
Journal of Software Engineering for Robotics 3(1), March 2012, 13-27
ISSN: 2035-3928

Design Choices for Modular and Flexible Robotic
Software Development: the OpenRDK viewpoint

Daniele CALISI1 Andrea CENSI2 Luca IOCCHI1 Daniele NARDI1
1 Department of Computer and Systems Science, “Sapienza” University of Rome, Via Ariosto, 25 - Rome 00185, Italy

2 Control & Dynamical Systems Department, California Institute of Technology, 1200 E. California Blvd., 91125, Pasadena, CA, USA

Abstract—Developing reliable robotics applications is a difficult and resource-consuming task. The scientific community is undertaking
several initiatives to devise standard design techniques, and the deployment of reusable and interoperable components. At this point in
time, a variety of approaches for robotic software development have been proposed, due to the wide range of domains where robots
are used, the many forms and functions that a robot can have, and the diversity of people involved in robotics. Specifically, we focus on
modularity and rapid development of distributed robotic systems. First, we survey the main issues in developing software frameworks
for robotics, and we briefly discuss existent approaches, highlighting their goals, advantages and weaknesses. Then, we address
the most significant design choices that arise in the implementation of robotic software and motivate the specific approach taken in
OpenRDK, a software framework developed in our laboratory. Finally, we describe how the flexibility of OpenRDK allows to develop
robotic applications using different paradigms. In conclusion, we argue that the specific point in design space provided by OpenRDK
can be successful for a significant class of robotic software development efforts.

Index Terms—Robotics framework, software development, information sharing, interoperability.

1 INTRODUCTION

Developing reliable robotic applications, i.e., the software that
is needed to realize robotic systems, is a challenge. For ex-
ample, developing complex tasks in challenging environments
for a team of heterogeneous robots leads to a large distributed
software system. Consequently, robotic applications become
complex software systems.

In this context, formal methods used in automation for
developing distributed control systems, such as the IEC 61499
standard [1], [2], are not designed to handle complex robotics
applications, because they are focused on relatively simple
control systems. At the same time, conventional approaches to
software development might not be effective, for a variety of
reasons. First of all, they have to cope with several technical
challenges arising from the deployment environment: issues
such as network unreliability, real-world uncertainty and un-
predictability are typically not present in conventional software
applications. Moreover, network unreliability may also have a
severe impact on overall performance of the system. Finally,

Regular paper – Manuscript received April 14, 2011; revised January 27,
2012.

• Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

the computational units that belong to the distributed system
may have different capabilities, can be combined in several
settings and can interact in a variety of ways. The resulting
system is a highly heterogeneous distributed system, that
requires a palette of solutions and patterns for concurrent
processing and information sharing.

Robotic applications range over a very wide spectrum:
robots are employed in an increasing number of domains,
and can have a variety of forms and functions, that must be
achieved through new forms of modularization and reuse of
existing components. Standardization is not yet fully reached,
in particular for applications that go beyond industrial robotics,
making difficult to realize an effective interoperability of
solutions developed for different problems. Finally, the human
resources that are involved in robotic application development
are rather diverse [3], often lacking skills and experience to
deal with large software systems.

The scientific community is undertaking several initiatives
to improve and rationalize the development of robotic ap-
plications. There is a need to develop standard design tech-
niques, deploy reusable and interoperable components [4],
[5], that can effectively support robotic software development
for a variety of applications and development teams. These
efforts have different goals and therefore typically address
different aspects of the overall enterprise. For example, the
Robot Operating System (ROS [6], [7]), which is nowadays

www.joser.org - c© 2012 by D. Calisi, A. Censi, L. Iocchi, D. Nardi



14 Journal of Software Engineering for Robotics 3(1), March 2012

commonly used by many research groups, has a specific focus
on collaborative development. ROS is both a common layer
of drivers that access low-level hardware interfaces, expose
their services and data using common interfaces and provides
a peer-to-peer communication infrastructure, and a repository
of software components specifically targeted at robot software
development. While ROS provides an invaluable support to
the development, our goal is to address the application layer,
possibly in a way that is independent of the underlying
operating system or middleware.

The goal of the present paper is to discuss what we consider
major design choices in the implementation of a software
framework for robotics, through our experience in designing
OpenRDK1, a software framework for robotics, that we have
been developing in the last ten years and used in several
applications, on a variety of robots and computational devices.

Our aim, however, is not to introduce yet another framework
for the development of software for robotic applications;
rather, we focus on key design choices by discussing their
consequences in terms of both their impact on software devel-
opment and of the challenges in implementing them. Our spe-
cific goals in the development of robotic software put special
emphasis on distributed/decoupled development, component
re-use and rapid prototyping. Consequently, we identified the
following key features that a framework for robotic software
development must address: concurrency model, information
sharing model, support tools, and interoperability. Although
other relevant design criteria and implementation features for
robotic software development can also be considered (for
example, component management, parameter configuration,
etc.), we believe that the ones considered in this article have
a significant impact on the software development cycle.

In this paper, we first survey the state-of-the-art development
environments with respect to the above mentioned features.
Then, we provide a detailed discussion of specific solutions
that are supported by OpenRDK, including examples that
highlight their advantages.

Two remarks are necessary in order to put the analysis
carried out in the paper in a correct perspective. First, we
are not concerned with the issues that arise in real-time
software design, since we assume that the real-time behavior of
the system can be achieved through specialized components,
designed with known tools and methodologies. Instead, we
focus on the complexity of designing anything else that is
needed for the robotic application in addition to the real-
time components. Second, any design problem is centered on
the needs of a development group, whose aim is to create
innovative technical solutions for complex mobile robotic
systems, trying to capitalize on the software infrastructure.
Our reference development team is composed by members
with heterogeneous skills and experience, working for a short
time on a complex project (e.g., multi-robot heterogeneous

1. http://openrdk.sourceforge.net

exploration in a disaster scenario), usually with different
background, skills and experience in developing robotic ap-
plications. Thisnotwithstanding, our aims have a significant
overlapping with a large class of efforts and the analysis and
solutions presented are relevant to several robotic software
development enterprises.

The paper builds on a preliminary analysis started in [8]
and is organized as follows. In Section 2 we analyze the main
characteristics of a software framework for robotics, review-
ing other existing frameworks. Section 3 describes the main
choices that impact on the design of a software framework for
robotics, and discuss in detail the specific solutions that are
provided by OpenRDK. Section 4 shows how the flexibility
achieved by OpenRDK allows to develop applications accord-
ing to multiple paradigms. Section 5 concludes the article with
a discussion of future directions.

