00] 0.33 0.43 0.60] 0.47 0.07] 0.60| 0.57| 0.93] 0.93] 0.63|
L 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[f 0.00, 0.00] 0.00, 0.00[ 0.00, 0.00] 0.00, 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00|
M 0.07] 0.17 0.13] 0.20[ 0.40{ 0.07 2.17] 0.10[ 0.03] 0.27] 0.17/ 0.00f 0.73 0.10] 0.13] 0.20[ 0.00 0.13] 0.17[ 0.13] 0.67| 0.10|
N 1.57| 0.13] 0.07] 0.00] 0.00[ 0.60] 0.10[f 0.33] 0.20[{ 1.53] 0.37] 0.00, 0.13] 0.37 0.17 0.53] 0.00] 0.43[ 0.30] 1.20[ 0.40, 0.17|
(e} 1.97| 0.00{ 0.13[ 0.03] 0.20[ 1.67] 0.23] 0.07] 0.93] 2.33] 0.63] 0.00, 0.03] 0.20[ 1.60| 0.70[ 0.00] 0.20[ 1.20] 0.57| 0.40, 0.23
P 1.00, 0.87 0.10[ 0.07] 0.23[ 0.93] 6.90[ 0.63] 0.40[ 0.80, 0.77] 0.00, 0.37] 0.63] 0.27 1.50[ 0.00] 0.30[ 1.17] 1.27| 1.67] 0.47|
Q 0.20 0.00| 0.00{ 0.03[ 0.03] 0.03[ 0.00] 0.03f 0.03 0.27] 0.00, 0.00] 0.00, 0.00] 0.00, 0.03] 0.00 0.03] 0.03[ 0.13] 0.00[ 0.00|
R 0.73| 0.07] 0.00] 0.10[ 0.00] 0.33[ 1.77 0.20[ 0.50, 0.23] 0.37] 0.00] 0.20, 0.50] 0.17 0.30] 0.00[ 1.10{ 0.17 0.90] 0.63[ 0.13|
S 2.73| 0.07 0.17 0.07 0.10f 1.13] 0.17| 0.00[ 0.20[ 1.17] 0.53] 0.00, 0.73[ 0.20[ 1.40] 1.03] 0.07| 0.37| 1.10[ 0.93| 0.77| 0.20|
T 3.30] 0.10, 0.23 0.13[ 0.57] 0.47] 1.03] 0.10[ 0.10f 2.97] 1.23] 0.00, 0.23[ 0.87 0.77] 1.33] 0.20/ 1.07| 0.60] 0.80] 1.27| 0.43
192 2.17| 1.07 0.07| 0.03[ 0.13 0.37| 0.73] 0.33[ 0.40] 1.83 0.60, 0.00[ 0.37] 0.27] 0.50, 1.87| 0.03f 1.00] 1.00] 1.27| 0.37| 1.27|
v 1.03[ 0.03] 0.20] 0.17] 0.00 0.07f 0.87 0.10] 0.03 0.17 0.70[ 0.00] 0.03] 0.47| 0.57| 0.40 0.00] 0.03] 0.23 0.10[ 1.53] 0.37|

