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Abstract

During the last three decades, Bayesian methods have developed greatly in
the field of epidemiology. Their main challenge focusses around computation,
but the advent of Markov Chain Monte Carlo methods (MCMC) and in par-
ticular of the WinBUGS software has opened the doors of Bayesian modelling
to the wide research community. However model complexity and database
dimension still remain a constraint.

Recently the use of Gaussian random fields has become increasingly pop-
ular in epidemiology as very often epidemiological data are characterised by a
spatial and/or temporal structure which needs to be taken into account in the
inferential process. The Integrated Nested Laplace Approximation (INLA)
approach has been developed as a computationally efficient alternative to
MCMC and the availability of an R package (R-INLA) allows researchers to
easily apply this method.

In this paper we review the INLA approach and present some applications
on spatial and spatio-temporal data.
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1. Introduction

During the last three decades, Bayesian methods have developed greatly
and are now widely established in many research areas, from clinical trials
(Berry et al., 2011), to health economic assessment (Baio, 2012) to the social
sciences (Jackman, 2009), to epidemiology (Greenland, 2006).

The basic idea behind the Bayesian approach is that effectively only one
form of uncertainty exists, which is described by suitable probability distri-
butions. Thus, there is no fundamental distinction between observable data
or unobservable parameters, which are also considered as random quantities.
The uncertainty about the realised value of the parameters given the current
state of information (i.e. before observing any new data) is described by a
prior distribution. The inferential process combines the prior and the (cur-
rent) data model to derive the posterior distribution, which is typically, but
not necessarily, the objective of the inference (Bernardo and Smith, 2000;
Lindley, 2006).

There are several advantages to the Bayesian approach: for instance the
specification of prior distributions allows the formal inclusion of informa-
tion that can be obtained through previous studies or from expert opinion;
the (posterior) probability that a parameter does/does not exceed a certain
threshold is easily obtained from the posterior distribution, providing a more
intuitive and interpretable quantity than a frequentist p-value. In addition,
within the Bayesian approach, it is easy to specify a hierarchical structure
on the data and/or parameters, which presents the added benefit of mak-
ing prediction for new observations and missing data imputation relatively
straightforward.

Epidemiological data, e.g. in terms of an outcome and one or more risk
factors or confounders, are often characterised by a spatial and/or temporal
structure which needs to be taken into account in the inferential process.
Under these circumstances, the Bayesian approach is generally particularly
effective (Dunson, 2001) and has been applied in several epidemiological ap-
plications, from ecology (Clark, 2005) to environmental studies (Wikle, 2003;
Clark and Gelfand, 2006), to infectious disease (Jewell et al., 2009). For ex-
ample, if the data consist of aggregated counts of outcomes and covariates,
typically disease mapping and/or ecological regression can be specified (Law-
son, 2009). Alternatively, if the outcome or risk factors data are observed at
point locations, then geostatistical models are considered as suitable repre-
sentations of the problem (Diggle and Ribeiro, 2007).
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Both models can be specified in a Bayesian framework by simply extend-
ing the concept of hierarchical structure, allowing to account for similarities
based on the neighborhood or on the distance, for area-level or point-reference
data, respectively. However, particularly in these cases, the main challenge
in Bayesian statistics resides in the computational aspects. Markov Chain
Monte Carlo (MCMC) methods (Brooks et al., 2011; Robert and Casella,
2004), are normally used for Bayesian computation, arguably thanks to the
wide popularity of the BUGS software (Lunn et al., 2009, 2012). While ex-
tremely flexible and able to deal with virtually any type of data and model,
in all but trivial cases MCMC methods involve computationally- and time-
intensive simulations to obtain the posterior distribution for the parameters.
Consequently, the complexity of the model and the database dimension often
remain fundamental issues.

The Integrated Nested Laplace Approximation (INLA; Rue et al., 2009)
approach has been recently developed as a computationally efficient alter-
native to MCMC. INLA is designed for latent Gaussian models, a very wide
and flexible class of models ranging from (generalized) linear mixed to spatial
and spatio-temporal models. For this reason, INLA can be successfully used
in a great variety of applications (e.g. Li et al., 2012; Riebler et al., 2012;
Ruiz-Cárdenas et al., 2012; Martino et al., 2011; Roos and Held, 2011; Schrö-
dle and Held, 2011a,b; Schrödle et al., 2011; Paul et al., 2010), also thanks
to the availability of an R package named R-INLA (Martino and Rue, 2010).
Furthermore, INLA can be combined with the Stochastic Partial Differential
Equation (SPDE) approach proposed by Lindgren et al. (2011) in order to
implement spatial and spatio-temporal models for point-reference data.

The objective of this paper is to present the basic features of the INLA
approach as applied to spatial and spatio-temporal data. The paper is struc-
tured as follows: first in Section 2 we review the main characteristics of
spatial and spatio-temporal data defined at the point and area level; then we
provide an overview of the theory behind INLA in Section 3 and present two
practical applications on area level data in Sections 3.2 and 3.3. After this
in Section 4 we review the SPDE approach to deal with geostatistical data,
and then present two practical applications on spatial and spatio-temporal
point level data (Sections 4.1 and 4.2). Finally Section 5 discusses some of
the issues and provides some conclusions.
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2. Spatial and spatio-temporal data

Spatial data are defined as realisations of a stochastic process indexed by
space

Y (s) ≡ {y(s), s ∈ D}

where D is a (fixed) subset of Rd (here we consider d = 2). The actual data
can be then represented by a collection of observations y = {y(s1), . . . , y(sn)},
where the set (s1, . . . , sn) indicates the spatial units at which the measure-
ments are taken. Depending on D being a continuous surface or a countable
collection of d-dimensional spatial units, the problem can be specified as a
spatially continuous or discrete random process, respectively (Gelfand et al.,
2010).

For example, we can consider a collection of air pollutant measurements
obtained by monitors located in the set (s1, . . . , sn) of n points. In this case,
y is a realisation of the air pollution process that changes continuously in
space and we usually refer to it as geostatistical or point-reference data. Al-
ternatively, we may be interested in studying the spatial pattern of a certain
health condition observed in a set (s1, . . . , sn) of n areas (rather than points),
defined for example by census tracts or counties; in this case, y may represent
a suitable summary, e.g. the number of cases observed in each area.

The first step in defining a spatial model within the Bayesian framework is
to identify a probability distribution for the observed data. Usually we select
a distribution from the Exponential family, indexed by a set of parameters θ
accounting for the spatial correlation — note that for the sake of simplicity
we slightly abuse the notation and index the generic spatial point or area by
using just the subscript i, rather than the indicator si, in the following.

In the case of geostatistical data, the parameters are defined as a la-
tent stationary Gaussian field (GF), a function of some hyper-parameters
ψ associated with a suitable prior distribution p(ψ). This is equivalent to
assuming that θ has a multivariate Normal distribution with mean µ =
(µ1, . . . , µn)′ and spatially structured covariance matrix Σ, whose generic el-
ement is Σij = Cov (θi, θj) = σ2

CC(∆ij). Here σ2
C is the variance component

and for i, j = 1, . . . , n

C(∆ij) =
1

Γ(λ)2λ−1
(κ∆ij)

λKλ (κ∆ij) (1)
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is the (isotropic) Matérn spatial covariance function1 (Cressie, 1993) depend-
ing on the Euclidean distance between the locations ∆ij = ‖si − sj‖. The
parameter Kλ denotes the modified Bessel function of second kind and order
λ > 0, which measures the degree of smoothness of the process and is usually
kept fixed. Conversely, κ > 0 is a scaling parameter related to the range r,
i.e. the distance at which the spatial correlation becomes almost null. Typ-

ically, the empirically derived definition r =
√
8λ
κ

is used (see Section 2 in
Lindgren et al., 2011), with r corresponding to the distance at which the
spatial correlation is close to 0.1, for each λ.

