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Abstract—In recent years robots have dramatically improved in functionality, but as a result their designs have also become more
complicated. The increase in the complexity of the tasks and the design of the robot result in a challenging and time-consuming
robot development cycle. This paper identifies requirements for improving the robot development process, focusing on facilitating a
reliable transition process from simulation to real world tests. Building on the Hardware-in-the-Loop (HIL) simulation paradigm, we
propose to apply the concept of Mixed Reality (MR) to robot simulation for creating a testbed where real and virtual objects are capable
of interacting with one another. This paper contributes a conceptual MR framework for providing a generic simulation environment
for experimentation. Using our conceptual framework, we implement an MR robot simulator that integrates widely accepted robotic
software frameworks with standardised data interfaces to increase interoperability. Case study evaluations demonstrate the reuse of
the MR robot simulator in three different applications, illustrating how it could help to create realistic test environments, and address
development cost and efficiency issues.

Index Terms—Mixed Reality, Robot Simulation, Software Development.

1 INTRODUCTION

M OBILE robots are increasingly entering the real and
complex world of humans in ways that necessitate a

high degree of interaction and cooperation between human
and robot. The tasks expected of robots have grown more
complicated, and are situated in complex and unpredictable
environments shared with humans. This has led to a more
challenging robot development process. Experiments are con-
ducted under different environments and validated using a mul-
titude of scenarios and inputs in order to gather reliable results
before deploying the robot in the actual operation. Moreover,
high risk robot operations, such as underwater, aerial, and
space applications, typically require substantial resources and
human support to ensure safety. The considerable cost and
time for creating well-designed tests and for meeting safety
requirements often pose challenges to rapid development of
robot systems.

While virtual simulations can help to reduce cost and time
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during robot software development, the real world contains
noise and variations that are difficult to replicate in simu-
lation. Complex environments or systems are expensive to
model, thus simulations often rely on approximations and
assumptions in order to make the problem mathematically and
computationally tractable [1]. Robot software engineers are
faced with uncertainties when bringing simulation results to
the real world. In high risk applications, the consequence of
failures can be significant, thus it is crucial to facilitate safe
and reliable transfer of results to reality.

One approach to bridge the gap between simulation and real
world tests is hybrid simulation. Hybrid simulation is based on
the Hardware-in-the-Loop (HIL) simulation paradigm. It is a
form of real time simulation that combines simulation models
and physical hardware in experimentation to offer a cost-
effective alternative to real world tests. The method has been
commonly used in applications involving the development of
complex dynamic systems, such as aerial robots, offering a
solution to testing robot systems in an incremental fashion [2].
Implementing an HIL simulation is often expensive, thus in
order to be viable the simulation’s benefits must exceed its
development cost [3]. Consequently HIL simulations are most
commonly found in application fields where the consequence
of test failures are severe, for example in testing underwater
robot obstacle avoidance algorithms [4], developing control
strategies for aerial robots [5], and simulating collisions in
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space applications [6].
The goal of our work focuses on providing a flexible and

reusable approach to robot experimentation, with the intention
of allowing hybrid simulations to be applied to a wider
range of robot domains. To achieve this goal, we explore
the application of Mixed Reality (MR) to the development of
robot systems. MR merges the real world and the virtual world
to form a single coherent environment. This paper proposes
that the concept of MR can be applied to robot simulation,
creating a new simulation method, named MR simulation, that
acts as a stepping stone towards testing in the real world.
MR simulations offer increased flexibility that will contribute
to the robot software development process. Various complex
test scenarios involving real and virtual entities, both robotic
devices and environmental objects, can be created for evaluat-
ing algorithms such as planning and control strategies before
system integration. This also enables concurrent development
of robot components (both software and hardware), which
helps to speed up the software development cycle and allows
problems to be identified early.

MR simulation stems from the HIL simulation paradigm
and shares many advantages with existing HIL and hybrid
simulation approaches. In comparison, MR simulation stresses
a higher degree of coherency between the existence of real and
virtual objects by placing an emphasis on realising interactions
between them, so that in simulations, any virtual entities are
able to physically interact with real entities, and vise versa.
More importantly, we have a strong interest in providing a
reusable solution. While there are signs of providing more
modular HIL simulation methods for robot development [7],
[8], work is still necessary to allow them to be reused
for developing robot systems across different applications.
Generic HIL robot simulators are less common; this is in
contrast to various general purpose virtual robot simulators
that are available today, including Player project’s Stage [9]
and Gazebo [10], USARSim [11], and OpenRAVE [12].

Section 2 describes related work. Section 3 discusses re-
quirements for improving the robot experimentation environ-
ment. Section 4 presents a conceptual MR framework as part
of the overall solution. Section 5 demonstrates the application
of the MR framework to robot simulation. Section 6 describes
an implementation of the framework. Section 7 evaluates the
implemented system and presents results. Section 8 discusses
issues encountered during the evaluation process, and Sec-
tion 9 proposes guidelines for creating MR simulations.

2 RELATED WORK

There is a growing interest in applying MR to robotics, primar-
ily in the form of visualisations. Specifically, MR encompasses
Augmented Reality (AR) and Augmented Virtuality (AV),
both of which have been used to help humans understand
robots or assist them in accomplishing a task. AR overlays
virtual objects onto a view of the real world. AR has been

demonstrated to help convey robot information and improve
human-robot interaction, e.g., [13], [14], aid teaching of tasks
in programming by demonstration, e.g., [15], [16], [17], and
assist robot teleoperation, e.g., [18], [19], [20]. In contrast to
AR, AV augments a virtual environment with real world infor-
mation. AV has more commonly been applied for visualisation
in robot teleoperation tasks to increase the operator’s situation
awareness, e.g., [21].

Our work focuses on the application of MR to robot soft-
ware development. Previous work in this field has concentrated
on using AR visualisations to help robot developers debug and
program robot systems. Collett and MacDonald [22] propose
an intelligent debugging space that uses AR visualisation for
overlaying robot data in context with the real world. The
developer is then able to understand the robot’s view of the
world and compares it with the ground truth of the real world
image. A similar technique is used by Kozlov et al. [23] to help
robot programmers debug SLAM algorithms. Ong et al. [24]
create an AR environment for immersive programming of
robots. A developer is able to view the results of its algorithm
replicated on a virtual robot in the real world.