Table 2.51: September 2015: average daily rentals for each origin—destination

pair.
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A B C D E F G H I J K L M N O P Q R S T U \Y%
A 0.53| 0.50, 1.17| 0.27| 0.97 0.87] 4.60, 0.03[ 1.37] 3.00] 5.83] 0.00, 0.13[ 1.00] 2.93] 1.70| 0.17| 2.77| 3.67| 1.03] 3.83] 2.43
B 0.17] 0.43] 0.07| 0.00[ 0.03 0.03] 0.27| 0.00[ 0.00[ 0.03[ 0.00] 0.00, 0.13[ 0.00] 0.00] 0.63] 0.00/ 0.07| 0.00] 0.00] 0.40, 0.00|
C 2.00] 0.00, 0.57| 0.13[ 0.00] 0.73] 0.17| 0.00f 0.07] 0.37] 0.07| 0.00, 0.03[ 0.13] 0.13[ 0.10, 0.00/ 0.10[ 0.40 0.17| 0.30| 0.40|
D 0.50] 0.00, 0.17| 0.07| 0.10] 0.30] 0.20, 0.03f 0.07] 2.87] 0.37| 0.00, 0.20[ 0.07] 0.10] 0.07| 0.13| 0.10[ 0.23] 0.17] 0.07| 0.93
E 1.10 0.03] 0.10f 0.00, 0.33] 2.00f 0.10] 0.00] 0.20, 1.13[ 0.07] 0.00] 0.43] 0.07| 0.30[ 0.17] 0.40| 0.13] 0.33] 0.20[ 0.20] 0.13]
F 0.87] 0.37] 0.87| 0.37] 1.30] 0.70] 2.40, 0.50[ 0.27] 0.27] 2.27| 0.00, 0.33[ 1.10[ 1.07] 1.20, 0.40[ 1.03[ 0.60] 0.20] 0.77| 0.03
G 5.47| 0.33] 0.30[ 0.17] 0.03 2.10] 0.93] 0.27| 0.00] 13.40 0.53] 0.00[ 1.50[ 0.20] 0.17] 6.63] 0.00[ 0.20] 0.90] 1.37| 1.13[ 0.37|
H 0.10] 0.00, 0.03 0.07] 0.00] 0.60] 0.37| 0.10f 0.00[ 1.10{ 0.13] 0.00, 0.43[ 0.17] 0.00] 0.07| 0.00/ 0.00[ 0.00] 0.03] 0.03] 0.43|
I 1.50 0.00 0.17] 0.00, 0.10/ 0.10f 0.07] 0.13] 0.17| 0.70[ 0.10[ 0.00] 0.10, 0.07| 0.83[ 0.23 0.00] 0.33] 0.20[ 0.37] 0.83] 0.13]
J 2.97| 0.47/ 0.80| 2.17| 0.77] 0.37] 11.73 1.47| 1.20[ 0.93] 1.30| 0.00, 0.47 1.30] 1.67] 1.73] 0.60| 1.87| 2.03] 0.60] 1.93] 0.23
K 5.17] 0.00/ 0.13] 0.30 0.07] 2.33] 0.80] 0.23f 0.03] 1.10[ 0.83] 0.00] 0.27] 0.30] 0.53] 0.63] 0.03] 0.40 0.37| 1.07] 1.43[ 0.47|
L 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.00] 0.00f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
M 0.03] 0.17] 0.00/ 0.33[ 0.27] 0.30] 2.13] 0.20[ 0.10[ 0.20] 0.03] 0.00, 0.73[ 0.27] 0.10] 0.17| 0.00/ 0.10[ 0.03] 0.17] 0.70, 0.13|
N 1.90 0.07] 0.03] 0.07] 0.03] 0.83f 0.27] 0.33] 0.07| 1.47| 0.20[ 0.00] 0.23] 0.30, 0.20[ 0.77] 0.00] 0.10, 0.43[ 0.80] 0.23] 0.13]
(0] 2.20| 0.03] 0.20/ 0.03[ 0.07] 0.97] 0.20, 0.03[ 0.90] 2.00] 0.73] 0.00, 0.03[ 0.13] 1.07] 0.63] 0.37| 0.93[ 0.87| 0.43] 0.40, 0.20|
P 1.40, 0.60] 0.20[ 0.23] 0.03f 1.00] 7.50 0.43] 0.30] 1.10, 0.60] 0.00, 0.30] 0.87| 0.47| 2.20[ 0.00] 1.30[ 1.60, 0.30] 1.97| 0.50|
Q 0.60] 0.07 0.03] 0.17/ 0.13 0.27| 0.03] 0.03f 0.03] 0.13] 0.07] 0.00[ 0.00, 0.00] 0.47| 0.03] 0.20, 0.90| 0.10/ 0.00] 0.00f 0.07
R 3.17 0.23] 0.13] 0.07| 0.07] 1.07| 0.27] 0.00f 0.03] 1.67] 0.40, 0.00] 0.30, 0.10] 0.63] 1.17 0.67| 1.10] 1.30[ 0.07] 1.23[ 0.20
S 3.73| 0.03] 0.30] 0.40[ 0.77] 0.47| 0.83] 0.00f 0.30] 2.03] 1.30] 0.00f 0.13] 0.40] 0.83] 1.47| 0.30, 0.57] 0.73| 0.63] 1.17| 0.17|
T 1.03| 0.07 0.10[ 0.30] 0.07| 0.37] 2.33] 0.13] 0.40f 0.13] 0.87 0.00, 0.10] 0.63[ 0.27] 0.40[ 0.03] 0.43] 0.47] 0.63] 0.37] 0.10|
18] 2.17 0.37 0.23] 0.07| 0.07 0.80[ 0.70, 0.43f 1.17/ 1.90] 1.03] 0.00] 0.60, 0.30] 0.57| 2.40{ 0.07| 0.93| 0.77| 0.77] 0.47| 1.43|
\4 1.00, 0.03] 0.30[ 0.73] 0.07f 0.10] 0.77| 0.10, 0.27] 0.10, 0.43] 0.00, 0.07] 0.63] 0.17 0.80 0.03 0.37| 0.37] 0.23] 1.73] 0.17
Table 2.52: October 2015: average daily rentals for each origin—destination pair.
A B C D E F G H I J K L M N (@] P Q R S T U A\
A 0.30] 0.60 0.97 0.27| 0.77 1.03[ 5.37 0.23] 1.80 2.47| 6.67] 0.00] 0.07| 1.53] 2.43| 2.40{ 0.20[ 2.63| 3.50[ 0.83] 3.57| 1.80
B 0.00| 0.07 0.07 0.10f 0.00] 0.20[ 0.23 0.00f 0.07 0.07] 0.07/ 0.00] 0.17 0.03] 0.00, 0.37 0.03 0.10] 0.03[ 0.13] 0.37| 0.03|
C 1.50, 0.00|] 0.57] 0.07 0.00f 0.87] 0.20f 0.07/ 0.13] 0.10, 0.10] 0.00, 0.17 0.07/ 0.13] 0.23[ 0.27 0.17] 0.07] 0.13] 0.17] 0.50|
D 0.20{ 0.10/ 0.13] 0.03f 0.10] 0.20[ 0.13] 0.00f 0.07/ 1.30] 0.57] 0.00] 0.07/ 0.07] 0.10, 0.07] 0.17| 0.07 0.10[ 0.03] 0.00[ 0.43|
E 1.03| 0.00] 0.00[ 0.07 0.10[f 1.10, 0.17] 0.07/ 0.10[f 1.27 0.03] 0.00, 0.50{ 0.07 0.40| 0.20[ 0.17] 0.07] 0.60] 0.17] 0.03] 0.10|
F 1.03| 0.40[ 0.80[ 0.27] 0.67| 0.80] 2.20 0.53] 0.20[ 0.60, 1.73] 0.00, 0.27 1.07| 0.83] 0.83[ 0.57 1.03[ 0.67|] 0.30] 1.10, 0.13
G 6.80] 0.13] 0.33] 0.17/ 0.00] 1.63[ 0.90] 0.13f 0.00] 10.87 0.37] 0.00f 0.70, 0.07] 0.27| 7.00] 0.00, 0.27] 1.07| 2.00] 0.90[ 0.97|
H 0.10] 0.00, 0.00] 0.10f 0.03] 0.47| 0.47| 0.03f 0.03 1.37] 0.17/ 0.00] 0.30, 0.17] 0.07| 0.20[ 0.03[ 0.07 0.10[ 0.03] 0.30[ 0.30
I 1.30 0.07] 0.27 0.03] 0.03( 0.07] 0.07] 0.00, 0.23 0.77 0.20[ 0.00, 0.30] 0.10[ 1.10[ 0.13[ 0.07 0.33] 0.13] 0.20[ 1.37| 0.10|
J 2.87 0.53] 0.97 0.90[ 1.33] 0.43[ 10.600 1.90[ 0.90, 0.97] 1.33] 0.00] 0.43] 1.83] 1.63] 1.10{ 0.83| 2.53] 2.33[ 0.73] 2.93[ 0.00
K 5.60] 0.03] 0.00] 0.43[ 0.03] 2.57| 0.90| 0.10[ 0.07] 1.03] 0.50, 0.00] 0.43 0.37 0.73] 0.83] 0.10[ 0.50{ 0.50[ 1.30] 1.60[ 0.70|
L 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00[f 0.00, 0.00] 0.00, 0.00[ 0.00, 0.00] 0.00, 0.00] 0.00/ 0.00] 0.00[ 0.00] 0.00[ 0.00|
M 0.10] 0.23] 0.00{ 0.07f 0.17] 0.53[ 1.50, 0.33[ 0.07] 0.17] 0.03] 0.00] 0.43 0.27] 0.17| 0.33] 0.03[ 0.03] 0.07| 0.00] 1.10[ 0.07
N 1.73| 0.07 0.07] 0.10] 0.00[ 0.80] 0.30] 0.27] 0.13] 1.67 0.30] 0.00, 0.23] 0.40[ 0.07| 0.90[ 0.03] 0.07] 0.13] 0.97] 0.13] 0.20|
(e} 1.67| 0.00] 0.10[ 0.07] 0.30[ 1.27] 0.23] 0.03] 1.13] 2.27 1.07] 0.00, 0.03] 0.03[ 0.83] 0.67] 0.20] 0.60[ 0.70] 0.30] 0.23] 0.20|
P 1.57| 0.53] 0.13[ 0.13] 0.07| 0.73] 8.33 0.37] 0.13] 0.93] 0.87 0.00, 0.37 0.77] 0.63] 2.13[ 0.03] 1.17 1.27| 0.53] 1.30, 0.30|
Q 0.60] 0.07 0.23] 0.13[ 0.23] 1.10[ 0.00[ 0.03[ 0.03] 0.73] 0.03] 0.00[ 0.03 0.00[ 0.20, 0.03] 0.10, 0.80] 0.17 0.00] 0.00[ 0.07
R 3.10] 0.07 0.27] 0.13[ 0.07 1.17[ 0.17] 0.03[ 0.27] 1.97] 0.37] 0.00] 0.07| 0.07] 0.83] 0.97] 0.67| 0.53| 0.83[ 0.37] 1.23[ 0.50
S 3.33| 0.10] 0.47| 0.23[ 0.50] 0.40{ 0.77| 0.03[ 0.13] 2.20] 1.20, 0.00, 0.13[ 0.33] 0.73] 1.90, 0.73[ 0.33[ 0.73] 0.77] 1.17| 0.43
T 0.90| 0.03] 0.07| 0.03[ 0.03 0.37] 3.03] 0.03f 0.07] 0.33 1.03] 0.00, 0.13[ 0.90] 0.20] 0.20| 0.10[ 0.23[ 0.90] 0.87] 0.13] 0.00|
192 1.80 0.37] 0.30] 0.00] 0.00/ 0.27 0.43 0.50] 1.67| 2.63[ 1.27 0.00] 1.00, 0.10/ 0.23f 1.33] 0.03] 0.93] 1.10[ 0.77 0.43] 1.90]
v 1.07| 0.07 0.13 0.67] 0.10/ 0.07 1.10] 0.27| 0.17| 0.17| 0.60[ 0.00] 0.23] 0.70, 0.30[ 0.40 0.03| 0.47| 0.57| 0.13] 1.37] 0.13]

