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Abstract 
 

Analytic modelling of drop evaporation is often approached under quasi-steady approximation, disregarding the inherent 
unsteadiness of such phenomenon and the fact that drop radius shrinking due to evaporation settles a moving boundary problem. 
Such assumption yields simple and very useful analytical solutions of the species conservation equations. However it is known that, 
after the sudden immersion of a drop in a gaseous environment, a relaxation time is needed to reach quasi-steadiness and the 
evaporation rate during this period is expected to be much higher than that under steady conditions. The present work is aimed to 
define the analytical problem of evaporation in a gaseous environment relaxing the above mentioned approximation. The spherically 
symmetric, time-dependent species conservation equation for vapour transport in a gaseous environment is derived in non-
dimensional form accounting for moving boundaries. Numerical solution allows to evaluate the relaxation time as a function of the 
Spalding mass transfer number and to quantify the evaporated mass during this time lapse.  
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1. Introduction 

The process of liquid drop evaporation into gaseous 
environment has been the subject of extensive research since 
decades, due to the complexity of the phenomena involved and 
to its inherent importance in a huge variety of industrial 
applications [1]. An extensive literature on the modelling of 
drop evaporation is available and the need of implementation 
into CFD codes for reliable dispersed flow predictions led to the 
development of simplified CPU efficient models.  

The first evaporation model was proposed by Maxwell back 
in 1878 [2], who assumed that evaporation is mainly guided by 
the vapour species diffusion within the gas phase. Various 
models have been successively developed accounting for the 
bulk motion of the vapour and gas mixture surrounding the 
particle (Stefan flow) [3], convective effect [4], liquid 
composition [5,6] and high pressure effect [7].  

Extensive investigation has been done on the modelling of 
mass and thermal phenomena occurring within the liquid phase 
in an evaporating drop. In most conventional CFD codes for 
spray applications the drop heating is modelled assuming 
infinite liquid thermal conductivity, thus neglecting temperature 
gradient inside the drop [8], although the available experimental 
evidence [9,10] contradicts this assumption. This issue has been 
addressed introducing a finite effective thermal conductivity 
that also accounts for liquid recirculation inside the drop [1,8]. 
All the analytical evaporation models for CFD codes are based 
on the assumption that the evaporation rate is small enough to 
neglect the moving boundary effect due to radius shrinking. 
This hypothesis has been removed by Sazhin et al. in [11,12], 
who included the effect of a moving boundary to solve the heat 
conduction equation in the liquid phase. Their results evidenced 
that the effect of drop shrinking on liquid temperature 

predictions cannot be ignored and the evaporation times are 
longer compared to the conventional approach.  

When modelling the vapour and energy transfer through the 
gas phase many simplifications are usually assumed, like 
constancy of the gaseous mixture properties, ideal gas 
behaviour, spherical symmetry and quasi-steadiness [1]. The 
last assumption is based on the observation that the time scales 
of the energy and species transport within the liquid phase are 
much larger than the corresponding ones into the gas phase. 
Therefore, the commonly used steady-state drop evaporation 
models do not account by the fact that when the drop is 
suddenly immersed in a gas there is a period of relaxation 
before the quasi-steady state is reached. The aim of this 
investigation is to quantify the effect of unsteady conditions on 
drop evaporation, focusing on the vapour transport within the 
gas phase. 