It can be seen that AR offers unique benefits to robot
software development. Most research limits the application of
AR/MR to visualisation tasks and does not consider physical
interactions between real and virtual objects, which can be
useful in robot applications. An example is the RoboCup MR
League [25], where teams of thumb-size robots engage in
soccer matches on a virtual simulated soccer field. However,
the concept of real-virtual interaction has rarely been explored
in robotics, despite its potential to aid simulations tasks.

There exists little research in robotics that exploits the
use of MR for more than visualisation. Stilman et al. [26]
propose a hybrid experimental environment that simulates
virtual components in a physical laboratory environment for
decoupled testing of individual subsystems of a humanoid
robot. The setup uses an array of cameras that track objects
in the experimentation environment to form a representation
of the real world where virtual elements can be inserted for
testing planning and control algorithms. Kobayashi et al. [27]
and Nishiwaki et al. [28] later named this an “MR environ-
ment,” and apply AR visualisations techniques for extensive
debugging of motion planning and vision based recognition
algorithms. The system is however limited to operating in a
carefully controlled and modified environment, which requires
expensive hardware equipment, i.e., multiple cameras and
position tracking devices.

Kuroda et al. [4] describe an early example hybrid simu-
lation that simulates Autonomous Underwater Vehicle (AUV)
operations in a synthetic world. HIL simulation is applied to
test a simple obstacle avoidance scenario involving a real robot
navigating in a pool filled with virtual cylindrical obstacles.
Built on the same idea is the AUV simulator, Neptune [29].
Inspired by AR, the work proposes a classification that con-
siders hybrid simulations an advancement of conventional HIL
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simulations, where both simulated and real robots/sensors can
be used in simulation. This classification has been extended
by Davis et al. [30] to explicitly define HIL simulation and
hybrid simulation as a form AV and AR respectively. An
AR framework is proposed for simulating AUV operations.
While the framework allows real and virtual components to
be used interchangeably in simulation, interactions between
them are limited to only sensing components, i.e., augmenting
real sensory readings with virtual input. This makes it difficult
to reuse the framework for simulation in other applications
involving tasks such as collisions, and object manipulations.

Göktoğan and Sukkarieh [31] also propose an AR frame-
work for experimenting cooperative control of a team of
Unmanned Aerial Vehicles (UAV) in target detection tasks.
The AR framework overcomes resource limitations by aug-
menting the real UAVs’ sensors with data from the simulated
world. This allows the real UAVs to communicate with virtual
sensors on real UAVs as well as completely virtual UAVs
during the mission. Due to application-specific requirements,
the proposed system does not consider simulation of physical
interactions, or interactions between non-sensor components.

The review identified that existing AR or MR based HIL
simulators are primarily application-specific. There appear to
be no formalised or generalised methods for constructing
simulations that facilitate interactions between real and virtual
objects. A software model for creating standardised implemen-
tations of simulation systems is also missing. Moreover, there
is a lack of effort in validating these simulation tools.

3 REQUIREMENTS ANALYSIS

To address the issues identified in Section 2, it is necessary
to design solutions that are reusable and customisable for
different robots and applications. In addition to solving specific
problems of existing HIL/hybrid simulation approaches, we
must keep in mind the overall goal and consider in our
solution more effective ways to transition from simulation
to deployment. We propose requirements for implementing a
flexible and enhanced environment for robot experimentation.

Unified Testing of Robot Components: In HIL simu-
lation, robot developers can develop an algorithm and in-
crementally experiment and test the different robot designs,
using simulated components as necessary, before the actual
hardware/software components such as sensors or an arm
are available. An important requirement for achieving such
incremental development is that the simulated components
must be able to interact with the rest of the system so that the
robot could correctly function as a whole [26]. The integration
should be achieved with minimal or no changes to both real
and simulated components of the robot system.

Robot-Environment Interactions: Existing work on HIL
simulation such as [32], [6] has indicated the importance of
simulating the robot’s interaction with the environment. The
robot environment often plays a major role on the influence

of robot behaviour in robot operations and should be included
into the loop of the experimental design. The robot needs to
interact with the environment to obtain an understanding of
the world in order to make decisions to complete its task.
Thus, objects that are simulated do not necessarily need to
be components of a robot system, they can be any object in
the environment. For example, wind, lighting, or a physical
obstacle can be simulated. The real robot should perceive and
interact with the simulated objects as if they exist in the same
coherent space, and likewise, these simulated objects must be
able to interact with the dynamic environment they reside in.

Standardised Interfaces: Martin and Emami [8] point out
that a generic and modular robotic HIL simulation architecture
can lead to a more reconfigurable and reusable simulation
platform, with a key feature for ensuring modularity being
interfaces for communication between software and hardware
components. To this end, it is proposed that a requirement
for improving the reusability of HIL simulations is to adopt
standardised frameworks/interfaces for integrating simulated
components with the existing experimental setup. This require-
ment is also essential for supporting unified testing of robot
components and facilitating robot-environment interactions.

Variable Test Conditions: Existing hybrid simulation re-
search in underwater robotic applications [30], [29] has em-
phasized the support for testing robot systems in varying test
conditions. This includes varying properties of the test envi-
ronment which determine the degree to which it represents the
target environment in the real world. For example, depending
on the progress and the requirements, the real robot controller
could be tested either with simulated hydrodynamic forces,
or in a physical water tank. For applications that demand
high fidelity simulation, the complexity and realism of the
simulation could be increased to obtain more accurate results
at the expense of higher modelling cost.

3.1 Solution
To fulfill the requirements, this paper proposes that simulation
environments be based on the concept of MR, specifically
Milgram et al.’s Reality-Virtuality continuum [33], [34], and
presents and evaluates an illustrative design and implementa-
tion prototype. Virtual simulations can be considered to take
place in the virtual environment situated on one end of the
continuum, while real world tests are conducted in the real
environment situated on the other end of the continuum. By
using an appropriate combination of simulated (virtual) and
physical (real) components, robot developers can design a sim-
ulation environment with the desired balance of realism and
safety as required. The new simulation approach is referred to
as MR simulation, which enables users to:

• vary the balance of real versus virtual components over
the development process to speed up the development
cycle and increase reliability and stability of the solution,

• replace dangerous components in the experimental setup
with safe and virtual counterparts,
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• simulate resources that are expensive or unavailable and
observe them interact with real components,

• create different complex test scenarios (of real and virtual
components) for experimentation.