2 ISSUES IN ROBOTICS SOFTWARE DEVELOP-
MENT

Generally speaking, one of the goals of engineering is to
reduce the complexity of a problem by dividing it into
smaller problems (divide et impera). This has many benefits
in software design and development, especially when dealing
with complex architectures, such as software for robotics.
In software, this practice leads to dividing an application in
smaller software modules: mutually decoupled software units
with well-defined interfaces.

In this article, we focus on those frameworks that deal
only with the software development and that do not force a
specific conceptual architecture (i.e., component arrangement,
organization and responsibilities).

This section describes the main issues that software frame-
works for robotics should tackle. In particular, we describe
two important design criteria: concurrency model and infor-
mation sharing model, as well as two important development
capabilities: tools and interoperability. Since these choices are
often strictly inter-related, we analyze in detail the direct and
indirect effects of these choices. Moreover, we describe the
rationale followed by some existing software frameworks for
robotics (summarized in Figure 1) and the consequences on
their features and drawbacks.

2.1 Concurrency model

In every modular architecture, there are three main approaches
to address concurrent module execution.

• Modules are processes distributed over one or more
machines. In this case, developers have the greatest free-
dom (including using different languages and operating
systems), with respect to the other possible choices. The
major drawback of the process approach is the need
of some communication infrastructure that allows for
inter-process communication. Performance becomes an

http://openrdk.sourceforge.net


D. CALISI et al./ Design Choices for Modular and Flexible Robotic Software Development 15

issue when not using shared memory and accessing inter-
process shared memory requires special attention to avoid
deadlocks.

• Modules are threads inside a single process. With multi-
threading, sharing information is easily accomplished
using shared memory, using some mechanism for concur-
rent data access and thread synchronization. The thread-
based paradigm seems to be a reasonable compromise
between efficiency and ease of use, but a pure thread-
based approach, where the whole application resides
on a single process can be excessively restrictive, for
example in particular situations that require to distribute
the computation over different processes, or over different
machines.

• Modules are built as call-back functions and there is
a single process (i.e., a scheduler) that repeatedly calls
them either in response to some event or periodically.
The call-back functions allows for a more accurate exe-
cution control and thus are preferable for low-level device
interaction; however, the control cycle must be carefully
designed by the programmer and should adapt to satisfy
the time constraints, also by splitting long computation
in multiple calls, which is not easy to achieve.

There are two issues to be considered when considering
concurrency models. The first one is the ease of development:
on this axis, the callback-function paradigm is the less user-
friendly, because the programmer must deal with distributing
the computation over several calls, while, at the other end
of the spectrum, the process-based architecture allows for the
largest freedom in development, because different processes
are independent. The second issue is inter-module communi-
cation: on this axis, the preference order is reversed, since the

call-back function mechanism allows to exchange information
using shared memory, without any need for data integrity
management; using processes, an inter-process communication
mechanism is needed to ensure data integrity.

Nevertheless, these choices are not mutually exclusive, and
some frameworks make use of a hybrid solution, allowing dif-
ferent models to be used at the same time and to be integrated
in a single system. Another important issue, from the point of
view of the developer, is if the framework can be realized
in such a way that the actual concurrency model used is
transparent to the user. This introduces additional complexity
in the design and implementation of the framerwork and it is
not yet fully achieved in existing frameworks.

The distributed process model is a very common choice:
most existing frameworks use this solution (e.g., Orca [9],
[10], ROS [6], [7], SPICA [11], etc.), since they choose to
give as much freedom as possible to module development,
so that developers have a high degree of design and imple-
mentation freedom. For example, ROS nodes are independent
heterogeneous (i.e., developed using different programming
languages) components that exchange data through pre-defined
messages and services. Similarly, SPICA allows for developing
loosely coupled heterogeneous components and provides an
ontology-based modelling language used as a common basis
for information exchange.

OROCOS [12], [13] is focused on low-level robot and
machine control and implements a concurrency model that
has several variants: a module (called “activity” at run-time in
OROCOS) is executed in a separate thread and may be event-
driven (i.e., a function is called every time a particular event
is fired) or implemented as a call-back function that may be
requested to satisfy real-time constraints. OpenRTM-aist [14]

Framework Concurrency model Information sharing Tools Focus
OROCOS call-backs, threads lock-free data ports (CORBA) remote inspection, logging low-level interaction

with devices
Orca processes ICE remote inspection, logging mobile robots
IPC/TDL processes IPC none generic event-driven

architectures
CARMEN processes IPC logging, visualization mapping and navigation
Cognitive Map none specified (user

developed)
Whiteboards none (?) humanoid robots

OpenRTM-aist threads or callbacks CORBA configuration GUI general robotics
Microsoft Robotics Studio processes HTTP/DSSP via DSS 3D simulator general robotics
Player threads (server),

processes (clients)
client/server, proprietary over TCP 2D and 3D simulators low-level device drivers

MOOS processes centralized, proprietary over TCP logging, viewers mobile robots
CLARAty relies on ACE

(threads, processes)
relies on ACE none (?) real-world systems

MARIE processes many (3rd party) configuration GUI connecting different
frameworks

MOAST processes NML logging, visualization USARSim, mobile robots
MIRO processes CORBA logging mobile robots
ROS processes (call-backs via

nodelets)
proprietary protocol many general robotics

SPICA process based proprietary protocol code-generation tools mobile robots
SPQR-RDK call-backs, threads proprietary over TCP remote inspection GUI mobile robots
OpenRDK threads shared memory, proprietary over

TCP/UDP
remote inspection GUI,
logging

mobile robots

Fig. 1. Summary of existing software robotic frameworks: architecture choices, tools and focus



16 Journal of Software Engineering for Robotics 3(1), March 2012

(a RT-Middleware [15] implementation) and SPQR-RDK [16]
use a very similar architecture. CLARAty [17], [18] relies on
ACE (Adaptive Communication Environment2) for modules
spawning at run-time: its modules can be either processes or
threads.

In Player [19], [20] there are two types of modules: they
are either threads inside the main Player process (they are
usually low-level device drivers), or they are distinct processes
connecting through a client/server mechanism.

OpenRDK modules are mapped to threads, and the frame-
work provides all concurrency management primitives (e.g.,
memory locks) for a multi-threading environment. Moreover,
as shown in Section 3, an OpenRDK application can be
formed by several processes each one including different
modules. From the user point of view, communication among
the modules is uniform independently of whether they are
threads of the same process or they are threads on different
processes (possibly running on different machines). The use of
threads is a good compromise between efficiency and ease of
development, given our goals of rapid prototyping, modularity
and code-reusability. In fact, the callback-based mechanism
allows for the highest scheduling control (e.g., for real-time
purposes), but it requires skilled developers to implement
modules. On the other hand, in process-based solutions the
communication between modules must be carefully designed.

