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Abstract—Coordination is a system-level concern defining execution and interaction semantics of functional computations. Separating
coordination from functional computations is a key principle for building complex, robust and reusable robotic systems. This work
introduces a minimal variant of Harel statecharts called rFSM designed to model coordination of robotic tasks and systems with a
minimal number of semantic primitives. Firstly, the semantics of the rFSM language are derived by analyzing state-of-the-art discrete
event models and implementations and extracting a motivated and semantically well-defined subset that is considered best practice
for the domain of robotic coordination. Secondly, a real-time capable reference implementation of rFSM is presented, which has been
loosely integrated into the OROCOS/RTT framework. The application of rFSM is illustrated using a detailed description of a dual robot
coordination problem. Lastly, several best practices and patterns are presented with the goal of i) supporting development of robust
Coordination models, ii) illustrating how limitations of the statechart model can be overcome by extending the execution semantics, and
iii) offering guidance in designing pure coordination components that optimize reusability.

Index Terms—Coordination, Statecharts, Domain Specific Language, Control, Component-based system design

1 INTRODUCTION

The design of todays complex robot systems is driven by
multiple and often partically conflicting requirements. Apart
from the primary functionality, these requirements commonly
include the need to reuse existing parts, for the system to
behave robust or safe in the presence of errors or to facilitate
reconfiguration of the system due to changed requirements.
The extent to which these goals can be fulfilled is strongly
influenced by the approach used to divide the system into
parts. This work builds on the suggestion of Radestock and
Eisenbach [1] to separate the systems according to the four
concerns of Communication, Computation, Configuration and
Coordination: Communication defines how entities communi-
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cate. Computation defines the functionality and hence what is
communicated. Configuration defines how computations are
configured and which computations communicate with each
other. Lastly, Coordination is responsible for managing the
individual entities such that the system as a whole behaves as
specified.

Most of today’s robotic software frameworks support the
separation of Communication, Computation and Configura-
tion. For example, the Orocos RTT framework [2] permits
to separately specify communication connections between
components and the respective parameters such as buffering
policies. Component configurations can be defined separately
and need only be applied to the respective component instances
at runtime. Similarly, the ROS framework [3] permits separate
storage of node parameters using the parameter service.

In contrast, the concern of Coordination is not yet recog-
nized as a first-class design aspect in many of today’s complex
robotic systems. Instead, Coordination is often implicitly in-
corporated into Computation and Communication.

For example, in the Orocos RTT framework prior to version
2, coordination was often realized using the RTT::Event mech-
anism. Using this, a computational component declares the
ability to raise an event represented as a parametrized function.
Other computational components register handlers matching
the event interface, which are then called to be notified of
the event occurrence. As a result of this tight coupling, the
event recipient is polluted with system-level coordination that
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Fig. 1. Data-flow architecture of Ball tracking application.
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limits its reusability. Moreoever, such implicit coordination
can lead to reduced robustness by requiring to compromise
between reusability and robustness. The following example
further elaborates these issues.

Although the idea of explicit coordination is not limited to
component based systems, we assume this context throughout
the paper, since the majority of modern robotics software
frameworks [2], [4], [5], [6] are component oriented. When
using the term coordination or computation, we are referring
to the concern, unless explicitely stated otherwise as in coor-
dination component.

1.1 Motivating example

The following example introduces the the concern of coor-
dination. A ball swinging on a string is observed using two
cameras and shall be followed by a robot manipulator. The
data-flow component diagram in Figure 1 shows the involved
computational components and the communicated data. 2D
ball positions are extracted from the camera images by BallEx-
tractor components and passed to an estimation component.
The estimated 3D position is then sent to the RobotController
actuating the robot arm. To avoid confusion with state machine
diagrams, we utilize the SysML flowport notation [7], a small
box with an arrow pointing in or out to describe component
input or output data-flow ports respectively.

This system behaves as intended for the nominal case of
the ball being visible to the cameras. However, if the ball
swings out of the observed camera range the behavior is not
well-defined, since different estimators will produce different
results; for instance an estimator based on a constant velocity
model will predict the ball motion to continue with the last
estimated velocity, while one based on a constant position
model will continuously predict the last estimated position.

This example constitutes a typical coordination problem,
characterized by undesirable behavior at the system level even
though the individual parts are functioning correctly.

Assume the requirement that the robot arm shall stop close
to the last observed ball position. A naive solution to this
problem would be to extend the estimator to stop the robot
controller once the ball left the field of view of the camera.
This solution is suboptimal for several reasons: firstly, the
reusability of the estimator is severely reduced by adding this
application-specific feature. Secondly, the exchange of this
component with one not making this application-dependent
assumption is prevented. Lastly, the solution provides limited
robustness in case of communication failures between BallEx-
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Fig. 2. Ball-tracking coordination state machine.

tractor and Estimators, even though short interruptions may
well be dealt with gracefully.

The latter shortcoming illustrates the previously mentioned
compromise between robustness and reusability: the developer
is forced to choose between either reduced reusability or to
accept undefined behavior in corner cases or in the event of
errors. The proposed solution to avoid these shortcomings is
described by the following steps:

1) Making relevant internal state visible: the esti-
mation component is extended to raise two events:
e_untracked and e_tracked' when the ball be-
comes invisible and visible respectively (i.e. when the
confidence in the ball position drops beneath/rises above
a configurable threshold). This extension is both generic
and non-intrusive to the estimator, as it only makes its
internal state explicit but does not alter its behaviour.

2) Introducing explicit coordination: The dependency
between Estimator and ArmController is encapsulated
by introducing a separate Coordinator entity (typically,
but not necessarily, deployed in a component itself)
that reacts to the estimator’s events. The state machine
in Figure2 models the desired behavior: the events
e_untracked and e_tracked trigger the transitions
from the nominal following state to paused and
back respectively. The robot arm is stopped when enter-
ing and restarted when exiting the paused state.

This way, the reusability of the estimator is preserved
while the desired behavior is specified in an explicit manner.
Moreover, the proposed Coordination will deal gracefully with
communciation failures between BallExtractor and Estimator;
a sufficiently long interruption will result in the raising of
the e_untracked event that stops the robot, while a short
interruption will be deal gracefully. If a distinct reaction to this
condition is required, it can be easily specified by extending
the Coordination FSM to react to an event that represents the
loss of communication.

1. To improve readability events are prefixed with e_ throughout this paper.
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1.2 Contributions

This paper advocates the introduction of explicit Coordination
components into every robotics software system and offers
guidelines to do so. Its contributions can be divided into
four parts. Firstly, it presents a study of task and system
coordination mechanisms with respect to their suitability
for the robotics domain. Secondly, based on the identified
shortcomings of existing models a minimal variant of Harel
statecharts addressing these issues is proposed, in form of
the restricted Finite State Machine (rFSM) model. The term
minimal is to be understood in terms of the smallest number
of primitives necessary for humans to construct practical
coordination statecharts, and not as minimal, yet with equal
computational expressiveness. Thirdly, a real-time safe ref-
erence implementation of rFSM as an executable Domain
Specific Language (DSL) is presented and the integration into
robotic frameworks described. Lastly, to facilitate adoption
of the described approach, a set of best practice patterns
and guidelines are provided, to help system and component
developers with the design of efficient, robust and reusable
coordination.

1.3 Related Work

This Section summarizes previous work on analysis, formal-
ization and classification of finite state machine semantics.
A detailed review of state-of-the art coordination models
themselves is presented in Section 2.

Von der Beeck [8] compares twenty different statechart
variants according to a set of distinctive features. Some
suggestions are given about which features should be included
in a statechart formalism, however it is not clear what the
motivation for inclusion or not is.

Eshuis [9] identifies a set of constraints for which subsets
of the three common statechart semantics—STATEMATE,
Fixpoint and UML—behave identically. Besides suggesting
improvements to statechart semantics, this work differs sig-
nificantly from ours that is focussed on using statecharts for
the particular purpose of coordination.

Breen [10] identifies several shortcomings of Harel state-
charts for the purpose of system specification. Most issues are
related to parallel states (modeling concurrency), and hence
do not affect our rFSM model that excludes this model ele-
ment. Breen observes that the difficulty of understanding the
complex relationship between parallel states (which is a con-
sequence of broadcast event communication and the inevitable
non-determinism of communication delays) can be avoided by
simply using separate statecharts instead of parallel states. This
observation, albeit for different reasons discussed in Section 7,
confirms our approach to exclude the parallel state element.
Furthermore, Breen describes the following shortcoming of the
statechart model that is related to hierarchy and also affects
the rTFSM model: by observing just the graphical model of a
state machine, the designers’ motivation for using hierarchy
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is not always obvious. This is due to multiple use-cases for
using hierarchical states. To this end, the following use-cases
are identified: clustering, abstraction, transition dependence,
state variable instantiation and expression of constraints. Breen
concludes by pointing out that the described problems will not
be significant in relatively simple models.

Simons [11] examines the semantics of UML State ma-
chines and suggests a revised interpretation. Extensions are
identified that can be considered either redundant or harmful
to the compositional properties of the model. The latter class
include the inversion of conflict resolution priorities in UML
with respect to Harel statecharts and the special semantics
of completion transitions. Moreover, the revised semantics
attempt to improve the differentiation between statecharts and
flowcharts. The rFSM semantics described later follow several,
but not all, of these suggestions.

1.4 Outline

The rest of this work is structured as follows. Section?2
reviews existing coordination models and implementations.
After briefly introducing the rFSM model in Section 3, the
insights gained from these reviews are used in the discussion
of structural, execution and event semantics in Sections 40,
that ultimately lead to the derivation of rFSM. Section7 is
dedicated to motivate the exclusion of the widely used parallel
state element from the rFSM model. Section 8 describes the
reference implementation that was developed. Best practices
and patterns are described in Section9. Section 10 presents
a detailed example that illustrates step by step the process of
developing the coordination for a dual robot haptic coupling
system. We provide a discussion of our contributions in
Section 11, and conclude in Section 12.

2 REVIEW OF COORDINATION MODELS
2.1

Finite state machines (FSM), sometimes called finite state
automata, are mathematical models of behaviour. FSM are
widely used, ranging from application in computational lin-
guistics to language parsing and artificial intelligence. A FSM
consists of a finite set of states connected by transitions.

Commonly, two types of FSM are distinguished: acceptors
and transducers. Acceptors, which are also known as recog-
nisers, return a binary result of whether or not a certain input
was recognized, and are mostly used in language recognition.
Transducers can generate output with the help of actions,
and can be divided into two classes: Moore and Mealy state
machines. In the Moore model, the output is a function only
of the current state, while in the Mealy model the output is a
function of the input and the current state. While both models
are equally expressive, in practice often formalism as UML 2
state machines are used, where the output can be a function
only of state or of state and input.

Classical Finite State Automatons
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2.2 Harel Statecharts

The Harel statechart [12], [13] is the first state machine based
formalism to extend classical flat automatons with hierarchy,
parallelism and broadcast events. Hierarchical states may
contain states themselves, thereby facilitating abstraction and
modularization of larger models. Additionally, hierarchy en-
ables transition prioritisation using a strategy named structural
priority: in case of two or more conflicting transitions the one
with the least nested source state (within the global hierarchy)
takes priority. Parallelism permits substates contained in a
so called AND state to be simultaneously active. Broadcast
events are a more controversial feature [10] causing that
events raised in one sub-statechart (such as a parallel substate)
are observed and hence can trigger transitions throughout
the entire statechart, thus violating the scope introduced by
each level of hierarchy. The aforementioned controversy arises
from the fact that the behaviour of a large statechart can
become considerably intricate, especially in combination with
statechart parallelism.

The quasi-standard statechart semantics are documented and
implemented in the STATEMATE model and tool [13], [14].
Apart from STATEMATE, numerous other variations exist [8],
which is to some extent a consequence of the fact that a
detailed description of statechart semantics was only provided
years after the initial proposal. Today, the most widely used
variants are UML 2 [15] state machines, the W3C State Chart
XML (SCXML) [16] model and the commercial Simulink
Stateflow tool of the MathWorks [17].

2.3 OMG UML State Machines

UML state machines [18] are derived from Harel statecharts
and introduce various syntactic and semantic extensions with
the goal to enable application in an object oriented context.
One limitation of UML in general are the so-called semantic
variation points that intentionally leave the precise semantics
of model entities open; for example, the order in which events
are dequeued from the internal event queue is left undefined.
This is to give tool-implementers of the standard more liberty
to define these semantics themselves. As a consequence,
practically all implementations of UML state machines yield
incompatible execution behaviour, and the precise semantics
often remain hidden in the implementation of the tool.

A second issue with UML statecharts arises from semantic
deviations made from Harel statecharts with the goal to
make UML statecharts behave more like objects as in the
object-oriented programming paradigm; the consequences are
discussed in Section 5.

In spite of these limitations, UML state machines are widely
used and supported by many modeling tools. Hence, the state-
charts proposed in this work follow these semantics wherever
appropriate, in order to facilitate automatic transformation of
UML state machines to rFSM models.