In the case of area level data, it is possible to reformulate the problem in
terms of the neighbourhood structure. Under the Markovian property that
the generic element of the parameters vector θi is independent on any other
element, given the set of its neighbours N (i)

θi ⊥⊥ θ−i | θN (i),

(θ−i indicates all the elements in θ but the i−th), the precision matrix Q =
Σ−1 is sparse, which produces great computational benefits. In other words,
for any pair of elements (i, j)

θi ⊥⊥ θj | θ−ij ⇐⇒ Qij = 0

i.e. the non-zero pattern in the precision matrix is given by the neighbour-
hood structure of the process. Thus, Qij 6= 0 only if j ∈ {i,N (i)}. This
specification is known as Gaussian Markov Random Field (GMRF, Rue and
Held, 2005)

The concept of spatial process can be extended to the spatio-temporal
case including a time dimension. The data are then defined by a process

Y (s, t) ≡ {y(s, t), (s, t) ∈ D ∈ R2 × R}

and are observed at n spatial locations or areas and at T time points.
When spatio-temporal geostatistical data are considered (Gelfand et al., 2010,

1Other models for the spatial covariance function are available in the geostatistical
literature (see e.g. Cressie, 1993 and Banerjee et al., 2004). The fact that here we focus
on the Matérn model - as required by the SPDE approach described in Section 4 - should
not be considered as a restriction. In fact, as described in Guttorp and Gneiting (2006),
the Matèrn family is a very flexible class of covariance functions able to cover a wide range
of spatial fields.
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Chapter 23), we need to define a valid spatio-temporal covariance function
given by Cov (θit, θju) = σ2

CC(si, sj; t, u). If we assume stationarity in space
and time, the space-time covariance function can be written as a function
of the spatial Euclidean distance ∆ij and of the temporal lag Λtu = |t − u|,
i.e. Cov (θit, θju) = σ2

CC(∆ij; Λtu); several examples of valid non-separable
space-time covariance functions are reported in Cressie and Huang (1999)
and Gneiting (2002).

In practice, to overcome the computational complexity of non-separable
models, some simplifications are introduced. For example, under the separa-
bility hypothesis the space-time covariance function is decomposed into the
sum (or the product) of a purely spatial and a purely temporal term (Gneit-
ing et al., 2006), e.g. Cov (θit, θju) = σ2

CC1(∆ij)C2(Λtu), with C1 and C2 being
the spatial and temporal correlation function, respectively . Alternatively, it
is possible to assume that the spatial correlation is constant in time, giving
rise to a space-time covariance function that is purely spatial when t = u, i.e.
Cov (θit, θju) = σ2

CC(∆ij), and is zero otherwise. In this case, the temporal
evolution could be introduced assuming that the spatial process evolves in
time following an autoregressive dynamics (see e.g. Harvill, 2010).

Similar reasoning can be applied to area level data; the GMRF frame-
work can be extended to include a precision matrix defined also in terms of
time, assuming again a neighborhood structure. If a space-time interaction is
included, its precision can be obtained through the Kronecker product of the
precision matrices for the space and time effects interacting — see Clayton
(1996) and Knorr-Held (2000) for a detailed description.

3. Integrated Nested Laplace Approximation (INLA)

Often, in a statistical analysis the interest is in estimating the effect of
a set of relevant covariates on some function (typically the mean) of the
observed data, while accounting for the spatial or spatio-temporal correlation
implied in the model.

A very general way of specifying this problem is by modelling the mean for
the i-th unit by means of an additive linear predictor, defined on a suitable
scale (e.g. logistic for binomial data)

ηi = α +
M∑
m=1

βmxmi +
L∑
l=1

fl(zli). (2)
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Here α is a scalar representing the intercept; the coefficients β = (β1, . . . , βM)
quantify the effect of some covariates x = (x1, . . . , xM) on the response; and
f = {f1(·), . . . , fL(·)} is a collection of functions defined in terms of a set of
covariates z = (z1, . . . , zL). Upon varying the form of the functions fl(·), this
formulation can accommodate a wide range of models, from standard and
hierarchical regression, to spatial and spatio-temporal models (Rue et al.,
2009).

Given the specification in (2), the vector of parameters is represented
by θ = {α,β,f}. In line with the discussion in Section 2, we can assume
a GMRF prior on θ, with mean 0 and a precision matrix Q. In addition,
because of the conditional independence relationships implied by the GMRF,
the vector of the K hyper-parameters ψ = (ψ1, . . . , ψK) will typically have
dimension of order (1 + L) and thus will be much smaller than θ.

The objectives of the Bayesian computation are the marginal posterior
distributions for each of the elements of the parameters vector

p(θi | y) =

∫
p(ψ | y)p(θi | ψ,y)dψ

and (possibly) for each element of the hyper-parameters vector

p(ψk | y) =

∫
p(ψ | y)dψ−k.

Thus, we need to compute: i) p(ψ | y), from which also all the relevant
marginals p(ψk | y) can be obtained; and ii) p(θi | ψ,y), which is needed
to compute the marginal posterior for the parameters. The INLA approach
exploits the assumptions of the model to produce a numerical approximation
to the posteriors of interest, based on the Laplace approximation (Tierney
and Kadane, 1986).

The first task i) consists of the computation of an approximation to the
posterior marginal distribution of the hyper-parameters as

p(ψ | y) =
p(θ,ψ | y)

p(θ | ψ,y)
∝ p(ψ)p(θ | ψ)p(y | θ)

p(θ | ψ,y)

≈ p(ψ)p(θ | ψ)p(y | θ)

p̃(θ | ψ,y)

∣∣∣∣
θ=θ∗(ψ)

=: p̃(ψ | y) (3)

where p̃(θ | ψ,y) is the Gaussian approximation (Rue et al., 2009, Section
2.2) of p(θ | ψ,y) and θ∗(ψ) is its mode. As described in Rue et al. (2009),
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(3) is equivalent to the Laplace approximation of a marginal posterior density
as proposed in Tierney and Kadane (1986).