2.2 Information sharing

Another key issue in a software framework, strictly related to
the concurrency model, is how to share information among
modules. This aspect can be addressed from two different
points of view: the first one is the semantic “metaphor”; the
second one is how this mechanism is actually realized.

In the following we revise the main communication
metaphors and then we summarize how they can be realized.

2.2.1 Information sharing metaphors
Modules need to exchange data as they execute their computa-
tions: there are two possible paradigms that can be considered.
The first option is to allow data to be exchanged through a
centralized entity, often called blackboard, where modules can
publish and retrieve data: modules read their inputs from the
blackboard and then publish outputs for other modules. The
second paradigm is based on the concept of data-ports: a mod-
ule reads from its input ports, processes the information and
pushes the results to its output ports; a cascaded connection
between input and output ports make them work as filters.

Notice that blackboard and data-ports are related each other.
Both the two mechanisms can be implemented on a framework
using the same underlying communication system. However,
from the point of view of the developer, there is a clear
distinction between their use: when data-ports are used it is

2. http://www.cs.wustl.edu/∼schmidt/ACE.html

necessary to explicitly connect input ports of one module with
output ports of another module, while with a blackboard this
connection is demanded to a system component that is in
charge of the management of publishers and subscribers.

Using a blackboard-based paradigm, modules read inputs
from the blackboard and publish their output after each itera-
tion, using unique names to identify them. The blackboard-
based paradigm is often adopted when large objects have
to be shared (e.g., images) and module execution can be
synchronized with respect to input updates (i.e., a module
is run after its input is updated by other modules) and it
is usually realized by shared memory. This approach has
two benefits: 1) it provides a simple way to introspect and
debug the execution of the system, as there is a centralized
object where all relevant information is accessible; 2) a set of
well-known names has an implicit meaning for the developer
(and the debugger), who knows how to find the data of
interest; 3) if modules publish also their internal state on the
blackboard, together with input/output data, it is possible to
freeze the system by saving the whole blackboard and resume
the execution by reloading this snapshot later on.

The blackboard metaphor allows for state inspection, freeze
and resume, but a pure blackboard-based system can exac-
erbate the design of a robotic system for which the data-
ports metaphor is more suited. If the framework provides only
a centralized blackboard paradigm for information sharing,
the solution is typically to define well-known places in the
blackboard where a producer and a consumer can exchange
data. This creates an unnecessary coupling between them
and it prevents the possibility of introducing an intermediate
module that further processes the information before the last
module uses it (e.g., the robot pose that is computed by
a localization module may need a subsequent filter module
before it can be used by a navigation module). Another
concern of a pure blackboard style communication method
is the difficulty in dealing with situations where not only the
last updated value is needed, but the whole history of changes.
A typical example are the sensor readings used by a SLAM
algorithm: losing some of them (for example for scheduling
issues) can prevent the algorithm to build a consistent map.
The producer/consumer model of data sharing is well-known
in computer science. It is usually solved by some (possibly
bounded) data queue, i.e., containers with FIFO (first-in first-
out) accessing paradigm: the producer pushes pieces of data
into the queue and the consumer retrieve them. Finally, a
data-sharing mechanism is also needed to allow multiple
producers/consumers: for example, the sensor queue can be
used not only by the SLAM algorithm, but also by another
module that is schedule at a different rate.

The data-ports paradigm is best suited for asynchronous
execution (modules wait for data coming from their input
ports), when modules need the whole history of updates for
a given input (e.g., ports are implemented as buffer queues),
or when a socket-based communication is used to share data

http://www.cs.wustl.edu/~schmidt/ACE.html


D. CALISI et al./ Design Choices for Modular and Flexible Robotic Software Development 17

among modules. Many architectures in robotics are composed
by cascades of filters. Modules can be seen as filters of
data flowing from their inputs through their outputs, they are
connected in cascade. This is the typical example where the
data-ports paradigm is preferable.

The potential disadvantages of a pure data-port solution
derive from the lack of a common place (addressing space)
where all data can be uniformly accessed. This makes it more
difficult to inspect and log data and may lead to unnecessary
duplication and exchange of data.

Summarizing, both data-sharing paradigms have application
to specific situations, and thus a software framework for
robotics should provide the means to accommodate both.
From our point of view, the blackboard metaphor better
supports distributed software development, facilitating access
and sharing of information; consequently, it has a central role
in OpenRDK. On the other hand, several frameworks, such
as OpenRTM-aist, OROCOS, Orca, IPC/TDL, etc., mainly
support the data-ports paradigm. Among the few existing
frameworks that make use of a pure blackboard-based in-
formation sharing model. In particular, SPQR-RDK requires
modules to publish their data in a Shared Information Register,
in well-known places where other modules can read it. Cog-
nitive Map [21] uses the Psyclone Whiteboard system [22],
that uses a blackboard-type information sharing mechanism,
where the blackboard can also host shared data streams.
Player [19], [20] has a dedicated blackboard interface and a
local-memory implementation that allows clients to read and
write named pieces of data that reside in the Player server.
A similar centralized approach is used also by The MOOS
framework [23] (Mission Oriented Operating Suite) where
modules are arranged in a star-like topology, and publish
their information in a centralized blackboard called MOOSDB.
It is worth noticing that recently also ROS adopted a cen-
tralized publish/subscribe blackboard mechanism implemented
through messages on a proprietary communication protocol.

OpenRDK, specifically, provides both the blackboard and
the data-ports paradigms on the same data, as will be better
explained in Section 3. An object called “repository” is used as
a blackboard, where modules publish and retrieve the relevant
information. Each piece of information, being input, output,
parameter or state information, is called “property”. A frame-
work feature, called “property links”, allows for connecting
outputs of modules to inputs of other modules, thus realizing
also the data ports paradigm. In this way, OpenRDK can take
advantage of both centralized blackboard-type communication
and data-ports-based semantics on the same data. To our
knowledge, it is the only framework that integrates the two
paradigms at the same time on the same data, without requiring
the module developer to take care or to know how these data
will be actually delivered to other modules.

2.2.2 Information sharing implementation

From the implementation point of view, in practice, there are
two main mechanisms that can be used: modules within the
same process (i.e., if they are realized as call-back functions
or threads) usually rely on shared memory, while modules
distributed among different processes/hosts typically use some
inter-process communication service.