We focus on implementing a reusable solution, proposing three
essential features that must be integrated to help shape the
design of a generic simulation environment that can be applied
to the development and testing of a broader range of robots
and applications. The first feature is a generic, conceptual
framework that formalises the representation of environments
composed of real and virtual components, and the interactions
between them. The framework provides the basis for creating
all MR simulations described in this paper. The implemented
MR simulation system integrates the second feature, an open
source, general purpose robot simulator, that provides readily
available and extensible technology for simulating different
robot and sensor systems. The implementation also integrates
the last feature, standardised communication interfaces, in
its design to support communication between heterogeneous
software components for increased interoperability.

4 GENERIC MR FRAMEWORK
As part of the overall solution to provide an enhanced robot
experimentation environment, this section presents a concep-
tual framework, referred to as an MR framework [35], that
is inspired by concepts found in the literature of MR. The
core MR framework is designed to be generic, and not limited
to modelling of robot simulations. It formalises MR systems
in a generic manner that is useful to MR system researchers
and designers, and will enable clearer comparisons and more
standardised implementations of MR systems. An extension of
the framework to robot simulation will be shown in Section 5.

The MR framework constructs an MR environment that
facilitates interactions between real and virtual entities. Exist-
ing work on forming and combining representations of real
and virtual objects in the MR domain serve as the basis
for modelling entities in the MR environment. Moreover,
the framework can be considered as an extension of general
concepts in the field of computer graphics and object-oriented
design for modelling a world composed of objects from
different dimensions of reality.

4.1 MR Entity
The first step in constructing an MR environment is to cre-
ate appropriate representations of objects that constitute the
environment. To create a model capable of representing an
object that exists within the Reality-Virtuality continuum, an
abstract MR entity is introduced. In the MR world, an entity
can be physical, digital or anywhere in between the two ex-
tremes [34]. The MR entity is modelled with an attribute called
level of physical virtualisation which describes the degree to
which an entity’s physical characteristics are virtualised (or
digitised) with respect to an object in the real world.

It is common to consider an object in the real world as a
high level representation of a combination of several smaller
objects. For example, a simple table is composed of a flat
surface and four supporting legs. Modelling of composite
objects has been thoroughly addressed in the area of computer
graphics, such as with the use of scene graphs to store a
collection of nodes. Similarly, in the field of MR, hierarchical
scene graphs are commonly used to model complex objects,
not only for rendering, but also for computing and storing
geometric information of all entities [36], [37], [38]. Our MR
framework builds on the same concept and treats a high level
MR entity as a composition of multiple individual entities and
other composite entities. The group of entities that form a high
level MR entity is referred to as an entity model.

In a scene graph representation, an entity model is a tree of
nodes. The root node of the entity model acts as a container
for grouping entities. Each leaf node in the tree can contain
zero or more objects, and these objects are graphical and/or
physical representations of the associated entity. Inspired by
the work of [39] that combines physical and virtual objects in
an MR application, our scene graph structure also enables an
entity model to be composed of a mixture of real and virtual
entities. The key difference in comparison to traditional scene
graphs is that a child node in the entity model can be real
or virtual depending on the level of physical virtualisation
of the associated entity. An entity model consisting of real
and virtual entities possesses an intermediate level of physical
virtualisation, referred to as an augmented entity. The class of
reality of an entity model M can be one of the followings:

M = {Real, V irtual, Augmented}

Examples of entity models are shown in Figure 1. An entity
model is classified as real or virtual if all of its successor
nodes belong to the same class, e.g., Figure 1a) and 1b), and
is classified as augmented if it has at least two successor nodes
of different classes of reality, e.g., Figure 1c). An entity model
can also be composed of other entity models, e.g., Figure 1d)

In the implementation level, the value of physical virtuali-
sation of an entity model is computed based on the class of
reality of the nodes in the tree. The value is useful for an MR
system to determine how a real-virtual interaction should be
executed (see Response Generation in Section 4.2.3).

4.2 MR Interaction
While interactions between real objects occur naturally in the
real physical world, interactions between real and synthetic
(augmented and virtual) objects are more complex and re-
quire interventions from the system to model and realise the
process. In an MR environment, an entity participating in the
interaction can be any single real, augmented, or virtual entity,
or an entity model consisting of group of entities, i.e., it can
be a robot, a sensor, or an environmental object. To facilitate
interaction between real and synthetic entities, we need to
model the process of transforming actions into effects [40].
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Fig. 2. Mapping of interaction stages to three constraints.

Simply put, if we know the interaction is possible between
two objects in the real world, we can try to reproduce the
results for interactions between real and synthetic entities.
To achieve this, it is required to model and generate the
expected behaviours of the participating entities as if the
interaction had happened. We need to know how a partici-
pating entity reacts to given stimuli, behaves under certain
constraints, and also how its response can be generated,
i.e., Stimuli → Behaviour → Response. The behaviour
expression suggests three stages that must be executed for
an interaction to occur: 1) Stimuli Processing, 2) Behaviour
Modelling, and 3) Response Generation. The three interaction
stages map to three sets of constraints that must be satisfied
for each stage to be completed, see Figure 2. State transitions
within an MR interaction are illustrated in Figure 3.

4.2.1 Stimuli Processing

As two entities engage in interaction, stimuli are processed
with pre-conditions checking whether all necessary inputs to
the modelling process are valid and sufficient information is
available to initiate the interaction. Stimuli must be measurable
and digitised for the modelling stage. Inputs can be visual,
tactile, and audio in order to support most interaction means
between humans, computer devices, and the environment.