2.4 Simulink Stateflow

Stateflow [17] is a statechart extension to the Matlab/Simulink
environment into which it is tightly integrated. Stateflow offers
an even larger set of primitives than statecharts: Condition ac-
tions are executed if a guard is true, even if the transition itself
is not taken, inner transitions emanate from the inner boundary
of a composite state and are similar to self-transitions but
do not result in exiting and entering the source state. Apart
from these convenience features, major differences to Harel
statecharts are that Stateflow only supports processing of one
event at a time and does not transition based on more than one
event. Stateflow models can be configured in great detail, for
instance to define transition priorities on the chart or state level
or to define if supersteps may occur or not. This permits fine
grained configuration and optimisation, though at the price of
compromising compatibility with other implementations, and
reuse in other application contexts.

2.5 Statecharts in Robotics

Statecharts have been previously used in robotic systems.
Merz et. al. [19] use an augmented flavor of Statecharts
called Extended State Machines (ESM) to specify control
and data flow in a robotic control framework. In contrast to
our approach that advocates the separation of the concerns
of computation and coordination, ESM states tightly couple
control and data-flow by permitting these to also output data
via data ports. While this combination might be convenient,
reusability is reduced by tightly coupling application coor-
dination with functional computations. Billington et. al. [20]
propose an approach to requirement engineering using UML
Statemachines that are extended with non-monotonic logic for
describing domain knowledge. This logic is used to describe
the behavior of single FSM and the corresponding predicates
to be used as guard conditions. This formulation then allows
to validate certain properties such as the exclusivity of guards.
Similarly to our approach, the behavior of the system is
defined by multiple interacting state machines, though the
focus is on modeling complex high-level behavioral protocols.
In contrast, our work is concerned with preserving reusability
of computational components.

2.6 IEC 61131-3 Sequential Function Charts

Sequential function charts (SFC) are a PLC programming
language specified in the IEC 61131-3 [21] standard. The SFC
language is based on the Grafcet language [22], which in turn
is derived from Petri nets. This heritage reflects in the SFC
semantics that generally impose less constraints with respect
to hierarchies and permitted transitions.

SFECs are constructed by linking steps with transitions. Each
transition has a condition that defines when control passes to
the next step. Simultaneous divergence permits to activate two
successor states simultaneously while simultaneous conver-
gence permits to synchronize the parallel execution again. In
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order to specify the in-step behaviour, steps can be associated
with Action blocks. Action qualifiers define the exact manner
in which the action is executed. Example qualifiers are N
(non-stored) for executing an action as long as the state is
active, S (stored) for executing an action permanently until
disabled by the R (reset) qualifier, P (pulse) executing an
action only when entering and/or leaving a state, or L and
D for limiting or delaying the execution of the action to/for a
certain time period. SFCs support hierarchical decomposition
by recursive specification of an action with a SFC (or any
other IEC diagram).

Bauer and Engell [23] compare SFC to statechart semantics.
Summarised, the major differences are:

o Although SFC support hierarchical steps by recursively
specifying an action with a SFC, none of the constraints
of statecharts are enforced. This is because there is no
transitively upwards closed active state list. In contrast,
if a hierarchically nested state is active in a statechart,
then so is the parent state. For SFC it is possible that
a parent step is deactivated but the child step remains
active.

o In contrast to statecharts, SFC do not permit to specify
inter-level transitions.

o A statechart will behave non-deterministically if conflict-
ing transitions are unable to be resolved by means of the
conflict resolution mechanisms. If conflicting transitions
are found in a SFC then all transitions in question will
be enabled.”

o IEC 61131-3 does not define the order of action execution
and transition evaluation for SFCs, however this ordering
may influence the overall behaviour.

o In statecharts, higher priority transitions can prevent
lower-level transitions from triggering. Whether this is
possible in SFC depends on the respective implementa-
tion of hierarchy.

Bauer and Engell conclude by suggesting that a combination
of statecharts (for specifying the high level operational modes
and safety aspects) and Sequential Function Charts (for defin-
ing the sequences of lower-level computations), would yield
the benefits of both models. A possible execution semantics
for the combined model is proposed.

2.7 Behavior Trees

Behaviour trees (BT) [24] are a graphical language to support
the process of behavior engineering. The BT language consists
of different types of states that are organized in a tree form
to express behavior. For example, states can represent con-
ditions (IF, WHEN, dataflow Data-out or state (System,
Internal. The behavior engineering process consists of
several steps, each producing a new behavioral tree. Firstly,
individual functional requirements are modelled using require-
ments behavioral trees (RBT). Next, these requirements are

2. According to IEC61131-3, pg. 100, this is an error.

Journal of Software Engineering for Robotics 1(3), January 2012

integrated into the design behavioral tree (DBT) that composes
all requirements. Using the DBT, the component interaction
network (CIN) and the component’s behavior tree (CBT) are
derived. The first describes which components interact and the
seconds models each components behavior.

2.8 The Task Description Language

The Task Description Language (TDL), introduced by [25],
is a language to describe Robot Tasks. TDL is based on the
task tree datastructure, whos nodes can contain commands,
goals, monitors or exceptions. Goals describe higher level
tasks whos children may be goals or commands. Monitors are
invoked repeatedly to validate certain conditions; exceptions
can be used to signal and handle erronous conditions. When a
goal node is expanded, new children (goals or commands) are
added to the goal itself, thus defining what needs to be handled
before the goal completes. This way, the tree datastructure
implies an ordering between execution of parent and child
nodes. In contrast, sibling nodes are executed concurrently
unless ordering constraints are imposed using one of the syn-
chronization mechanisms. A TDL program is a C++ program
with additional syntax that is transformed to pure C++ by a
dedicated compiler.

2.9 The Urbiscript Language

The urbiscript language [26] by GOSTALI is a multi-paradigm
scripting language targeted towards the domain of robotics. To
that end, it provides syntax to specify concurrent execution
of statements and primitives to supporting event driven pro-
gramming. The GOSTAI Studio IDE supports development
of hierarchical state machines that can be transformed to
urbiscript. However, as of today no information about the
semantics of this state machine formalism is publicly available;
with the exception that, according to GOSTAI, the semantics
are close to a subset of UML 2.

2.10 ROS SMACH

ROS SMACH [27], [3] is a Python library for specifying
models of robotic behaviour. States encapsulate computations
that are executed while a state is active. States are exited via
a so called state outcomes, that essentially represents different
accept conditions. Additionally, states may specify userdata
that is either required by a state to do processing or provided
as an output of the computation of the state. When specifying
a SMACH state machine the connections between input and
output userdata can be defined. SMACH supports parallel
execution of state behaviours as well as controlled preemption.
Nevertheless, in contrast to its name the SMACH library
has actually more in common with a flowchart than with a
classical state machine: (i) states do not represent conditions
of the system but rather processing steps, and (ii) SMACH
does not foresee a mechanism to react to external events.
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2.11 Conclusion of Literature Review

Based on the previous analysis, we have selected Statecharts
as a starting point for deriving a minimal coordination mech-
anism suitable for the robotics domain. This choice was based
on the following requirements. To support reuse of coordina-
tion, the model must be composable and permit recombination
of existing models within each other. Since the Statechart
model allows states to contain states this is easily possible.
It is worth noting that the reuse potential of statecharts has
also been recognized by other domains such as Game Al
development [28] or for building reusable webservices [29].

Moreover, compositionality is of primary concern, since
the goal is to support construction of complex models by
combining simple ones while maintaining predictability of
the global system behaviour. Compositional robustness is
closely related to compositionality; we define this property as
follows: a system which is constructed from elementary parts
is compositionally robust if it behaves robustly as a whole
under changes or errors in individual parts. This characteristic
is given particular attention in the following, because robotic
coordination can often be conveniently modelled as a compo-
sition of multiple, heterogeneous layers of abstraction.

The ability to satisfy real-time constraints is a fundamental
requirement for robot coordination related to aspects such
as motion control or safety mechanisms. This does not only
involve guaranteeing deterministic timing behaviour but also
the ability to provide introspective information about the tem-
poral behaviour. On the other hand, building complex, multi-
robot systems requires distribution of such local real-time
safe coordination over unreliable networks. As a consequence,
coordination must be robust under (event) communication
failures or varying latency. For example, reordering or loss
of events may never lead to a coordination dead- or live-lock.
Structural priorities and time-events facilitate this.

Lastly, statecharts and its variants are widely known and
many developers are familiar with these. As this paper aims
at providing a minimal subset of the statechart model, the reuse
of existing tools becomes possible.

For our purposes, the main alternatives to statecharts are
behavioral trees or hierarchical petri-nets. Behavior trees can
be composed in a similar way as statecharts, but offer a
richer model and require more rigorous commitment to the
approach, compared to this work’s approach of superpos-
ing a statecharts to coordinate computational components.
Moreoever, statecharts are better suited for modeling reactive
and preemptable behavior by using non-local state transitions
(i.e. a top level transition causing the deactivation of an
entire sub-branch) taking into account the proper invocation
of associated exit and entry functions. Similar limitations
apply to hierarchical petri-nets (HPN) or variations of these
as SFCs. Moreoever, the implementation of concurrency in
Petri-nets requires making similar assumptions as those which
we choose to avoid by excluding parallel states in rFSM.
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Fig. 3. Complete rFSM Ecore model.

Furthermore, petri-nets abstract away communication (e.g.
for synchronization) between concurrent threads of execution.
Thus, especially distributed Petri-Nets would require making
additional assumptions on communication properties, which
we can avoid for rTFSM. Lastly, statecharts are, to some extent,
also applicable to modeling of sequences (such as assembly
tasks) that are traditionally the domain of petri-nets.

3 THE RFSM MODEL

The rFSM model is a minimal subset of UML?2 and Harel
statecharts consisting of only three model elements: states,
transitions and connectors. Additionally, a virtual model
element named node is introduced to simplify explanations
concerning both states and connectors. Figure3 shows the
structural model as an Ecore diagram.

States can be composite or leaf states, depending on whether
they contain child nodes or not. For example in Figure4,
the outer rounded rectangle (labelled root) is a composite
state; the rounded rectangles opening, grasping, and
closing are leaf states of the tree formed by the hierarchical
composition of states; the arrows are transitions; and the filled
black circle is an initial connector. Distinguishing between
leaf and composite states is important for modelling additional
constraints that must be satisfied by valid rFSM models. For
example, an important constraint that simplifies validation and
execution semantics is, that, for an active, well-formed rFSM
statechart, exactly one leaf state must be active (unless during
transitioning, where it may be zero). Moreover, this constraint
permits representing the entire active state of a rFSM statechart
by means of a single leaf state. This is owned to the constraint
of the statechart semantics, requiring that for any active state
all parent states are active too.

At the top-level, a rTFSM model is always contained within
a state; that way any state machine model is inherently
composable within other state machines. This composability
is essential to enable the reuse of Coordination functionality
represented by rFSM models.
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Transitions connect nodes in a directed way, and may define
a side-effect free, Boolean-valued guard function (whose result
determines whether the transition is enabled or not), as well
as an effect function (invoked when transitioning). Note that
defining a specific trigger language in the core model is
avoided by deferring the responsibility of determining the
triggering of a transition to the guard function. The latter can
then be extended (in an automated way, e.g., by a plugin) to
validate any event specification specified on a transition against
the current set of events.?

Transitions are owned by composite states and not, as
often assumed, by the states from which they originate (more
explanation is given in Section 4.2.1). As this constraint is
not expressed by the Ecore model, the OCL constraint shown
in Listing 1 is added. The formulation assumes a function
LCA to compute the least common ancestor and a predicate
ancestor to check whether the first argument is an ancestor
of the second.
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context:
State inv: self.subnodes.size>0 and
Transition.allInstances()->select(t | t.tgt=self
implies
(self.subnodes () ->select (c | c.isTypeOf (Connector)
and c.name="initial"))->size() = 1

State inv: self.subnodes.size>0 implies
(self.subnodes () ->select (c | c.isTypeOf (Connector)
and c.name="initial"))->size() <= 1

context: Transition inv:
let lca : State = LCA(self.src, self.tgt) in
self.owner=1ca or ancestor (self.owner, lca)

Listing 1. OCL constraint on transition ownership.

Following UML, rFSM permits states to be associated with
behaviours that are executed at different points in time. These
behaviours are the entry and exit actions that are executed
upon entering and leaving a state respectively, and the in-
state do activity. While actions are generally short, activities
are composed of atomic actions themselves and can run over
longer periods, during which they are interruptible at the
granularity of actions. Hence, to simplify execution semantics,
the do activity is restricted to leaf states only. Moreover, rFSM
states may define internal transitions, that permit reacting to
events by executing an effect, though in contrast to regular
transitions without leaving the state. In the rFSM model, all
behavior is modelled as opaque functions.

Connectors can be used for constructing composite transi-
tions by interconnecting two or more elementary ones. When
such a transition is taken, the scope of connectors is honoured,
permitting to define exactly which states are exited and entered
throughout the composite transition. Connectors have multiple
uses: for example they can be used to define the interface of
a composite state by providing different entry or exit points.
The initial connector has special semantics: when a transition
ending on the boundary of a composite state is executed, the
execution will continue with the transition emanating from
the initial connector. To avoid stuck transitions, a constraint is
introduced to enforce that each composite state that is target of
a transition also defines an initial connector. This is expressed
by the first OCL constraint in Listing 2; the second enforces
that a composite state may define at most one initial connector.

