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Abstract

Analytic modelling of drop evaporation is often apgched under quasi-steady approximation, disr@gardhe inherent
unsteadiness of such phenomenon and the fact tbpatrddius shrinking due to evaporation settlesoaing boundary problem.
Such assumption yields simple and very useful dicalysolutions of the species conservation equatiélowever it is known that,
after the sudden immersion of a drop in a gaseowgamment, a relaxation time is needed to reachsgsteadiness and the
evaporation rate during this period is expectebaanuch higher than that under steady conditiohs. gresent work is aimed to
define the analytical problem of evaporation inag@pus environment relaxing the above mentionerbajppation. The spherically
symmetric, time-dependent species conservation tiequdor vapour transport in a gaseous environmientlerived in non-
dimensional form accounting for moving boundariamerical solution allows to evaluate the relaxatiime as a function of the

Spalding mass transfer number and to quantify t@@rated mass during this time lapse.
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1. Introduction

The process of liquid drop evaporation into gaseou§

environment has been the subject of extensive m&fsesince
decades, due to the complexity of the phenomenaies and
to its inherent importance in a huge variety of usidial
applications [1]. An extensive literature on the dalting of
drop evaporation is available and the need of impl&ation
into CFD codes for reliable dispersed flow predistided to the
development of simplified CPU efficient models.

The first evaporation model was proposed by Maxwatk
in 1878 [2], who assumed that evaporation is magpiiged by
the vapour species diffusion within the gas phasarious
models have been successively developed accoufginthe
bulk motion of the vapour and gas mixture surrongdihe
particle (Stefan flow) [3], convective effect [4]liquid
composition [5,6] and high pressure effect [7].

Extensive investigation has been done on the madedif
mass and thermal phenomena occurring within thedighase
in an evaporating drop. In most conventional CFDesotbr
spray applications the drop heating is modelleduragsy
infinite liquid thermal conductivity, thus neglentj temperature
gradient inside the drop [8], although the avagadperimental
evidence [9,10] contradicts this assumption. Téssié has been
addressed introducing a finite effective thermahductivity
that also accounts for liquid recirculation insitie drop [1,8].
All the analytical evaporation models for CFD codes based
on the assumption that the evaporation rate islssnalugh to
neglect the moving boundary effect due to radiusnkimg.
This hypothesis has been removed by Sazhin eh §l1,12],
who included the effect of a moving boundary toreahe heat
conduction equation in the liquid phase. Their tssevidenced
that the effect of drop shrinking on liquid tempera

predictions cannot be ignored and the evaporaiimest are
longer compared to the conventional approach.

When modelling the vapour and energy transfer thinathe
as phase many simplifications are usually assuntikd,
constancy of the gaseous mixture properties, idgas
behaviour, spherical symmetry and quasi-steadifiEssThe
last assumption is based on the observation tleatirtie scales
of the energy and species transport within theidiquhase are
much larger than the corresponding ones into the piease.
Therefore, the commonly used steady-state drop oggtpn
models do not account by the fact that when thep deo
suddenly immersed in a gas there is a period aixagion
before the quasi-steady state is reached. The dinthis
investigation is to quantify the effect of unsteaynditions on
drop evaporation, focusing on the vapour transpdttiin the
gas phase.

2. Model equations

The time dependent species conservation equations i
binary mixture are:

9 X( p)
ot

p—=-0,n" p=o01 @)
wherep=1 stands for the evaporating species. The radial-c
ponent of the species flux from an evaporating Isircpmpo-
nent drop can be written, accounting for the splaésymme-

try, as:

or

P = pu xlP) - oDy o X p=0,1 @
whereU is the radial component of the mixture mass awatag
velocity [13]. The model assumes a constant reteremlue for
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the gaseous mixture density and for the diffusioefficient.
The continuity equation, that can be obtained sumgmi
equations (2), can be written a8jpU;=0 and yields the
following general solution:

_mi(t)

=17 3
= ®3)