Table 2.53: November 2015: average daily rentals for each origin—destination

pair.
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A B C D E F G H I J K L M N O P Q R S T U \Y%
A 0.27| 0.40, 0.43/ 0.20[ 0.63 1.03] 4.17| 0.10[ 0.97] 2.30] 4.33] 0.07| 0.07] 1.40| 2.27| 1.27| 0.77| 2.00] 3.23] 0.53] 2.17| 0.87|
B 0.03| 0.07] 0.07| 0.10[ 0.00] 0.23] 0.13] 0.00[ 0.20[ 0.03[ 0.00] 0.00, 0.00[ 0.13] 0.00] 0.20, 0.00/ 0.07 0.07] 0.07] 0.20, 0.00|
C 1.10 0.00 0.33] 0.13] 0.03 0.80[ 0.20[ 0.03] 0.10, 0.13[ 0.00[ 0.00] 0.03] 0.03 0.07 0.20] 0.20] 0.03] 0.27] 0.07] 0.13] 0.37|
D 0.23| 0.07] 0.13] 0.07] 0.00] 0.13] 0.03] 0.00[ 0.30] 1.83 0.80] 0.00, 0.03[ 0.03f 0.03] 0.03 0.17 0.07| 0.27] 0.13] 0.00, 0.13|
E 0.90| 0.03] 0.03 0.00f 0.00] 1.37| 0.13] 0.03f 0.10f 1.37] 0.17| 0.00, 0.33[ 0.03] 0.20] 0.27| 0.03 0.13[ 0.43] 0.23] 0.00, 0.10|
F 0.90] 0.10, 0.73[ 0.10[f 0.87 0.87| 2.17| 0.43[ 0.43] 0.30] 2.37| 0.00[ 0.20[ 0.73] 1.63] 0.47| 0.53[ 0.87 0.67| 0.33] 0.67| 0.17|
G 5.27| 0.23] 0.27| 0.00f 0.07] 1.27| 0.80, 0.03f 0.03/ 9.97 0.57| 0.10, 0.97| 0.40] 0.10] 7.87| 0.00| 0.20[ 0.70] 2.37| 0.67| 0.70|
H 0.20] 0.00, 0.03 0.00[ 0.03 0.13] 0.10, 0.00[ 0.03/ 1.40{ 0.03] 0.00, 0.10[ 0.13] 0.00] 0.23] 0.03 0.03f 0.07] 0.17] 0.07| 0.03|
I 1.17| 0.10f 0.13] 0.27] 0.03 0.27| 0.03 0.07] 0.10, 0.33[ 0.33] 0.00] 0.30] 0.03] 0.50[ 0.33] 0.03] 0.17| 0.20[ 0.13[ 1.17] 0.17|
J 2.43| 0.17] 0.60[ 1.03[ 0.47] 0.17| 9.77| 1.07| 0.80] 0.83] 1.47| 0.00[ 0.43/ 1.00] 1.70] 1.00, 1.13[ 2.17] 1.70] 0.17| 1.83[ 0.07|
K 3.93| 0.03] 0.03 0.60[ 0.00] 2.87| 0.70, 0.17| 0.40] 1.07] 0.37| 0.00[ 0.13] 0.23 0.63] 0.53] 0.07| 0.60] 0.93] 0.30, 1.13[ 0.57|
L 0.00] 0.03] 0.00] 0.00f 0.00] 0.00[ 0.07 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.03 0.00, 0.00] 0.00f 0.00] 0.03f 0.00] 0.00[ 0.03|
M 0.03| 0.07 0.03] 0.07| 0.30] 0.33[ 1.20[ 0.10[f 0.10] 0.03] 0.13] 0.00f 0.00, 0.10] 0.07 0.10f 0.00/ 0.00] 0.07 0.03 0.57| 0.07
N 1.20[ 0.03] 0.10] 0.00, 0.00 0.63[ 0.20[ 0.17] 0.00, 1.13[ 0.07] 0.00] 0.20] 0.17| 0.07 0.70| 0.00] 0.23] 0.23] 0.53[ 0.17 0.37|
(0] 1.33] 0.00] 0.03[ 0.00] 0.10f 1.43] 0.27] 0.07] 0.90] 1.87 0.80] 0.00, 0.07 0.07| 0.33] 0.60[ 0.07] 0.33] 0.83] 0.30] 0.50, 0.30|
P 0.93| 0.30| 0.30] 0.07| 0.00] 0.60[ 6.90| 0.63f 0.17] 0.60] 0.63] 0.00] 0.23] 0.83] 0.43] 1.40{ 0.10[ 1.00{ 1.33[ 0.13] 0.80[ 0.93]
Q 1.17| 0.03] 0.23] 0.17] 0.03[ 1.23] 0.03 0.03] 0.07] 0.33] 0.03] 0.00, 0.00] 0.00, 0.07 0.03 0.00] 0.07[ 0.10] 0.07| 0.00] 0.07
R 2.27| 0.03] 0.10{ 0.20f 0.07| 0.80[ 0.13] 0.03f 0.23 1.90] 0.43 0.00] 0.10, 0.13] 0.47/ 0.57 0.17| 0.83] 0.80[ 0.33] 0.73[ 0.33]
S 2.33| 0.03] 0.53] 0.23 0.40{ 0.50[ 1.10[{ 0.17| 0.07] 1.60[ 1.20] 0.00f 0.20, 0.23 0.37| 1.57] 0.43] 0.30] 0.73| 0.97 0.77| 0.07|
T 0.67] 0.07 0.07 0.07| 0.00] 0.30[ 1.70[ 0.43f 0.13] 0.20[ 0.70, 0.00f 0.07] 0.43] 0.33] 0.23 0.03] 0.27 0.50/ 1.13] 0.60[ 0.07|
18] 1.23] 0.30] 0.10[ 0.07 0.07| 0.37 0.47| 0.07@ 1.17] 2.07] 0.80] 0.00, 0.40f 0.17/ 0.23 0.63] 0.00] 0.47| 0.57| 0.60[ 0.27] 1.47|
\4 0.67] 0.00, 0.33] 0.23 0.03] 0.13 0.83] 0.03f 0.23 0.37] 0.37] 0.03] 0.10, 0.23 0.23] 0.63] 0.10 0.13] 0.07| 0.23] 1.37| 0.23|
Table 2.54: December 2015: average daily rentals for each origin—destination
pair.
A B C D E F G H I J K L M N O P Q R S T U Y%
A 0.27| 0.00, 0.43 0.20[ 0.03 0.27] 2.20, 0.03| 0.13] 0.60] 2.77| 0.07| 0.00[ 0.87 0.20] 1.03] 0.17| 1.50[ 1.57] 0.40| 1.23] 0.50|
B 0.00] 0.00/ 0.00] 0.00f 0.00] 0.00[ 0.03] 0.00f 0.00] 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.03 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
C 0.70 0.00| 0.00] 0.07| 0.00] 0.13[ 0.07] 0.00f 0.00, 0.10f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.00] 0.00[ 0.00
D 0.20 0.00/ 0.13] 0.03f 0.00] 0.13f 0.03] 0.00f 0.07 1.30] 0.37] 0.00] 0.03 0.03] 0.03 0.03 0.13 0.07 0.10[ 0.03] 0.00[ 0.13]
E 0.10] 0.00/ 0.00] 0.00f 0.00] 0.13[ 0.00] 0.00f 0.03] 0.23 0.00, 0.00] 0.00, 0.00] 0.00/, 0.00] 0.03f 0.00] 0.10[ 0.07] 0.00[ 0.00
F 0.23| 0.00, 0.10{ 0.10f 0.00] 0.17| 0.63] 0.20[ 0.03] 0.10f 0.80, 0.00] 0.00, 0.07 0.30| 0.23] 0.40[ 0.20[ 0.17 0.03] 0.17 0.00]
G 2.53| 0.07] 0.00] 0.00f 0.00] 0.33 0.47| 0.03f 0.00 6.37] 0.07] 0.10f 0.03] 0.03] 0.00, 3.10f 0.00 0.07| 0.13[ 0.43] 0.17| 0.20]
H 0.03| 0.00, 0.00] 0.00f 0.00] 0.13[ 0.10] 0.00f 0.00, 0.60] 0.00, 0.00] 0.07 0.00] 0.00, 0.00] 0.00f 0.00] 0.00f 0.03] 0.03f 0.03|
I 0.13| 0.00, 0.00] 0.00f 0.00] 0.07| 0.03] 0.00f 0.00] 0.20f 0.03 0.00] 0.00, 0.00] 0.27 0.10f 0.00 0.00] 0.03f 0.10] 0.17| 0.00|
J 0.47| 0.00, 0.07] 0.90f 0.00] 0.10[ 6.57 1.07| 0.30] 0.47| 0.60, 0.00] 0.03] 0.47] 0.23] 0.33] 0.60 0.83] 0.80[ 0.00] 0.93[ 0.00]
K 2.07] 0.00, 0.00{ 0.30f 0.00] 0.73] 0.23] 0.00f 0.03] 0.33 0.07/ 0.00] 0.00, 0.00] 0.07 0.03] 0.03 0.10] 0.27| 0.00] 0.10[ 0.10|
L 0.00] 0.03] 0.00] 0.00f 0.00] 0.00[ 0.07] 0.00[f 0.00, 0.00] 0.00, 0.00] 0.00, 0.03] 0.00, 0.00] 0.00f 0.00] 0.03f 0.00] 0.00[ 0.03]
M 0.00] 0.00/ 0.00] 0.07| 0.00] 0.00[ 0.00] 0.00f 0.00, 0.00] 0.00, 0.00] 0.00, 0.00] 0.00, 0.03] 0.00 0.00] 0.00[ 0.00] 0.00[ 0.00
N 0.77| 0.00/ 0.00] 0.00f 0.00] 0.07| 0.00] 0.00f 0.00, 0.73] 0.00, 0.00] 0.00, 0.07] 0.00, 0.13] 0.00 0.00] 0.03f 0.00] 0.03f 0.03|
(@] 0.70| 0.00, 0.00] 0.00f 0.00] 0.37| 0.00] 0.00f 0.13] 0.23 0.10, 0.00] 0.00, 0.00] 0.03 0.03 0.07] 0.13] 0.23[ 0.27] 0.00[ 0.00|
P 0.43| 0.00, 0.00] 0.07f 0.00] 0.17 3.73 0.07] 0.07] 0.20[ 0.17/ 0.00] 0.00, 0.17] 0.03] 0.73] 0.00[ 0.10[ 0.23[ 0.00] 0.53[ 0.20
Q 0.60] 0.03] 0.03] 0.13 0.03 0.27[ 0.00] 0.03f 0.03] 0.13] 0.03 0.00f 0.00, 0.00] 0.07| 0.03] 0.00, 0.07] 0.10/ 0.00] 0.00f 0.07|
R 1.80/ 0.00] 0.00[ 0.07] 0.00[ 0.17] 0.07] 0.00, 0.00] 0.43 0.07] 0.00, 0.00] 0.03f 0.10] 0.07[ 0.17] 0.10[ 0.20] 0.07] 0.10, 0.03|
S 1.40, 0.00] 0.00[ 0.23] 0.13[ 0.13] 0.20[ 0.00, 0.00f 0.80, 0.20[ 0.00, 0.00] 0.03 0.07 0.37| 0.30] 0.20[ 0.43| 0.07| 0.17] 0.07
T 0.33| 0.00, 0.00] 0.03f 0.00] 0.03[ 0.57] 0.00f 0.07] 0.03] 0.07/ 0.00f 0.00, 0.07] 0.10, 0.00f 0.03f 0.07 0.17| 0.10] 0.00[ 0.00|
U 1.23] 0.00] 0.00[ 0.00] 0.00f 0.27] 0.17| 0.03] 0.10f 0.83] 0.17] 0.00, 0.03] 0.10, 0.00] 0.37 0.00] 0.03[ 0.40{ 0.03[ 0.13] 0.47|
Y% 0.53| 0.00/ 0.00] 0.23[ 0.00] 0.00[ 0.27] 0.03f 0.00, 0.03] 0.03 0.03 0.00, 0.13] 0.00, 0.10f 0.03[ 0.00] 0.07 0.00] 0.53[ 0.07