3. Throughout the paper we assume a basic trigger language that permits
specifying a list of events of which each triggers the respective transition.

Listing 2. OCL constraint on existence of initial states.

As with states, multiple transitions may emanate from a
connector. This permits to implement dispatching transitions
that are triggered by two or more events and that dispatch to
different states (see Section 4.3 for an example). The rFSM
connector model element unifies the four very similar UML
model elements junction, initial, entry- and exit pseudostates.

A state-machine is entered for the first time by transitioning
via the transition emanating from the initial connector of the
root state, resulting in the target state of this transition to be
entered.

The elementary way to advance a rFSM state machine is
to call the step function on it. This function retrieves all
events that accumulated since the last step and attempts to find
an enabled transition. This process starts top-down, from the
root composite state down to the active leaf state. The rFSM
semantics require that, as soon as an enabled transition is
found, the searching terminates and the transition is executed.

This approach of identifying the next transition has the
advantage that it assigns explicit priorities to transitions, so-
called structural priorities [13]. The higher the source state of
a transition is located in the state machine’s tree, the higher
the priority of the transition. The priority is visible in the state
graph: given a set of events, the current active states, and the
value of the guard predicates, it is immediately visible which
transition will be selected. This follows the approach chosen
for the STATEMATE semantics. Furthermore, through struc-
tural priority conflicts between transitions are largely avoided,
leaving only the possibility of local conflicts among transitions
exiting the same state. These conflicts can be eliminated either
by additional guard conditions, or by a mechanism such as
priority numbers

The minimum requirement for events is to carry identity
and hence to be comparable between (possibly distributed)
connected state machines. The simplest approach that remains
comprehensible to humans and that is real-time safe* is to use
string events.

The rFSM model does not include a parallel state element.
The reason for this is that this element requires making a large
number of fundamental, platform-specific assumptions. These
are, for instance, the order in which parallel states are entered
and exited, which underlying concurrency mechanisms such as
threads are being used to execute the state machine instances

4. Obviously assuming that memory is appropriately pre-allocated for the
longest possible event.
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or what the priorities of different parallel regions are. Instead
of parallelism, a loosely coupled approach of distributed state
machines is used, that permits multiple tfFSM instances to
interact by means of the available communication middleware
(Sec. 7).

Moreover, rTFSM does not adopt the STATEMATE execution
time requirement which enforces that changes occurring in
stepn can only be sensed in stepn + 1, because of the
complexity involved to manage such delayed processing of
effected changes. But also, more importantly, because of the
impossibility of delaying changes in open environments, as
it is inherently the case in robotics. rFSM also differs with
respect to the greediness property of transition selection, by
choosing a simpler take first approach to computing the set of
transitions to execute. In contrast to STATEMATE, external
and internal events are not distinguished.

The ability to simulate a statechart before execution is a use-
ful feature than can facilitate early detection of errors. How-
ever, often subtle corner cases remain in which simulation and
real system behaviour differ, as is the case for STATEMATE.
The rFSM reference implementation avoids this problem by
unifying simulation and real system in form of an executable
model. Obviously, this is possible only because the rFSM
model targets the domain of coordination (in software) and
need not be synthesised to targets such as VHDL (Very High
Speed Integrated Circuit Hardware Description Language).

For convenience, we use the graphical notation of UML
to visualise rFSM statecharts throughout the paper. The only
deviation is necessary to distinguish between initial and non-
initial connectors: the first are (as in UML) shown as filled
circles while the latter are depicted as empty circles. Public
connectors must be drawn on the border of composite states.

4 STRUCTURAL SEMANTICS

The following sections discuss in detail the implications of
different semantics of finite state machine model elements.
Since the rFSM model is derived from Harel statecharts and
UML state machines, the discussion is based upon these
standards. Other models are included in the discussion where
appropriate.

4.1

The fundamental elements of UML state machines are intro-
duced using an example of a gripper coordination FSM shown
in Figure 4. The required behavior is the following. Initially the
gripper shall be opened. After receiving a request e_close
the gripper shall start to close. The closing will be aborted and
the gripper reopened if the request e_open is received. If a
successfull grasp is detected, the grasp control loop shall be
activated and remain active until either the object is dropped
(represented by e_tactile_lost) or releasing the object
is requested (e_release). If the grasp fails, the gripper shall
be reopened in preparation of a new attempt.

Fundamental State Machine Elements
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Fig. 4. Coordinating a gripper.

The required behavior is realized as follows. Three states
opening, closing and grasping are introduced, each
representing a distinguishable and exclusive state of the grip-
per. The filled circle is an UML the initial pseudo-state and
together with the transition to opening ensures that the latter
will be the first state entered. Transitions connect states in a
directed manner and carry a label of the following form:

trigger [guard condition] / transition effect

A trigger (typically one or more events) enables a transition
between a source and a target state if and only if the optional
guard condition evaluates to true.

An example of a guard condition can be found in Figure 4
on the transition from state closing to grasping labelled
with e_tactile [gripper_closed = false]. This
expression defines a successful grasp as an event from the
tactile sensor (e_tactile) and the condition that the grip-
per is not fully closed. Likewise, a failed grasp is detected
by a tactile event and a fully closed gripper; this triggers
the transition back to opening. Guard conditions constrain
transitions and often permit reducing the amount of states
necessary. On the other hand, guards also hide state (hidden by
not being represented by a state model element) and can thus
lead to conflicting transitions if two guards are simultaneously
true. Therefore, it is considered a best practice to define these
such that the exclusive disjunction of all guard conditions is
true at any time.

A transition effect is an action that is executed during
a transition between states. In Figure4 the transition trig-
gered by event e_tactile_lost from state grasping
to opening uses the effect for logging a message that the
grasped object has been dropped. Effects are necessary to
define actions that are specific to transitions and not to source
or target states. For the grasping example, the log message is
only required when the transition to opening takes place
as a result of unintentionally dropping the grasped object
(triggered by e_tactile_lost), and not when the object
is deliberately released (e_release).
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The Matlab Stateflow model [17] includes a condition
action, that is already executed when the guard condition
evaluates to true, but before the transition as a whole is en-
abled. That way, condition actions behave similar to transitions
connected by UML Choice pseudo-states (describes in Section
4.3.2), and are not included in the rFSM model for the same
reason.

Actions can be associated with states too. The entry and
exit actions are executed when a state is entered or ex-
ited respectively. For instance, when the state grasping
is entered, force control is enabled and disabled when the
state is left. Like transition effects, entry and exit actions
are always executed atomically as part of a transition and
are never interrupted. In contrast, a state’s do activity is
executed as long as the state is active. In contrast to entry
and exit actions, UML defines that (but not how!) the do
activity can be interrupted if an event occurs that triggers an
outgoing transition. For the example given in Figure 4, in state
closing the gripper motors are continuously stepped by
the closing_gripper () activity until the gripper is fully
closed. Executing this operation in the do-activity permits it to
be interrupted by a request to re-open the gripper or an event
from the tactile sensors.

It is important to note that for robotic coordination this
interruptibility can not be achieved by forced preemption, as
for instance used to preempt operating system threads. This
is because in systems interacting with real hardware some
code paths must be treated as atomic in order to avoid non-
deterministic and potentially dangerous behaviour.

For achieving safe preemption of the do activity, tTFSM
adopts the idea of GenoM codels [30]. A codel is the smallest
non-interruptible unit of execution. Codels can be composed
into larger computations that are interruptible at the granularity
of the individual codel. By defining the do activity in terms of
codels, its execution can be safely interrupted. The worst case
latency for exiting the do program is defined by the execution
time of the longest codel. The rFSM reference implementation
realises this behaviour by implementing do using coroutines
[31].

The last fundamental primitive is the internal transition.
The behaviour of this transition type is best explained by
contrasting it to a self-transition, which is a regular transition
starting and ending on the same state. When the latter tran-
sitions, the state is exited and entered, including invocation
of the respective exit and entry actions. In contrast,
when an internal transition is taken, the defining state is not
exited. Consequently, the only action invoked is the internal
transitions effect. Syntactically, internal transitions are drawn
within a state and otherwise have the same from
trigger [guard] / effect as regular ones.

Interestingly, this seemingly simple model element already
illustrates the issue of implicit semantic variation points in
UML. For instance, it is undefined whether, in case of con-
flicts, internal or external transitions take priority. Furthermore,
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Fig. 5. Hierarchical state machine.

it is unclear if and how an internal transition affects a running
do activity. Does it cause the do activity to restart or does
the internal transition effect run interleaved?

According to Simons [11], internal transitions are redundant
since all behaviour associated with a state can be modelled
using a substate. This is however, only true for an internal
transition defined within a leaf-state. Internal transitions de-
fined within non-leaf composite states can not be converted
to self-transitions, since the execution of the effect action
implies exiting and entering of all child states. In practice, a
typical use-case for internal transitions is to model secondary
mode switches. For the grasping FSM of Figure 4, this could
be to permit runtime switching between different controller
configurations, but without otherwise interfering with the nom-
inal grasping task. Such mode switches can be conveniently
modelled using internal transitions defined at the root level.

With respect to variation points, the rFSM model assumes
the following: regarding priorities, internal transitions are
given equal priority to external ones unless made explicit by
priority numbers. As to interference with the do activity, it
is assumed that the internal transition execution takes place
interleaved, though in a safe way honouring the atomicity of
codels.

In summary, the rFSM model adopts the following funda-
mental state machine elements from the UML 2 standard: state,
transition, internal transitions, event, entry, exit and transition
effect actions, do activity and guard condition.

4.2 Hierarchical State Machines

Hierarchical state machines were first introduced by Harel
[12]. The key idea is to permit nesting of states within states.
This is illustrated by Figure5 showing a model of a robot
performing a force-controlled operation on a work piece. The
actual operation is modelled using a nested state machine
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within the operational state. Such a state machine con-
taining other states is also called a composite state, since it can
be understood as the composition of multiple state machines.
When the operational state is entered via the transition
triggered by e_range_clear, it immediately continues
entering the approaching state, since this is connected
from the initial connector. As a consequence the work piece
is approached until the event e_contact is received, that
triggers the transition to the in_contact state, in which
force control is enabled.

At the top level, the two states safe_mode and
operational describe the basic behaviour of the system.
The safe_mode state stops the robot immediately and is
entered when a sensor such as a laser scanner reports an
object within the safety range. Note that the execution of this
transition will result in exiting the operational state, no
matter which substate is active. The event e_range_clear
signals that the safety range is clear again and triggers the
transition back to the operational state.

A fundamental property of hierarchical state machines is
that multiple states can be active at the same time. For
example, if the state approaching is active, then so is the
parent state operational. In statecharts, the set of active
states, also called the active state configuration, is always
transitively closed with respect to the parent relation.

It is often helpful to visualise hierarchical state machines as
a rooted tree. The root is formed by the top level composite
state with nested states as children. This way, the active state
configuration of any active hierarchical state machine can
be represented by a single state (assuming the transitivity
relationship from above).

Moreover, the tree structure facilitates unique
identification of states within a hierarchical state
machine by making use of the concept of a fully
qualified state name. For instance in_contact becomes
root.operational.in_contact. This scheme solves
the problem of naming conflicts between identically named
states in different composite states.

Hierarchical state machines serve multiple purposes. Firstly,
composite states can be used as an abstraction mechanism and
to modularise systems. For the sample model shown in Fig-
ure 5, the operational composite state can be developed
and tested independently from the rest of the system.

Secondly, hierarchical states serve to express constraints in
an efficient way. For the example above, one of the constraints
is the following: the motors are only enabled while in the
operational state. This is enforced by the entry and exit
actions of the operational composite state. Of course
a non-hierarchical flat state machine can model the same
behaviour. However, in that case it would be necessary to
add transitions from all substates of operational to the
state safe_mode, thereby preventing the internals of the
operational state to be modelled separately from the safety
measures.
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Fig. 6. Boundary crossing.

Lastly, hierarchy is also used to define priority among
groups of transitions. This is discussed in Section5.3.

The rFSM model supports hierarchical state machines and
requires that these can be composed within each other.

4.2.1 Boundary Crossing Transitions

A boundary crossing transition is defined as a transi-
tion crossing a composite state’s boundary. An example is
shown in Figure 6: the transition from state following
to calibration crosses the boundary of the tracked
state. There exists some controversy in literature about this
type of transition. Simons [11] strongly suggest to prohibit
boundary crossing for the reason that such transitions violate
encapsulation of the nested state. On the contrary, UML2
and Harel statecharts permit and encourage boundary crossing.
According to Simons, one motivation for permitting this type
of transition in UML was to provide a way to signal multiple
accept conditions of a composite state by directly adding
transitions from within the composite state to the respective
target states. Meanwhile, this issue has been addressed in
UML version 2.1 by introducing exit points. The latter model
element provides an explicit way to specify multiple accept
conditions of a composite state. The rFSM model supports
exit points by means of the generic connector, as described in
the following Section.

Nevertheless, an important use of boundary crossing is
to support structural priority. This concept resolves many
cases of conflicting transitions that would otherwise result in
non-deterministic behaviour. Structural priority is discussed in
more detail in Section 5.