Where my(t)=m@(t)+mP(t) is the total mass flow rate.
Equations (1) and (3), accounting for equation 2§ linearly
dependent, then one of them can be eliminatednietpithe
independent set:

P P A2 or " 0 or? +? or (4a)
U = T(‘) (4b)
T

2.1. Initial and boundary conditions

Since the aim of this investigation is to evaluate effect of
unsteady evaporation on a drop suddenly injectiedarhot gas,
the initial conditions for the vapour mass fractidistribution
will be considered uniform and equal to the valuimfinite:

AV(r0) =40 rO[Rye] (5)

00

Moreover, when a single component drop evaporates i
foreign non isothermal gas, the drop surface teaipes, after
an initial heat up process, often reaches a plaaeauremains
constant for almost all the remaining drop life éinwith the
exception of the very short last stage [1]. Thaeefdor a quite
long part of the drop evaporation time the vapoassnfraction
at drop surface can be considered constant ansptitéal B.C.
that will be considered here are then of Dirichypiet

X0 =R, t)=x¥; 6)

Defining the non-dimensional vapour mass fractian as

XU =co,t) = x¥

@ _ 0
X =% @)
Xs' = Xa
The differential problem becomes:
X _( 2Dy mr(t))ox %X
| T g2 o PP
ot r amr< ) or or (8)

X(Ro,t) =1; X (0 t) = 0; X(r,0 =0

During the process the drop radius shrinks and thelgm
(8) is then a moving boundary (Stefan) problem.

The function my(t) can be related to the drop radius
shrinking by recalling the interface (jump) speciEdance at
the drop surface, that can be written as [13, g&dg:

(p) [UEP) (R)) _VSJ _p(P) [U (p) (Ro) _VSJ =0

Pl ©)

where the pedek is used to indicate the values inside the liquid

phase;p{p) :pL)(Ep), A is the liquid density and,\/Ep) is the

mass fraction of the specipsnside the liquid.
The condition that the gas species does not diffutgethe

liquid allows to say thay® =0 and U® =0. Moreover, since

the liquid inside the drop is considered stjllf”) =0 and the
interface velocityVs is related to the radius shrinking by
V, =R, equations (9) yield:

UOR)=V (0%-p )R =0 UMR,) (10)
and

m, (t)= 4RV (R ) = 47 (0= )R, (11)
2.2. Fixed boundary problem

Consider the following coordinates transformation:

¢=¢(r)= 2ol - Foudll), rer(r) =8 @2)

r r R

where ¢(t)=%(t) and Ry =Ry(0). The vapour mass flow rate

can be calculated integrating the vapour flux (2¢rathe drop
surface (i.e.{=1), but also from the interface conditions (the
second of equations 10), and equating the two fo/ields the
following equation for the non-dimensional dropiced(t):

99 =-pBW(r) (13)

(1) _ (1)
[MJ W(r):[a—xJ , and the
¢ ),

Yol

where S= ,B

1)

L

integration, with the initial conditio@(0)=1, yields the explicit
solution:

¢(r)={1—2ﬁBIW(s)dsT2 (14)

To find the gradient oK at (=1, the problem (8) can be
written in non-dimensional form in the new coordmaystem
(12) where now the boundaries are fixed; using ggug13)
and (14):

+ &
1-2/8B[ W(s)ds

[ =)+ plowir) |
1-2/8B[ W(s)ds
X(1,7)=1 X(w,7)=0; X(¢,0)=0

wherei:(a—xj and X'= 6_X .
or ), ¢ ).

2.3. Numerical implementation and test cases

X 1s)

The problem (15) was numerically implemented using
finite difference scheme. To avoid the instabitigused by the
discontinuity at drop surface/%1) at the initial timer=0, the
initial conditions where implemented as follows:

io[ﬂ]
X(¢0)=f(¢)=e ¢ (16)
whered can be chosen sufficiently small to approximatertal
initial condition to an acceptable extent. A par&imeanalysis
was performed on the dependence of the numerisaltseon

the value ofdR,, showing that a safe choiced$’, smaller than
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0.001. Grid independence tests were performed tmseh the
appropriate cell dimensions.