2. Model equations 

The time dependent species conservation equations in a 
binary mixture are:  
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where p=1 stands for the evaporating species. The radial com-
ponent of the species flux from an evaporating single compo-
nent drop can be written, accounting for the spherical symme-
try, as:  
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where U is the radial component of the mixture mass averaged 
velocity [13]. The model assumes a constant reference value for 
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the gaseous mixture density and for the diffusion coefficient. 
The continuity equation, that can be obtained summing 
equations (2), can be written as ∇jρUj=0 and yields the 
following general solution: 
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Where mT(t)=m(0)(t)+m(1)(t) is the total mass flow rate. 
Equations (1) and (3), accounting for equation (2), are linearly 
dependent, then one of them can be eliminated retaining the 
independent set: 
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2.1. Initial and boundary conditions 

Since the aim of this investigation is to evaluate the effect of  
unsteady evaporation on a drop suddenly injected into a hot gas, 
the initial conditions for the vapour mass fraction distribution 
will be considered uniform and equal to the value at infinite:    

( ) ( ) ( )1 1
0,0 ,r r Rχ χ∞= ∈ ∞               (5) 

Moreover, when a single component drop evaporates in a 
foreign non isothermal gas, the drop surface temperature, after 
an initial heat up process, often reaches a plateau and remains 
constant for almost all the remaining drop life time, with the 
exception of the very short last stage [1]. Therefore, for a quite 
long part of the drop evaporation time the vapour mass fraction 
at drop surface can be considered constant and the spatial B.C. 
that will be considered here are then of Dirichlet type: 
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Defining the non-dimensional vapour mass fraction as: 

  
( ) ( )

( ) ( )11

11

∞

∞

−
−

=
χχ
χχ

s

X         (7) 

The differential problem becomes: 
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During the process the drop radius shrinks and the problem 
(8) is then a moving boundary (Stefan) problem.  

The function mT(t) can be related to the drop radius 
shrinking by recalling the interface (jump) species balance at 
the drop surface, that can be written as [13, page 451]: 
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where the pedex L is used to indicate the values inside the liquid 
phase; ( ) ( )p

LL
p

L χρρ = , ρL is the liquid density and ( )p
Lχ  is the 

mass fraction of the species p inside the liquid.  
The condition that the gas species does not diffuse into the 

liquid allows to say that ( ) 00 =Lχ  and ( ) 00 =LU . Moreover, since 

the liquid inside the drop is considered still ( ) 0=p
LU  and the 

interface velocity Vs is related to the radius shrinking by 
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2.2. Fixed boundary problem 

Consider the following coordinates transformation:  
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where ( ) ( )
iR

tR
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,0

0=ϕ  and R0,i=R0(0). The vapour mass flow rate 

can be calculated integrating the vapour flux (2) over the drop 
surface (i.e. ζ=1), but also from the interface conditions (the 
second of equations 10), and equating the two forms yields the 
following equation for the non-dimensional drop radius ϕ(t): 
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integration, with the initial condition ϕ(0)=1, yields the explicit 
solution: 
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 To find the gradient of X at ζ=1, the problem (8) can be 
written in non-dimensional form in the new coordinate system 
(12) where now the boundaries are fixed; using equation (13) 
and (14): 
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2.3. Numerical implementation and test cases  

The problem (15) was numerically implemented using a 
finite difference scheme. To avoid the instability caused by the 
discontinuity at drop surface (ζ=1) at the initial time τ=0, the 
initial conditions where implemented as follows: 

( ) ( ) 






 −−

== ζ
ζ

δζζ
10

0,
R

efX      (16) 

where δ can be chosen sufficiently small to approximate the real 
initial condition to an acceptable extent. A parametric analysis 
was performed on the dependence of the numerical results on 
the value of δ/R0, showing that a safe choice is δ/R0 smaller than 
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0.001. Grid independence tests were performed to choose the 
appropriate cell dimensions.   

In the following investigation the values of β were chosen 
to cover realistic ranges of density ratios: from β=0.001 (water 
drop in air at atmospheric pressure) to β=0.04 (hydrocarbon 
drop evaporating under Diesel engine conditions). The vapour 
mass fraction at infinite was set to zero (( ) 01 =∞χ ) while its 

values at drop surface (and consequently the values of B) were 
chosen in a range representing real evaporating conditions.   