Furthermore, taking a closer look at the ownership relation
between states and transitions reveals that boundary crossing
does not necessarily violate encapsulation as described by
Simons. The frequently made, wrong assumption is that tran-
sitions are owned by their source state. Under that assumption
the boundary crossing transition of the example indeed violates
encapsulation of the tracked and following states, be-
cause it introduces a dependency on a state (calibration)
not part of the composite. However, if this transition is instead
owned by the state ball_tracker, which is parent of both
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Fig. 7. UML Junction.

tracked and calibration, the problem vanishes. From
this perspective transitions are viewed as layers added by
surrounding composite states, thereby permitting to extend the
enclosed behaviours without breaking their encapsulation. The
recent version 2.3 of UML adds a paragraph making a similar
observation [18, p. 583]:

The owner of a transition is not explicitly con-

strained [...]. A suggested owner of a transition is

the LCA of the source and target vertices.

The least-common ancestor (LCA) of a transition is the
deepest nested state which is a parent of both transition source
and target. To ensure construction of modular and reusable
statecharts the rFSM semantics impose a stronger constraint
than UML.: it is required that transitions are owned by no state
less nested than the transition LCA. This ensures that no state
can contain a transition with an unresolved reference to a state.

The LCA concept also plays an important role for describing
the execution semantics of hierarchical state machines (Sec. 5).

4.3 UML Pseudo-States

UML state machines introduce several types of so called
Pseudo-States with special semantics.

4.3.1 |Initial State

The UML?2 initial pseudo-state defines the sub-state of a
composite state that is entered by default when a transition
ending on the composite state is executed. UML permits only
one transition to emerge from an initial state, that furthermore
may not define a guard condition. Apart from these constraints,
the initial state is semantically equivalent to the junction model
element described below.

4.3.2 Junction and Choice

The junction (available both in UML and STATEMATE) is
used to create composite transitions by chaining together
multiple elementary transitions, as shown in Figure 7.

Composite transitions formed by junctions are evaluated
statically, meaning that all elementary transitions up to the
next state are checked before the composite transition is
enabled. Only when the conjunction of all transition elements
is enabled’ the composite transition is too. Junctions permit
to create splits and merges, that for instance are used in the
dispatcher pattern illustrated in Figure 8.

This pattern employs a junction as the entry point of a com-
posite state. Internal to the error state, further dispatching
to specific handler states takes place using multiple outgoing

5. A transition is enabled when triggered by the current events and the
guard condition evaluates to true.
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transitions. It is the responsibility of the state machine designer
to ensure that only one enabled path is found. Otherwise the
state machine will make an arbitrary choice and thus become
non-deterministic. Mechanisms to avoid conflicts are discussed
in Section 5.3.

UML Choices are similar to junctions, differing only by
being dynamically evaluated by the transition logic while the
transition is already being executed. Thus, choices have the
dangerous property that composite transitions can get stuck
during execution if at some point none of the outgoing transi-
tions are enabled. To avoid this, the UML standard advises to
always include an else transition, that is automatically enabled
if no other transition is true.

4.3.3 Entry and Exit Points

Entry and exit points were introduced in version 2.1 of the
UML standard with the goal of permitting to define multiple
ways to enter a composite state, or to exit it with different
outcomes, respectively.

Examining the semantics of entry and exit points reveals
that these are semantically almost identical to the junction
element described above. According to [18, p. 551], only one
outgoing transition is permitted from the entry point to a state,
while a junction permits multiple. In our opinion, there is no
need for this constraint. Hence the only remaining difference
is concerned with the graphical representation of whether the
circle is drawn on the border of the enclosing composite state
or not.

4.3.4 The rFSM Connector: unifying Initial, Junction,
Entry and Exit Pseudostates

Given the large semantical similarities between the UML 2.1
initial, junction, entry and exit pseudo-states, the rFSM model
unifies these under the name Connector. This unification sig-
nificantly reduces the amount of concepts, while still providing
the same semantic expressivity. The name Connector follows
the suggestion of Simons [11], who pointed out that the term
state (even with the “pseudo” prefix) is misleading. This is
because the element in question does not represent a state
(defined as a distinguishable condition of the system) but
rather constitutes part of a transition.

As entry and exit points represent public interfaces to a state
machine, the rFSM adds a Boolean-valued attribute public
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to the connector element. This serves two purposes: (i) it
can be used by a model checker to issue warnings if a state
machine designer adds transitions to non-public connectors
from outside of a composite state, and (ii) this attribute may be
used by graphical visualisation tools to draw public connectors
according to the UML visual guidelines for entry and exit
points, which is on the border of a composite state. In the
following we represent connectors as small circles: initial
connectors are filled in black while all others are not filled.
This avoids the ambiguity in UML resulting from both initial
and junction pseudo-states being graphically depicted as black,
filled circles. If this notation were used instead of UML, the
middle junction in UML diagram 7 (connecting start with
end would be not filled, since it is not an initial connector.
The junction in diagram 8 would move to the border of error
state and be likewise not filled, unless it actually is the initial
state.

Because of the dangerous property of permitting stuck
transitions, the UML choice pseudo-states is not included in
the rFSM model.

4.3.5 Final State

Transitioning to a UML final state means that the enclosing
state has completed. In contrast to the initial pseudo-state, the
final state is not a pseudo-state at all, but a specialised regular
state. The reason for this is not explained in the standard,
however it can be assumed that this is because a well-formed
UML state machine can actually be in the final state. In
contrast, it is not possible to be in the initial state, since this is
part of a transition. When a final state is entered, UML requires
a completion event to be raised that may trigger transitions
emanating from a parent state. If no transitions are enabled,
the final state remains active.

The rFSM model does not introduce a special final state.
Instead an empty, user-defined regular state named final can
serve this purpose. When no do function is defined, the
completion event is raised immediately after entry and can
hence be used to trigger transitions emanating from parent
states. Major semantic differences exist between UML and
rFSM with respect to the completion event itself; this is
discussed in Section 6.4.

4.3.6 Terminate

The UML Terminate pseudo-state offers a mechanism to
terminate the execution of the entire state machine instance by
transitioning to this connector. No actions are executed except
those associated with the transition. In our opinion, there is
no benefit of using a Terminate model element instead of a
regular state called terminate that executes the required
shutdown procedure. Hence the rFSM model does not include
a terminate pseudo-state.

4.3.7 History States

The History state, graphically denoted by a circle around
a capital H, is an initial connector with special semantics.

safe_mode
o—> entry: -

safe_stop()

4
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exit: :
motors_off() approach ing
entry:
enable_pos_control()
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enable_force_control()
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Fig. 9. UML History states.

Consider the example of Figure5. After returning from the
state safe_mode (due to an interrupt caused by receiv-
ing the e_close_obj event) the operational state is
reentered. In this model the execution of operational
will be restarted, by re-executing the transition from the
initial to approaching. However, in some applications it is
preferable to resume the execution instead of restarting it. For
instance this could be the case if the force-controlled operation
is to be performed only once and the robot was paused in a
position ready to resume. To achieve this behaviour, the initial
connector is replaced by a history connector, as illustrated in
Figure 9.

The target of the e_range_clear transition is now a
history connector of the operational state, from which a
second transition is defined to the approaching state. The
latter defines the default state to enter when a composite state
is entered via a history connector for the first time. So far, the
state machines shown in Figure5 and 9 behave identically.
However, on subsequent entries of operational through the
history connector, the last active state configuration (i.e., the
one active at the time when operational was exited) will
be restored. This effectively results in resuming the previously
interrupted task.

UML 2 defines two types of history states: shallow and deep.
Transitions to the former result only in restoring the active
configuration for states at the same level as the history con-
nector within the composite state. In contrast, transitions to the
latter type result in restoring the complete state configuration
including all substates.

History states permit (possibly recursively) resuming pre-
viously preempted activities. This pattern is very common
in robotics, both at the lower, hard real-time level (such as
for implementing safety mechanisms) and at higher levels to
model reactive agent architectures.

The rFSM model includes support for both shallow and
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deep types of history connectors by including a generalised
version offering a configurable depth parameter, that defines
up to which substates the active configuration is restored.
Additionally, taking advantage of the Codel based model
of computation described in Section4.1, a Boolean-valued
hot attribute is introduced. A hot history connector will not
only restore the active state configuration but also resume
the execution of the do codels at the point where it was
preempted. In contrast to UML, where a history connector
always functions as an initial connector, rtFSM permits defining
these attributes separately.

4.3.8 Fork and Join

The UML fork and join pseudo-states are used to create
and merge concurrent transitions in the context of parallel
states: implicitly when entering and exiting parallel regions,
and explicitly to synchronise different parallel regions. As
discussed in detail in Section7, the rFSM model does not
include parallel states, and hence also does not require fork
and join model elements.

4.4 State Machine Extension

UML 2 supports the concept of inheritance of state machines.
A derived state machine may override different aspects of its
super state machine. This way, inheritance permits defining ab-
stract state machines® that function as a common interface for
specialised versions. Inheritance may also improve reusability
by facilitating redefinition of existing models to support new
use-cases that otherwise would have required developing a new
model.

In contrast to the previously discussed model elements,
extension is a meta-level feature that provides an alternate
way to specify state machines. It does not influence the se-
mantics of concrete models. Therefore, rTFSM does not include
primitives to support the definition of derived state machines.
This is because adding inheritance would pollute the core
model with a feature that can be easily added as an extension,
for instance, as a development tool that generates a derived
model from a super state machine and a list of overridden
properties. Since the rFSM reference implementation uses the
fundamental Lua table data-structure for specifying models,
redefining, removing or adding elements is easily possible.

5 EXECUTION SEMANTICS

While the previous Section predominantly deals with struc-
tural aspects of state machine semantics, this Section focuses
on the behavioural aspects, i.e., the execution semantics. To
this end, some terminology is introduced. As explained in
Section 4.2, the active configuration is the set of states that
is active at given point in time. A full transition [13, p. 302],
is a transition starting and ending on a state. A full transition

6. Not to be confused the Abstract State Machine (ASM) formal method.
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can be either simple or composite, the latter consisting of a
sequence of simple transitions joined together by connectors.
The scope of a transition [13, p. 309] is defined as the lowest
common ancestor of source and target vertices of a transition.”
This is best illustrated using a state machine visualised as a
tree as exemplified in Figure 10.

This Figure shows a similar FSM as in Figure6. The
dashed lines represent the containment relationship between
composite and contained states, the arrows represent regular
transitions. For instance the scope of the transition t4 from
tracked to untracked is root, as both source and target
states are direct children. The scope of transition t5 is also
root, because the least common ancestor state is root.

The scope of a transition is essential for statechart execution
semantics because it determines how the active configuration
changes when a transition is taken.

5.1

The basic mode of operation of a state machine is to transition
in response to events received. UML2 describes the run-
to-completion assumption that defines that a new event will
only be processed after the processing of the current one
has completed. This conforms to the STATEMATE semantics
that require the following: "Reactions to external and internal
events [... ] can be sensed only after completion of the step”
[13, p. 298]. For both semantics, this implies that in order to
react to new events, the state machine must be in a stable state;
a stable state being defined as the execution of exit action,
transition effect and entry action having completed.®

Beside these similarities, major differences exist with re-
spect to how and which events are selected for computing
a transition, how conflicts between simultaneously enabled
transitions are avoided or resolved, and what the semantics
of events are.

Fundamental Execution Semantics

7. For state machines with parallel states the definition is extended to:
lowest common non-parallel ancestor.

8. It is theoretically impossible to encounter a STATEMATE statechart
during transition, since transitions are assumed to take zero time. This is
the so-called perfect synchronicity hypothesis, which seldom holds in modern
robotic systems.
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5.2 Event Selection

In UML?2 events are stored in a global queue from which
they are removed one at a time. The standard does not specify
the exact procedure [18, p. 574], in order to permit modelling
of different priority-based schemes. After an event has been
selected, it is used to compute the set of enabled transitions.
If none are triggered, the event is discarded.

The classical statechart semantics differ from this by taking
all events that occurred since the last transition into account
for computing the set of enabled transitions. These events are
discarded after the step.

5.3 Computing the Enabled Transition Set

Next, the selected event(s) are used to compute the set of
enabled transitions given all transitions emanating from the
current active configuration. With both UML and Harel seman-
tics it is possible that the set of enabled transitions contains
more than one transition. Apart from certain special cases,’
this condition signifies a conflict: executing both transitions
would result in an invalid configuration of the state machine
as multiple non-parallel states would become active simulta-
neously.

Because conflicts are likely to happen, it is necessary to
resolve these by applying rules. The concept of structural
priority, introduced by Harel [13, p. 328] largely resolves
conflicts by assigning priorities to transitions based on their
location in the state machine tree. The initial approach was
to assign higher priorities the higher the position of the
transition LCA was in the hierarchy of states. Later versions
of STATEMATE simplified this by using the transition source
state instead of the LCA. This priority rule solves most
conflicts; the remaining can be explicitly solved by assigning
so-called priority numbers to transitions or by using a domain
specific mechanism realized as a guard condition.