Table 2.55: Minimum m of the Uniform distribution.
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A B C D E F G H I J K L M N O P Q R S T U A%
A 0.90 0.60/ 1.43| 0.27 0.97 1.50 5.37 0.27| 1.80] 3.00 6.67] 0.07] 0.27 2.17] 2.93] 3.00] 0.77 3.70| 5.97| 1.40| 4.87| 2.43|
B 0.17] 0.43] 0.07] 0.10[ 0.03] 0.23[ 0.27] 0.00[ 0.20] 0.27] 0.07] 0.00[ 0.17 0.13] 0.03] 0.63] 0.03 0.10] 0.07 0.13] 0.40[ 0.03|
C 2.00] 0.00| 0.67] 0.13[ 0.03] 0.93[ 0.27] 0.07] 0.13] 0.60[ 0.13] 0.00] 0.17 0.13] 0.23] 0.27] 0.27 0.17 0.40[ 0.17] 0.30[ 0.50
D 0.50 0.10/ 0.17] 0.07[ 0.10[ 0.30[ 0.20] 0.03[ 0.30] 2.87| 0.80 0.00] 0.20, 0.07] 0.10, 0.07] 0.17[ 0.10] 0.27 0.17] 0.07| 0.93|
E 1.10, 0.03] 0.10[ 0.07] 0.67 2.00] 0.17] 0.07 0.57] 1.43] 0.17] 0.00, 0.50] 0.07] 0.40{ 0.27] 0.40[ 0.40[ 0.60| 0.23[ 0.20] 0.47|
F 1.60/ 0.43| 0.87 0.37 1.30[ 1.03] 3.03] 0.57] 0.63] 0.60| 2.53] 0.00 0.33] 1.10[ 1.63| 1.20[ 0.57] 1.10[ 0.77] 0.83] 1.43] 0.40|
G 6.80] 0.33] 0.33] 0.17] 0.07] 2.83[ 2.03] 0.33[ 1.17] 13.6[7 0.57| 0.10] 1.50, 0.47] 0.27 7.87 0.00[ 0.37 1.30[ 2.37] 1.20[ 1.63|
H 0.27| 0.03] 0.20] 0.10[ 0.03] 1.47 0.53] 0.33[ 0.10] 1.83] 0.17] 0.00] 0.43] 0.53] 0.13] 0.37 0.03] 0.23] 0.20[ 0.60] 0.63[ 0.70
I 1.57 0.10] 0.27 0.27] 0.73[ 0.30] 1.53[ 0.30] 1.50[ 0.90| 0.67| 0.00, 0.30] 0.10/ 1.50] 1.10[ 0.07] 0.43[ 0.20] 0.57| 1.37] 0.67
J 2.971 0.53] 0.97 2.17 1.33] 0.43[ 12.73 2.90[ 1.27] 2.23] 1.47] 0.00] 0.47 1.83] 1.70| 1.83] 1.13| 2.53] 2.33[ 0.73] 2.93] 0.43|
K 5.60 0.07] 0.20[ 0.60] 0.10[ 2.87] 0.90] 0.23] 0.40[ 1.40, 0.83] 0.00, 0.43] 0.37[ 0.73] 0.83[ 0.10] 0.60[ 0.97] 1.30] 1.60, 0.70|
L 0.00[ 0.03] 0.00[ 0.00[ 0.00[ 0.00[ 0.07] 0.00[ 0.00[ 0.00[ 0.00[ 0.00f 0.00f 0.03f 0.00f 0.00, 0.00, 0.00, 0.03 0.00 0.00 0.03|
M 0.10] 0.23] 0.07] 0.33] 0.30] 0.53] 2.13| 0.43[ 0.13] 0.37] 0.17] 0.00[ 0.73] 0.43] 0.17 0.43 0.03] 0.30] 0.20 0.17 1.10[ 0.17
N 1.90/ 0.07] 0.10[ 0.10] 0.03[ 1.23] 0.33] 0.50, 0.20[ 1.67| 0.33] 0.00 0.27] 0.97[ 0.30] 0.93[ 0.03] 0.33] 0.43] 0.97] 0.30, 0.73|
O 2.20 0.03] 0.20] 0.07f 0.30] 1.57| 0.27| 0.07 1.17] 2.27] 1.07] 0.00] 0.13] 0.33] 1.07| 0.67] 0.37 0.93] 0.93[ 0.73] 0.50[ 0.33|
P 2.13] 0.60[ 0.30] 0.23] 0.13] 1.00[ 8.33[ 0.63[ 2.30[ 1.30[ 0.87| 0.00[ 0.43] 0.87| 0.63] 2.20, 0.10, 1.30, 1.60, 0.53] 2.50, 0.93|
Q 1.17] 0.07 0.23] 0.17/ 0.23] 1.23] 0.03] 0.03 0.071 0.73] 0.07] 0.00] 0.03] 0.00] 0.47] 0.03] 0.20[ 0.90] 0.17] 0.07] 0.00[ 0.07|
R 4.17 0.23] 0.27/ 0.20, 0.10, 1.17/ 0.30] 0.13] 0.33] 1.97] 0.67] 0.00] 0.37] 0.77] 0.83] 1.17] 0.67] 1.10[ 1.30[ 0.43[ 1.23[ 0.50
S 5.00[ 0.10[ 0.53] 0.40[ 0.77] 0.83[ 1.10[ 0.40[ 0.30[ 2.27| 1.40[ 0.00[ 0.20[ 0.47 1.03] 1.90, 0.73] 1.37 1.40, 1.17 1.23| 0.53|
T 1.30, 0.07 0.10, 0.30, 0.10, 0.63] 3.03] 0.67] 0.80] 0.33] 1.03 0.00] 0.23] 0.90] 0.33] 0.40[ 0.10] 0.53] 1.07] 1.13] 0.60[ 0.17|
U 4.93 0.37| 0.30, 0.07 0.07 0.87 1.03] 0.50] 1.67| 2.63] 1.27] 0.00] 1.00] 0.40[ 0.57] 2.57| 0.07] 0.93[ 1.23[ 0.77 1.30[ 1.90
A\ 1.43| 0.07 0.47 0.73] 0.27/ 0.17/ 2.00] 1.00[ 0.30] 0.37] 0.90] 0.03] 0.30] 0.90] 0.60[ 0.80[ 0.10[ 0.47 0.57 0.33[ 1.73[ 0.40|

Table 2.56: Maximum M of the Uniform distribution.