3. Results and discussion 

A sample of the numerical solution of equation (15) at 
different non-dimensional times is reported in Figure 1 for the 
case of B=0.5 and β=0.04. As expected at the very beginning of 
the process the gradient of the mass fraction distribution close 
to the drop surface (ζ=1) is very large, which results in a value 
of the evaporation rate much larger than that obtained by the 
quasi-steady approximation.  
 

 
Figure 1. Non-dimensional vapour distribution predicted by the 
numerical solution of equation (15) at different non-dimensional 
times; β=0.04 and B=0.5.  
 
 

The drop evaporation rate is the key parameter for all 
evaporation models; it can be defined as: 
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and using equations (10), (13) and (14) yields:   
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As already mentioned, since the diffusion time scale in the 
liquid drop is much larger than the corresponding value in the 
gas, the drop evaporation vapour transport through the gas is 
usually assumed to be quasi-steady. The most used model in 
CFD codes is that of [4] that is an extension to convective 
condition of the Fuchs model [3]. The latter predicts the 
following form of the evaporation rate: 
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that in conjunction with the mass balance (17) yields the 
following rule (a form of the D2-law) for the non-dimensional 
drop radius shrinking: 

( ) ( )[ ] 2/11ln21 τβτϕ Bqs +−=      (20) 

Figure 2 shows the values of the non-dimensional radius ϕ, 
as function of the non-dimensional time τ, calculated from the 
numerical solution of the time-dependent problem (equation 14) 
and from equation (20) for comparison. The graph refers to the 
case with β=0.04 and B=0.5. Due to the large mass fraction 
gradients close to the drop surface, the initial evaporation rate is 
higher (up to some orders of magnitude) than that predicted by 
the quasi-steady approximation and consequently the drop 
radius decreases faster at the early stage of evaporation, as 
reported in Figure 2. At later times, the evaporation rates 
predicted by the moving boundary model and by the quasi-
steady one (equations 18 and 19, respectively) become closer, 
as reported in Figure 3, under the same operating conditions of 
Figure 2, explaining while the two curves of Figure 2 remain 
almost parallel.   
 

 
Figure 2. Transient profile of non-dimensional radius predicted 
by the numerical solution of the time-dependent problem and by 
the quasi-steady model; β=0.04 and B=0.5.  
 

Figure 3. Transient profile of non-dimensional evaporation rate 
predicted by the numerical solution of the time-dependent 
problem and by the quasi-steady model; β=0.04 and B=0.5.  
 

Figure 3 also shows the characteristic time τ*, which 
corresponds to the time when the time derivative of the non-
dimensional drop radius predicted by the two models is the 
same and this is almost coincident (less than 0.1%) to the 
instant corresponding to the intersection between the two 
evaporation rate profiles, as reported in Figure 3. This 
parameter is quite important, since it provides an estimation of 
the time interval during which the evaporation rate may be 
much larger than that estimated by the quasi-steady 
approximation.  
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A parametrical analysis on the effect of the parameters B 
and β on the characteristic time τ* is shown in Figure 4(a), 
covering a rather wide range of test case applications. The 
selected values of B ranges from low (B=0.5) up to high (B=10) 
evaporation rate conditions and the values of β ranges from 
0.001 (water drop evaporating at atmospheric conditions) up to 
0.04 (Diesel drop in high pressure environment). The results 
evidence that the characteristic time needed for the two 
solutions to get closer monotonically decreases as the parameter 
B increases, suggesting that at lower evaporation rate conditions 
the effect of accounting for a moving boundary solution 
becomes more evident and it decreases as β increases.  