UML state machines adopt Harel’s approach of structural
priority although the order of priorities is reversed. This
means that transitions with deeper nested source states are
assigned higher priority than less nested states. The reason
for this deviation is not explained in the UML standard but
presumably has its cause in the inherent object oriented focus
of UML. Assigning higher priority to deeper nested states
permits substates to be interpreted as specialisations that refine
the behaviour of parent states.

5.4 Discussion

The different focus of UML state machines and Harel state-
charts become apparent by examining both execution seman-
tics. The UML semantics, being part of an Object Oriented
modelling standard are more focused on introducing object
oriented concepts in state machines. In contrast, the original

9. Multiple transitions entering a parallel state are simultaneously enabled
without being in conflict.

Harel semantics are targeted towards building complex, reac-
tive systems. Hence, it comes as no surprise that the classical
STATEMATE semantics are often better suited to model the
behavior of complex, multi-robot systems, as is explained in
the following.

Firstly, the behaviour of a classical statechart is largely
predictable from the graphical model since the next transition
to be executed depends only on the active configuration, the
set of input events and the state of the guard conditions. This
supports developers that can rely on the graphical model to
understand and predict the statechart behaviour. This is not as
simple for an UML model, that requires a developer to have
additional knowledge about the particular dequeuing imple-
mentation and about the currently deferred events (discussed
in Section 6.7).

Secondly, taking all events into account for determining
which transitions to execute has the advantage that the highest-
priority events take effect while lower-priority events are ig-
nored. Moreover, the queue of events is less likely to overflow
by being emptied on each step. This is important for complex
systems for which floods of events are possible.

Thirdly, the classical statechart approach of conflict res-
olution supports compositional robustness. The example in
Figure 5 illustrates this. Assume the developer of the nested
state machine in_contact adds a self-transition for the
event e_close_ob7j. This transition conflicts with the top-
level transition from operational to safe_mode. In the
Harel semantics this does not affect the behaviour of the state
machine as a whole, since the (safety relevant) transition from
operational to safe_mode has higher structural priority.
The system is said to behave compositionally robust to a
minor change (minor being defined in terms of depth of the
changed state) because a small change results in little or no
change of the system as a whole. In contrast, in the UML
semantics this change will alter the behaviour of the entire
state machine because the new transition will take precedence
and prevent transitioning to safe_mode. Hence, a minor
local change results in a large change at system level. For
modelling complex and modular systems this is undesirable.

The rFSM model adopts the STATEMATE semantics of
both event selection and computation of the enabled event set.
Moreoever, the approach of using the transition source depth
to define priorities is adopted as well as the conflic resolution
mechanism of priority numbers.

5.5 Evaluating Composite Transitions

One important issue that is scarcely discussed for UML and
STATEMATE semantics is the extent to which composite
transitions are checked prior to being executed. Starting from
the example show in Figure 5 and assuming that safe_mode
is active and the event e_range_clear is in the queue, the
transition from safe_mode to operational is enabled.
The question posed by this scenario is whether the state
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machine logic may already start executing the transition at this
point, or if further checking is necessary. The imminent danger
of starting execution is that after the first part of the transition
has been executed, the second part from the initial connector
to the approaching state is not enabled, hence resulting in
the FSM getting stuck. UML 2.1 circumvents this problem by
prohibiting initial transitions to define guard conditions, and by
introducing a semantic variation point [18, p. 560]. The latter
leaves open how to interpret transitions to composite states
without initial connectors. It is then up to tool-implementers
to decide if this is to be treated as an ill-formed state machine
or as the intention to enter a composite state but none of its
substates.

Regarding this issue, there are differences in STATEMATE
between simulated and generated code [13, p. 303]: while the
simulator will not begin executing the transition, the generated
code will, and hence get stuck when the continuation transition
is not enabled.

The rFSM model deals with the above-mentioned UML
variation point by defining a transition to a composite state
without an initial connector as ill-formed. Secondly, deep
transition checking is required, meaning that for a transition
to be enabled the complete path until reaching a leaf state
must be enabled, thus including zero to many transitions from
initial connectors to states. This eliminates the possibility of
transitions getting stuck during execution. Because the rTFSM
model treats initial connectors and junctions identically, no
special logic is required. Moreover, the UML constraint that
forbids initial transitions to define guard conditions becomes
unnecessary and can be dropped.

5.6 Transition Execution

Once a transition is enabled, it is executed in the following
sequence. Firstly, all source states up to, but excluding, the
LCA are exited by invoking their exit functions. For each
composite state of these states, the last active sub-state is
stored in preparation of a potential re-entry via a history
connector. As an example, for a transition between two states
within the same composite state only the source state is exited,
as the LCA is the composite state. In contrast, for transitions
contained by different composite states, multiple states are
exited.

Secondly, the transition effect is executed, followed by the
third part of the transition execution in which the transition
target state including its parent states are entered. If this target
is a leaf state, the transition execution is completed. Otherwise,
the transition execution is continued at the initial connector
of the composite state until a leaf state is reached. In case
of composite transitions this procedure is executed for each
individual transition.

As an example, assume that the active state of the statechart
in Figure6 is following, and the event e_cmd_cali
occurs. The LCA of this transition is the root state
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step start

v

check for new
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transition(s)
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events?
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active do yes
function?

execute do
function?

step

completed

Fig. 11. Flowchart of the step procedure.

(ball_tracker), hence first following and tracked
will be exited. Next, the transition effect (not used in the
example) will be executed. Lastly, the target states—for this
example, only calibration—are entered.

5.7

Figure 11 summarises the process of executing a rFSM step.
Executing a step will advance the state machine in an atomic
way, leading to, at most, the execution of one composite
transition.

Each step begins with the retrieval of all events that have
accumulated since the last step. Next, if new events are
available, it is checked whether these trigger any transitions.
If yes, the one with the highest structural priority is selected
and executed. If no events exist, the rFSM core checks if the
currently active state has an enabled do function to execute.
If yes, it is run. Otherwise the step is completed.

To complement st ep, a mechanism called run is provided:
when a state machine is run, the step procedure is invoked
either until no new events are available and the active state has
no enabled do function, or a maximum number of steps (given
as an argument to run) have been executed. The practical
application of step and run is described in detail in Section9.

An active do function can be configured to be in one of
two modes: idle and non-idle. Which one is appropriate is
strongly influenced by the model of state machine progression
(Sec.9.1). If a do function is non-idle, the state machine
engine will recall it immediately, provided that no events
enabling outgoing transitions were received. Conversely, an
idle do function is not recalled immediately, but only during

rFSM Transition Semantics
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the next step. In general, the choice of mode should depend
on whether the do activity is used to complete a task as fast as
possible, or instead is just used to periodically perform some
task.

6 EVENT SEMANTICS

Previous Sections described how events enable transitions and
what are the ramifications thereof. This Section examines the
semantics of events themselves, their structure and specialisa-
tions.

In classical statecharts, such as the STATEMATE seman-
tics, events can be understood as messages which represent
the occurrence of something. Events can be compared to
events specified on transitions and are hence required to have
identity. UML includes this basic event type using the name
SignalEvent. However, there exist other, more specialised types
of events which are discussed below.

6.1 UML ChangeEvent

A ChangeEvent is raised when a Boolean-valued condition
evaluates to true. For this, the syntax when <condition>
on a transition is used. In principle, such an event type seems
useful for robotics coordination. The problem however, is
that the UML specification leaves open when and how the
condition is evaluated [18, p. 452]. Obviously, for a hard real-
time robotic system this is not acceptable, as the condition
checking will directly influence the worst-case latency of
the event generation and hence the transition execution. This
situation can be remedied in two ways. Either the ChangeEvent
is extended to take into account the additional semantics of
evaluation frequency, timing precision etc., or this event type
is excluded from the core semantics and realized outside
of the statechart. In the latter approach the validation is
carried out by a separate component that raises the respective
events. For rFSM the latter approach was chosen, as it does
not require extensions to the core semantics and makes the
involved assumptions explicit. Moreover, many computational
components such as robot driver components, control com-
ponents or estimators can easily provide such validation of
internal conditions and the respective event generation with
little computational overhead. Therefore, it is considered a best
practice to extend computational components to raise events
based on configurable constraints on their internal state.

6.2 UML Time Event

UML defines a TimeEvent as an event which is raised at
a relative or absolute point in time. The syntax used is
after <duration> or at <time>. For robotic applica-
tions TimeEvents can be useful in various circumstances, yet
they suffer from a similar limitation as ChangeEvents, as no
assumptions can be made on the qualitative properties of the
time used. Hence, the variation point can be resolved likewise,

by either extending the TimeEvent or by implementing it
outside of the scope of the core semantics. rTFSM takes the
latter approach and does not include TimeEvents in the core
semantics, but instead as a configurable plugin.

It is worth pointing out the danger of misusing time events
for modeling flowchart-like execution flow [11]. A state should
reflect a distinguished condition of the system or a part thereof,
not a time-bounded computation. The need for the latter is an
indication to use a Flowchart formalism such as UML Activity
Diagrams. Conversely, TimeEvents have important use-cases,
most notably to model timeouts that trigger transitions to states
for dealing with the absence of the nominally expected event.

6.3 UML Call Event

A CallEvent is an event defined for state machines used
in the context of Object Oriented software systems. This
event represents a request to invoke a certain method on an
object. The CallEvent is generated after the operation has been
invoked, thereby permitting the FSM to track the methods
that are invoked. As the rFSM semantics do not make any
assumptions about the underlying programming paradigm, no
CallEvent is included.

6.4 UML Completion Event and Final State

According to UML, a completion event is raised either when
the do behaviour of a simple state completes or a final state is
entered. Graphically it is depicted by an unlabelled transition
(called completion transition) emanating from a simple state
or from a composite state that contains a final state.

The UML completion event has special semantics and is
implicitly assigned highest priority among all events. For the
UML semantics this is necessary, as a CompletionEvent does
not carry any information about which state completed. There-
fore, this event is only valid for the active configuration of the
FSM at its time of generation. Queuing a completion event
would permit the triggering of different unlabelled completion
transitions from other states at a later time, which would be
undesirable.

The rFSM model avoids this problem by adding iden-
tity in form of the fully qualified state name (Sec.4.2)
to the completion event. For instance, the completion
event of the in_contact state of Figure5 would be
e_done@root.operational.in_contact. This way
no special treatment of the completion event is necessary.
Moreover, by not assigning special priority to this event,
priorities are respected as a completion event must compete
with all other events stored in the event queue. Finally, the
readability of completion transitions is improved by labelling
these explicitly. The semantics of unlabelled transitions are
discussed below.

As in UML, the rFSM model requires that the completion
event is raised either when the do function of a leaf state has
completed, or immediately if no do is defined. The use-case
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of UML final states is covered in rFSM by using an empty,
regular leaf state named final. Once this state is entered, the
completion event e_done@final will be raised. Transitions
can then be defined to react to this event.

6.5 UML AnyReceiveEvent and unlabeled Transi-
tions

As the rFSM model (unlike UML) chooses to label comple-
tion transitions explicitly, the question of the semantics of
unlabelled transition arises. There exist at least two natural
interpretations of such a transition. The first is a transition
that is never enabled, because no events are specified that
could trigger it. The second, more useful interpretation is a
transition that is enabled by any event. Harel statecharts opt for
this interpretation because such true-transitions can be useful:
when chaining multiple transitions by means of Connectors,
true-transitions permit to avoid repeating the enumeration
of the events specified on the previous transitions for all
subsequent transitions, thereby reducing redundancy. A second
use-case is to avoid having to exhaustively enumerate all
possible events for a transition that is only constrained by a
guard condition. For UML state machines this interpretation
can be realised by specifying the AnyReceiveEvent which is
denoted by the keyword any. Because simpler and arguably
more intuitive, the rFSM model adopts the Harel interpretation
of the unlabelled transition as a transition being triggered by
any event.

6.6 Edge- and Level-triggered Events

In the simplest case, an event represents the one-time occur-
rence of something. Based on all events that occurred since the
last step, the FSM core reasons to find and execute a transition
and afterwards drops these events. However, in some cases
events are not only valid at a particular time instant, but persist
during a period of time and/or until some action takes place.
These two types of events are called edge and level triggered
events, respectively.!® The first are only valid at one point in
time (on the rising or falling edge) while the second persist
for some time, i.e., as long as the level remains high.

Level triggered events are often useful to signal a condition
requiring some form of response. For example this could be a
slight over-temperature condition of a motor during a manip-
ulation task. Eventually, it is necessary to react to this event
and reduce the overall speed, however this can take place after
the current manipulation has completed. Moreoever, level-
triggered events permit expressing the use case of deferred
events, which are discussed below.

Level triggered events are quite similar to STATEMATE
conditions [13]. The main difference is that in STATEMATE
a condition value is cached before each step while the rFSM

10. In analogy to edge-triggered interrupts in operating systems.
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semantics make no assumptions in this regard. The recom-
mended way to realize a level triggered event in rFSM is by
means of a guard function checking the condition in question.
The details of how this condition is realized strongly depends
on the underlying software framework in use.