Stimuli 
Processing

Response    
Generation Behaviour 

                           Modelling

Processing 
Input 

Initiating 
Interaction

Modelling 
Behaviour

Executing  
Behaviour

Incoming 
stimuli

      Invalid or 
     insufficient
     input data

  Valid and 
  sufficient 
  input data

Behaviour 
model 

available

Behaviour
constraints

satisfied

Unexpected 
response 
generated

            Invalid 
            model 
            outputs

     No behaviour
      model found

Validating 
Model
Output

     Valid 
      model 
      outputs

Behaviour 
constraints 

violated

Initiating 
Response 
Generation

No 
 mechanisms     

 found

Mechanisms 
available

Full 
Interaction
Completed

           Valid
            response
            generated

Incoming stimuli

Idle

Fig. 3. State transitions in an MR interaction.

4.2.2 Behaviour Modelling

Once the input data has been processed and interaction has
been confirmed to proceed, the behaviours of the entities are
modelled with the given inputs. These models describe the
way the entity should respond to the inputs, and they can be
developed using typical modelling methods including, but not
limited to, state machines, rule-based modelling or other AI
techniques, statistical approximations, or simple mathematical
equations. Behaviour constraints are rules that govern the
modelling process. They are typically laws of physics which
the entities’ behaviours are bounded by or other mathematical
constraints that need to be satisfied.

4.2.3 Response Generation

The response generation stage is concerned with putting the
modelled behaviour into effect. To achieve a full interaction,
the response needs to be executed by propagating the results
from the behaviour modelling stage to both the real and the
virtual world. When executing the response of an entity, the
level of its physical virtualisation indicates the class of reality
it belongs to, which influences how an operation can be per-
formed. For example, if an entity is virtual, an operation such
as translation or rotation can be performed by simply applying
transformations to it on the computer; on the other hand, an
augmented node implies that one or more of its successor
nodes are real, and custom commands or mechanisms may be
necessary to move the object in the real world.

The responses generated can be classified into two types:

1) The “physical response” is the result from all laws of
physics being consistently applied to the entity. e.g.,
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applying external forces to the physical object associated
to the entity to generate a natural response.

2) The “logical response” is generated by taking into ac-
count the entity’s functional capabilities. e.g., altering
the state of the entity through its internal controllers.

It is important to note that a full interaction may not always
be achieved (see Section 8 for issues to consider). Instead,
a partial interaction may occur if the response can not be
executed due to resource limitations or safety concerns. For
example, it is not always safe to alter the path of a car during
its travel after a simulated collision. In this case, the response
can be generated by reporting the resulting behaviours to the
user using alternative methods, such as textual or graphical
output. Post-conditions are used to verify the completeness
of the interaction. A full interaction is achieved only if
mechanisms are available for executing the response, and the
outputs from the executed behaviour match those from the
behaviour modelling stage.

5 APPLICATION TO ROBOT SIMULATION
The MR framework sets up the foundation of creating a
world where real and virtual objects co-exist and interact in
real time. Formalising representations and interactions in an
MR environment helps to provide a generalised approach to
conducting HIL based simulations for the incremental and
parallel development of software systems. We can develop
an algorithm for a robot and incrementally experiment and
test the different robot designs in the same experimentation
environment, using simulated components as necessary, before
the actual hardware/software components such as sensors or a
robot arm are available. This section illustrates how the MR
framework is applied to creating MR environments for robot
simulation and facilitating interactions in common robot tasks.

5.1 Simulation Environment
The simulation environment in an MR simulation is essentially
an MR environment filled with MR entities representing the
components in the experiment. The fact that an MR entity
can be real, augmented, or virtual gives users the flexibility
of creating various test scenarios involving real and simulated
components in a similar manner as HIL simulations. It also
facilitates repeated testing under the different experimental
configurations and environment properties. Robots, physical
objects in the environment (including humans), as well as
objects that do not possess a physical form can be extended
from the MR entity. Figure 4 illustrates an example.

An entity model gives the flexibility of choosing what parts
of a robot or an environmental object are to be virtualised.
Consider a Pioneer robot as an example, as illustrated in
Figure 5. Each leaf node in the tree can be real or virtual.
For instance, when a robot arm is unavailable, a virtual
counterpart can be used instead. However, constraints are also
placed between the parent and the child nodes depending
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Fig. 4. An inheritance diagram of an entity in simulation.
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Fig. 5. An example entity model of a Pioneer robot.

on the application and the resources available. For instance,
simulating a real gripper on a virtual robot arm may require
employing surrogate devices for moving the gripper according
to the calculated motions of the virtual arm. In some cases
this may not be possible due to the unavailability of hardware
mechanisms for generating such responses. Therefore, an
additional constraint could be specified to avoid attaching real
nodes to virtual components.

5.2 Interaction Types
A robot platform can be considered as a collection of sensors
and actuators, both of which are interfaces that the robot uses
to interact with the world it inhabits [32]. Sensors collect
information about the world, while actuators alter the state of
the world. The MR interaction scheme will be demonstrated on
how it can be applied to model these two forms of interaction.
Each form of interaction is illustrated with an example of
interaction that is common in robot tasks. By understanding
how the MR interaction scheme is applied in the two examples,
it helps to extend the interaction scheme to capture other
robot interactions because the three stages of the interaction
that occur are similar and thus can be modelled accordingly.
Sensor based interaction is described by looking at interactions
through exteroceptive sensor devices on robots. An example
of actuator based interaction is a physical contact or collision
that commonly occurs from the robot’s actuated motions.

5.2.1 Sensor based Interaction
Sensor based interaction is concerned with interactions be-
tween a sensor device and other entities in the environment.
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Fig. 6. An example sensor based interaction between
a range sensor device and a wall. Stimuli Processing:
collect pose of both entities and the raw range data
and configurations of the range sensor device. Behaviour
Modelling: compute expected obstructed volume from raw
range data. Response Generation: alter the output of the
range sensor device accordingly.

Sensor devices are essential components of a robot system for
robots to interact with and gain understanding of the environ-
ment. We focus on robot interactions through exteroceptive
sensors, both active and passive. This includes range, vision,
thermal, sound, and tactile sensors.