Shared memory is the most efficient communication
method, in particular when large data structures need to be
shared (e.g., images, maps). In the case of threads, concur-
rency management primitives are necessary. Moreover, shared
memory itself is not enough to provide specific semantics
to access shared data: for example, if two modules act as
a producer/consumer couple, the framework must provide a
mechanism to implement some kind of data “queue” in the
shared memory.

The choice of distributing modules over multiple processes
and machines prevents information sharing to be implemented
purely with shared memory. This makes it necessary to intro-
duce an additional communication mechanism that works be-
tween different hosts. However, this feature should be provided
by the framework in a transparent way with respect to the
developer of functional modules. In fact, the interconnection
layout must not be defined during the functional module
development, since it introduces unneeded complexity, by
coupling the computation function and the computation layout.

The shared memory can be effectively used also to im-
plement both the blackboard model and the data-ports one.
While implementing a blackboard model using a shared
memory is straightforward, the data-ports paradigm requires
some considerations. One solution is to use queue collection
structures, possibly protected with a locking mechanism to
avoid concurrent accesses to the queues themselves. However,
this does not allow for multiple readers and can be inefficient
due to the necessary lock of the whole collection of objects for
each operation. Active processes can be used instead: they are
in charge of dispatching objects directly to the consumer(s),
when they are pushed by the producer(s). The main drawback
of this method is the requirement that active objects need to be
scheduled themselves, in addition to the functional modules.

In the case of multiple processes, there are many existing
solutions both for processes on the same machine (e.g., DCOP,
DBUS, IPC, COM+) and across a network (e.g., CORBA).
Regarding this issue, the Object Management Group3 (OMG)
is currently working to the new version of the Data Dis-
tribution Service (DDS) specification, a standard that is be-
coming accepted by a great number of companies. DDSs are
middleware systems aiming at distributing data in real-time
among applications, using the publish/subscribe paradigm.
The most notable DDS implementations are OpenSplice4 and

3. http://www.omg.org
4. http://www.prismtech.com/section-item.asp?id=175&sid=18&sid2=10

http://www.omg.org
http://www.prismtech.com/section-item.asp?id=175&sid=18&sid2=10


18 Journal of Software Engineering for Robotics 3(1), March 2012

RTIDDS5, which adhere almost completely to the OMG DDS
specification.

IPC (Inter Process Communication) [24] and TDL (Task
Description Language) [25], [26] are two software packages
developed at CMU that, by extending C++ semantics, provide
for a technique to send C++ objects through a network
between servers and clients and for the definition of call-back
procedures that are called when some event (e.g., some packet
arrival) occurs. Although IPC is general enough to be used in
any kind of application that is based on asynchronous events,
its main uses have been in robotic applications.

Among frameworks that provide their own inter-process
communication infrastructure, Microsoft Robotics Studio uses
its own Decentralized Software Services (DSS) in order to
achieve inter-service communication. DSS works over TCP
links using plain HTTP protocol or an XML-based protocol
called DSSP (DSS Protocol). Also the connections between
the Player server and the clients, and between the MOOS
modules and the MOOSDB blackboard, are implemented over
a TCP link, using proprietary protocols, that, in Player, can
be tuned to the application needs (e.g., frequency of updates,
etc.). Also ROS uses its own message-based communication
infrastructure between modules (both for data exchange and
for service requests and responses). In MARIE [27], [28],
a framework that encourages code reuse from other exist-
ing robotic projects, the main concept involved in modules
arbitration and information sharing is the mediator design
pattern, i.e., a central entity that is responsible of the inter-
connection and the use of data coming from the various
modules, which, in turn, can be developed using any kind
of library or framework available.

Regarding the use of third-party middlewares for commu-
nication, CORBA is used by MIRO [29], which is process
based. OROCOS also uses CORBA to provide also inter-
process communication through a couple of ad-hoc modules,
and OpenRTM-aist provides CORBA transport facilities along
with other possibilities (e.g., ICE, DDS, etc.). Other frame-
works rely on other middlewares, such as ACE (Adaptive
Communication Environment, that is used by, e.g., CLARAty)
or ICE (Internet Communications Engine6, that is used by, e.g.,
Orca. MOAST (Mobility Open Architecture Simulation and
Tools) [30] makes use of the RCS/NML library7 (Real-time
Control Systems/Neutral Message Language).

These middlewares, anyway, aim at generality and multi-
platform support, rather than ease of use and efficiency.
Therefore, their use in robotic applications is not common
and almost all the existing frameworks using a communication
infrastructure provide its own middleware, that fits the specific
needs of the robotic application. Unfortunately, all these mid-
dlewares cannot communicate to each other, thus preventing

5. http://www.rti.com/products/data distribution/RTIDDS.html
6. http://zeroc.com/ice.html
7. http://www.isd.mel.nist.gov/projects/rcslib

the use of modules developed in one framework within another
framework, without writing suitable wrappers.

Summarizing, both shared memory and IPC are suitable
techniques for information sharing: the first is more adequate
for implementing a blackboard metaphor, while the second
is naturally used for implementing data-ports. Among other
advantages/disadvantages of these choices, we highlight that
data-ports implemented with IPC mechanisms require addi-
tional computation and memory with respect to a shared
memory implementation of a blackboard. When these data
refer to large objects that are often updated, IPC-based data-
ports either consume time and memory to send the whole large
objects at every update or require them to be kept updated by
the modules themselves (sending only updates) with ad-hoc
procedures.

OpenRDK adopts a memory sharing approach, which is an
obvious choice for a blackboard metaphor, while it provides
two solutions for inter-process communication. The first one
is based on a proprietary protocol over TCP or UDP, and
can be tuned, in the configuration phase, by means of many
options, as explained later in Section 3.2.4. As an alternative,
OpenRDK allows also the use of 3rd-party middlewares (e.g.,
a DDS [31] or ROS communication protocol) in a transparent
way for the developer.

2.3 Tools and interoperability
Tools are essential for a software framework, because they can
speed up development and help in finding bugs and analyze
behaviour and performance of implemented methods. Given
the challenges in robotic software development, tools are even
more critical. A first set of tools includes: (i) remote inspection
tools to observe/modify the module state at run-time; (ii)
on-line and off-line configuration utilities; (iii) logging and
debugging tools for sensor data and sensor processing. Such
tools are typically embedded in the software framework and
their implementation can benefit from some of the above
discussed design options. A second set of tool is concerned
with complex components that are often available as add-
ons. One typical example is given by robotic simulators. In
this case, their accessibility can depend on the features for
interoperability provided by the framework. In this section, we
highlight some interesting approaches for making both types
of tools available for software development.