The second task ii) is slightly more complex, because in general there will
be more elements in θ than there are in ψ and thus this computation is more
expensive. One easy possibility is to approximate the posterior conditional
distributions p(θi | ψ,y) directly as the marginals from p̃(θ | ψ,y), i.e. using
a Normal distribution, where the precision matrix is based on the Cholesky
decomposition of the precision matrix Q (Rue and Martino, 2007). While
this is very fast, the approximation is generally not very good. Alternatively,
it is possible to re-write the vector of parameters as θ = (θi,θ−i) and use
again Laplace approximation to obtain

p(θi | ψ,y) =
p ((θi,θ−i) | ψ,y)

p(θ−i | θi,ψ,y)

≈ p(θ,ψ | y)

p̃(θ−i | θi,ψ,y)

∣∣∣∣
θ−i=θ∗−i(θi,ψ)

=: p̃(θi | ψ,y) (4)

where p̃(θ−i | θi,ψ,y) is the Gaussian approximation of p(θ−i | θi,ψ,y)
and θ∗−i(θi,ψ) is its mode. Because the random variables (θ−i | θi,ψ,y) are
in general reasonably Normal, the approximation provided by (4) typically
works very well. This strategy, however, can be very expensive in compu-
tational terms. Consequently, the most efficient algorithm is the “Simplified
Laplace approximation”, which is based on a Taylor’s series expansion of the
Laplace approximation p̃(θi | ψ,y) in (4). This is usually “corrected” by
including a mixing term (e.g. spline), to increase the fit to the required dis-
tribution. The accuracy of this approximation is sufficient in many applied
cases and the time needed for the computations is much shorter and thus
this is the standard option.

Operationally, INLA proceeds by first exploring the marginal joint pos-
terior for the hyper-parameters p̃(ψ | y) in order to locate the mode; a grid
search is then performed and produces a set G of “relevant” points {ψ∗} to-
gether with a corresponding set of weights {wψ∗}, to give the approximation
to this distribution. Each marginal posterior p̃(ψ∗ | y) can be obtained using
interpolation based on the computed values and correcting for (probable)
skewness, e.g. by using log-splines. For each ψ∗, the conditional posteriors
p̃(θi | ψ∗,y) are then evaluated on a grid of selected values for θi and the
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marginal posteriors p̃(θi | y) are obtained by numerical integration

p̃(θi | y) ≈
∑
ψ∗∈G

p̃(θi | ψ∗,y)p̃(ψ∗ | y)wψ∗ .

More details on this methods can be found in Rue et al. (2009); Martins
et al. (2012); Blangiardo and Cameletti (2013).

3.1. The R-INLA package

The INLA approach described in the previous section is implemented in
the R package R-INLA, which substitutes the standalone INLA program built
upon the GMRFLib library (Martino and Rue, 2010). R-INLA is available
for Linux, Mac and Windows operating systems. The web-site http://www.

r-inla.org/ provides documentation for the package as well as many worked
examples and a discussion forum.

Assuming a vector of two covariates x = (x1, x2) and a function f(·)
indexed by a third covariate z1, (2) is reproduced in R-INLA through the
command formula:

> formula <- y ~ 1 + x1 + x2 + f(z1, ...)

where y, x1, x2 and z1 are the column names of the data frame containing the
data (for simplicity, we assume throughout that the data frame name is data).
The regression coefficients α, β1 and β2 are by default given independent prior
Normal distributions with zero mean and small precision (or equivalently
large variance).

The term f(·) is used to specify the structure of the function f(·), using
the following notation:

> f(z1, model = "...", ...)

where the string associated with the option model specifies the type of func-
tion. The default choice is model="iid", documented typing inla.doc("iid")

and it amounts to assuming exchangeable Normal distributions on z1. This
specification can be used to build standard hierarchical models. The list of
the other alternatives is available typing names(inla.models()$latent); in
addition, a detailed description of all the possible choices is available at the
webpage http://www.r-inla.org/models/latent-models.

Once the model has been specified, we can run the INLA algorithm using
the inla function:
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> mod <- inla(formula, family = "...", data)

where formula has been specified above, data is the data frame containing
all the variables in the formula and family is a string that specifies the distri-
bution of the data (likelihood). The available data distributions are retrieved
typing names(inla.models()$likelihood) and complete descriptions with
examples are provided at http://www.r-inla.org/models/likelihoods.
The inla function includes many other options; see ?inla for a complete
list. Note that INLA by default estimates the posterior marginal distribu-
tion for the hyperparameters is estimated using an integration free algorithm,
described in Martins et al. (2012) and which has been showed to provide
reasonably accurate estimates. Nevertheless if the interest lays primarily
on the hyperparameters, an alternative method based on a more compu-
tational intensive grid exploration can be employed, using the command
inla.hyperpar after running inla. We advise the reader to refer to the
above cited paper for more details.

We illustrate more functionalities of R-INLA using the real data appli-
cations described in the following sections. The complete code for run-
ning the four examples can be downloaded from Case studies section at
www.r-inla.org. 2

3.2. INLA for spatial areal data: suicides in London

Disease mapping is commonly used in small area studies to assess the
pattern of a particular disease and to identify areas characterised by unusually
high or low relative risk (Lawson, 2009; Pascutto et al., 2000). Here we use
the example presented in Congdon (2007) to investigate suicide mortality in
n = 32 London boroughs in the period 1989-1993.

For the i-th area, the number of suicides yi is modelled as

yi ∼ Poisson(λi),

where the mean λi is defined in terms of a rate ρi and the expected number
of suicides Ei as λi = ρiEi. In this case, the linear predictor is defined on the
logarithmic scale

ηi = log(ρi) = α + υi + νi, (5)

2Note that all the code has been developed using the INLA version released on the 5th
of November 2012.
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α is the intercept quantifying the average suicide rate in all the 32 boroughs;
υi = f1(i) and νi = f2(i) are two area specific effects; i = {1, . . . , n} is the
indicator for each borough (spatial areas) and corresponds to the variable ID

in the data frame.
We assume a Besag-York-Mollie (BYM) specification (Besag et al., 1991),

so υi is the spatially structured residual, modelled using an intrinsic condi-
tional autoregressive structure (iCAR)

υi | υj 6=i ∼ Normal(mi, s
2
i )

mi =

∑
j∈N (i) υj

#N (i)
and s2i =

σ2
υ

#N (i)
,

where #N (i) is the number of areas which share boundaries with the i-th
one (i.e. its neighbours), as presented in Banerjee (2004). The parameter νi
represents the unstructured residual, modelled using an exchangeable prior:
νi ∼ Normal(0, σ2

ν).
To run this model in R-INLA we first specify the formula, typing

formula <- y ~ 1 + f(ID, model="bym",graph=LDN.adj)

where LDN.adj is the graph which assignes the set of neighbours for each
borough and that can be obtained from the shape file of the study region
using the R packages maptools and spdep. Note that R-INLA parametrises
ξi = υi + νi and υi through f(ID, model="bym",...).1

By default, minimally informative priors are specified i) on the log of
the unstructured effect precision3 log τν ∼ log Gamma(1, 0.0005) and ii) on
the log of the structured effect precision3 log τυ ∼ log Gamma(1, 0.0005).
Different priors can be specified through the option hyper in the formula

specification, for instance

formula <- y ~ 1 + f(ID, model="bym",graph=LDN.adj, hyper =

list(prec.unstruct = list(prior="loggamma",param=c(1,0.01)),

prec.spatial = list(prior="loggamma",param=c(1,0.001))))

1Alternatively it is possible to specify the two BYM components separately using f(ID,

model="besag",graph=LDN.adj) for the spatial structured one (iCAR) and f(ID2,

model="iid",graph=LDN.adj) for the unstructured one (exchangeable). In this case the
ID needs to be duplicated (ID2=ID) as it is not allowed to define two functions on the same
variable.

3Recall that the precision is defined as τ = 1/σ2
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Of course, as in any Bayesian analysis, the choice of the prior may have a
considerable impact on the results. Thus, it is necessary to think carefully
about what is being used and perform sensitivity analyses to assess how the
prior influences the estimations.