Consider an interaction between a real range sensor device
and a virtual wall, see Figure 6. Pre-conditions check the
validity of the input stimuli data before modelling the range
sensor behaviour. The necessary data for this interaction in-
clude configurations of the range sensor device, positive sensor
values, and known position, orientation, and dimensions of
the virtual wall in the environment. The behaviour modelling
process requires the range values of the sensor device to be
modified according to certain mathematical models in order
to reflect a new object in the range output, e.g., a boolean
operation to subtract the expected obstructed volume from
the original range readings. The resulting range values must
also be checked if they are valid, e.g., no negative range
values. Once the expected behaviour has been computed, it
is necessary to propagate the results to the real world, i.e.,
making alterations to the real range output. It is assumed
that during a sensor based interaction, physical effects of the
sensor on the environment are neglectable, and thus behaviour
responses from the other party in interaction do not need to
be generated. Once the response is executed, post-conditions
verify the new range readings against the expected output
values computed during the behaviour modelling stage to
ensure a full interaction.

5.2.2 Actuator based Interaction
Actuator based interaction is concerned with actuations from
robot devices that result in a change in the status of one or both
participating entities in the MR world. An example is contact
interaction. A robot’s actuators drive its motion which often
creates physical contacts with other entities in the environment
and changes their poses. Contact interaction is common in
robotics, e.g., collisions between moving objects, and is often
necessary, e.g., in manipulation tasks.

Consider the example of a real robot colliding with a
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Fig. 7. An example actuator based interaction (collision)
between a robot and a ball. Stimuli Processing: collect
properties such as entity bounding boxes, masses and
velocities. Behaviour Modelling: identify colliding point,
collision normal, time of collision, and calculate impulses
to be applied to bodies in collision. Response Generation:
move the two entities accordingly over time.

virtual ball, see Figure 7. Before initiating the interaction, pre-
conditions check whether the geometries and dynamics of the
real robot and the virtual ball are known. The behaviour mod-
elling process first performs collision detection by detecting
intersections between the entities’ geometries. If a collision is
detected, rigid body physics may be employed to compute the
collision response over time. This can achieved by applying
impulses to the two bodies in the collision based on their
incoming velocities and corresponding masses. Additionally,
it is also important to propagate the effects to all nodes in the
entity models involved in an actuator based interaction. For
instance, if the virtual ball collides with a virtual robot arm
mounted on the real robot, then this also affects the motion of
the real robot as it is the parent to the arm in the entity model.
Lastly, to execute the response, checks are needed to identify
whether mechanisms are available for safely interrupting the
motion of the real robot or deflecting its direction of travel
to result in a new motion that resembles the outcome of the
behaviour model. The virtual ball can simply be animated to
move according to the modelled behaviour over time. Post-
conditions are optional to verify and ensure that the two
entities move in a similar manner to the output of the physics
model for a full interaction.

In interactions between non-robotic components, e.g., the
virtual ball rolling into a real box, the three stages carried out
are similar. In practice, an external sensor such as a camera
would be placed in the MR environment to track and maintain
the state of the real box in the Stimuli Processing stage.
In Response Generation, it is possible, though expensive, to
achieve a full interaction by generating the response of the
real box over a motion platform in a similar manner to [6].
Alternatively, a partial interaction can be created by choosing
only to visualise the outcome without physically altering the
state of the real entity.

5.2.3 Extending to Other Interactions
Other interactions in tasks required of robots can also be
classified into sensor based and actuator based interactions,
and modelled in a similar way to the examples described
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Fig. 8. Overview of elements in MR robot simulation.

above. For example, an industrial robot equipped with a paint
gun that sprays surfaces of automobiles can be considered as
an actuator based interaction because the robot alters the state
of another object in the environment.

To model high level interactions, sensors and actuators do
not necessarily need to refer to the mechanical devices on
robots. For example, bluetooth devices equipped on robots that
exchange information for communication can be considered as
a combination of sensor based interaction (receiving data) and
actuator based interaction (transmitting data).

Note that the interaction examples presented are not limited
to robotics. Sensors are increasingly used in technologies
around us, such as in mobile phones which are becom-
ing a popular platform to deploy MR systems, while con-
tacts/collisions between real and virtual objects are important
in MR tangible interaction studies.

6 SOFTWARE IMPLEMENTATION

To validate the concepts, an MR robot simulator has been im-
plemented. It integrates two features described in Section 3.1
that leads to a reusable solution, 1) general purpose robot
simulator, and 2) standardised communication interfaces. This
section summarises the implemented system.

6.1 Overview
Figure 8 shows the essential elements in an MR simulation.

• The client is the robot software program being developed
and tested in simulation.

• The MR simulation server is the primary element
responsible for constructing the MR environment and
facilitating interactions between real and virtual entities.
It monitors the states of the real and the virtual world
and seamlessly fuses data collected from the two worlds.

• The real world is essentially the physical environment
where experimentation takes place. A model of the real
world can be formed from prior measurements taken
before the simulation begins, as well as data sensed by
real robot devices during the operation of the system.

• The virtual world is the virtual environment created
by a virtual robot simulator. It provides robot sensors,
actuators, and environment simulation models.

The client robot program now exchanges messages with
the MR simulation server, instead of exchanging directly with
real or simulated devices. The merging of the real and virtual
world is transparent to the client who sees real and virtual
entities as part of the same coherent world. More importantly,
no modifications are necessary to the client program code to
use the MR robot simulator.

An MR Simulation toolkit, named MRSim, has been im-
plemented, which plays the role of the MR simulation server.
MRSim does not have its own graphical user interfaces which
the users can interact with. It is composed of a logic and a
data layer for managing how the mixing of the two worlds
should proceed, and what data are necessary for the process.
This maximises the reusability of the software, making it
independent of any client robot programs or simulation tools.

MRSim alone does not provide MR robot simulations.
To construct a fully featured MR robot simulator, we take
advantage of existing robot simulation technology and inte-
grate MRSim with a general purpose robot simulator. The
Gazebo 3D mobile robot simulator [10] was chosen. It is open
source, modular, highly modifiable, and has independent open
source rendering and physics subsystems which facilitate the
integration of MR technology.

6.2 System Architecture

MRSim integrates well with Gazebo, but it is designed in
an application independent fashion using its own XML file
for configuring various properties of MR entities. MRSim is
essentially a library of functions that is called inside the main
execution loop of Gazebo. Figure 9 illustrates how MRSim is
integrated into Gazebo.