Remote inspection can be a crucial utility, since it allows for
on-line inspection and analysis of module behavior and often
it includes also the possibility of modifying parameters on the
fly, without the need to restart the application. For example,
ROS includes a suite of tools that allows the developer to
inspect the messages exchanged between nodes (modules),
as well as logging and replaying facilities, while OpenRDK
provides a specific utility for on-the-fly configuration and
remote inspection of the modules behavior.

Regarding the configuration of single components and the
whole system, OpenRTM-aist provides RTCLink, a graphical

http://www.rti.com/products/data_distribution/RTIDDS.html
http://zeroc.com/ice.html
http://www.isd.mel.nist.gov/projects/rcslib


D. CALISI et al./ Design Choices for Modular and Flexible Robotic Software Development 19

tool to connect components and save a configuration for later
use. MARIE can make use of RobotFlow8, a 3rd party tool
that allows for visual module integration and debugging. ROS
and OpenRDK allow for specifying the components layout
through XML files.

Almost all frameworks provide some facility to log data
on a file to be analyzed or used off-line. Some frameworks
include viewers that allow to visually analyze the saved logs.
OpenRDK provides two configurable modules that can be
used for logging and replaying data, as well as a specific
visual tool for remote inspection, visualization and on-the-fly
configuration.

When developing complex applications that require a long
experimental validation, a realistic simulator can be handy.
Since there are already many free and commercial simulators,
each of which with its specific goals, the majority of software
frameworks for robotics do not include their own simulator,
but provide modules to connect to the majority of them (e.g.,
USARSim, Stage, Gazebo, Webots, etc.). This is easier when
the framework supports interoperability (as discussed below).
However, some frameworks provide their own simulator, for
example Microsoft Robotics Studio, and Player that comprises
in its package both a 2D (Stage) and a 3D (Gazebo) simulator.
Other frameworks provide modules to interface to these or
other simulators, for example MOAST is strictly connected
with the USARSim simulator9 [32].

The ability to interoperate with many other different com-
ponents is not specific to the use of robotic simulators, but
it spans over a large variety of components, being them
small computational units, devices, or whole systems that are
written by different teams using different frameworks. Full
interoperability requires at least two elements: a standard-
ization of protocols (how do systems communicate?), and
a standardization of interfaces (what is the abstraction of a
sensor? what is the interface of a localization module?). While
protocol standardization is the most obvious issue, defining
the interfaces is a problem that requires more careful thought.
Common interfaces between components enforce modularity
and code reuse. A great effort is being put on designing
standard interfaces for typical components of robot systems.
This includes standard data structures for sensor classes and
standard interfaces for common robotic services. At present,
this effort is ongoing and it is not clear if the goal will be
reached through a formal standardization of data structures,
services and algorithms for robotics [4], [5], [21] or a de-
facto standard (e.g, ROS).

Regarding interoperability, the most notable example of
existing frameworks is MARIE, whose main aim is code
reuse from other existing projects: through the use of the
mediator design pattern, the MARIE framework allows for an
easy interconnection and use of data coming from the various

8. http://robotflow.sf.net
9. http://usarsim.sf.net

modules, that, in their turn can be developed using any kind
of library or framework available.

Another way to support interoperability is to rely on stan-
dard middlewares (e.g., CORBA, ICE, etc.). This allows for
the communication with any middleware-aware framework,
by requiring an agreement on the interfaces to be used to
exchange information and on the semantics of the exchanged
data. However, without a reference standard to implement, a
practical approach is just to provide the “glue” that allows
the use of several other libraries, tools or middlewares com-
monly used in practice in developing robotic applications.
This is the approach chosen to make simulators available. The
approaches that rely on well-specified structures for internal
communication (that can be obtained with both the blackboard
and the data-ports model), make interoperability with external
components easier to achieve. In other cases, specific software
components acting as bridges must be used (again both in the
blackboard and the in data-ports model).

3 OPENRDK
In this section we address an implementation of the choice
”thread + blackboard”, as the basis for a framework for robotic
applications. Our aim is to discuss the options available and the
trade-offs between them, and propose the OpenRDK solution.

We structure the discussion following the main issues pre-
sented in Section 2: concurrency model, information sharing,
tools and interoperability.

3.1 Concurrency Model
In OpenRDK, each module is a thread, executed inside a pro-
cess called agent. OpenRDK uses POSIX Threads. Modules
are pieces of code which are compiled as shared libraries,
independently of OpenRDK’s core. At run-time, modules are
instantiated by dynamically loading the shared library based on
the configuration, specified as an XML file, that contains the
modules parameters. A typical deployment of an OpenRDK
application comprises several agents distributed on different
machines, and several threads inside each agent.

In order to avoid the limitations due to a pure thread-
based framework (see Section 3.2.4), OpenRDK provides
also a mechanism that allows for a transparent inter-process
communication. This means that, although our framework uses
the thread-based paradigm, modules can reside on different
processes and communicate as if they were in the same
process. Figure 2 shows an OpenRDK applications formed
by two agents (possibly running on two different machines)
and a set of mobules communicating each other through the
repository.

Finally, two features enrich module management in the
OpenRDK framework. The first is a simple event-based sched-
uler that reduces the computation overhead: at run-time, each
module (thread) is typically waiting for some event(s) to
happen: new data to consume in a queue, the change of a

http://robotflow.sf.net
http://usarsim.sf.net


20 Journal of Software Engineering for Robotics 3(1), March 2012

property value, a timeout, etc. The second is that modules are
treated as “plug-ins” and can be loaded and instantiated at
run-time.

(a) block diagram

agent1
◦ hwInterfa
e

rdk://agent1/hwInterfa
e/out/odometry(queue)
rdk://agent1/hwInterfa
e/out/laserS
an(queue)
rdk://agent1/hwInterfa
e/in/
ontrolSpeed

agent2
◦ lo
alizer

rdk://agent2/lo
alizer/in/odometry
rdk://agent2/lo
alizer/in/laserS
an
rdk://agent2/lo
alizer/out/estimatedPose(queue)

◦ mapper
rdk://agent2/mapper/in/robotPose(queue)
rdk://agent2/mapper/in/laser(queue)
rdk://agent2/mapper/out/map

◦ navigator
rdk://agent2/navigator/in/robotPose
rdk://agent2/navigator/in/targetPose
rdk://agent2/navigator/in/map
rdk://agent2/navigator/out/
ontrolSpeed

(b) properties and links

Fig. 2. An example of two OpenRDK agents, running on
two different machines: (a) shows a block diagram with
named data flow; (b) shows the properties of each module
and the links between them.