6.7 Deferred Events

The UML standard permits a state to define a list of deferred
events. When such a state is active, receiving a deferred event
will not trigger any outgoing transitions. Instead this event
remains in the queue until a state not deferring it becomes
active. Since deeper nested states deferring events take priority
over less nested states [18, p. 576], deferred events can be
interpreted as an object-oriented specialisation mechanism
which permits refining the behaviour of less nested states.
Because rFSM adopts STATEMATE’s priority approach to
resolve conflicts, a deferred event mechanism would not vi-
olate the principle of compositional robustness. Nevertheless,
the rFSM model does not include deferred events because (i)
this primitive obscures the hierarchical conflict resolution, and
(i1) the use-case of deferred events can be accommodated by
a level triggered event. This is because a deferred event is
effectively a level triggered event in disguise; it remains active
(stored in the queue) until it is convenient to be processed.
By using level triggered events, no special defer primitive is
required and no additional, hidden state is introduced in form
of a queue of deferred events.

7 CONCURRENCY SEMANTICS

State machine parallelism was introduced by Harel and is
currently supported by most specifications, including UML,
SCXML and Simulink Stateflow. This feature permits more
than one substate or state machine contained in so called
orthogonal regions to be active, and therefore the concurrent
execution of their associated behaviors.

As robotic applications are inherently concurrent, the con-
cept of parallel states is generally suitable for modelling
these systems. Nevertheless, the weakly specified semantics
of the parallel state element introduce several ambiguities. For
instance, according to the UML standard [18, p. 575], no as-
sumptions are made about the underlying thread environment,
even though this greatly influences both performance and
real-time properties of the executed model. Furthermore, the
level at which concurrency is implemented is left undefined.
In the simplest case, parallelism may only mean simulta-
neous execution of do behaviours, whereas more elaborate
implementations might choose to implement concurrent entry
of individual orthogonal regions. The latter would require
introducing more assumptions: for instance it has to be decided
which of the different regions is entered first and whether the
entry is executed interleaved or sequentially.'!

11. The latter example only holds true if multiple composite transitions
emanate from the same fork.
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The analysis of existing coordination state machines shows
that robotic coordination, unlike computation, rarely requires
such tightly coupled concurrency. This is due to the fact that
coordinative actions generally consist of issuing commands
to lower level, concurrently running computation components.
Therefore, coordination does not benefit from parallelization
in terms of performance as intensive computations do.

On the other hand, supporting distributed state machines
is more important to robotics than the previously mentioned
internal concurrency. This is particularly true for multi-robot
applications. Distributed state machine instances must be able
to observe each others’ state and share some events. This
approach has several advantages compared to parallel state
machines: essentially, the complexity of parallel states and the
associated assumptions on the threading environment can be
avoided. Furthermore, the aspect of communication is moved
out of the implementation and thereby made explicit, which
is a best practice advocated in the 4Cs design paradigm. If,
for instance, the communication between two FSM breaks, an
explicit event can be raised. The system architect can select a
communication middleware suitable for the particular purpose.
The downside is that additional effort is required to deploy
such a distributed state machine. However, this process is
generally suited to be automated by deployment tools.

A generic pattern of distributed sub-states is described in
Section 9.5.

8 REFERENCE IMPLEMENTATION

To illustrate the applicability and the exact semantics of
the described model, a complete reference implementation
of rFSM statecharts has been developed[32]. As of today,
this execution engine provides support for all mechanisms
described in this paper, apart from internal events and history
connectors, which are expected to be added soon.

This rFSM engine is implemented as an internal domain
specific language (DSL) [33] in the Lua programming lan-
guage [34]. Internal DSL are built on top of an existing
programming language, while external DSL are developed
from scratch. By reusing existing infrastructure, internal DSLs
are significantly easier to create and maintain than external
ones. Moreover, internal DSLs can very easily be combined
with programs of the host language or even with other DSLs.
This extensibility is an important requirement for a state ma-
chine implementation, whose major purpose is to execute user
defined actions according to the specified state machine model.
The only disadvantage of an internal DSL is that its syntax is
constrained by the host language. In practice this limitation is
often acceptable given the reduction in development time and
the simplicity gained for combining DSLs together.

Besides being suitable for building DSLs, the Lua language
was chosen for the following reasons. Firstly, the language
is designed to be both embeddable and extensible, which is
reflected by the small memory footprint and straightforward

foreign function interface. These properties are important since
distributed coordination implies multiple Lua instances execut-
ing state machine instances embedded within components of
a robotic software framework. Secondly, Lua offers a simple
syntax that facilitates less experienced programmers not famil-
iar with C++ or Java to build state machines; nevertheless, the
language is mature and semantically well grounded by being
strongly influenced by the Scheme language [35]. Moreover,
the use of a scripting language contributes to the robustness
of a system, because scripts, in contrast to C/C++, can not
easily crash a process and thereby bring down unrelated
computations executed in sibling threads. This property is
essential for the aspect of coordination, that, as a system
level concern, has higher robustness requirements than regular
functional computations.

The following Listing shows the textual input model corre-
sponding to the model of Figure 2.

return state({
following = state({},

paused = state(
entry=function ()
exit=function|()
by

ArmController:stopArm()
ArmController:startArm()

end,
end

initial = connector{},

transition{ src='initial', tgt='following' },
transition{ src='following', tgt='paused',
events={ 'e_untracked' } },
transition{ src='paused', tgt='following',
events={ 'e_tracked' } },

}

Listing 3. Textual model of Ball-tracking FSM.

This model is a valid Lua program representing a tree of
states constructed using the table data type. When loading
this file, the Lua interpreter performs basic syntax checking
and instantiates the data structures. Note that this requires no
effort by the DSL developer; it comes for free for an internal
DSL. Next, the rFSM engine carries out basic validation
and transformation of the tree structure to a graph ready for
efficient execution. The validation is very limited and only
concerned with detecting common structural errors. Formal
verification of Statecharts has been treated in literature [36],
[371, [38] and outside the scope of this work.

Composition of states is supported through the rfsm. load
primitive. For instance, to reuse an existing following state
machine defined in a file, line 2 of Listing 3 could be defined
as follows:

following = rfsm.load("following_fsm.rfsm")

As illustrated by example 3, a state machine developer will
use Lua functions to implement behaviour in form of entry,
do,'? exit and effect programs. Calls to low-level C/C++

12. In the reference implementation do is renamed to doo to avoid conflicts
with the homonymous Lua keyword.
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are easily integrated by means of the foreign function interface,
as described below for the OROCOS/RTT framework.

Hooks are the key mechanism to extend and embed rFSM
statecharts by means of custom, user defined functions. The
most important hook is getevents, that allows customizing
where events are retrieved from. A getevents function is
expected to return a list of events that occurred since the last
invocation and will be called by the rFSM engine one or
more times during the execution of a step. The example in
Listing4 shows a sample getevents hook to retrieve all new
events from a port events_in in the context of the Orocos
RTT framework. The second part illustrates how the FSM is
customized with this hook.

function rtt_getevents|()
local ret = {}
while true do
local fs, event = events_in:read()

if fs "= 'NewData' then break end
ret [#ret+l] = event

end

return ret

end

return state
getevents
following

rtt_getevents,
state({},

}

Listing 4. Sample getevents hook.

Since retrieving events from ports is very common
when using rFSM with Orocos RTT, the auxillary function
gen_read_events (portl, port2, ... is provided in
the module rfsm_rtt to automatically generate a getevents
hook to read all events from the given ports.

Other hooks include pre_step_hook and
post_step_hook that are called before and after a
step is executed respectively. These are lowlevel hooks
mainly used by extensions, such the timeevent plugin that
checks for expired timers or the event memory plugin
described in Section 9.4 to keep track of occurred events.
The rfsm module-level preproc hook allows registering
functions that will be called at initalization time and can
be used to preprocess or validate the rFSM model prior
to execution. An example use is for transforming platform
independent task models to rFSM hooks, as explained in
Section 9.2.

8.1

The reference implementation is implemented in pure Lua and
has no dependencies whatsoever. This permits standalone use
which is convenient for testing and debugging of statecharts.
To use the implementation in the context of robotic software
frameworks requires a plugin to make the primitives of these
frameworks available within Lua. We have developed such
bindings for the OROCOS Real Time Toolkit (RTT) [2] that
permit interacting with Components, Services, Operations,

Software Framework Integration
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Input- and Output Ports and data types. A RTT LuaComponent
is an initially empty container into which Lua programs
can be loaded. This approach permits treating Coordination
components just as regular computational components that are
configured to load Coordination statecharts. Event driven input
ports can be used to trigger dormant components upon receiv-
ing events and output ports are used to emit events. Using
the standard communication primitives of a framework avoids
duplicating these mechanisms for the sake of Coordination.

8.2 Considerations for Hard Real-Time Execution

The RTT framework provides a hard real-time safe exe-
cution environment for components. Naturally, real-time re-
quirements exists also at the Coordination level. Satisfying
hard real-time constraints for interpreted, garbage collected
languages poses several challenges. Firstly, the allocation of
memory must take place in a temporally deterministic way,
which is typically not guaranteed to be the case for the default
memory allocators of general purpose operating systems such
as Linux. Secondly, the recuperation of unused memory must
take place in a way that does not interfere with the nominal
execution.

Our approach achieves deterministic allocation by extending
the Lua interpreter to use an O(1) memory allocator [39]. To
achieve deterministic recuperation in critical real-time paths,
the Lua garbage collector is stopped and manually controlled.
Further details can be found in [40] [41].

8.3 Representing Events

In the majority of examples and real applications we have
represented events using strings. While the rTFSM implemen-
tation permits any comparable type to be used, the string
representation is convenient for humans and still reasonably
fast. Provided that memory is preallocated correctly, string
events can even be used in hard real-time. Nevertheless,
depending on the application, significant overhead could be
avoided by denoting events using numbers. To take advantage
of the performance of the numeric representation and the
readability of string events, the latter could be transformed
to the former at load time using an rFSM pre-processing hook
defined as a rFSM plugin.

9 PATTERNS AND BEST PRACTICES

This Section discusses reoccurring patterns and best practices
in robotic coordination and their realization using rFSM.

9.1

An important decision a statechart designer needs to take
is to define how and when a statechart is advanced. Harel
[13] describes two basic approaches: the asynchronous and
synchronous model (see Section 9, “Two models of time”).
The synchronous model assumes that one step is executed

Models of State Machine Progression



M. Klotzbticher, H. Bruyninckx / Coordinating Robotic Tasks and System Compositions with rFSM Statecharts 47

every time step, thereby causing the state machine to react
to events and changes that occurred since completion of the
previous step. In contrast, the asynchronous model advances
the state machine only upon receiving events and is typically
configured to execute as long as events are available. These
two models correspond to the paradigms of event-triggered
(ET) and time-triggered (TT) systems [42], [43] and have
received thorough treatment in literature. In summary, the TT
architecture offers several advantages over the ET architecture,
including exact predictability of temporal behavior and allow-
ing for systematic formal verification of temporal properties.
In contrast, ET-systems generally require substantial testing
to ensure that deadlines are met. Unfortunately, open and
uncertain environments common in robotics require significant
effort to determine the necessary granulation of observation
lattice and maximum execution times [42].

While the rFSM model and reference implementation sup-
port both models, each model has different use-cases for which
it is appropriate. The asynchronous model is best suited for
coordination scenarios in which multiple components, possibly
running at different frequencies, are coordinated. To this end,
a dedicated Coordination component with its own activity is
introduced. When new events are received, the state machine
component is woken up and run (via the run function) and
permitted to execute until it goes idle (which happens if
there are no events in the queue and there is no active do
function). Input events can originate from various sources:
user commands, error events from computational components
or filtered and processed raw events. Outputs may consist of
performing actions such as starting or stopping components,
creating or destroying connections, invoking component ser-
vices, or configuration of parameters.

The synchronous execution model is suitable for coordi-
nation that takes place at a fixed frequency. The typical use
case is coordination of a single component. For each cycle of
the computation, the step function of the FSM is invoked
to advance the state machine. This results in at most one
transition being executed, taking into account all events that
occurred since the last step. In contrast to the asynchronous
model, the coordination can be executed conveniently within
the activity of the coordinated host component. For instance,
a PID controller component can be decorated with a discrete
task-aware coordinator that monitors and adjusts control pa-
rameters according to the current task state.

In practice, hybrid models combining both asynchronous
and synchronous advancing of state machines have often
proven to be useful. This behaviour can be achieved by
connecting a periodic timer component in addition to other
asynchronous event sources to the incoming event port of a
coordination component. This way, the coordinator is guar-
anteed to wake up for processing at a minimum rate defined
by the timer component. However, if events arrive in between
timer events, the coordinator will react instantly.

Note that such timer events should be understood in the

broadest possible sense of time: the events do not have to
be emitted at fixed intervals of real-time, but may be raised
according to a virtual, task-specific clock.

9.2 Platform and Robot independent Coordination

For reusing coordination models on different robots and with
different software frameworks, it is necessary to avoid in-
troducing dependencies on these aspects. A simple way to
achieve this is to encapsulate the platform specific functions
used by the FSM in modules. A supported platform must then
provide implementations satisfying the required FSM API.