It was seen that the MR simulation server communicates
with the real and virtual world for creating MR simulations.
MRSim does so by exchanging messages with real and simu-
lated objects over a device interface and a Gazebo interface re-
spectively. These communication channels are achieved using
open source robotic software frameworks, such as Player [41]
and OpenRTM [42], that provide platform- and language-
independent interfaces to external robot software components.
These software frameworks adopt standardised data interfaces
for communication, and support network transparency, dis-
tributed computing, and hardware abstraction, all of which
are important for increasing the interoperability of the sys-
tem. The device interface (potentially a Player server or an
OpenRTM’s RT Component running on the physical robot
device) provides data captured by robot devices in the real
world, while the Gazebo interface (potentially the Player plug-
in driver distributed by Gazebo or the OpenRTM simulation
interface layer [43]) provides data generated by the simulation
entities in Gazebo. MRSim uses the information collected (and
also other information specified by the user) through the two
interfaces to create object representations, i.e., MR entities,
and construct the MR environment. MRSim is also able to
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Fig. 9. MRSim integrated into Gazebo. The new modules
and data flows are highlighted in red. A set of mixed reality
controllers have also been added to Gazebo to facilitate
communication between MRSim and the client program.
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Fig. 10. A UML diagram showing core classes in MRSim.

continue monitoring the two worlds through these interfaces
and update the states of the MR entities over the execution
cycle of the MR simulation. Moreover, the interfaces allow
MRSim to send commands to control the behaviour of real
and virtual objects associated to an MR entity and this is often
necessary for executing the response of MR interactions. For
example, sending a command to stop the motion of a real
robot gripper in order to simulate grasping a virtual object.

6.3 MRSim
MRSim is implemented based on the generic MR framework.
A UML class diagram capturing the core classes of MRSim
and the proposed interaction scheme is shown in Figure 10. In
an MR simulation, the robot carries out tasks while interacting
with objects from different dimensions of reality. The MR
simulation server, MRSim, is responsible for this phenomenon.
Looking at Figure 10, the World is responsible for managing
all Entities, including Entity Models, and updating them at
each iteration of the simulation loop. For each entity in the
world, a corresponding virtual representation is created in
Gazebo. The world is then able to keep track of any phys-
ical interactions between the entities by monitoring Gazebo’s

Collect data about 
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Augment real device 
data with information 

collected 

Augment simulated 
device data with 

information collected

Update physical and 
graphical 

representations

Real Entity Virtual EntityRead client 
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Modify command to 
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Collect data from real 
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Fig. 11. Work flow inside a behaviour object attached
to an entity. The work flow varies slightly between a real
entity and a virtual entity, as separated to the left and right
columns respectively.

physics simulation. An interaction map is stored in the world
and it contains information about the pairs of entities that
have collided in the current iteration of the simulation. The
interaction callback function associated with each entity is
called when a physical interaction is detected. The Behaviour
attached to an entity describes how interactions should be
handled. In addition to physical interactions, the developer can
implement custom behaviours that facilitate sensor based and
actuator based interactions.

Over the course of the work, a number of entities and
behaviours have been implemented for creating MR simula-
tions, and their designs are based on common interfaces and
data types in Player and OpenRTM. The set of implemented
entities includes: Position, Actuator Array, Laser, Camera,
Force-Torque, and Rigid entities. Figure 11 illustrates the work
flow of the implemented behaviours attached to these entities.
Although the set of entities are far from being a complete
database of the diverse robot devices available or the different
types of environmental objects that exist in the world, they
were sufficient for demonstrating the concepts introduced in
this research. The system is designed to be extensible, and
other entities and behaviours can be added in the future.

7 EVALUATION

Thorough evaluation of a simulation tool is important to
extrapolate its use in practice. In the area of virtual simula-
tions, USARSim [44] is a robot simulator that has undergone
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Fig. 12. A sequence of screenshots illustrating a sensor based interaction between a laser sensor device and three
cylindrical objects in the simulation environment. Top Row: A real robot detects and avoids virtual obstacles. Bottom
Row: A virtual robot detects and avoids real obstacles.

Fig. 13. A sequence of screenshots illustrating a contact interaction between a real robot and two virtual objects.

extensive validation. Efforts have been put into assessing the
accuracy of its sensor, actuator, and environment models.
However, similar efforts have not yet been applied to eval-
uation of MR/hybrid environments for robot development.
This section validates the implemented MR robot simulator,
examines the reusability of the framework, and analyses its
benefits to the overall robot development process.

7.1 Functional System Validation
This evaluation validates the use of our MR robot simulator for
creating the two types of interactions described in Section 5.2.
To demonstrate an example of sensor based interaction, an
MR simulation of an obstacle avoidance algorithm is created,
see Figure 12. The robot (modelled as a position entity),
is equipped with a laser sensor (laser entity), and randomly
navigates around the environment and avoids obstacles (rigid
entities) by analysing its laser range readings. The same
obstacle avoidance algorithm was run on a real and a vir-
tual robot equipped with a real and a virtual laser sensor
respectively. Virtual obstacles were placed in the environment

in the case of a real robot, while real obstacles were used
in the opposite case involving a virtual robot. The robot
successfully detected the presence of the obstacles in both
cases and navigated towards the open space. In contrast to
the interaction examples described in Section 5.2, a virtual
robot/sensor is shown in this section. The advantage of using
a virtual robot in the physical environment is the ability to help
robot developers see and validate the behaviour of their system
in its intended physical environment [24]. Note that in this
example, the real obstacles were each associated with a pre-
modelled virtual representation in order to create its interaction
with the virtual sensor. It is acknowledged that the additional
modelling could mean more work for the robot developer, thus
recent extensions of the MR robot simulator have integrated
a vision system for tracking the states of real objects in the
MR environment so that their virtual representations can be
dynamically created and updated.

An example of actuator based interaction is shown in
Figure 13. A real robot was operated to move until it collided
with virtual objects in its path. The Gazebo’s physics engine
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was used to model the dynamic behaviour of the entities in
interaction. The response of the virtual objects were success-
fully generated and visualised. However, this example did not
alter the motion of the real robot according to the physics
simulation, thus only a partial interaction was achieved. A full
actuator based interaction will be shown in section 7.2.