3.2 Information sharing model
The discussion of the information sharing model first addresses
the general features of the blackboard model, then it addresses
three additional issues arising in the implementation of the
blackboard model: the use of data ports to model the typical
cascade of filters that is needed for sensor data processing; the
use of queues to enrich the blackboard model with capabilities
to store the system evolution (as opposed to the last state); the
efficient implementation of the information sharing model on
different components of the heterogeneous distributed system.

3.2.1 Blackboard data-sharing metaphor: repository,
properties and URLs
As already mentioned, the blackboard metaphor supports
modularity by providing access to the state of computational
structures. OpenRDK uses the metaphor of a centralized
blackboard, called repository, where modules read and write

data. Each piece of data is called a property. Properties can be
inputs, outputs, state variables, or parameters for the module.

Each property has a URL of type
rdk://agent/module/property, where the agent name is
different from the host name as there can be more agents on
the same host. These URLs incorporate both an addressing
scheme and the possibility to access properties residing on
different agents (processes), referring them using the full URL
that includes the name of a remote agent. The repository itself
takes care of establishing connections and negotiating with
the remote host (see Section 3.2.4 for details). Inter-process
communication can be implemented with different protocols,
thus allowing interoperability with other frameworks and
middlewares.

3.2.2 Data-ports data-sharing metaphor: property links
We extended our blackboard-based repository in order to
handle also the data-ports information exchange paradigm,
without loosing the benefits of a blackboard, by means of prop-
erty links. These are analogous to Unix filesystem symbolic
links and introduce a level of indirection that naturally drives
the development towards independent and interchangeable
modules. With links, a module’s input property is linked to
another module’s output property, so that the two modules
do not need to be aware of each other. Links are specified
in a configuration file; since the data flow is not hard-coded,
modules can be re-used for different applications. Links can
point to remote properties as well, and this allows to distribute
the computation in a way which is completely transparent to
the module developer (the module always reads its own input
properties without taking care which other properties they are
linked to).

The property-link mechanism allows for transparently using
both blackboard and data-ports paradigms for all data that is
shared among modules. Other frameworks make use of both
mechanisms, but either requiring additional modules, different
code, or the two mechanisms are used for different kinds
of information (e.g., ROS uses a blackboard metaphor for
parameters and data-ports for inputs and outputs).

3.2.3 Data queues
OpenRDK implements two models for sharing data between
modules: publisher/reader and producer/consumer. Regular
properties realize the former, and special “queue” properties
implement the latter. Both objects share the same URL-based
addressing scheme and they can also be used across multiple
processes.

Queues are smart FIFO containers that:
• support multiple readers; thread-safeness is ensured with-

out object duplication;
• own the objects that are pushed into them and take care

of garbage collection, by destroying the objects when no
reader is interested in them anymore;



D. CALISI et al./ Design Choices for Modular and Flexible Robotic Software Development 21

• allow for subscribing modules to listen to particular
objects entering in the queue, and to be awaken on such
event.

• are ‘passive’ objects: no additional thread is required.
Finally, objects in the queues have a timestamp for data

synchronization purposes.
Some examples of using these structures are presented in

Figure 3.

RDK2::ROdometry∗ odom = new RDK2::ROdometry(/∗ ... ∗/);
session−>queuePush(”odometry”, odom);

(a) Pushing data into a queue (module hwInterface)

session−>subscribeQueue(”odometry”);
// ”odometry” is linked to ”rdk://agent1/hwInterface/odometry”
// in the configuration file

(b) Subscribing to a queue (module localizer)

while (session−>wait(), !exiting) {
vector<const RDK2::ROdometry∗> v =

session−>queueFreezeAs<ROdometry>(ODOMETRY URL);

for (size t i = 0; i < v.size(); i++) {
const ROdometry∗ odom = v[i];
... // process odometry data in the queue

}
}

(c) Reading from a queue (module localizer)

void Map::read(Reader∗ r)
throw (ReadingException)
{
r−>startReading(”map”);
width = r−>read i32(”width”);
height = r−>read i32(”height”);
data = unrle(r−>read string());
r−>doneReading();
}

void Map::write(Writer∗ w)
const throw (WritingException)
{
w−>startWriting(”map”);
w−>write i32(width,”width”);
w−>write i32(height,”height”);
w−>writeString(rle(data),”data”);
w−>doneWriting();
}

(d) Object serialization

Fig. 3. Some code examples of common operations in
the OpenRDK framework.

3.2.4 Data sharing implementation: inter-thread, inter-
process and inter-machines
In OpenRDK, data sharing happens through a combination of
shared memory and network communication; this is transpar-
ent from the module’s point of view. Modules interact only
through the repository interface; if they reside in the same
process, then data sharing takes place using shared memory;
otherwise, network communication is used, in different forms,
as explained below.

OpenRDK provides facilities for a transparent management
of concurrent memory access. An implicit per-property locking

mechanism is used for simple data-types: in this case, the
single module is not responsible for locking/unlocking and
deadlocks are prevented. However, when data to be exchanged
are large (e.g., maps or images), explicit locking/unlocking
primitives are responsibility of the developer.

Inter-agent (i.e., inter-process) communication is accom-
plished using the property sharing mechanism: if a module
wants to read or write a remote property (e.g., because a
property link points to a property that resides on another
agent), a copy of that property (cache) is created in the first
agent and is kept synchronized transparently by the repository
itself, using a publish/subscribe mechanism.

There are some parameters for tuning the synchronization
behavior:

• The subscriber can request a property update every time
it changes on the remote repository (ON_CHANGE) and op-
tionally set a minimum interval between two subsequent
updates. As an alternative, it may request the update to be
sent at fixed intervals (PERIODIC in OpenRDK terms).

• The subscriber can request to use one of two transport
protocols: UDP or TCP.

• OpenRDK implements a data reconstruction layer for
some specific objects which can be split in multiple
packets and reconstructed at the destination repository.

• Some objects (e.g., images) can be transmitted using
LOSSLESS (default) or LOSSY compression.

The solution we implemented allows for the maximum
efficiency: if the data is to be shared between modules on
the same host, then shared memory is used; otherwise, the
network communication is transparent to the interface used
by the module user. Moreover, different clients can request
the same property by specifying different options that affect
the property updates.