In the following investigation the values gfwere chosen
to cover realistic ranges of density ratios: frg0.001 (water
drop in air at atmospheric pressure) £00.04 (hydrocarbon
drop evaporating under Diesel engine condition$le Vapour
mass fraction at infinite was set to zer;yf}(:O) while its
values at drop surface (and consequently the valfiB} were
chosen in a range representing real evaporatinditoms.

3. Results and discussion

A sample of the numerical solution of equation (H&)
different non-dimensional times is reported in Fegd for the

¢%(r)=[1-28In[L+ B)]*

Figure 2 shows the values of the non-dimensiordilisag,
as function of the non-dimensional tinsecalculated from the
numerical solution of the time-dependent problequégion 14)
and from equation (20) for comparison. The gragbrseto the
case with$=0.04 andB=0.5. Due to the large mass fraction
gradients close to the drop surface, the initi@paration rate is
higher (up to some orders of magnitude) than thedipted by
the quasi-steady approximation and consequently diop
radius decreases faster at the early stage of estigm as
reported in Figure 2. At later times, the evaporatirates
predicted by the moving boundary model and by theasg
steady one (equations 18 and 19, respectively)rbeatoser,
as reported in Figure 3, under the same operatingitons of

(20)

case 0fB=0.5 and$=0.04. As expected at the very beginning of Figure 2, explaining while the two curves of Fig@raemain

the process the gradient of the mass fractionibligton close

to the drop surfaced€l) is very large, which results in a value

of the evaporation rate much larger than that abthiby the
quasi-steady approximation.
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Figure 1. Non-dimensional vapour distribution poted by the
numerical solution of equation (15) at differenthrdimensional
times;3=0.04 andB=0.5.

The drop evaporation rate is the key parameterafor
evaporation models; it can be defined as:

__am,(t). _A
== Mi)=5Re an
and using equations (10), (13) and (14) yields:
i, = ﬁ = BW(T){l— ZﬂB;[W(s)ds} (18)

As already mentioned, since the diffusion time edalthe
liquid drop is much larger than the correspondiatp& in the
gas, the drop evaporation vapour transport thrahghgas is
usually assumed to be quasi-steady. The most usetlnin
CFD codes is that of [4] that is an extension towvextive
condition of the Fuchs model [3]. The latter présliche
following form of the evaporation rate:

4n.F\’O,i;)Dl,O
that in conjunction with the mass balance (17) dgethe

following rule (a form of theD?law) for the non-dimensional
drop radius shrinking:

=¢®In(1+B) (19)

almost parallel.
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Figure 2. Transient profile of non-dimensional tedpredicted
by the numerical solution of the time-dependenbfam and by
the quasi-steady modgk=0.04 andB=0.5.
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Figure 3. Transient profile of non-dimensional ewation rate
predicted by the numerical solution of the time-elegent
problem and by the quasi-steady mog&i0).04 andB=0.5.

Figure 3 also shows the characteristic time which
corresponds to the time when the time derivativehef non-
dimensional drop radius predicted by the two modelshe
same and this is almost coincident (less than 0.1d%)he
instant corresponding to the intersection betweke two
evaporation rate profiles, as reported in Figure This
parameter is quite important, since it providessatimation of
the time interval during which the evaporation ratay be
much larger than that estimated by
approximation.

the quasi-steady
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A parametrical analysis on the effect of the patanseB
and S on the characteristic timé is shown in Figure 4(a),
covering a rather wide range of test case applioati The
selected values @ ranges from lowB=0.5) up to highB=10)
evaporation rate conditions and the valuesfofanges from
0.001 (water drop evaporating at atmospheric cant} up to
0.04 (Diesel drop in high pressure environment)e Tasults
evidence that the characteristic time needed far tvo
solutions to get closer monotonically decreasab@parameter
B increases, suggesting that at lower evaporati@nc@nditions
the effect of accounting for a moving boundary totlu
becomes more evident and it decreasg$insreases.