7.2 Framework Reusability
To demonstrate that the MR framework is generic, we have
conducted three case study evaluations that deployed the MR
robot simulator to aid the development of different robot
systems and in different applications. The first application
extends the functional system validation and creates an MR
simulation involving the same ground robot system for a
search and rescue scenario [45]. Any potential threats to the
robot in the simulation environment were virtualised. A real
ground robot was deployed to autonomously navigate in a
physical environment filled with real and virtual hazards while
searching for the specified target using vision.

The second application uses MR simulations to provide a
cost-effective solution to testing of a robotic screw remover
system in an industrial building interior demolition task [46].
The task required a robot manipulator system to remove screws
from suspended ceiling beams, and MR simulations were
created to simulate virtual screws and beams for repeated
testing of the screw removal operation, see Figure 14. A
full actuator based interaction was achieved as the robot
manipulator physically unscrewed the virtual screws using a
real custom screw removal tool mounted on it’s end-effector.

The last application uses MR simulations as a safe alter-
native for prototyping a UAV system to be deployed for an
agricultural cow monitoring task. To provide robot software
developers as much insight to real world tests as possible, a
real UAV was deployed in flight to autonomously follow a
virtual moving cow using vision, see Figure 15.

Throughout these case study evaluations, the implemented
MR robot simulator was also shown to be interoperable
between different robotic software frameworks. The MR robot
simulator was able to instantiate RT Components that ex-
change augmented data with the rest of the OpenRTM screw
remover system, see Figure 16. It also subscribed to Player
devices on the UAV system, and published augmented sensory
data to the client programs being developed, see Figure 17.

7.3 Simulation Credibility
It is important that the MR robot simulator is able to produce
simulations that reliably represent the real world. A quanti-
tative evaluation was conducted that compared the robot be-
haviour generated by the obstacle avoidance algorithm in MR
simulations with virtual simulations and real experiments [35].
MR simulations involved a real Pioneer robot avoiding virtual
obstacles, while Gazebo created the virtual simulations. The
robot in all three conditions took on a similar path to avoid the

Fig. 14. An AR view of the screw remover simulation.

Fig. 15. Indoor UAV system test setup. The UAV hovers
over a mock-up agricultural scene. Top right: image pro-
cessing carried out by the robot for cow detection.

obstacles, but Gazebo produced minimal variations between
the robot trajectories as the result of missing noise models, and
the rigid body dynamics engine’s approximations for friction
models (pyramid friction cones), collision resolution (inter-
penetration depth, correcting forces, contact surface layers),
and accuracy (step sizes, numerical solvers, etc); these are
common causes of discrepancy between simulations and the
real world. To measure the similarity between the trajectories
produced in the MR simulation and those produced in the
real experiment, all the raw trajectories from one set were
compared with all trajectories from the other. The results
show the MR simulation produced robot trajectories with
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Fig. 16. System diagram showing the software compo-
nents in the screw remover MR simulation. Highlighted in
red are MR sensors (MRLaser, and MRForceTorque) and
an MR robot manipulator (MRPA10) that exchange data
with the original OpenRTM screw remover system.
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Fig. 17. System diagram of the MR simulation for pro-
totyping the UAV system. Clients process augmented
images generated by MRCamera for cow detection.

small deviations from the ones in the real experiment, with an
average Root Mean Square Deviation (RMSD) of 0.02m in x
and 0.03m in y. Comparing with the virtual simulation, which
has slightly higher average RMSDs of 0.03m in x and 0.04
in y, the MR simulation was found to yield results closer to
the real experiment. This simple evaluation validated the MR
robot simulator’s accuracy. The MR robot simulator enabled
real components to be incorporated in simulation, relieving the
need to simulate complex real world variations. The solution
proved to be viable as illustrated by the results.

In the evaluation of the screw remover system, MR simu-
lations were also found to produce reliable simulation results.
After comparing the trajectories of the robot’s end-effector in
MR simulation with real world tests over five runs, the results
show an average RMSD of 24mm in x, 11mm in y, and 8mm

in z, yielding an average RMSD of 28mm in distance. This is
approximately 1.7% with respect to the average total distances
travelled by the end-effector; the deviation was considered
sufficiently accurate for the task.

7.4 Usability
Two user studies conducted during the case study evaluations
have indicated positive contributions of MR simulations to
the robot development process [47]. The first user study
involved participants operating the screw remover system in
virtual simulations and MR simulations. The study measured
user performance using objective metrics, e.g., task comple-
tion time and set-up time, and collected user opinions and
thoughts using subjective questionnaires. The collected data
were then analysed using statistical tests to identify significant
differences between the two conditions. The results show that
MR simulation was rated significantly higher than virtual
simulation for producing a more realistic simulation (Z = -
2.06, p < 0.05), and more reliable results (Z = -2.46, p <
0.05).

We also used our MR robot simulator in an observational
user study to help robot programmers implement software for
the UAV based cow monitoring task. Findings suggested that
virtual simulations and MR simulations were complementary,
each contributing to different stages of the development cycle.
Compared to virtual simulation, the users spent 38% more
time using MR simulations in the mid and later stages of the
development (evaluation and tuning), and they rated the use
of MR simulations significantly higher for helping them tune
control parameters of the UAV system for better performance
(Z = -2.81, p < 0.05). Building the virtual simulation and the
MR simulation on the same simulation platform (Gazebo) also
allowed users to switch from one method to another without
learning to use separate controls and interfaces, enabling them
to transition to a more physical environment using the same
development tool.

7.5 Cost and Efficiency
The case study evaluations provided a glimpse of how MR
simulations may help to address issues related to cost and
efficiency during robot development. For example, testing
of the screw remover system was originally carried out us-
ing real world tests which were constrained by the limited
number of spare beams and screws available. Simulating
virtual substitutes of these spare parts presented an option
to minimise resource requirements and prevent damaging the
custom screw removal tool in case of failures. Moreover, the
standardised data interfaces allowed the MR robot simulator to
be immediately deployed for testing the screw remover system
without making modifications to the MR robot simulator or the
software system being tested. This could help to minimise the
large overhead commonly required to build and set up an HIL
simulation system in the industry [3].
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A more thorough and formal evaluation is required in future
work to verify these findings. This could involve comparing
development costs and durations between a condition in which
the MR robot simulator is used and another condition in which
the MR robot simulator is not available.