3.3 Tools and interoperability
In this section, we discuss a number of features of a frame-
work for robotic software development that are specifically
concerned with the ability to fast prototyping complex appli-
cations. This category of tools is particularly relevant to our
goals, since it cannot be acquired as an add-on component of a
framework. In particular, we argue that OpenRDK choices in
the design and implementation of the models for information
sharing are key to support the development of tools for fast
prototyping.

In this section we first look at the problem of remote
inspection and debugging, then modularity and configuration,
logging and debugging, and, finally, interoperability.

3.3.1 Remote inspection and debugging
Debugging requires to follow the progress of a module be-
havior in order to detect failures. The inspection tools become
easily available, by exploiting the introspection capabilities of
the blackboard architecture.



22 Journal of Software Engineering for Robotics 3(1), March 2012

The set of information that are necessary for a proper
debugging can easily grow and some data must be visualized
using graphical viewers (e.g., images, maps, trajectories), and
in an integrated way (e.g., concurrent view of the current map,
the current laser scan and the current trajectory). Moreover,
the possibility to tune module parameters on-the-fly drastically
improves performance of the modules in different applications.
The use of a graphical user interface that can interact with
the system by visualizing relevant information and change
parameters is thus a valuable tool.

OpenRDK provides its own graphical tool for remote in-
spection and control: RConsole. We use it both for the main
control interface of the robot and for debugging while we
develop the software. RConsole exploits the property sharing
mechanism: it is simply an OpenRDK agent that includes
a module that displays a GUI. Graphical widgets visualize
the internal module state and allow the user to change their
parameters while running. Advanced viewers allow to interact
with images and maps, moving robot poses, seeing visual de-
bugging information provided by modules, etc. (see Figure 4).

Fig. 4. RConsole: the graphical tool for remote inspection,
on-the-fly configuration and parameter tuning.

3.3.2 Modularity and Configuration
Modularity and code reusability are the most important issues
addressed by the analyzed frameworks. In particular, one of
the goals of modularity is to reduce the efforts that are needed
to adapt a module to different applications and to exchange
similar modules within the same application to test their
effectiveness. Unfortunately, the implementation of this kind of
modularity is not straightforward. The main difficulty consists
in defining which interface modules should adhere in order
to be interchangeable. One could use classes and interfaces
provided by the programming language; however, this makes
the interface too rigid.

The way modularity and module interchangeability is
achieved in OpenRDK is through the use of the repository

and property links. Each module publishes inputs and outputs
in the repository so that the flow of information is described
by property links. OpenRDK enforces a type checking on
properties, but it does not perform semantic checks. Thus, the
interface between modules reduces to conventions regarding
the data types accepted by the modules in their input proper-
ties. The advantage of this choice is that existing modules are
very loosely connected. The disadvantage is that, given that
interfaces are not formally defined, the system cannot check
for correctness of the interconnection.

Another concept that is used to improve the modularity
and the code reuse is “configurability”. At system level, a
configuration is the arrangement of the system as defined by
the interconnections of its parts [33]. At a module level, a
configuration is the specification of its parameters and possible
operation modes. The key for improving code reuse is to
decouple the configuration from the functional code, in such a
way that the same module (i.e., the same code) can be used and
maintained separately from its instantiation in an application
(i.e., its parametrization and its interconnections with other
modules in that singular application).

Following the common solution adopted in other frame-
works, OpenRDK saves the configuration (i.e., the module
arrangements and their own parametrization) in a file. An
OpenRDK configuration file for an agent is an XML file
containing the list of modules to be loaded, a description
of their interconnections (i.e., property links) and the (initial)
values of their properties (e.g., parameters, static inputs, etc.).
In this way, often modules need no update in their code in
order to be used in another system, another application or
even by another group.

The same mechanism has the double function of configuring
the modules and offering a way to freeze and restart later
the execution of the system (if the module state is properly
specified by the set of properties it saves in the repository), or
to use static inputs (e.g., a static map of a known environment)
that have been saved in the configuration file instead of being
produced by other modules.

3.3.3 Logging and debugging sensor data
The use of log files to save the history of important runs is a
common habit, especially in those community that deal with
problems that do not require an active behavior of the robotic
component. For example, the SLAM community can work
with the sensor logs from the Rawseeds project10 or from
the Radish project11. These (multi)sensors datasets are used
to reconstruct a representation of the environment the robot
is run into and to compare the results of different methods
or different parameter values. Replaying a sensor log is much
faster even than using simulation and the fact that it provides
always the same sensor data history can be useful to study

10. http://www.rawseeds.org
11. http://radish.sourceforge.net

http://www.rawseeds.org
http://radish.sourceforge.net


D. CALISI et al./ Design Choices for Modular and Flexible Robotic Software Development 23

some critical situations. These log files encode the whole
history of sensor readings, including the timestamps, so that
it is possible to replay a specific run as it were. OpenRDK
provides a configurable module that, reading from a sensor
queue, is able to write a log file containing the sensor data.
This file can be processed off-line using third-party tools
or used in conjunction with another OpenRDK module that
provides the “playback” feature. This latter module can replace
the hardware interface module or the simulator module: it is
thus possible to replay a specific log so that other functional
modules behave as in the actual saved run.

3.3.4 Interoperability with simulators

The robot simulators supported directly by OpenRDK are
Stage/Gazebo (belonging to the Player/Stage project and using
the common Player [19] interface), USARSim [32], the stan-
dard robot simulator for the RoboCup Rescue competition, and
Webots, used to simulate NAO soccer robots. The modules
implementing the support of these simulators typically expose
properties that are used both for controlling the platform
(e.g., controlling speed), and for sensor reading, (e.g., reading
odometry pose).

It is worth noting that driver modules representing the same
robot model (and also the same real robot and its simulated
counterpart) can be used interchangeably in a transparent way,
because the corresponding OpenRDK modules have the same
interface. Every module that exposes odometry and speed
properties, can be considered a robot and connected to a
navigation module, regardless of the actual implementation.

3.3.5 Interoperability with other frameworks

The key issue to achieve run-time (i.e., inter-module) interop-
erability is that the communication layer should be abstracted
from the functional modules. The OpenRDK framework pro-
vides an easy way to deal with different interfaces by estab-
lishing the proper connection between the chosen protocol (or
middleware) and the repository. This is done by a single pro-
tocol/middleware manager module, that exposes the relevant
information using the chosen protocol. Moreover, based on
the specification of property links in the configuration file,
that include a protocol section, virtually no other modification
is needed to the functional modules.