The downside of this approach is that platform indepen-
dence is only achieved for the FSM, but not for the behavior
hidden in the opaque functions. Platform independence in-
cluding this aspect becomes possible if the behavior of states
can be formally modelled in a platform independent way. To
this end, the statechart model is specified such that states
reference platform independent task models. By means of a
plugin realized using a rFSM pre-processing hook, the plat-
form independent task models are dynamically transformed
to platform specific rFSM hook functions at initalization
time. The following example illustrates this transformation for
a statechart coordinating end-effector motions. The motion
specifications are expressed in the task frame formalism, a
hybrid force-velocity control robot programming formalism
[44], [45].

Listing 5 shows a rFSM statechart modeling a robot arm
moving down using velocity control and aligning upon en-
tering in contact. Motion models are specified in an external
module t£f_motions and not further described here. Ex-
amples of the TFF motion DSL can be found here [46]. States
reference task models using a keyword task. Introducing
this is legal since rFSM is implemented as an open model,
signifying that keywords not part of the rFSM model are
ignored instead of treated as errors.

require "rfsm_tff"
require "tff motions"

return state {
move_down = state {
task = tff_motions["move_down"],
by
push_down = state ({
task = tff _motions["push_down"],
b
transition{ src="initial", tgt="move_down" 1},
transition{ src="move_down", tgt="push_down",
events={"e_contact"} }

}

Listing 5. rFSM model referencing TFF motions models.

Prior to executing the statechart model, the referenced task
models need to be transformed to standard rFSM hook func-
tions. This is achieved using the rfsm_t £ £ plugin, shown in
Listing 6. This plugin installs transform_tff as a rfsm
pre-processing hook for carrying out the transformation at
initalization time (line 13). This function in turn uses the rFSM




48

mapfsm higher-order function to invoke t ff2hooks on all
states of the FSM (line 10). For each state defining a task,
tff2hooks generates a function (using rtt_gen_apply
in line 5), that when called commands the TFF controller to
apply the given TFF motion using the respective platform
specific mechanism. This function is set as an entry function
such that this motion will be executed upon entering the
state. In this way, the abstract task model rFSM statechart is
transformed to an executable, platform specific rFSM instance.
Though functional, the example is intended to be illustrative;
for instance the Orocos RTT specific rtt_gen_apply func-
tion should not be hardcoded but become a parameter of the
rfsm_t ff module.

1 module ("rfsm_tff")

2

3 function tff2hooks(s)

4 if tff.is_TFFMotion(s.task) then

5 s.entry = tff_rtt.gen_apply(s.task)
6 end

7 end

8

9 function transform_tff (fsm)
10 rfsm.mapfsm(tff2hooks, fsm, rfsm.is_state)
11 end

13 rfsm.preproc[#rfsm.preproc+l] = transform_ tff

Listing 6. Dynamical transformation of TFF model
to rFSM hook functions using plugin.

The plugin approach permits easily adding further prepro-
cessing or validation steps. For instance, an additional robot
specific plugin could be used to ensure that the used forces
and velocities are within the limits of the actual capabilities
of the robot.

9.3 Best practice Pure Coordination

Most coordination models do not restrict the primitives that
can be used in actions, as for instance rFSM does not constrain
the entry, do, exit, and effect functions in any way. In
contrast, a pure coordinator limits its side-effects to exclusively
raising events and has the following advantages. Firstly, the
reusability of coordination models is increased by drastically
limiting dependencies on platform specific actions. Secondly,
the blocking invocation of operations on functional compu-
tations is avoided, thereby improving the the determinism of
the Coordinator. Lastly, Coordinator robustness is increased
by avoiding operations that might block indefinitely or crash,
either of which may effectively render the coordinator inoper-
ative.

To that end we propose splitting the rich coordinator compo-
nent that executes actions itself into a Pure Coordinator and
a Configurator. Although the coordinator remains in charge
of commanding and reacting, the execution of actions is
deferred to the Configurator. The Configurator is configured
with a set of configurations that it will apply upon receiving
the corresponding event. This pattern, called Coordinator—
Configurator, has been implemented as a Configurator domain
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Fig. 12. Dealing with inter-step history.

specific language for the Orocos RTT framework. More detail
on pattern and DSL can be found here [47].

A pure coordinator requires to be informed via events
about relevant changes in system state. This can be achieved
in two ways: on the one hand by introducing an explicit
monitor component that is configured with constraint-event
pairs. When a constraint is violated, the corresponding event
is raised to inform the coordinator. The other approach is to
extend computational components themselves to raise events
when (configurable) constraints on their internal state are
violated. In general, the latter approach should be preferred
if the constraint is specific to the computation, as it avoids
the need to communicate state to a monitor. However, if the
constraint is application specific, the monitor component is
preferrable, since it preserves reusability of the computational
component. This trade-off is further elaborated in the step by
step example given in Section 10.

9.4 Event Memory

The default behaviour of statecharts is to avoid any state
apart from the currently active configuration; all events are
discarded after the execution of a step. One the one hand,
this improves the deterministic nature of statechart execution
by avoiding hidden state (e.g. in the form of deferred events).
Yet, on the other hand, event-only coordination is complicated,
in particular for distributed statecharts. Consider the exam-
ple shown in Figure 12. This coordinator must wait in state
init_subfsms until it receives an event from each sub-
FSM, signalling that initialisation has completed. The problem
with this implementation is that the transition will not be
enabled, unless both events are received at exactly the same
step.

The proposed solution to this problem is to extend each
state with memory of the events that were received while this
state was active. This permits to check if (and how often) an
event has occurred while the transition source state is active.
The rFSM reference implementation provides an event memory
extension in form of a plugin, that when loaded keeps track
of this information. That way, the problem can be solved
by reformulating the transition using a guard as show in
Listing 7. Using the recorded event history, the guard condition
will inhibit the transition until both required sub-FSM events
have been observed while residing in the source state of the
transition.
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distributed_state
entry:
activate_substates()
exit:
deactivate_substates()

Fig. 13. Distributed state.

guard=function (tr)
return tr.src.emem.e_subfsml_init_done > 1 and
tr.src.emem.e_subfsm2_init_done > 1
end

Listing 7. Event memory based guard condition.

Moreover, event memory can support detection of erroneous
FSM behaviour, such as reception of too many of a particular
event within a time step. A trigger to detect such conditions
can check whether the number of a certain error event divided
by the number of virtual time-events (Sec. 9.1) does not exceed
a threshold.

9.5 Distributed Substates

The following paragraphs describe a generic pattern for im-
plementing distributed statecharts. The approach is generic
since it permits expressing concurrency at different levels of
distribution, ranging from states distributed over a network to
the traditional, closely coupled, thread-level parallelism.

The pattern is illustrated by the state machines in Figures 13
and 14, which are subsequently called the top and bottom half
of the generic distribution mechanism.'?

The first Figure shows a container, the top half of a
distributed state. Its purpose is to activate and deactivate the
(semantically) contained, concurrent substates on entry and
exit respectively. Depending on the type of parallel state the
entry function will carry out different actions: for a local
thread-level distributed state it might spawn a new thread
for each substate. For a parallel substate distributed over the
network it might connect to a running and waiting instance.
Substate activation and deactivation is achieved simply by
sending the corresponding events to the bottom half.

Each distributed substate, the bottom half, is formed by a
generic substate as shown in Figure 14. This state contains
two states active and inactive that are connected by
transitions. The active state includes the application specific
state machine, that is entered per default via its initial con-
nector once the active state is entered. This way, the top
half can control the execution of the bottom half by sending it
the events e_sub_activate and e_sub_inactivate.
Likewise, by observing the active state of the bottom half the
top half can determine when all substates have successfully
been entered or exited.

13. Apart from the name, the concept of top and bottom half has no
relationship to the (obsolete) interrupt handling mechanism of the Linux
Kernel.

rdistributed_substate

A

e_sub_activate e_sub_inactivate

active

rfsm.load(file)

. J

Fig. 14. Distributed substate.

Using this pattern formed by two FSM, any hierarchical
state machine can be distributed independently of the form of
distribution and obeying the rules of hierarchical statecharts.
The only requirement is that events can be communicated
between distributed instances.

Communication and Deployment: By distributing state
machines as described above, the communication between
these instances is made explicit. To implement this, an
asynchronous message passing mechanism (to communicate
events) is most suitable. Communication is required for noti-
fying a distributed state to activate or deactivate its sub-state
machines, for propagating events between the two halves and
for notifying the top half about state changes in the bottom
half. The latter is necessary, for example, in the exit function
of the top half, which must wait for all substates to enter the
inactive state after sending e_sub_inactivate event.
This mechanism is similar to the in (<state>) conditions
available in STATEMATE.

An important questions is which events are communicated
between event sources and sinks (statecharts, but also com-
putational components). Generally, statecharts deal robustly
with unused events by simply dropping these. Nevertheless,
it is a good practice to limit the communicated events to
the set of events that can trigger a peer statechart. Besides
reducing the communication load, this avoids accidentally
triggering unlabelled transitions and reduces the likeliness
of event buffer overflows. In practice, this can be straight-
forwardly achieved by introducing two (or more) functions
raise_local (eventB) and raise (eventA) that raise
events locally or globally to a statechart, respectively.

Moreover, depending on the system it might be necessary
to introduce buffers for storing events until they are retrieved
by the statechart engine. Whether this is necessary or not
depends on the worst-case number of events that can be raised
simultaneously by all peer event sources, and the model of
state machine progression (see Section 9.1). Complementary
to this, Complex Event Processing techniques can help to
reduce the number of events prior to being fed to a statechart.

A further, important issue concerns the reliability of the
communication channel. In case of unreliable communication
(such as UDP), event messages might get lost or be duplicated.
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Fig. 15. Object retrieval without Preview Coordination.

Robust statecharts can deal with these issues by different
means: for instance time triggered t imeout transitions can
re-raise events if the expected conditions are not met; likewise
the for the receiving statechart non-nominal behaviour should
be dealt with by explicitly defining transitions that trigger when
expectations are violated.

9.6 Serialised Locally Distributed States

The most common motivation to use parallel (and hence
also distributed) sub-states is to improve performance by
parallelization. A less common use-case, nevertheless more
relevant to the domain of coordination, is for combining
behaviours that must be executed concurrently but that shall
be kept separated for reasons of reusability (of each of the
behaviours individually).

An example for this is the iTaSC-level coordination in the
iTaSC framework [48], that requires composition of a generic
(to the iTaSC framework) state machine with another state
machine defined by the application developer. The generic
state machine first triggers all task-level FSMs to run at the
right time. The second, user-defined FSM implements the
overall task execution. Although both parts must always be
executed after each other (first the generic, then the user
defined) it is desirable to keep them specified separately to
be able to reuse the generic part. To achieve this composition,
a state named serialised-locally-distributed state (SLDS) was
introduced. This name originates from the fact that the sub-
states are advanced one by one in a serialised way in the same
activity (thread) as the parent state machine. More concretely,
a SLDS state can conveniently be realised as a leaf state that
triggers all substates in its do function. This way, both FSMs
can be composed from separate models at a late stage, during
the loading of the SLDS state.

To concisely specify the behaviour of this type of state,
additional properties must be defined: in which (partial) order
shall the substates be advanced, shall this take place by
invoking step (and how often?) or run? Shall non-idle sub-
states result in the do of the SLDS to become non-idle too? As
a side note, the considerable number of parameters required
by the implementation of this most simple form of parallel
state illustrates the complexity introduced by this family of
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Fig. 16. Object retrieval with Preview Coordination.

model elements and confirms our approach to exclude these
as primitives.

9.7 Discrete Preview Coordination

Discrete Preview Coordination is inspired by the concept
of preview control [49], but also by compiler branch-
prediction techniques such as gcc’s (GNU Compiler Collec-
tion) _ builtin_expect. The basic idea is to exploit
knowledge about the future behaviour of a system to optimise
the current actions. In order to apply preview techniques to
discrete coordination, we extend the core rFSM model as
follows: transitions are extended with an optional Boolean
likely attribute and states with an additional prepare ac-
tion. While checking for enabled transitions from the currently
active states, the preview mechanism will additionally check
for transitions that are likely. If such a transition is found, the
transition target state’s prepare action is executed. This way,
the prepare action can be used to prepare the activity of the
respective state in expectation that it might be entered next.

The use of preview coordination is illustrated by the ex-
ample statechart shown in Figure 15. This statechart models a
mobile robot skill for retrieving an object. Object retrieval con-
sists of three nominal substates of first approaching the target
location, then moving the arm close to the object to be grasped
and lastly grasping the object. Additionally, the situation of
unexpected collisions is dealt with. For simplicity, details on
the realization of approach and handle_collision are
omitted.

The key observations are that firstly, the nominal se-
quence from approach to arm_to_grasp_pos will take
place most of the time, and secondly, that the behaviors of
approach and arm_to_grasp_pos are neither logically
nor kinematically in conflict and can hence be executed in
parallel. To exploit this knowledge using preview coordina-
tion, the statechart from Figure 15 is extended as shown in
Figure 16.

Firstly, the transition from approach to
arm_to_grasp_pos is marked as likely (1ikely=true).
Secondly, a prepare function is added to
arm_to_grasp_pos for preparing the states behavior.
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Fig. 17. The dual youbot coupling demo at Automatica.