8 DISCUSSIONS

Throughout the evaluations, the MR robot simulator has been
shown to successfully create different sensor and actuator
based interactions between real and virtual entities, demon-
strating benefits to the robot development process in three
applications. A number of important lessons were learnt during
the evaluation of our MR framework and the MR robot
simulator. In particular, creating MR interactions may not be
easy, and the interaction outcome may not always be realistic
or correct. There are key issues that need to be considered.

It is often difficult and time-consuming to collect infor-
mation of objects that exist in the real world, and without
sufficient information, we can not construct their virtual rep-
resentations and model their behaviour. This can be the main
cause of failure for creating interactions. The problem becomes
apparent when simulating virtual sensors. In order to facilitate
sensor based interaction between a virtual sensor and real
entities, a model of the physical dynamic environment is nec-
essary, and this information may require effort to collect and
can also be expensive to maintain during the operation of the
system. For example, to create realistic coverage of a virtual
range sensor, we need to know the dimensions and locations of
real objects in the environment at any given time. To create a
virtual temperature sensor, we may have to make predictions of
the temperature of the target environment over time based on
historic data. The same applies to contact interaction. Stimuli
exhibited by real entities, such as external forces, acting on
another entity in interaction can be difficult to measure. In
principle, the greater the extent of world knowledge that we
have of objects in the physical environment, the more complete
the model of entities we can construct in simulation, which in
turn influences the interaction outcome.

Achieving an actuator based interaction between entities can
be more complex than achieving a sensor based interaction.
The difficulty mainly lies in the behaviour generation stage.
A contact/collision interaction suggests physically altering
the behaviour of entities to generate the expected effects
in response to physical actions exerted by the other entity
in the interaction. However, without proper mechanisms for
executing the responses, it can lead to undesired consequences.
In a collision, forcing a real object to physically change
its pose or motion (i.e., a physical response) can produce
unnatural results and may also cause serious damages. On the
other hand, an example of a safe full contact interaction is
demonstrated in the work done by Takahashi et al. [6]. In
their hybrid simulation, the use of a nine degree-of-freedom
motion table safely generates the resulting motions from a

collision between real robot manipulators and a target object
(i.e., a logical response). Nevertheless, hardware mechanisms
for executing responses can be expensive, thus, a partial
contact interaction is sometimes preferred depending on the
requirements.

9 GUIDELINES
General lessons learnt from developing MR simulations have
been formulated into guidelines for future MR simulation
developers and users. The guidelines help users to 1) determine
the appropriate use of real and virtual objects for designing
safer MR simulations, 2) design simulation scenarios based on
the requirements of the task, and 3) understand the appropriate
use of MR simulation to maximise benefits.

9.1 Level of Virtualisation vs. Safety:
The safety of the experiment is closely dependent on the
choice of appropriate representations of entities in simulation.
For example, a simulation that investigates the performance
of a helicopter robot in navigational tasks may require more
entities to be virtualised to avoid severe consequences from
collisions compared to one that investigates the performance
of indoor ground robots. However, care should be taken when
deciding what objects to be virtualised. Landing of a real
helicopter robot on a completely virtual platform could be
more dangerous than any other means of simulation, since it
suggests terminating the helicopter system in mid air. When
designing MR simulations, there is a benefit from using a
knowledge base or a reasoning algorithm for dynamic selection
of representations of a particular entity, especially in non-
trivial applications. For example, if a user gives a potentially
dangerous command to a physical robot, the appropriate
system response is to switch to a non-dangerous virtual
representation before executing the command and facilitate
only a partial interaction.

9.2 Realism vs. Task Requirements:
In applications where consequences of malfunctions are too
severe, a virtual environment with high fidelity simulation
models should be used, whereas for applications involving a
complex but low risk environment, modelling is unnecessarily
costly and so the overall level of virtualisation can be reduced.
However, lowering the level of virtualisation does not always
improve simulation realism. The quality of entity representa-
tions and behaviour models influence realism, and determine
whether MR interactions can be completed naturally. Full MR
interactions should be enforced unless safety becomes an issue
or hardware mechanisms for executing responses are unavail-
able. If partial interactions are preferred, the final outcome
of the interaction should be communicated to the users so
that they are able to understand the resulting behaviour of
the system being tested in simulation, e.g., by visualising
subsequent movements over the physical robot [48].
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9.3 MR Simulation vs. Existing Methods:
To maximise the benefit of using MR simulations, the MR
simulator must be designed to be low cost and reusable,
and should not require expensive equipment to set up. It is
important to keep in mind that the advantages inherent in using
existing simulation methods should not be neglected. When
an MR simulation includes real hardware components in the
simulation loop, it becomes a real time simulation system and
loses the ability to freeze and playback scenarios, or speed up
and slow down phenomenon as offered in offline simulation
tools. The sense of physical presence is also weakened in
comparison to real world experiments when using instruments,
interfaces, or visual displays to realise user interaction [49].
Benefits of MR simulations are more evident in the mid and
later stages as found in our user studies. MR simulations
should be used as a complementary step in the development
cycle, and not as a replacement of all existing methods.

10 CONCLUSIONS AND FUTURE WORK

This paper has presented an MR simulation framework for
robot software development. It provides a generalised and
reusable simulation environment for the incremental and par-
allel development of both simple and complex robot systems
across different applications. One of the main contributions is
a generic MR framework for implementing MR systems. We
have demonstrated that it can be used to create rich interactions
in simulations including both sensor augmentations of robots
and physical interactions between real and virtual entities in
the environment. An MR robot simulator has been imple-
mented based on the MR framework. It shares the same goal
as open source robotic software frameworks such as Player
and OpenRTM to improve interoperability between software
components in robot software development. By building on a
general purpose robot simulator and integrating standardised
data interfaces for communication, the simulator is capable of
supporting simulation of a wider range of robot systems.

Future work will focus on conducting a long term obser-
vational study to investigate the use of MR simulations in
larger robot development projects. This includes identifying
the ease and difficulties of robot developers designing, build-
ing, and running MR simulations themselves based on given
requirements, and the impact of using MR simulations on the
development cost and efficiency.
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