A B C D E F G H I J K L M N O P Q R S T U v
A 1.71) 3.33] 1.07 4.29 2 1.13] 0.26] 6.67 1.03] 0.56| 0.21] 15 7.5 0.66| 0.64] 0.5 2.14| 0.38 0.27] 1.11] 0.33] 0.68|
B 12 4.62 30 20 60 8.57| 6.67| - 10 7.5 30 - 12 15 60 3 60 20 30 15 5 60
C 0.74] - 3 10 60 1.88 6 30 15 2.86| 15 - 12 15 8.57| 7.5 7.5 12 5 12 6.67| 4
D 2.86| 20 6.67| 20 20 4.62 8.57 60 5.45] 0.48] 1.71] - 8.57| 20 15 20 6.67] 12 5.45 10 30 1.88
E 1.67] 60 20 30 3 0.94] 12 30 3.33] 1.2 12 - 4 30 5 7.5 4.62 5 2.86| 6.67] 10 4.29|
F 1.09| 4.62] 2.07 4.29| 1.54] 1.67| 0.55] 2.61] 3 2.86| 0.6 - 6 1.71) 1.03] 1.4 2.07] 1.54] 2.14f 2.31] 1.25| 5
G 0.21] 5 6 12 30 0.63| 0.8 5.45 1.71] 0.1 3.16] 10 1.3 4 7.5 0.18| - 4.62 1.4 0.71] 1.46] 1.09|
H 6.67| 60 10 20 60 1.25/ 3.16| 6 20 0.82 12 - 4 3.75 15 5.45 60 8.57| 10 3.16| 3 2.73
I 1.18 20 7.5 7.5 2.73| 5.45] 1.28 6.67| 1.33[ 1.82 2.86 - 6.67| 20 1.13| 1.67 30 4.62| 8.57 3 1.3 3
J 0.58| 3.75] 1.94] 0.65 1.5 3.75 0.1 0.5 1.28 0.74] 0.97 - 4 0.87] 1.03] 0.92] 1.15 0.59] 0.64] 2.73[ 0.52| 4.62
K 0.26/ 30 10 2.22 20 0.56| 1.76] 8.57] 4.62] 1.15 2.22 - 4.62| 5.45 2.5 2.31] 15 2.86| 1.62| 1.54] 1.18f 2.5
L - 30 - - - - 15 - - - - - - - - - - - 30 - - 30
M 20 8.57] 30 5 6.67| 3.75 0.94] 4.62| 15 5.45) 12 - 2.73] 4.62] 12 4.29[ 60 6.67| 10 12 1.82[ 12
N 0.75[ 30 20 20 60 1.54 6 4 10 0.83] 6 - 7.5 1.94 6.67 1.88 60 6 4.29| 2.07 6 2.61]
O 0.69] 60 10 30 6.67| 1.03] 7.5 30 1.54, 0.8 1.71 - 15 6 1.82| 2.86| 4.62] 1.88 1.71 2 4 6
P 0.78 3.33| 6.67] 6.67] 15 1.71 0.17 2.86] 0.85 1.33] 1.94 - 4.62[ 1.94 3 0.68/ 20 1.43| 1.09] 3.75 0.66| 1.76|
Q 1.13] 20 7.5 6.67| 7.5 1.33] 60 30 20 2.31] 20 - 60 - 3.75] 30 10 2.07 7.5 30 - 15
R 0.34| 8.57 7.5 7.5 20 1.5 5.45) 15 6 0.83] 2.73 - 5.45] 2.5 2.14| 1.62 2.4 1.67 1.33| 4 1.5 3.75|
S 0.31] 20 3.75 3.16] 2.22[ 2.07] 1.54] 5 6.67| 0.65] 1.25 - 10 4 1.82| 0.88 1.94| 1.28 1.09] 1.62 1.43| 3.33|
T 1.22| 30 20 6 20 3 0.56 3 2.31] 5.45 1.82 - 8.57| 2.07 4.62 5 15 3.33] 1.62| 1.62| 3.33] 12
U 0.32| 5.45| 6.67 30 30 1.76| 1.67| 3.75 1.13] 0.58 1.4 - 1.94, 4 3.53| 0.68 30 2.07 1.22| 2.5 1.4 0.85
v 1.02| 30 4.29| 2.07 7.5 12 0.88) 1.94] 6.67| 5 2.14f 30 6.67| 1.94| 3.33] 2.22| 15 4.29 3.16| 6 0.88| 4.29

Table 2.57: Rate parameter A of the Exponential distribution.
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A B C D E F G H I J K L M N O P Q R S T U \4
A 0.58 0.30] 0.93] 0.23] 0.50, 0.88 3.78 0.15 0.97| 1.80| 4.72 0.07| 0.13] 1.52 1.57| 2.02 0.47| 2.60| 3.77| 0.90| 3.05 1.47]
B 0.08 0.22] 0.03] 0.05 0.02] 0.12] 0.15 0.00, 0.10, 0.13] 0.03] 0.00, 0.08 0.07/ 0.02] 0.33 0.02 0.05 0.03 0.07] 0.20] 0.02
C 1.35( 0.00[ 0.33/ 0.10[f 0.02f 0.53f 0.17| 0.03 0.07 0.35 0.07| 0.00 0.08 0.07] 0.12f 0.13f 0.13f 0.08 0.20[ 0.08 0.15 0.25
D 0.35| 0.05 0.15 0.05 0.05 0.22] 0.12] 0.02] 0.18 2.08 0.58 0.00] 0.12] 0.05 0.07| 0.05 0.15 0.08 0.18 0.10, 0.03] 0.53]
E 0.60] 0.02] 0.05 0.03] 0.33] 1.07| 0.08 0.03 0.30, 0.83] 0.08 0.00] 0.25 0.03 0.20, 0.13] 0.22] 0.20, 0.35 0.15 0.10| 0.23]
F 0.92] 0.22] 0.48 0.23] 0.65 0.60, 1.83 0.38 0.33] 0.35 1.67] 0.00, 0.17| 0.58 0.97| 0.72] 0.48 0.65 0.47| 0.43] 0.80 0.20]
G 4.67 0.20 0.17| 0.08 0.03f 1.58 1.25( 0.18 0.58 10.02 0.32[ 0.10[ 0.77 0.25 0.13[ 5.48 0.00[ 0.22[ 0.72[ 1.40[ 0.68f 0.92
H 0.15/ 0.02] 0.10, 0.05 0.02] 0.80] 0.32] 0.17| 0.05 1.22| 0.08 0.00] 0.25 0.27] 0.07| 0.18 0.02] 0.12] 0.10, 0.32] 0.33 0.37]
I 0.85 0.05 0.13] 0.13] 0.37] 0.18 0.78 0.15 0.75 0.55 0.35 0.00] 0.15 0.05 0.88 0.60, 0.03] 0.22] 0.12] 0.33] 0.77| 0.33]
J 1.72( 0.27 0.52[ 1.53] 0.67| 0.27 9.65 1.98 0.78 1.35 1.03 0.00 0.25 1.15( 0.97| 1.08 0.87 1.68 1.57| 0.37| 1.93| 0.22
K 3.83] 0.03] 0.10] 0.45 0.05 1.80, 0.57| 0.12] 0.22] 0.87| 0.45 0.00] 0.22] 0.18 0.40, 0.43] 0.07| 0.35 0.62 0.65 0.85 0.40]
L 0.00] 0.03] 0.00, 0.00, 0.00, 0.00, 0.07] 0.00, 0.00, 0.00] 0.00] 0.00] 0.00] 0.03] 0.00, 0.00, 0.00] 0.00] 0.03] 0.00] 0.00] 0.03]
M 0.05| 0.12] 0.03] 0.20, 0.15 0.27] 1.07/ 0.22] 0.07| 0.18 0.08 0.00] 0.37] 0.22] 0.08 0.23 0.02 0.15 0.10, 0.08 0.55 0.08
N 1.33 0.03] 0.05[ 0.05[ 0.02 0.65 0.17] 0.25( 0.10[ 1.20 0.17| 0.00[ 0.13f 0.52[ 0.15 0.53f 0.02[ 0.17| 0.23[ 0.48 0.17 0.38
o 1.45( 0.02[ 0.10[ 0.03f 0.15( 0.97 0.13 0.03 0.65 1.25 0.58 0.00] 0.07] 0.17] 0.55 0.35 0.22] 0.53] 0.58 0.50] 0.25 0.17|
P 1.28 0.30 0.15( 0.15( 0.07] 0.58 6.03 0.35 1.18 0.75 0.52 0.00] 0.22[ 0.52[ 0.33] 1.47| 0.05( 0.70] 0.92] 0.27] 1.52[ 0.57|
Q 0.88 0.05 0.13] 0.15 0.13] 0.75 0.02] 0.03] 0.05 0.43] 0.05 0.00] 0.02] 0.00] 0.27| 0.03] 0.10, 0.48 0.13] 0.03] 0.00| 0.07]
R 2.98 0.12 0.13] 0.13] 0.05 0.67| 0.18 0.07| 0.17| 1.20, 0.37| 0.00| 0.18 0.40, 0.47| 0.62 0.42] 0.60| 0.75 0.25 0.67| 0.27]
S 3.20, 0.05 0.27| 0.32] 0.45 0.48 0.65 0.20, 0.15 1.53] 0.80] 0.00, 0.10, 0.25 0.55 1.13] 0.52] 0.78 0.92 0.62 0.70| 0.30]
T 0.82 0.03] 0.05 0.17| 0.05 0.33] 1.80] 0.33] 0.43] 0.18 0.55 0.00] 0.12] 0.48 0.22 0.20, 0.07| 0.30] 0.62 0.62 0.30| 0.08
U 3.08 0.18 0.15 0.03] 0.03] 0.57| 0.60] 0.27| 0.88 1.73] 0.72 0.00, 0.52 0.25 0.28 1.47| 0.03] 0.48 0.82 0.40, 0.72 1.18§
v 0.98 0.03] 0.23] 0.48 0.13] 0.08 1.13 0.52 0.15 0.20] 0.47| 0.03] 0.15 0.52 0.30, 0.45 0.07| 0.23] 0.32] 0.17| 1.13] 0.23]