Figure 4(b) shows the evaporated mass
dimensionalised by the drop initial mass) at timecalculated
by the time-dependent and by the quasi-steady isnbjt as
function of the two parameteB and 5. The graph shows that
the evaporated mass up to the characteristic firreehigher for
the time-dependent solution within the whole ran§selected
test cases. The evaporated mass at the charactéirse 7
slightly decreases as the parameBewaries from 0.5 to 10,
while it increases up to an order of magnitudedgasmgg from
0.001 up to 0.04. The relative difference betweka two
predicted evaporated mass at timgeaches about 6% for the
largest selected value of gas/liquid density rafibis result
show that for particular applications, like for exale fuel
injection under typical Diesel conditions, neglegtithe effect
of time-dependent evaporation may lead to unnegjiéet
underestimation of the evaporating mass, with awioois
influence on the drop lifetime.
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Figure 4. Effect of parameterB and # on (a) the non-

To mitigate this effect, when using the quasi-syead
approach, the evaporation rate during the chaiatiteperiod
0-7 can be corrected by a multiplying factor definsdailows.
The average evaporation rate from @*t@an be calculated as:

m,=Cmy o0Ccm 21§
M, .
where C:W and the last equality comes from the

observation that the quasi-steady evaporationisapeactically
constant during the characteristic period. The eadfi m,, is

(nonreported in Figure 3 for the specific casgBed.04 andd=0.5.

Therefore a possible approximation of the evaponatate
can be the following:
mg

_|c r<r
My = s

. 22§
r>r1

my
where the values df are reported in Figure 5. The correction

factor C increases both witB and S, varying from about 1.15
up to 1.4 for the selected range of operating dardi.
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Figure 5. Effect of parameteB and 8 on the values of the
correction factoC in equation (21).

4. Conclusions

The effect of drop shrinking and time-dependentoump
transport was included in the modelling of singtenponent
drop evaporation. The moving boundary problem was
transposed into a fixed boundary one through agrogference
system transformation. The model was used to etsltize
evaporation characteristics in a range of operatiogditions
typical of spray applications.

The time-dependent effects lead to considerablease of
the evaporation rate at the beginning of the pmcdhe
relaxation time, needed to reach a quasi-steadgiton, was
quantified as a function of the Spalding mass feansumber
and the gas/liquid density ratio. The increase wdperated
mass during the relaxation time compared to thesaial quasi-
steady model was evaluated, reaching 6% for thdelsig
gas/liquid density ratio here investigated. A cotimn factor in
the classical quasi-steady evaporation model ad¢tmufor the

dimensional characteristic time, (b) the evaporated mass at increase of evaporated mass due to time-dependest w

time 7, relative to the drop initial mass, predicted hg time-
dependent (thick lines) and quasi-steady (thirsimeodels.

proposed.
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5. Nomenclature

Roman symbols

B [1 Spalding mass transfer number

C [1 Correction factor, equation (21)

D,c [m%s] Diffusion coefficient

My [ka] Drop mass

Me, [ka] Evaporated mass

Mgy [kals] Mass evaporation rate

my [kals] Total mass flow rate

n [kg/m?s] Mass flux

r [m] Radial coordinate

Ry [m] Drop radius

S [1 Integration variable, equation (14)

t [s] Time

U [m/s] Stefan flow velocity

Ve [m/s] Interface velocity

X [-] Non-dimensional vapour mass fraction
W [-] Non-dimensional vapor gradient at surface
Greek symbols

Yij [1 Gas/liquid density ratio

o [m] Characteristic length, equation (16)

X [1 Mass fraction

p) [kg/m®]  Mass density

r [ Non-dimensional timer = tD(l'O)/Rg

r [-] Characteristic non-dimensional time

¢ [] Non-dimensional radiusp(t) = Ry(t)/Ro;
{ [] Non-dimensional radial coordinaté,= Ry/r
Subscripts

i Initial

L Liquid

gs Quasi-steady

S Surface

\% Vapour

00 Free stream condition

Superscripts

p Species index
n Non-dimensional
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