In this case, the prepare function is the same as the entry
function move_arm_towards_grasp_pos (). This
assumes that this function can be invoked more than once and
will immediately return if the arm is already at the desired
position.

As a consequence of these extensions, the prepare func-
tion of the arm_to_grasp_pos state is invoked even
though the robot is still approaching the grasp position. This
in turn causes the robot arm to be moved to a suitable grasp
position, thereby reducing or even eliminating the time spent
in arm_to_grasp_pos after the approaching phase has
completed.

It should be noted that the described Discrete Preview
Coordination mechanism does not improve the expressiveness
of the rfFSM model; the same result could be obtained by
calling move_arm_towards_grasp_pos () from within
the approach state. The main advantage is, however, that the
prepare action can be placed in the context of the semantically
related state, namely arm_to_grasp_pos. Only this way,
both approach and arm_to_grasp_pos states can be
reused independently of each other.

The described preview coordination mechanism has been
implemented as a rFSM plugin that extends the core execution
semantics. This preview implementation permits the 1ikely
attribute to be defined as a function that returns true or false.
This way, the likelihood of transitions can change over time
and is not limited to static load time specification.

The described approach currently only considers a preview
horizon of one state; however the rFSM preview plugin could
be easily extended to two or more. The major challenge for
applying such multi-state horizons in practice will be to detect
potentially conflicting prepare actions. Such reasoning will
require more formal representation of actions (and thus robot
tasks) and is outside the scope of this paper.

10 STEP BY STEP EXAMPLE: COORDINATION
FOR A DUAL-ROBOT HAPTIC COUPLING

The following describes approach and methodology to con-
struct the coordination of an dual robot haptic coupling.'* Two

14. This demo was shown at the Automatica 2012 tradefair in Munich.

e -
oubot_couplin
y - pling to CartPosMsr

of peer Youbot

to CartPosDsr
of peer Youbot

[L}—{1]
youbot_driver

Fig. 18. Computational component architecture of the
dual youbot haptic coupling.

KUKA youbots are to be coupled in a bidirectional manner in
cartesian space using an impedance controller. That way, either
youbot can be used to move the other and forces applied on
one side can be felt on the other (see figure 17).

Furthermore, the coupling shall satisfy the following re-
quirements. Initially, both arms are decoupled and compensate
for gravity, thus they can be moved freely around by operators.
The force coupling between the two robots is only established
once two constraints are satisfied. Firstly, the communication
quality between the two robots must be sufficiently good (here
defined in terms of round-trip latency). Secondly, the end-
effector forces that would result from the coupling must not
exceed a certain threshold. In other words, if the end-effectors
of the robots are too far apart (relative to their bases), then
the resulting force that would pull them together would be too
high too, thus preventing the coupling.

Moreover, it shall be possible to manually switch between
a five and eight degrees of freedom mode in which either
only the arm or arm and omnidirectional base are used.
This switching shall only be possible when the coupling is
established.

The first step to model coordination is generally to examine
the architecture of computational components. In most cases
this architecture is more or less fixed as a consequence of
reusing existing components. Figure 18 depicts the component
architecture to control each robot. The coupling is achieved by
connecting each impedance controllers desired position to the
peer robots measured position. The resulting cartesian space
force is locally communicated to the dynamics component that
computes the inverse dynamics; the resulting desired joint-
space forces are then sent to the driver for execution.

How many statecharts shall be introduced to coordinate
this system? A best practice facilitating this decision is the
following: any subsystem connected via unreliable or tempo-
rally non-deterministic communication should be coordinated
by a separate, loosely connected coordinator. This rules out
the approach of making one robot the master that supervises
the slave robot.
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Fig. 19. Component architecture with extensions to sup-
port coordination.

A further motivation for introducing two coordinatiors is
reuse. Since the same computational architecture is used on
each robot, it should be feasible to achieve the same symmetry
and hence reuse for coordination.

Next it must be considered how an individual coordination
statechart can obtain the necessary state information from the
system. For reactive models like statecharts, this information
is usually best represented by events. For this application we
are interested in the communication quality and the impedance
controller force output CartForceDes.

Yet, which component shall raise these events? Generally,
there are two fundamental strategies for this: embedding the
logic of event raising within a computational component or
by introducing a separate monitor component for that pur-
pose. By avoiding additional communication, the embedding
strategy allows for lower latencies than with the external
monitor. On the other hand, the external monitor component
avoids polluting the computational component with application
specific details.

For the coupling application one could consider extending
the impedance controller component to raise communication
quality events, since it is receiving the cartesian position
from the peer (for instance by determining the communication
latency using the creation timestamp of the received measured
position).

This is obviously a bad choice, as it would clutter the con-
troller component with application specific information. Thus,
we introduce a separate, external communication monitor that
determines the communication latency based on timestamped
heartbeat messages exchanged with the remote side. Based
on a configurable quality level, the events e_QoS_OK and
e_QoS_NOTOK are emitted.

In contrast, for raising the force threshold events, the
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Fig. 20. Constructing the coordinator, step 1: modeling
the communication quality constraint.
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embedding approach was chosen and the impedance controller
extended to raise two events e_force_thres_exceeded
e_force_thres_below upon exceeding respectively
falling below a configurable threshold. Unlike with the com-
munication quality, the desired output is an essential quantity
of a controller and hence this event is likely to be useful
in other circumstances. Secondly, to permit simple switch-
ing between gravity compensation and coupling mode, the
impedance controller was extended with a Boolean mode
external reference mode (ext_ref_mode). When true (the
nominal case), the external desired position (CartPosDsr)
is taken into account to compute the output force. If false, the
external input is ignore and instead zero forces are output. A
functionally equivalent and less intrusive solution to achieve
emitting a zero force would have been to (on-the-fly) remove
the external CartPosDsr connection and instead connect the
measured positions CartPosMsr. However, since rewiring
connections is not a real-time safe operation in Orocos, we
opted for the former.

Figure 19 shows the extended architecture including a
coordination component containing a (yet to be defined) rFSM
statechart, the external monitor component raising the QoS
events and the extended impedance controller component.

Defining coordination statecharts is best carried out by top-
down refinement. Since statechart priorities are decreasing
with depth, this corresponds to starting with the highest
priority states and transitions. For this application this is
the requirement that the communication is established and
sufficiently good. Without communication coupling the robots
is impossible. Thus, we introduce two states synchronized
and unsynchronized that model this requirement (Fig-
ure 20).

Next we refine the systems behavior by extending the
synchronized state (entered when the communication is
good enough) by adding two substates gravity_comp
and copying (Figure 21). gravity_comp represents
the state in which the impedance controller output force
CartForceDes is too high and hence gravity compensation
is enabled. In copying the actual coupling is established by
enabling external reference mode.
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Fig. 21. Constructing the coordinator, step 2: modeling
the force threshold constraint.

Conversely, external reference mode is disabled upon exit-
ing the copying state, since only that way it is guaranteed
that this mode is disabled no matter how copying is exited.
For instance, if external reference mode were only disabled
in the entry function of gravity_comp, the transition to
unsynchronized triggered by an e_QoS_NOTOK when in
copying would result in entering unsynchronized with
external reference mode still enabled.

Note that in contrast to the toplevel transitions between
unsynchronized and synchronized, the transitions
between gravity_comp and copying make use of a
guard condition above_force_thres () instead of being
triggered by events. The reason for this is that upon entering
the synchronized state the impedance controller forces
will already be either too high or not and the corresponding
events already raised. Thus, if these transitions were triggered
only by events, the gravity_comp state might erronously
remain active, unless by chance this condition just changes
after entering gravity_comp.

function above_force_thres ()

local flow_status, value = force_thres_ex:read()
if flow_status == 'NoData' then return false end
else return value end

end

Listing 8. Guard condition above_force_thres.

To realize this guard, the edge triggered events emitted
by the impedance controller can easily be transformed into
the level triggered events required by the guard condition.
Listing 8 shows how this can be achieved using the Oro-
cos RTT framework. The latest received event is cached
in the coordination component using a regular data-port
(force_thres_ex), that then can be read and evaluated
by the guard condition.

What remains now is only the functionality to switch be-
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unsynchronized

e_QoS_OK l Te_QoS_NOTOK

( .
synchronized

gravity_comp

[ ! above_force]thres() ]

[ above fforce_thres() ]

( . )
copying
entry: ext_ref_mode(true)
exit: ext_ref_mode(false)
e_8DOF
5DOF_mode | .~ | 8DOF_mode
L e_5DOF )
> v,
Fig. 22. Constructing the coordinator, step 3: adding
modes

tween five and eight DOF mode. Once again this is achieved by
top-down state refinement, in this case by extending copying
with the two modes, as shown in figure 22. The operator
can switch between both modes by sending the e_ 8DOF and
e_5DOF events respectively. As an optimization, a history
connector could be used instead of a plain initial connector.
That way the previously selected mode would be resumed after
an interruption of the coupling.

Using states to model modes works nicely when modes
are mutually exclusive. However consider the requirement
to additionally support two switchable modes low- and high
force threshold in which the force threshold is reconfigured
accordingly. Extending copying to support these modes would
result in a combinatorial explosion of states. A good way to
solve this is to use an SLDS state (discussed in Section 9.6)
to compose the orthogonal modes as separate, concurrent
substates.

11 DISCUSSION

This paper describes a statechart model consisting of a minimal
number of semantic primitives necessary for constructing
practical robotic coordination. This minimality approach has
the advantage of reducing implementation complexity, avoid-
ing introducing unnecessary assumptions (as for instance the
aforementioned communication properties) and being simple
to understand and use.

Nonetheless, a minimality approach also has some disad-
vantages. For one it places a higher burden on developers to
construct the required composites.
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We intend to address this by introducing a standard library
of coordination extensions. First mechanisms included are
event memory, the serialised locally-distributed state and the
preview coordination extension.

Additional effort is also required for deploying a distributed
statechart, as connections and communication must be con-
figured between the different FSM. This involves considering
communication reliability, defining buffer sizes, triggering and
buffering policies. Little if any tooling exists to support this
process; tools for deploying computations might be of some
help, yet the different characteristics of coordination will most
likely require dedicated tools. As an example, having multiple
simultaneously active writers communicating data to a single
reader is often an erroneous situation for Computations (e.g.
only one controller may command a robot at a time). Con-
versely, it is common to connect multiple, active event sources
to one Coordination statechart.

For using the rFSM model in the context of complex
distributed robotic systems, we propose to make exclusive use
of pure coordination. Pure coordination can be achieved by
rigorously separating the concerns of Computations from Co-
ordination; more concretely by limiting Coordination actions
to exclusively raising events.

The benefits of adhering to this best-practice are increased
robustness and reusability of Coordination. The drawback,
however is that as of today few components provide suf-
ficiently expressive constraint configuration interfaces; one
reason for this being presumably the lack of a generic mech-
anism to specify condition-event pairs on internal state of
computations.

One motivation for choosing graphical models (as state-
charts) to model complex systems is their apparent ease to
be understood by humans. Yet surprisingly few tools exist to
visualise graphical models (online or offline) by performing
automatic layout and rendering of the textual representation.
The tool most widely used for this purpose is probably
graphviz [50], that is also used by the rFSM reference im-
plementation for visualising statechart models. Unfortunately,
the generated representation, especially when involving hier-
archical states, is often suboptimal'®; significant fine tuning
of layout parameters only resulted in a marginal improvement.
Nevertheless, this simple tool has proven invaluable to validate
that a model specified in textual form does indeed correspond
to the graphical model the developer has in mind. We intend
to address this topic in future work.

12 CONCLUSION AND FUTURE WORK

We have presented a lightweight Coordination statechart
model that is derived by analysing and extracting a minimal
subset of model elements from existing formalism.

15. Optimality defined by how a human would draw a statechart, as is the
case with all figures (apart from Figure 10) in this paper.
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The proposed rFSM model is graphically a subset of UML
with simplified execution semantics derived from the well
known STATEMATE statecharts. By selective inclusion of
model elements, many of the corner cases and additional
rules required by existing formalism can be avoided, thus
simplifying both implementation and coordination models
themselves.

Instead of providing a rich set of built-in features for all
possible use-cases, the rTFSM model advocates dealing with
complexity by composition. Composition means both local
hierarchical composition of Statecharts or distributed composi-
tion as described in Section 9.5 as well as composition of core
execution semantics with run-time extensions such as event
memory.

To back up these claims we implemented an extensible,
framework independent, real-time safe reference implemen-
tation in the Lua scripting language. The featurewise almost
complete rTFSM core engine currently amounts to less than
830 lines of code'®. This reference implementation has suc-
cessfully been integrated into the OROCOS RTT software
framework and applied to a wide range of use-cases.

Moreover, we describe several best-practice patterns of
robotic task and system coordination that were discovered
during our work. These patterns serve to highlight frequent
coordination design issues together with best practice solu-
tions, with the goal of fostering adoption of the rFSM model.

Up to now, the described rFSM model has been sufficient to
describe all robotic task and system coordination we encoun-
tered, hence there currently seems no need for extensions to
the core model. On the other hand we observe a severe lack
of tools to support creating, deploying and visualising rFSM
statecharts and Coordination models in general. We intend to
address this in future work.
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