The model can be run using the inla function:

mod <- inla(formula,family="poisson",data=data,E=E)

With respect to the discussion of Section 3, in this case the parameters esti-
mated by INLA are represented by θ = {α, ξ,υ} and the hyper-parameters
are given by the precisions ψ = {τ 2υ , τ 2ν }.

Summary information (e.g. the posterior mean and standard deviation,
together with a 95% credible interval) can be obtained for each compo-
nent of θ and ψ. In particular, for the so called “fixed” effects (α, in
this case), this can be obtained typing mod$summary.fixed; similarly, the
summary statistics for the “random” effects (i.e. ξ and υ) are produced by
mod$summary.random. The latter is a data frame formed by 2n rows: the
first n rows include information on the area specific residuals ξi, which are
the primary interest in a disease mapping study, while the remaining present
information on the spatially structured residual υi only.

The posterior mean of the exponentiated intercept α implies a 4% suicide
rate across London, with a 95% credibility interval ranging from 1% to 8%.
Figure 1 (a) shows the map of the posterior mean for the borough-specific
relative risks of suicides ζ = exp(ξ), compared to the whole of London. Their
posterior distributions are easily obtained applying an exponential transfor-
mation to the components of ξ, which are in turn produced by the command
mod$marginals.random. The built-in functions inla.marginal.transform
and inla.emarginal compute marginals of transformed variables and ex-
pected values.

The uncertainty associated with the posterior means can also be mapped
and provide useful information (Richardson et al., 2004). In particular, as
the interest lays in the excess risk, we can visualise p(ζi > 1 | y), using the
built-in function inla.pmarginal; the resulting map is presented in Figure
1 (b).

Finally, it could be interesting to evaluate the proportion of variance ex-
plained by the structured spatial component. The quantity σ2

υ is the variance
of the conditional autoregressive specification, while σ2

ν is the variance of the
marginal unstructured component. Thus, the two are not directly compara-
ble. Nevertheless it is possible to obtain an estimate of the posterior marginal
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variance for the structured effect empirically through

s2υ =

∑n
i=1(υi − ῡ)2

n− 1
,

where ῡ is the average of υ, and then compare it to the posterior marginal
variance for the unstructured effect, provided by σ2

ν

fracspatial = s2υ/(s
2
υ + σ2

ν).

In the current example, the proportion of spatial variance is about 0.97 sug-
gesting that almost all the variability is explained by the spatial structure.

When risk factors are available and the aim of the study is to evaluate
their effect on the risk of disease (or death), ecological regression models can
be specified, simply extending the procedure described above. For instance,
in the present example for each of the 32 boroughs the values of an index
of social deprivation and an index of social fragmentation (describing lack
of social connections and of sense of community) are known and stored re-
spectively in the variables x1 and x2. To evaluate their impact on the risk of
suicides, the model in (5) can be reformulated as

ηi = α + β1x1i + β2x2i + υi + νi,

which can be coded in R-INLA using the formula

formula.cov <- y ~ 1+ f(ID,model="bym", graph=LDN.adj) + x1 + x2

The fixed effects (α, β1, β2) estimated by INLA are presented in Table 1. If
exponentiated, they can be interpreted as relative risks: an increase of 1 unit
in the deprivation index and in the social fragmentation index is associated
respectively with an increase of around 9% = exp(0.089) and around 20%
= exp(0.18) in the risk of suicides.

The map of the borough specific relative risks ζ and their posterior prob-
ability of exceeding 1 are shown in Figure 1 (c)-(d); note that now they are
interpreted as the residual relative risk for each area (compared to the whole
of London) after the risk factors x1 and x2 are taken into account.

3.3. INLA for spatio-temporal areal data: low birth weight in Georgia

In this section we use counts of low birth weight, defined as less than
2,500 grams, for the 159 counties in the US state of Georgia during 2000-
2010 (Lawson, 2009) to build a space-time disease mapping.
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Mean Sd 2.5% 50% 97.5%
α 0.059 0.016 0.028 0.059 0.091
β1 0.089 0.023 0.042 0.089 0.133
β2 0.180 0.021 0.138 0.180 0.222

Table 1: Summary statistics: posterior mean, posterior standard deviation (Sd) and pos-
terior 95% credible interval for the fixed effects of the ecological regression model.

The classical parametric formulation was introduced by Bernardinelli
et al. (1995), and assume that the linear predictor can be written as

ηit = α + υi + νi + (β + δi)× t. (6)

This formulation includes the same spatial structured and unstructured com-
ponents as in (5), with: ξi = υi + νi; a main linear trend β, which represents
the global time effect; and a differential trend δi, which identifies the inter-
action between time and space.

Since, for identifiability purposes a sum-to-zero constraint is imposed on
δ and ν, the terms δi represent the difference between the global trend β and
the area specific trend. If δi < 0 then the area-specific trend is less steep than
the mean trend, whilst δi > 0 implies that the area-specific trend is steeper
than the mean trend. We assume δi ∼ Normal(0, τδ), but other specification
can be used, e.g. a conditional autoregressive structure, see Bernardinelli
et al. (1995), Schrödle and Held (2011a) for a detailed description.

In R-INLA the interaction term needs to be specified through the formula
as follows:

formula1 <- y ~ 1 + f(ID.area, model="bym",graph=Georgia.adj) +

f(ID.area1,year,model="iid") + year

(we save the model associated with this formula in an inla object named
mod1). Note that each function f(·) can only be assigned to one covariate
in R-INLA, so in this case we need to create a new variable ID.area1 which
is a duplicate of ID.area. In addition, year in the f(·) term is treated as a
vector of weights.

This specification assumes a linear effect of time for each area (δi). Ac-
cording to Section 3 the parameters estimated by INLA are θ = {α, β, ξ,υ, δ}
and the hyper-parameters are represented by ψ = {τυ, τν , τδ}.
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The assumption of linearity in the δi can be released (Knorr-Held, 2000)
using a dynamic non parametric formulation for the linear predictor

ηit = α + υi + νi + γt + φt. (7)

Here α, υi and νi have the same parametrisation as in (6); however, the term
γt represents the temporally structured effect, modelled dynamically (e.g.
using a random walk) through a neighboring structure

γt | γ−t ∼ Normal (γt+1, τγ) for t = 1

γt | γ−t ∼ Normal

(
γt−1 + γt+1

2
,
τγ
2

)
for t = 2, . . . , T − 1

γt | γ−t ∼ Normal (γt−1, τγ) for t = T .

Finally φt is specified by means of a Gaussian exchangeable prior: φt ∼
Normal(0, τφ).

This model is specified in R-INLA as

formula2 <- y ~ 1 + f(ID.area,model="bym",graph=Georgia.adj) +

f(ID.year,model="rw1") + f(ID.year1,model="iid")

We save the resulting model in the inla object mod2. In this formulation
θ = {α, ξ,υ,γ,φ} and ψ = {τυ, τν , τγ, τφ}.