Figure 4(b) shows the evaporated mass (non-
dimensionalised by the drop initial mass) at time τ*, calculated 
by the time-dependent and by the quasi-steady solutions, as 
function of the two parameters B and β. The graph shows that 
the evaporated mass up to the characteristic time τ* is higher for 
the time-dependent solution within the whole range of selected 
test cases. The evaporated mass at the characteristic time τ*  
slightly decreases as the parameter B varies from 0.5 to 10, 
while it increases up to an order of magnitude increasing β from 
0.001 up to 0.04. The relative difference between the two 
predicted evaporated mass at time τ* reaches about 6% for the 
largest selected value of gas/liquid density ratio. This result 
show that for particular applications, like for example fuel 
injection under typical Diesel conditions, neglecting the effect 
of time-dependent evaporation may lead to unneglectable 
underestimation of the evaporating mass, with an obvious 
influence on the drop lifetime.   
 

 
Figure 4. Effect of parameters B and β on (a) the non-
dimensional characteristic time τ*, (b) the evaporated mass at 
time τ*, relative to the drop initial mass, predicted by the time-
dependent (thick lines) and quasi-steady (thin lines) models. 
 

To mitigate this effect, when using the quasi-steady 
approach, the evaporation rate during the characteristic period 
0-τ* can be corrected by a multiplying factor defined as follows. 
The average evaporation rate from 0 to t* can be calculated as: 
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observation that the quasi-steady evaporation rate is practically 

constant during the characteristic period. The value of evm is 

reported in Figure 3 for the specific case of β=0.04 and B=0.5. 
Therefore a possible approximation of the evaporation rate 

can be the following: 
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where the values of C are reported in Figure 5. The correction 
factor C increases both with B and β, varying from about 1.15 
up to 1.4 for the selected range of operating conditions. 
 

 
Figure 5. Effect of parameters B and β on the values of the 
correction factor C in equation (21). 

4. Conclusions 

The effect of drop shrinking and time-dependent vapour 
transport was included in the modelling of single-component 
drop evaporation. The moving boundary problem was 
transposed into a fixed boundary one through a proper reference 
system transformation. The model was used to evaluate the 
evaporation characteristics in a range of operating conditions 
typical of spray applications.  

The time-dependent effects lead to considerable increase of 
the evaporation rate at the beginning of the process. The 
relaxation time, needed to reach a quasi-steady condition, was 
quantified as a function of the Spalding mass transfer number 
and the gas/liquid density ratio. The increase of evaporated 
mass during the relaxation time compared to the classical quasi-
steady model was evaluated, reaching 6% for the highest 
gas/liquid density ratio here investigated. A correction factor in 
the classical quasi-steady evaporation model accounting for the  
increase of evaporated mass due to time-dependent was 
proposed.  

(a) 
 
 
 
 
 
 
 
 
 

 
 
(b) 
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5. Nomenclature 

Roman symbols 
B [-] Spalding mass transfer number  
C [-] Correction factor, equation (21)  
D1,0 [m2/s] Diffusion coefficient  
Md [kg] Drop mass 
Mev [kg] Evaporated mass 
mev [kg/s] Mass evaporation rate 
mT [kg/s] Total mass flow rate 
n [kg/m2s] Mass flux 
r [m] Radial coordinate 
R0 [m] Drop radius 
s [-] Integration variable, equation (14) 
t [s] Time 
U [m/s] Stefan flow velocity 
Vs [m/s] Interface velocity 
X [-] Non-dimensional vapour mass fraction 
W [-] Non-dimensional vapor gradient at surface 
 
Greek symbols 
β [-] Gas/liquid density ratio 
δ [m] Characteristic length, equation (16) 
χ [-] Mass fraction 
ρ [kg/m3] Mass density  
τ [-] Non-dimensional time, ( )1,0 2

0tD Rτ =  

τ∗ [-] Characteristic non-dimensional time 
ϕ [-] Non-dimensional radius, ( ) ( )0 0,it R t Rϕ =  

ζ [-] Non-dimensional radial coordinate, 0R rζ =  

 
Subscripts 
i  Initial 
L  Liquid 
qs  Quasi-steady 
s  Surface 
v  Vapour  
∞  Free stream condition 
 
Superscripts 
p  Species index 
^  Non-dimensional 
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