Table 2.58: Expected value & of the Normal distribution.
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A B c D E F el H 1 J K L M N o) P Q R s T U v
A - - - - - - 1.3 - - 05| 15| - - 04| 03| 06| - 09| 13| - 1.1 0.3
06| 1.3 01| 1.5| 0.8] 0.2 2.0 0.2 3.1 2.2 1.0 0.2
B - . - - . - - - - - - - - - - - - - - - - -
26| 1.6| 36| 35| 42| 23| 20| 71| 24| 21| 35| 71| 26| 28| 42| 1.2| 46| 3.1 | 35| 28| 1.7 4.2
71| 13| 24| 45| 08| 1.8 37| 30| 1.1| 29| 73| 28| 3.0 24| 22| 24| 27| 1.8| 27| 2.1| 1.6
D - - - - - - - - - 0.7 | - - - - - - - - - - - -
1.2| 34| 19| 31| 35| 1.6| 24| 46| 1.9 06| 74| 24| 31| 29| 31| 19| 25| 1.8 25| 3.9 0.9
B - - - - - - - - - - - - - - - - - - - - - -
07| 42| 33| 39| 13| 01| 27| 36| 14| 03| 26| 73| 17| 37| 19| 22| 1.8| 1.8| 1.1| 20| 26| 1.7
F - - - - - - 0.5 | - - - 0.5 | - - - - - - - - - - -
02| 1.6| 09| 1.6 | 0.6| 0.6 1.0] 1.3 1.2 73| 20| 07| 01| 04| 07| 05| 08| 10| 03] 1.8
G 1.5 | - - - - 03] 01| - - 2.3 - - - - - 17| - - - 02| - -
1.7| 20| 29| 3.7 1.8 0.8 1.3| 26| 05| 1.5 2.2 74| 16| 0.5 05| 0.2
20| 42| 26| 34| 45| 03| 1.2| 1.9 3.2 27| 73| 15| 15| 29| 1.9 46| 24| 25| 14| 1.2 1.1
1 - - - - - - - - - - - - - - - - - - - - - -
03| 31| 22| 24| 1.2 1.8 05| 21| 05| 07| 1.2| 73| 21| 32| 02| 07| 37| 1.7| 23| 1.2| 04| 1.3
J 0.4 | - - 03| - - 22| 06| - 02| 00| - - 0.1 | - 0.0 | - 05| 04| - 0.6 | -
1.4 0.8 0.6 | 1.4 0.3 73| 1.6 0.2 0.2 1.2 1.7
3.5 2.5 0.9 3.2 0.6 2.4 1.7 0.2 0.9 7.3 1.8 1.9 1.1 1.0 2.8 1.2 0.6 0.7 0.3 1.0
L - - - - - - - - - - - - - - - - - - - - - -
73| 35| 73| 74| 73| 73| 31| 73| 73| 73| 73| 73| 73| 37| 73| 73| 74| 73| 37| 73| 73| 3.7
M - - - - - - - - - - - - - - - - - - - - - -
32| 22| 37| 19| 22| 16| 02| 17| 29| 19| 28| 73| 1.3| 17| 27| 16| 46| 2.1 | 25| 27| 08| 2.7
N 03| - - - - - - - - 0.2 | - - - - - - - - - - - -
35| 33| 34| 45| 06| 20| 1.6| 2.5 20| 73| 22| 08| 21| 07| 46| 1.9| 16| 09| 1.9 1.1
o 0.3 | - - - - - - - - 0.0 | - - - - - - - - - - - -
42| 25| 37| 21| 01| 22| 37| 06 07| 73| 30| 20| 08| 1.2| 1.7| 08| 06| 07| 1.6 2.0
P 0.2 | - - - - - 1.8 - - - - - - - - 03| - - - - 03| -
1.3| 21| 20| 29| 06 12| 01| 04| 07| 73| 17| 08| 1.3 34| 06| 02| 1.5 0.7
Q - - - - - - - - - - - - - - - - - - - - - -
02| 31| 23| 19| 22| 05| 46| 34| 31| 1.0| 31| 74| 46| 74| 1.6| 34| 26| 1.1| 2.1 | 39| 74| 2.7
R 1.1 - - - - - - - - 01| - - - - - - - - - - - -
23| 22| 21| 32| 05| 1.8] 29| 2.0 1.1 73| 19| 11| 09| 06| 1.1| 06| 04| 15| 0.6]| 1.5
s 1.1 - - - - - - - - 04| - - - - - 0.0 | - - - - - -
31| 15| 12| 09| 08| 05| 1.8] 2.1 03| 73| 25| 15| 0.7 07| 04| 01| 06| 05| 1.3
02| 35| 32| 21| 3.2| 1.2 13| 09| 1.8 08| 73| 24| 09| 1.6 1.7| 29| 1.3| 06| 06| 1.3| 2.6
U 1.0 - - - - - - - - 05| - - - - - 0.2 | - - - - - 0.1
18] 21| 39| 36| 06| 06| 1.5| 0.3 04| 73] 09| 15| 1.5 37| 09| 03| 1.1] 0.4
v - - - - - - 0.0 | - - - - - - - - - - - - - 0.1 | -
01| 35| 1.6| 09| 23| 2.7 09| 21| 17| 09| 37| 21| 07| 1.3| 09| 29| 1.7| 1.3| 2.0 1.5