It is easy to expand this model to allow for an interaction between space
and time, which would explain differences in the time trend of low birth
weight for different areas, e.g. using the following specification:

ηit = α + υi + νi + γt + φt + δit. (8)

There are several ways to define the interaction term: here, we assume that
the two unstructured effects νi and φt interact. We re-write the precision
matrix as the product of the scalar τν (or τφ) and the so called structure
matrix Fν (or Fφ), which identifies the neighboring structure; here the struc-
ture matrix Fδ can be factorised as the Kronecker product of the structure
matrix for ν and φ (Clayton, 1996): Fδ = Fν ⊗ Fφ = I ⊗ I = I (because
both ν and φ are unstructured). Consequently, we assume no spatial and/or
temporal structure on the interaction and therefore δit ∼ Normal(0, τδ) —
see Knorr-Held (2000) for a detailed description of other specifications. In
this model θ = {α, ξ,υ,γ,φ, δ} and ψ = {τυ, τν , τγ, τφ, τδ}.

The corresponding R-INLA coding is
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formula3 <- y ~ 1 + f(ID.area,model="bym", graph=Georgia.adj) +

f(ID.year,model="rw1") + f(ID.year1,model="iid") +

f(ID.area.year,model="iid")

and the resulting model is saved in the object mod3.
In the three models presented in this section, we assume the default

specification of R-INLA for the distribution of the hyper-parameters; there-
fore, similarly to the disease mapping model presented earlier, log τυ ∼
log Gamma(1, 0.0005) and log τν ∼ log Gamma(1, 0.0005). In addition we
specify a Gamma(1, 0.0005) prior on the precision of the random walk and
of the two unstructured effects.

One possible tool to evaluate the fit of these three competing models is the
Deviance Information Criterion (DIC, Spiegelhalter et al., 2002), which can
be computed in R-INLA, using the option control.compute=list(dic=TRUE).
Table 2 presents the DIC components for the three models: the dynamic
parametrisation of the time trend improves the model fit and including the
interaction shows the smaller DIC suggesting that, despite the added com-
plexity, this model has a more appropriate fit to the data in hand. For this
reason we focus on the results from this model.

Model D̄ pD DIC
mod1 11698.5 173.2 11871.7
mod2 11709.9 155.9 11865.9
mod3 11509.9 306.7 11816.6

Table 2: Deviance Information Criterion (DIC) for the three spatio-temporal models con-
sidered defined by Equations (6)-(8). D̄ is the posterior mean of the deviance, measuring
model fit; pD is effective number of parameters, representing model complexity.

The spatial trend ζi = exp(ξi) is presented in Figure 2 (a) for the 159
counties in Georgia, while Figure 2 (b) depicts the measure of uncertainty
p(ζi > 1 | y). An increased risk can be seen in some parts of the country,
characterised by a spatial relative risk above 1, and a posterior probabilities
above 0.8, indicating a relatively small level of associated uncertainty. The
temporal trend is included in Figure 2 (c) and shows an increase in the risk
of low birth weight between 2000 and 2010.

The posterior probabilities for the interactions, p(exp(δit) > 1 | y), are
presented in Figure 3 for three years: as expected only a handful of areas
shows evidence of an interaction larger than 1, changing in different years.
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4. The stochastic partial differential equation approach for geosta-
tistical data

Point-reference data can be dealt with the stochastic partial differential
equation (SPDE) approach proposed by Lindgren et al. (2011). This con-
sists in representing a continuous spatial process, e.g. a GF with the Matèrn
covariance function defined in (1), as a discretely indexed spatial random
process (e.g. a GMRF). This in turn produces substantial computational ad-
vantages. In fact, spatial GFs are affected by the so called “big n problem”
(Jona Lasinio et al., 2012; Banerjee et al., 2004), which is due to the compu-
tational costs of O(n3) to perform matrix algebra operations with n×n dense
covariance matrices (whose dimension is given by the number of observations
at all spatial locations and time points).

In contrast, as introduced in Section 2, GMRFs are characterised by
sparse precision matrices; this feature allows to implement computationally
efficient numerical methods, especially for fast matrix factorization (Rue and
Held, 2005). For a GMRF model in R2 the computational cost is typically
O(n3/2), which is a significant speed up compared to O(n3) of the GF. More-
over, Bayesian inference involving spatial GMRFs can be performed employ-
ing the INLA approach introduced in Section 3.

In this section we sketch the basics of the SPDE approach and we refer to
Lindgren et al. (2011) for a complete description and the proofs of the results.
Applications of SPDE for geostatistical data can be found in Simpson et al.
(2012a,b), Bolin (2012), Cameletti et al. (2011b) and Simpson et al. (2011).

Consider a simple setting for geostatistical data where for the i-th spatial
point location the observation yi is modelled as4

yi ∼ Normal
(
ηi, σ

2
e

)
(9)

where σ2
e is the variance of the zero mean measurement error ei which is

supposed to be independent on ej with i 6= j. The response mean is defined
as

ηi = α +
M∑
m=1

βmxmi + ξi (10)

4Here we consider the case of normally distributed data, but this is not a requirement
as INLA and the SPDE approach can deal with non Gaussian responses. However, it is
worth to note that in the Gaussian case, the INLA calculations are exact and the only
approximation is the numerical integration required for computing p̃(ψ | y) in (3).
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where ξi is the i-th realisation of the latent GF ξ(s) with Matérn spatial
covariance function defined in (1). In the geostatistics literature, the term
α +

∑M
m=1 βmxmi is often referred to as large-scale component, while the

measurement error variance σ2
e is known as nugget effect (see Cressie, 1993).

With respect to the linear predictor introduced in (2), the function fi(·) is
represented by the spatially structured term ξi. The key idea of the SPDE
approach consists in defining the continuously indexed Matérn GF ξ(s) as a
discrete indexed GMRF by means of a basis function representation defined
on a triangulation of the domain D

ξ(s) =
G∑
g=1

ϕg(s)ξ̃g . (11)

Here G is the total number of vertices in the triangulation, {ϕg} is the set
of basis functions and {ξ̃g} are zero-mean Gaussian distributed weights. For
computational reasons as explained in Lindgren et al. (2011), the basis func-
tions are chosen to be piecewise linear on each triangle, i.e. ϕg is 1 at vertex
g and 0 elsewhere. Notice that we use the formal notation ξ(s) in the left-
hand side of (11) since SPDE5 provides a representation of the whole spatial
process (defined for any point s) that varies continuously in the considered
domain D.

An illustration of the SPDE approach is given in Figure 4, which dis-
plays a continuously indexed spatial random field and the corresponding
finite element representation with piecewise linear basis functions over a
triangulated mesh. Lindgren et al. (2011) show that the vector of basis
weights ξ̃ = (ξ̃1, . . . , ξ̃G)′ is a GMRF with sparse precision matrix Qξ̃ de-
pending on the Matérn covariance function parameter κ and variance σ2

C, for
α = 1, 2, 3, . . . where α = λ+ 1 (recall that λ is the smoothness parameter).

Given the GF representation provided by the SPDE method, we can
rewrite the linear predictor of (10) as

ηi = α +
M∑
m=1

βmxmi +
G∑
g=1

Ãigξ̃ (12)

5The terminology SPDE is related to the linear fractional stochastic partial differential
equation reported in Equation (2) of Lindgren et al. (2011) whose (only stationary) exact
solution is given by a GF with Matèrn covariance function. This exact solution is then
approximated using the finite element representation of (11).
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where Ã is the sparse n × G matrix that maps the GMRF ξ̃ from the n
observation locations to the G triangulation nodes. Note that in R-INLA this
kind of model can be easily implemented specifying model=spde in the f(·)
term of the formula definition.

The next two sections are dedicated to the implementation of a spatial
and a spatio-temporal geostatistical model in R-INLA providing some details
about the SPDE functions. At the moment R-INLA implements the SPDE
approach for 0 < α ≤ 2; in our models we have specified α = 2 which corre-
sponds to a smoothness parameter λ equal to 1, thus to a second-order condi-
tional autoregressive structure. Anticipating an R-INLA feature for managing
geostatistical data, we rewrite here (9) and (10) in matrix notation as

y ∼ N
(
η, σ2

eIn
)

(13)

η = 1α +X ′β + Ãξ̃ (14)

where y = (y1, . . . , yn)′ is the observation vector, In is a n-dimensional diag-
onal matrix, 1 is a vector of ones and X is the M × n matrix of covariates.
Moreover the term A = {1,X, Ã} is called observation matrix. According
to the notation introduced in Section 3, in this case the vector of parameters
is defined as θ = {ξ̃, α,β} with hyper-parameters vector ψ = (σ2

e , κ, σ
2
C).

4.1. INLA/SPDE for spatial geostatistical data: Swiss rainfall data

One of the primary objective of geostatistical modeling is the prediction
of the considered phenomenon at unsampled locations conditionally on the
observed data and available covariates (i.e. kriging, see Gelfand et al., 2010).
To illustrate how to perform spatial prediction using INLA and the SPDE
approach, we consider rainfall measurements (in 10th of mm) taken on the
8th of May 1986 at 467 locations in Switzerland. The rainfall data are part
of the sic data set in the geoR library (Ribeiro and Diggle, 2001) which
provides also the spatial coordinates and the elevation value (in km) for each
location.

In order to make the distribution of the rainfall data approximately Nor-
mal, we use a root square transformation; the transformed values are de-
picted in Figure 5 (a). Moreover, following the guidelines described in Dubois
(1998), we use the 100 locations marked with bullets in Figure 5 (a) for es-
timation purposes and we retain the remaining 367 stations (marked with
triangles) for model validation, i.e. we predict rainfall in the validation sites
and evaluate through indexes the model predictive performance. Finally, we
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estimate the rain field on a regular grid covering Switzerland with the same
resolution of the elevation surface available from the sic97 data set in the
gstat package (Pebesma, 2004) and depicted in Figure 5 (b). In particular,
the elevation map is named demstd and is composed by 376×253 grid points.

In R-INLA the first step required to run the geostatistical spatial model
introduced in Section 4 with only one covariates (M = 1 represented by
elevation), is the triangulation of the considered spatial domain. We use the
inla.mesh.create.helper specifying the spatial coordinates (est.coord)
of the 100 stations used for estimation and the region borders (sic.borders)
required to define the outer domain:

mesh = inla.mesh.create.helper(

points=est.coord, points.domain=sic.borders,

offset=c(5, 20), max.edge=c(40,100), min.angle=c(21,21))

The inla.mesh.create.helper performs a constrained refined Delaunay tri-
angulation for a set of spatial locations: firstly the triangle vertices are placed
at the observation locations and then further vertices are added in order to
satisfy triangulation quality constraints (see Lindgren et al., 2011 and refer-
ences therein). To this regard the offset in the inla.mesh.create.helper

function defines how much the domain should be extended in the inner and
outer domains (characterised by small and large triangles, respectively), while
max.edge and min.angle set the triangle structure. Depending on the val-
ues chosen for inla.mesh.create.helper arguments, the total number of
vertices changes with a trade-off between the accuracy of the GMRF repre-
sentation and the computational costs.

With the setting used above we obtain a mesh with G = 289 vertices,
which can be accessed in the R terminal by typing mesh$n and is displayed
in Figure 6. Given the mesh, we create the spde model object, to be used
later in the specification of the f(·) term in the R-INLA formula, with

spde = inla.spde2.matern(mesh=mesh)

We exploit now the helper function inla.stack which takes care of build-
ing the necessary matrices required by the SPDE approach and of combining
the data, the observation matrix A and the linear predictor η, introduced in
(13) and (14); some details about the usage of the inla.stack function can
be found also in Cameletti et al. (2011b). Before employing inla.stack, we
create the object A.est which corresponds to Ã

A.est = inla.spde.make.A(mesh, loc=est.coord)
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and is a 100×289 sparse matrix that extracts the values of the latent spatial
field at the observation locations. Moreover, we generate the required vectors
of indices

field.indices = inla.spde.make.index("field", n.mesh=mesh$n)

with field.indices being a list whose first component is called field and
contains the spatial vertex indices (i.e, the sequence of integer number from
1 to G = 289). Finallly, we call the inla.stack function that takes in
input the data (data), an identification string (tag) and the components of
the observation matrix (A) and of the linear predictor (effects), combined
together in list-type objects:

stack.est = inla.stack(data = list(rain=est.data),

A = list(A.est, 1),

effects = list(c(field.indices, list(Intercept=1)),

list(Elevation=est.elevation)),

tag="est")

Note that each term in A has its own linear predictor component in the
effects object so that, for example, A.est is paired with the list composed
by field.indices and Intercept=1 (this may seem a little strange but it is
due to how the SPDE related functions are internally coded). The elevation
covariate is included in A by means of 1 - which has to be interpreted as an
identity matrix - and the corresponding altitude values (est.elevation) are
then provided as a list object in the effects term.

Similarly, we create the corresponding objects inla.val and stack.val

for the 367 validation stations with the only difference that, since we are
interested in prediction, we specify data=list(rain=NA) in the inla.stack

function. For rainfall prediction in the 376 × 253 = 95128 grid points, we
create the A.pred and stack.pred objects as follows

A.pred = inla.spde.make.A(mesh)

stack.pred = inla.stack(data = list(rain=NA),

A = list(A.pred),

effects = list(c(field.indices, list(Intercept=1))),

tag="pred")

where, for computational reasons, we consider the mesh locations only and
do not include elevation in the linear predictor. This means that later we
will have to move from the mesh to the grid (with a projection) and to add
back the covariate term.
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Finally, we combine all the data, effects and observation matrices using
the command

stack = inla.stack(stack.est, stack.val, stack.pred)

In the R-INLA formula we include the spde model object named field

and defined before as well as the Elevation covariate; moreover, note that,
due to the way inla.stack works, we need to specify an explicit Intercept
term and remove the automatic intercept with -1.

formula <- rain ~ -1 + Intercept + Elevation + f(field, model=spde)

Finally, we can run the specified model calling the inla function as follows:

mod = inla(formula, data=inla.stack.data(stack, spde=spde),

family="gaussian",

control.predictor=list(A=inla.stack.A(stack), compute=TRUE))

where the functions inla.stack.data and inla.stack.A simply extract the
required data and the observation matrix from the stack object. The option
compute=TRUE is required to obtain the marginal distributions for the linear
predictor.