Table 2.59: Location parameter ¢ of the Lognormal distribution.
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A B C D E F G H I J K L M N O P Q R S T U \Y%
A 0.42] 0.42] 0.30] 0.17| 0.55 0.43] 0.27] 0.50, 0.54] 0.42] 0.26| 0.83] 0.66| 0.26| 0.56| 0.33] 0.67| 0.29| 0.33] 0.31] 0.32] 0.42
B 0.49| 0.47| 0.55 0.96| 0.55 0.47| 0.38 0.55 0.51] 0.46| 0.50, 0.55 0.52] 0.47| 0.55 0.35 0.96| 0.39| 0.50, 0.50, 0.45 0.55]
C 0.32] 0.55 0.6 0.39] 0.85 0.50, 0.34 0.76| 0.73] 0.38 0.68 0.85 0.77 0.73] 0.73] 0.61] 0.87] 0.62] 0.65 0.65 0.60 0.65]
D 0.46/ 1.82] 0.14] 0.39] 0.96| 0.37] 0.65 0.96| 0.69| 0.37| 0.36] 0.96| 0.69| 0.39| 0.56| 0.39| 0.14] 0.24] 0.47| 0.64] 0.96| 0.68
E 0.53] 1.43| 0.79] 0.96| 0.65 0.57| 0.66] 0.70, 0.63] 0.51] 0.57] 0.85 0.79| 0.73] 0.76| 0.65 0.75 0.63] 0.42] 0.39| 0.76| 0.69
F 0.39] 0.47| 0.56| 0.54] 0.61] 0.48 0.34] 0.28 0.59] 0.52] 0.33] 0.85 0.67| 0.56| 0.40, 0.39| 0.19| 0.41] 0.39] 0.57| 0.44| 0.67|
G 0.26/ 0.30] 0.60| 0.96| 0.81] 0.47| 0.38 0.42] 0.68 0.24] 0.46| 0.83] 0.66| 0.52] 0.62] 0.29] 0.96| 0.39] 0.57| 0.45 0.49| 0.47]
H 0.44) 0.55 0.75 0.85 0.85 0.48 0.40, 0.56| 0.70, 0.31] 0.64] 0.85 0.49| 0.61] 0.68 0.63] 0.96] 0.65 0.68 0.66| 0.46| 0.53]
I 0.56| 0.51] 0.63] 0.91] 0.70, 0.46/ 0.67| 0.68 0.64 0.43] 0.57] 0.85 0.70, 0.60| 0.43] 0.58 0.83] 0.53] 0.53] 0.49| 0.49| 0.62
J 0.46| 0.45 0.51) 0.45 0.57] 0.46| 0.19] 0.29| 0.38 0.41] 0.31] 0.85 0.60[ 0.31] 0.56| 0.40, 0.30| 0.37| 0.34] 0.57| 0.31] 0.53
K 0.27| 0.44] 0.62] 0.33] 0.70, 0.37] 0.34 0.65 0.60, 0.32] 0.49] 0.85 0.74] 0.56| 0.55 0.53] 0.47| 0.51] 0.38 0.69| 0.49 0.49
L 0.85 0.50, 0.85 0.96/ 0.85 0.85 0.83] 0.85 0.85 0.85 0.85 0.85 0.85 0.83 0.85 0.85 0.96/ 0.85 0.83] 0.85 0.85 0.83
M 0.67| 0.43] 0.81] 0.71] 0.81] 0.70, 0.68 0.55 0.65 0.63] 0.73] 0.85 0.71] 0.62 0.68 0.54 0.96| 0.63] 0.68 0.70, 0.60| 0.62
N 0.25 0.50, 0.75 0.85 0.85 0.57| 0.58 0.63] 0.64 0.19] 0.65 0.85 0.66| 0.51] 0.60, 0.49| 0.96| 0.55 0.55 0.54] 0.49 0.56]
o 0.31] 0.55 0.63] 0.83] 0.69] 0.42] 0.68 0.73] 0.49| 0.60| 0.54] 0.85 0.77| 0.62] 0.67| 0.59| 0.63] 0.50, 0.42] 0.30| 0.72| 0.57]
P 0.39] 0.43] 0.60| 0.52[ 0.64{ 0.37| 0.24] 0.48 0.68 0.40] 0.39] 0.85 0.56/ 0.47| 0.61] 0.34/ 0.85 0.63] 0.40] 0.68 0.43| 0.41
Q 0.38 0.39] 0.78 0.14f 0.67] 0.65 0.96] 0.00[ 0.39] 0.64{ 0.39] 0.96] 0.96/ 0.96/ 0.68 0.00, 0.83 0.82 0.30] 0.96/ 0.96| 0.00|
R 0.24] 0.48 0.68 0.47 0.64{ 0.47| 0.39] 0.65 0.58 0.42 0.49] 0.85 0.59| 0.60] 0.44| 0.53] 0.66| 0.45 0.48 0.40, 0.56| 0.51
S 0.32] 0.39] 0.59| 0.31 0.41] 0.44] 0.43] 0.65 0.63] 0.32] 0.43] 0.85 0.55 0.44{ 0.50] 0.44| 0.42 0.51] 0.33] 0.52] 0.46/ 0.51
T 0.28 0.50, 0.64{ 0.77| 0.60] 0.50, 0.49| 0.64{ 0.42| 0.42| 0.58 0.85 0.64/ 0.51] 0.33] 0.50, 0.56/ 0.45] 0.46| 0.48 0.53[ 0.57
U 0.41] 0.47/ 0.63 0.96/ 0.67] 0.35 0.34) 0.57| 0.57] 0.30] 0.43] 0.85 0.66( 0.40 0.71] 0.53] 0.83 0.55 0.33] 0.61] 0.48 0.33
v 0.33| 0.50, 0.60/ 0.54{ 0.74{ 0.64{ 0.42 0.63| 0.59] 0.50] 0.54| 0.83] 0.63[ 0.42 0.51] 0.48 0.56] 0.63| 0.56| 0.60] 0.34] 0.44
Table 2.60: Scale parameter 7 of the Lognormal distribution.
A B C D E F G H I J K L M N (@] P Q R S T U A\
A 0.26| 0.13] 0.29| 0.04{ 0.30] 0.40{ 1.02 0.08 0.57] 0.79] 1.25 0.07| 0.10[ 0.40[ 0.95 0.69| 0.35 0.78 1.29 0.2§ 1.00, 0.64
B 0.04{ 0.11] 0.02] 0.06{ 0.01] 0.06/ 0.06] 0.00f 0.05 0.07 0.02 0.00, 0.05 0.03 0.01] 0.12] 0.02[ 0.02[ 0.02 0.04/ 0.09| 0.01
C 0.45 0.00, 0.23] 0.04{ 0.02( 0.29] 0.06] 0.03f 0.06/ 0.14{ 0.05 0.00, 0.07 0.06/ 0.10] 0.09| 0.14{ 0.06{ 0.15/ 0.06/ 0.10, 0.18
D 0.17] 0.05 0.02] 0.02[ 0.06/ 0.08 0.08 0.02 0.14/ 0.80] 0.22] 0.00, 0.09 0.02 0.04{ 0.02] 0.02[ 0.02( 0.09] 0.07] 0.04{ 0.41
E 0.34| 0.01] 0.05/ 0.04{ 0.24{ 0.66/ 0.06] 0.03f 0.21] 0.46/ 0.05 0.00, 0.23f 0.03 0.18 0.10, 0.19| 0.14{ 0.15 0.06/ 0.09] 0.18|
F 0.37] 0.11] 0.29| 0.14{ 0.44{ 0.31] 0.65 0.11f 0.21] 0.20] 0.57| 0.00, 0.13[ 0.36] 0.40[ 0.29| 0.09| 0.28 0.19] 0.27| 0.37| 0.15
G 1.23| 0.06/ 0.11] 0.10, 0.03 0.79] 0.50] 0.08 0.45 2.40[ 0.16/ 0.10] 0.57| 0.14f 0.09 1.61] 0.00] 0.09] 0.44{ 0.66] 0.35 0.45]
H 0.07] 0.01] 0.09| 0.05[ 0.02( 0.41] 0.13] 0.10f 0.04{ 0.39] 0.06] 0.00/ 0.13f 0.18 0.05 0.13] 0.02[ 0.09] 0.08 0.23 0.16/ 0.21
I 0.51] 0.03] 0.09| 0.15 0.29] 0.09] 0.59 0.12[ 0.53] 0.25 0.21] 0.00, 0.12[ 0.03] 0.39] 0.38 0.03 0.12[ 0.07 0.17| 0.40, 0.23
J 0.83 0.13] 0.28 0.73] 0.42] 0.13] 1.84 0.58 0.31] 0.58 0.33] 0.00, 0.16( 0.37 0.59] 0.46| 0.27| 0.64{ 0.54{ 0.23] 0.60, 0.12
K 1.07 0.02 0.07] 0.15 0.04{ 0.68 0.20] 0.09] 0.14/ 0.28 0.23 0.00] 0.18 0.11f 0.24{ 0.24{ 0.03] 0.19] 0.24{ 0.51] 0.44] 0.21
L 0.00] 0.02] 0.00/ 0.00[ 0.00] 0.00] 0.07| 0.00f 0.00[ 0.00] 0.00] 0.00, 0.00[ 0.03f 0.00] 0.00, 0.00f 0.00[ 0.03 0.00] 0.00] 0.03
M 0.04{ 0.05 0.03 0.16{ 0.14{ 0.21] 0.81 0.13| 0.05 0.13 0.07] 0.00, 0.30[ 0.15 0.06| 0.14/ 0.02 0.11f 0.08 0.07] 0.36] 0.06|
N 0.33| 0.02] 0.04f 0.05[ 0.02( 0.40{ 0.11 0.18 0.07] 0.23 0.12] 0.00, 0.10[ 0.28 0.10] 0.28 0.02 0.10[ 0.14{ 0.28 0.09 0.23
(] 0.46| 0.01) 0.07| 0.03[ 0.12 0.43] 0.10, 0.03f 0.34/ 0.83] 0.34] 0.00, 0.06( 0.11] 0.42| 0.23] 0.15/ 0.28 0.25 0.16/ 0.21 0.10|
P 0.52 0.13] 0.10/ 0.08 0.05 0.23] 1.48 0.18 0.91] 0.31] 0.21] 0.00, 0.13[ 0.26] 0.22 0.51] 0.05 0.49] 0.39] 0.20] 0.68 0.24
Q 0.35( 0.02] 0.12] 0.02[ 0.10] 0.54{ 0.02 0.00[ 0.02[ 0.31] 0.02] 0.00, 0.02[ 0.00] 0.21] 0.00, 0.10f 0.47 0.04{ 0.04] 0.00] 0.00|
R 0.71] 0.06| 0.10/ 0.07| 0.04{ 0.33] 0.07| 0.05 0.11] 0.53] 0.19] 0.00, 0.12[ 0.26] 0.22| 0.35 0.31] 0.29] 0.38 0.10] 0.40, 0.15|
S 1.05 0.02[ 0.17] 0.10] 0.19] 0.22[ 0.29] 0.15 0.10, 0.50[ 0.36/ 0.00] 0.06| 0.12] 0.30[ 0.52] 0.22| 0.42] 0.31] 0.34] 0.34] 0.16|
T 0.23| 0.02] 0.04f 0.15[ 0.03 0.18 0.93 0.24f 0.19] 0.08 0.35 0.00, 0.08 0.26/ 0.07] 0.11 0.04f 0.14{ 0.30] 0.32] 0.17| 0.05|
19 1.30f 0.09] 0.11] 0.04f 0.03 0.21 0.21] 0.16/ 0.55 0.54f 0.32 0.00 0.38 0.10f 0.23/ 0.83f 0.03 0.29] 0.28 0.27 0.37 0.41
\4 0.33] 0.02] 0.15 0.28 0.11] 0.06| 0.50, 0.36/ 0.10[ 0.11] 0.27| 0.03] 0.10] 0.22 0.16/ 0.23 0.04{ 0.16/ 0.19] 0.11] 0.39] 0.11]