We retrieve the posterior summary statistics of the fixed effects α and
β from the object mod$summary.fixed, while the posterior marginal of the
precision τe = 1/σ2

e is included in the list mod$marginals.hyperpar. If we
are interested in the variance σ2

e , we employ the function inla.emarginal

for computing the expected value of the (reciprocal) transformation of the
posterior marginal distribution. The results on the parameters of the Matèrn
spatial covariance function can be obtained typing

mod.field = inla.spde2.result(mod, name="field", spde)

where the string name refers to the name of the spde effect used in the inla

formula.
Applying the suitable transformations through the inla.emarginal func-

tion as described in Cameletti et al. (2011b), we obtain the posterior esti-
mates for the spatial variance σ2

C and for the range r. All the relevant pos-
terior estimates are reported in the upper part of Table 3. As the elevation
parameter β is not significant, we implement also the model without eleva-
tion and use the DIC as a model selection criterion. The DIC values reported
in Table 3 are almost identical so we select the model without elevation (note
that the posterior estimates for α and r do not change considerably between
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the two models). With a posterior mean of 62 km for the range, we can con-
clude that the data are characterised by a medium spatial correlation (the
maximum distance between coordinates is equal to 293 km).

Mean Sd 2.5% 50% 97.5%

With elevation (DIC = -571.1897)

α 12.084 1.577 8.801 12.134 15.085
β 0.031 0.722 -1.396 0.035 1.442
r 61.479 10.482 42.339 61.044 83.303

Without elevation (DIC = -571.2634)

α 12.109 1.420 9.150 12.147 14.862
r 61.673 10.384 42.709 61.240 83.299

Table 3: Posterior estimates (mean, standard deviation (sd) and quantiles) and DIC for
the Swiss rainfall geostatistical model with and without elevation covariate.

We focus now on the prediction in the 367 validation stations (this case
was previously identified with the string tag="val"). We first type

index.val = inla.stack.index(stack,"val")$data

in order to retrieve, from the full stack object, the indices identifying the
validation stations (which are stored in the data component of the result-
ing list). Given index.val we extract the posterior summaries (mean and
standard deviation) for the linear prediction η (on the square root scale) as
follows

lp.mean.val = mod$summary.linear.predictor[index.val,"mean"]

lp.sd.val = mod$summary.linear.predictor[index.val,"sd"]

It is then straightforward to compare observed and predicted values (rep-
resented by the posterior mean lp.mean.val) and to compute predictive
performance statistics. For example, the root mean square error is equal to
2.30 and the Pearson correlation coefficient is 0.86, which denotes a good
correlation between observed and predicted values.

Prediction on the regular grid (here defined by a data.frame object
named pred.grid with 376× 253 = 95128 rows and two columns with grid
coordinates) requires to create a linkage between the mesh and the grid, as
we anticipated previously. This can be done using the following command:
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proj_grid = inla.mesh.projector(mesh, xlim=range(pred.grid[,1]),

ylim=range(pred.grid[,2]), dims=c(376,253))

Then, as done previously for the validation sites, we extract the linear pre-
dictor values on the mesh

index.pred = inla.stack.index(stack,"pred")$data

lp.mean.pred = mod$summary.linear.predictor[index.pred, "mean"]

lp.sd.pred = mod$summary.linear.predictor[index.pred, "sd"]

and project it from the mesh to the grid

lp.mean.grid = inla.mesh.project(proj_grid, lp.mean.pred)

lp.sd.grid = inla.mesh.project(proj_grid, lp.sd.pred)

The map of the smooth rainfall posterior mean (on the square root scale)
and of the prediction standard error are shown in Figure 7. The comparison
of the prediction map with the plot reported in Figure 5 (b) leads to the
conclusion that the considered geostatistical model is able to reproduce quite
well the spatial pattern of the rainfall data.

4.2. INLA/SPDE for for spatio-temporal geostatistical data: PM10 air pol-
lution in Piemonte region

We extend the purely spatial case described in the previous section to a
spatio-temporal model for particulate matter concentration (PM10 in µg/m3)
measured in the region of Piemonte (Northern Italy) during October 2005 -
March 2006 by a monitoring network composed by 24 stations. Cameletti
et al. (2011a) provide a complete description of the PM10 data as well as of
some covariates available at the station and grid level (provided by ARPA
Piemonte, Finardi et al. 2008), such as daily maximum mixing height (HMIX,
in m), daily total precipitation (PREC, in mm), daily mean wind speed (WS, in
m/s), daily mean temperature (TEMP, in ◦ K ), daily emission rates of primary
aerosols (EMI, in g/s), altitude (A, in m) and spatial coordinates (UTMX and
UTMY in km).

We illustrate how to predict air pollution for a given day in all the region,
also where no monitoring stations are displaced. In addition, we describe
how to get a map for the probability of exceeding the 50 µg/m3 threshold
fixed by the European Community for health protection. Note that this case
study has already been described in Cameletti et al. (2011b), but we present
it again in order to illustrate a variant in the SPDE code for producing the
probability map of exceeding the fixed threshold.
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Let yit denote the logarithm of the PM10 concentration measured at sta-
tion located at site si (i = 1, . . . , n) and day t = 1, . . . , T . We assume the
following distribution for the observations

yit ∼ Normal(ηit, σ
2
e)

with

ηit =
M∑
m=1

βmxmi + ωit

where
∑M

m=1 βmxmi is the large-scale component including meteorological
and geographical covariates, and σ2

e is the variance of the measurement error
defined by a Gaussian white-noise process, both serially and spatially uncor-
related. The term ωit is the realisation of the latent spatio-temporal process
(i.e. the true unobserved level of pollution) which changes in time with first
order autoregressive dynamics with coefficient a and spatially correlated in-
novations, given by

ωit = aωi(t−1) + ξit. (15)

In (15), we set t = 2, . . . , T and |a| < 1, and derive ωi1 from the stationary
distribution Normal (0, σ2

C/(1− a2)). Moreover, ξit is a zero-mean GF, is
assumed to be temporally independent and is characterised by the following
spatio-temporal covariance function

Cov (ξit, ξju) =

{
0 if t 6= u

σ2
CC(∆ij) if t = u

(16)

for i 6= j, with C(∆ij) denoting the Matèrn spatial covariance function defined
in (1). Such a model is widely used in the air quality literature thanks to its
flexibility in modeling the effect of relevant covariates (i.e. meteorological and
geographical variables) as well as time and space dependence (e.g. Cocchi
et al., 2007; Cameletti et al., 2011a; Sahu, 2012; Fassò and Finazzi, 2011).
The main drawback of this formulation is related to the computational costs
required for model parameter estimation and spatial prediction when MCMC
methods are used, especially in case of massive spatio-temporal datasets.
Here we show how to overcome this computational challenge using the SPDE
approach by representing the Màtern spatio-temporal GF as a GMRF (see
Cameletti et al., 2011b for more details).

To implement this model in R-INLA, we need to define the triangulation of
Piemonte using the inla.mesh.create.helper function, as described in the
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previous section. After creating an object named mesh includingG = 142 ver-
tices, we define the SPDE object with spde=inla.spde2.matern(mesh=mesh).
The next step requires to employ the inla.stack function to combine the
data with the observation matrix and linear predictor components; this is a
slightly more complex task here, since we have to consider both spatial and
temporal indexing. Let Piemonte_data be the data frame containing all the
relevant data; for estimation purposes create the A.est object with

A.est = inla.spde.make.A(mesh,

loc=as.matrix(coordinates[Piemonte_data$Station.ID, c("UTMX","UTMY")]),

group=Piemonte_data$time,

n.group=n_days)

where the option group specifies that we have 24 measurements for each of
the T = 182 days (included as n_days in the code). Then we generate the
spatial and temporal indexes typing

field.indices = inla.spde.make.index("field",n.mesh=mesh$n,n.group=n_days)

and then we combine all the relevant objects with

stack.est = inla.stack(data=list(logPM10=Piemonte_data$logPM10),

A=list(A.est, 1),

effects=list(c(field.indices, list(Intercept=1)),

list(Piemonte_data[,3:10])),

tag="est")

where Piemonte_data[,3:10] refers to the columns containing the covariate
values. In a similar way, we create A.pred and stack.pred for the 56×72 =
4032 grid points used for spatial prediction:

A.pred = inla.spde.make.A(mesh, loc=as.matrix(Piemonte_grid),

group=i_day, n.group=n_days)

stack.pred = inla.stack(data=list(logPM10=NA),

A=list(A.pred,1),

effects=list(c(field.indices,list(Intercept=1)),

list(covariate_matrix_std)),

tag="pred")

where Piemonte_grid and covariate_matrix_std contain the coordinates
and the (standardized) covariate values for all the grid locations and the
selected day (30/01/2006), respectively. Note that, differently from Section
4.1 and Cameletti et al. (2011b), we are including at this stage (and not
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after the estimation step) the grid relevant information. This means that the
output of the inla function will provide directly the estimate of the linear
predictor (including covariates) at the grid level.

Finally we create the complete stack object with the following code

stack = inla.stack(stack.est, stack.pred)

and define the R-INLA formula

formula <- (logPM10 ~ -1 + Intercept + A + UTMX + UTMY + WS + TEMP +

HMIX + PREC + EMI + f(field, model=spde,

group=field.group, control.group=list(model="ar1")))

that includes an explicit intercept and all the meteorological and geographical
covariates. Moreover, using the options group and control.group, we spec-
ify in the f(·) term that at each time point the spatial locations are linked
by the spde model object, while across time, the process evolves according
to an AR(1) process.

For computational reasons, it may be useful to run this model calling
the inla function twice. We first compute only the hyper-parameters modes
(se theoretical details in Section 3) only for the stack.est object by setting
compute=FALSE in the control.preditor argument:

mod.mode = inla(formula,

data=inla.stack.data(stack.est, spde=spde),

family="gaussian",

control.predictor=list(A=inla.stack.A(stack.est), compute=FALSE)

At the second step we perform the linear predictor estimation on the whole
grid specifying the full object stack and using the mode computed previously
(see the specification of the control.mode argument):

mod = inla(formula,

data=inla.stack.data(stack, spde=spde),

family="gaussian",

control.predictor=list(A=inla.stack.A(stack), compute=TRUE),

control.mode=list(theta=mod.mode$mode$theta, restart=FALSE)

As shown in the previous sections, we can extract the posterior sum-
mary statistics for β, 1/σ2

e and a from the objects mod$summary.fixed and
mod$summary.hyperpar, while posterior estimates for σ2

C and r can be ob-
tained applying the inla.spde2.result function — see Cameletti et al.
(2011b) for more details and the relevant results.
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Here we focus on the prediction of the (smooth, i.e. without the nugget
effect) air pollution field for the selected day. This task is performed simply
by extracting the posterior mean of the linear predictor - which is available for
all the grid locations - from mod$summary.linear.predictor and reshaping
it properly in accordance with the grid size.

index.pred = inla.stack.index(stack,"pred")$data

lp_grid_mean = matrix(mod$summary.linear.predictor[index.pred, "mean"],

56, 72, byrow=T)

The resulting map (on the logarithmic scale) is shown in Figure 8 (left).
Analogously, we can retrieve the posterior marginal distribution of the

linear predictor and, through the built-in function inla.pmarginal employed
in Section 3.2 and 3.3, we can obtain the map of the posterior probability of
exceeding the fixed threshold, presented in Figure 8 (right).

5. Discussion

In this paper we have provided a tutorial on the use of methods based
on Integrated Nested Laplace Approximation for spatial and spatio-temporal
models. While these models are very popular in applied research, especially in
epidemiology, their general complexity remains, potentially, a fundamental
issue for their implementation, particularly within the Bayesian approach.
The INLA approach is in general able to provide reliable estimations in lower
computational time than their corresponding MCMC-based estimations.

One of the fundamental differences between MCMC and INLA methods
is that the former provide (asymptotically) exact inference, while the latter
give, by definition, an approximation to the relevant posterior distributions.
In many applied cases INLA performs just as well as its MCMC counterparts,
especially when the latter are considered in their standard implementations.
This is particularly relevant in presence of large datasets; as discussed ear-
lier, specifically in the case of geostatistical data, the use of SPDE algorithms
produce massive savings in computational times and allows the user to work
with relatively complex models in an efficient way. INLA and SPDE could
also help in solving the change-of-support issue, typically arising when deal-
ing with data characterised by different spatial supports, e.g. air pollution
data available at the point level combined with a health outcome available
as aggregated counts of deaths/disease at the areal level — see chapter 29
in Gelfand et al. (2010). Finally, INLA (and specifically its R implemen-
tation) covers a wide set of problems that can be tackled with relatively
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standard programming, which generally facilitates the practitioner’s work.
In fact, while most of the commands are similar to those applied in standard
R routines (e.g. lm or glm), a wealth of options can be specified within the
R-INLA functions, that allow the user to select different model specifications;
see Martins et al. (2012) for new features.

Because of its recent inception, INLA is less established than MCMC
methods (although we acknowledge a flurry of activity in the development of
new MCMC algorithms, e.g. Girolami and Calderhead, 2011; and Hoffman
and Gelman, 2011). Consequently, its development is still ongoing, partic-
ularly with respect to some more advanced features (e.g. the SPDE module
described in Section 4). At the same time, however, it is important to notice
that the increasing popularity of INLA is generating a number of contributed
add-ons able to extend the built-in facilities of the R package. Given these
characteristics, we consider INLA as a valuable addition to the Bayesian
statistician’s toolkit.
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(a) Distribution of the borough spe-
cific relative risks of suicides ζi =
exp(υi + νi) in the disease mapping
model
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cific posterior probability p(ζi > 1 |
y) in the disease mapping model
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y) in the ecological regression model

Figure 1: Borough specific relative risks and posterior probabilities.
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Figure 2: Spatial and temporal effects.
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for spatio-temporal inter-
action: year 2010

Figure 3: Posterior probability for the space-time interaction: years 2001, 2004 and 2010
and 159 counties of Georgia.
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Figure 4: Example of a spatial continuous random field and the corresponding basis func-
tion representation according to (11).
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(a) Rainfall data collected on 8th May
1986 at 467 locations in Switzerland.
The bullets denote the 100 estimation
stations and the triangles are used for
the 367 stations retained for model val-
idation.
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Figure 5: Swiss rainfall data (on the root square scale) and elevation.
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Constrained refined Delaunay triangulation
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Figure 6: The Switzerland triangulation with 289 vertices and black dots denoting the 100
stations used for estimation and included in the mesh.
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(b) Rainfall posterior standard devia-
tion

Figure 7: Map of the rainfall posterior distribution.
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(a) Map of the PM10 posterior
mean on the logarithmic scale.

(b) Map of the posterior proba-
bility of exceeding the threshold
of 50 µg/m3.

Figure 8: Map of the PM10 posterior mean and exceedance probability. Both maps refer
to the selected day 30/01/2006.
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