Table 2.61: Standard deviation

o of the Normal distribution.
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A B C D E F G H I J K L M N O P Q R S T U A%
A 0.14| 0.13] 0.25 0.01f 0.23] 0.33[ 1.36/ 0.04f 0.51] 0.88 1.92 0.00] 0.05 0.36/ 1.08 0.65 0.13] 0.77] 2.35 0.25 1.71] 0.63|
B 0.03| 0.09] 0.01] 0.02[ 0.01] 0.04] 0.04] 0.00[ 0.04] 0.05/ 0.01 0.00] 0.03 0.02] 0.01f 0.13] 0.01f 0.02/ 0.01 0.02] 0.08/ 0.01
C 0.36| 0.00/ 0.15 0.01f 0.01] 0.19] 0.04] 0.01] 0.02] 0.10[ 0.02 0.00[ 0.03] 0.02[ 0.04] 0.05 0.05 0.03] 0.08 0.03 0.06[ 0.10
D 0.06| 0.02] 0.01] 0.01f 0.02] 0.03[ 0.03] 0.01 0.04] 0.47] 0.09] 0.00] 0.03 0.01 0.01f 0.01] 0.01f 0.01] 0.03[ 0.02] 0.01f 0.19
E 0.25 0.01f 0.02 0.01f 0.15 0.60[ 0.03] 0.01f 0.11] 0.32] 0.03] 0.00] 0.10, 0.01] 0.08 0.05 0.07] 0.08 0.10[ 0.03] 0.04f 0.10
F 0.38] 0.09] 0.18 0.05( 0.36/ 0.21] 0.88 0.07] 0.13] 0.10[ 0.54] 0.00] 0.06] 0.26/ 0.37| 0.24] 0.03] 0.22| 0.13[ 0.19] 0.34] 0.08|
G 2.23| 0.05/ 0.06/ 0.03[ 0.01] 0.94] 0.47| 0.06] 0.31] 5.66| 0.10, 0.00] 0.42] 0.09] 0.05 2.69] 0.00[ 0.06| 0.31 0.63] 0.26] 0.41
H 0.04| 0.01/ 0.04{ 0.02[ 0.01] 0.37] 0.09] 0.06{ 0.02] 0.33] 0.03] 0.00] 0.07 0.11] 0.02] 0.07] 0.01f 0.04] 0.04/ 0.12] 0.13[ 0.15
I 0.41] 0.02] 0.05 0.05 0.17] 0.04] 0.44] 0.06[ 0.44] 0.16] 0.14] 0.00] 0.06] 0.02] 0.33] 0.25 0.01f 0.09] 0.03[ 0.10] 0.32[ 0.15|
J 0.94| 0.11] 0.22| 0.34] 0.37] 0.06] 4.20] 0.59| 0.24] 0.55 0.21] 0.00] 0.09] 0.38 0.42| 0.44{ 0.11f 0.52| 0.45 0.17 0.67| 0.09
K 1.63] 0.01] 0.04] 0.06| 0.02[ 0.73] 0.15 0.04] 0.07] 0.27] 0.18 0.00, 0.09] 0.07] 0.15 0.19[ 0.01] 0.10[ 0.16| 0.36] 0.44] 0.13|
L 0.00[ 0.00[ 0.00] 0.00[ 0.00[ 0.00[ 0.00[ 0.00[ 0.00[ 0.00[ 0.00f 0.00f 0.00f 0.00f 0.00f 0.00, 0.00, 0.00, 0.00, 0.00 0.00 0.00
M 0.02| 0.04/ 0.01] 0.05 0.06/ 0.11f 0.73] 0.09] 0.02] 0.07] 0.03] 0.00[ 0.17 0.09] 0.03] 0.08 0.01f 0.06| 0.04/ 0.03] 0.28 0.03|
N 0.30] 0.01f 0.02| 0.02[ 0.01] 0.31] 0.06/ 0.10[ 0.04] 0.23] 0.06] 0.00] 0.05 0.22] 0.06] 0.19] 0.01] 0.06| 0.08/ 0.24] 0.05 0.16|
O 0.44| 0.01/ 0.04| 0.01f 0.06| 0.32[ 0.05 0.01] 0.26/ 0.68/ 0.24] 0.00] 0.02 0.06] 0.26] 0.14] 0.06] 0.19] 0.16] 0.10] 0.10[ 0.06|
P 0.52) 0.13] 0.06] 0.03] 0.02[ 0.20[ 2.53[ 0.12[ 0.79[ 0.28 0.16/ 0.00, 0.09 0.16/ 0.13] 0.42] 0.02] 0.32] 0.38 0.11] 0.65 0.17
Q 0.12 0.01] 0.04{ 0.01] 0.04{ 0.24{ 0.01f 0.00[ 0.01f 0.13[ 0.01f 0.00[ 0.01f 0.00 0.08 0.00, 0.04/, 0.20, 0.01 0.01 0.00] 0.00|
R 0.86] 0.04] 0.05] 0.02[ 0.02[ 0.25 0.04{ 0.02[ 0.06[ 0.45 0.13[ 0.00[ 0.07f 0.17/ 0.17| 0.28 0.10, 0.25 0.28 0.07 0.30] 0.10|
S 1.68 0.02 0.11/ 0.03] 0.14] 0.16/ 0.22] 0.08 0.06] 0.42] 0.32] 0.00] 0.04f 0.09] 0.24] 0.45 0.09] 0.31] 0.24{ 0.28 0.27 0.10|
T 0.24{ 0.01] 0.02] 0.05 0.02[ 0.13[ 0.92[ 0.15 0.17] 0.06[ 0.24f 0.00[ 0.04f 0.20 0.04/ 0.08 0.01 0.10, 0.22] 0.26/ 0.13] 0.03|
U 1.76/ 0.07/ 0.06/ 0.01 0.01 0.13 0.21] 0.10, 0.47| 0.57] 0.28 0.00] 0.24{ 0.06] 0.12 0.77] 0.01] 0.22] 0.20[ 0.17] 0.31] 0.41
A\ 0.22 0.01] 0.10[ 0.10[ 0.05 0.03[ 0.54{ 0.24{ 0.06[ 0.06[ 0.21f 0.00[ 0.06/ 0.18 0.13] 0.16/ 0.01 0.10, 0.10, 0.06/ 0.32] 0.06|

Table 2.62: Standard deviation o of the Uniform distribution.

A B C D E F G H I J K L M N O P Q R S T U v
A 1.71) 3.33] 1.07 4.29 2 1.13] 0.26] 6.67 1.03] 0.56| 0.21] 15 7.5 0.66| 0.64] 0.5 2.14| 0.38 0.27] 1.11] 0.33] 0.68|
B 12 4.62 30 20 60 8.57| 6.67| - 10 7.5 30 - 12 15 60 3 60 20 30 15 5 60
C 0.74] - 3 10 60 1.88 6 30 15 2.86| 15 - 12 15 8.57| 7.5 7.5 12 5 12 6.67| 4
D 2.86| 20 6.67| 20 20 4.62 8.57 60 5.45] 0.48] 1.71] - 8.57| 20 15 20 6.67] 12 5.45 10 30 1.88
E 1.67] 60 20 30 3 0.94] 12 30 3.33] 1.2 12 - 4 30 5 7.5 4.62 5 2.86| 6.67] 10 4.29|
F 1.09| 4.62] 2.07 4.29| 1.54] 1.67| 0.55] 2.61] 3 2.86| 0.6 - 6 1.71) 1.03] 1.4 2.07] 1.54] 2.14f 2.31] 1.25| 5
G 0.21] 5 6 12 30 0.63| 0.8 5.45 1.71] 0.1 3.16] 10 1.3 4 7.5 0.18| - 4.62 1.4 0.71] 1.46] 1.09|
H 6.67| 60 10 20 60 1.25/ 3.16| 6 20 0.82 12 - 4 3.75 15 5.45 60 8.57| 10 3.16| 3 2.73
I 1.18 20 7.5 7.5 2.73| 5.45] 1.28 6.67| 1.33[ 1.82 2.86 - 6.67| 20 1.13| 1.67 30 4.62| 8.57 3 1.3 3
J 0.58| 3.75] 1.94] 0.65 1.5 3.75 0.1 0.5 1.28 0.74] 0.97 - 4 0.87] 1.03] 0.92] 1.15 0.59] 0.64] 2.73[ 0.52| 4.62
K 0.26/ 30 10 2.22 20 0.56| 1.76] 8.57] 4.62] 1.15 2.22 - 4.62| 5.45 2.5 2.31] 15 2.86| 1.62| 1.54] 1.18f 2.5
L - 30 - - - - 15 - - - - - - - - - - - 30 - - 30
M 20 8.57] 30 5 6.67| 3.75 0.94] 4.62| 15 5.45) 12 - 2.73] 4.62] 12 4.29[ 60 6.67| 10 12 1.82[ 12
N 0.75[ 30 20 20 60 1.54 6 4 10 0.83] 6 - 7.5 1.94 6.67 1.88 60 6 4.29| 2.07 6 2.61]
O 0.69] 60 10 30 6.67| 1.03] 7.5 30 1.54, 0.8 1.71 - 15 6 1.82| 2.86| 4.62] 1.88 1.71 2 4 6
P 0.78 3.33| 6.67] 6.67] 15 1.71 0.17 2.86] 0.85 1.33] 1.94 - 4.62[ 1.94 3 0.68/ 20 1.43| 1.09] 3.75 0.66| 1.76|
Q 1.13] 20 7.5 6.67| 7.5 1.33] 60 30 20 2.31] 20 - 60 - 3.75] 30 10 2.07 7.5 30 - 15
R 0.34| 8.57 7.5 7.5 20 1.5 5.45) 15 6 0.83] 2.73 - 5.45] 2.5 2.14| 1.62 2.4 1.67 1.33| 4 1.5 3.75|
S 0.31] 20 3.75 3.16] 2.22[ 2.07] 1.54] 5 6.67| 0.65] 1.25 - 10 4 1.82| 0.88 1.94| 1.28 1.09] 1.62 1.43| 3.33|
T 1.22 30 20 6 20 3 0.56 3 2.31] 5.45] 1.82 - 8.57| 2.07] 4.62 5 15 3.33] 1.62| 1.62| 3.33] 12
U 0.32| 5.45| 6.67 30 30 1.76| 1.67| 3.75 1.13] 0.58 1.4 - 1.94, 4 3.53| 0.68 30 2.07 1.22| 2.5 1.4 0.85|
v 1.02| 30 4.29| 2.07 7.5 12 0.88) 1.94] 6.67| 5 2.14f 30 6.67| 1.94| 3.33] 2.22| 15 4.29[ 3.16 6 0.88| 4.29|

Table 2.63:

Standard deviation o of the Exponential distribution.
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