For example, consider the problem of developing an Open-
RDK application whose user interface has to be browser-
based. The solution is to develop a module that implements a
simple web server, maps HTTP URLs to OpenRDK URLs (the
mapping is immediate), and serves GET and POST requests by
retrieving and changing the values of properties accordingly.
Therefore, a complete user interface could be implemented
in a few lines of HTML/Javascript. Moreover, these “bridge”
modules can allow for additional customization of the link
synchronization, that are specific for the protocol they manage.
In particular, for example, the HTTP handler module allows

to specify an XPath query in order to isolate the desired value
from the rest of the response.

The design choices that make this process easy to develop
are the presence of the repository (i.e., a blackboard), and
the policy of forcing the modules to register all the relevant
information (inputs, outputs, parameters, state variables, etc.)
as properties in the repository. In this way, a generic module
is able to read the whole repository and to expose it to the
outside using the required protocol. Note also that while the
communication between OpenRDK agents (Section 3.2.4) is
of type “push” (publish/subscribe), the HTTP server realizes
a communication of type “pull” (more precisely, a REST
(REpresentational State Transfer) model [34]).

Thus one can easily implement on top of OpenRDK any
data-driven interface that will emerge as standard in future,
as an ordinary module (i.e., without or with limited changes
to the framework core). In this way, OpenRDK has been
enriched with a module that allows its repository to interact
with data coming from a Data Distribution Service for Real-
Time Systems (DDS)12 [31]. In the same way, OpenRDK
applications can interoperate with other applications using a
different middleware (e.g., ROS components).

4 FLEXIBLE DEVELOPMENT USING OPENRDK
One important feature for a robot development framework
is the ability to deal with different robotic platforms and to
implement different robotic architectures.

OpenRDK has been successfully used in a wide range
of robotic applications, especially in the context of the
RoboCup13 competitions: RoboCupRescue Real Robots,
RoboCupRescue Virtual Robots, RoboCup@Home, and also
RoboCup Standard Platform League, with the humanoid robot
Nao14 from Aldebaran Robotics, where OpenRDK currently
runs on the Nao’s internal computation unit. In addition, the
OpenRDK framework currently runs also on Gumstix and
Beagleboard mini-board systems.

Robotic applications, that are characterized by the relation-
ships among “Sense”, “Plan”, and “Act”, have been deeply
studied in the past and many deliberative, reactive and hy-
brid architectures have been proposed (e.g., [35]). OpenRDK
allows to easily implement different kinds of robotic architec-
tures.

This section shows how OpenRDK allows to build diverse
applications using different robotic paradigms. While each
paradigm puts some requirements on the underlying software
framework, the flexibility of OpenRDK allows to compose
the functionalities of modules according to any of these
paradigms.

Here we develop an example corresponding to (a simplifi-
cation of) an application in the realm of Rescue Robotics, in a

12. http://portals.omg.org/dds/
13. http://www.robocup.org
14. http://www.aldebaran-robotics.com/eng/Nao.php

http://portals.omg.org/dds/
http://www.robocup.org
http://www.aldebaran-robotics.com/eng/Nao.php


24 Journal of Software Engineering for Robotics 3(1), March 2012

(a) block diagram

agent1
◦ hwInterfa
e

rdk://agent1/hwInterfa
e/out/odometry(queue)
rdk://agent1/hwInterfa
e/out/laserS
an(queue)
rdk://agent1/hwInterfa
e/in/
ontrolSpeed

◦ obsta
leAvoidan
e
rdk://agent1/obsta
leAvoidan
e/in/lo
alTargetPose
rdk://agent1/obsta
leAvoidan
e/in/laserS
an
rdk://agent1/obsta
leAvoidan
e/out/
ontrolSpeed

(b) properties and links

Fig. 5. An example of reactive system implemented with
OpenRDK: (a) shows a simplified block diagram where
the Sense and Act primitives are highlighted (repository
has been omitted for simplicity); (b) shows the properties
in the repository and the links between them.

bottom-up fashion. The goal of Rescue Robotics is to develop
robots to assist human rescuers during emergency operations.
The main capabilities needed by such a robot are:

• building a map of an unknown environment;
• being able to move autonomously in a cluttered scenario;
• reporting to the human rescuers the interesting features

found during the exploration (for example, possible vic-
tims or threats).

The reference robot is a four-wheeled skid-steering mobile
base. A laser range finder is mounted on the base for map-
ping and obstacle avoidance, while a pan-tilt camera is used
to identify trapped human victims or possible treats in the
environment. Details about the algorithms being used in this
system can be found in [36].

4.1 Step 1: reactive system

We start our project by implementing a simple obstacle avoid-
ance behavior, that makes use of the laser range finder to steer
the robot through the environment to a target position. The
target is given in robot local coordinates, thus no localization
in a global frame is required. This reactive behavior can
be developed and tested independently, for example using
RConsole to feed the local target pose. The system can be
realized by connecting the modules as indicated in Figure 5:
the hwInterface module is responsible for sensor data gathering
and actuator controls allowing for hardware abstraction, the
obstacleAvoidance module implements an obstacle avoidance
method.

This simple application realizes a pure reactive robotic
system, that will be extended in the next sections.

(a) block diagram

agent1
◦ hwInterfa
e

rdk://agent1/hwInterfa
e/out/odometry(queue)
rdk://agent1/hwInterfa
e/out/laserS
an(queue)
rdk://agent1/hwInterfa
e/out/a
tualSpeed
rdk://agent1/hwInterfa
e/in/
ontrolSpeed

◦ lo
alizer
rdk://agent1/lo
alizer/in/odometry
rdk://agent1/lo
alizer/in/laserS
an
rdk://agent1/lo
alizer/out/estimatedPose(queue)

◦ mapper
rdk://agent1/mapper/in/robotPose(queue)
rdk://agent1/mapper/in/laser(queue)
rdk://agent1/mapper/out/map

◦ pathPlanner
rdk://agent1/pathPlanner/in/robotPose
rdk://agent1/pathPlanner/in/map
rdk://agent1/pathPlanner/in/targetPose
rdk://agent1/pathPlanner/out/lo
alTargetPose

◦ obsta
leAvoidan
e
rdk://agent1/obsta
leAvoidan
e/in/lo
alTargetPose
rdk://agent1/obsta
leAvoidan
e/in/laserS
an
rdk://agent1/obsta
leAvoidan
e/out/
ontrolSpeed
rdk://agent1/obsta
leAvoidan
e/params/maxSpeed
rdk://agent1/obsta
leAvoidan
e/enabled

◦ frontierFinder
rdk://agent1/frontierFinder/in/map
rdk://agent1/frontierFinder/out/frontiers

◦ missionManager
rdk://agent1/missionManager/out/targetPose
rdk://agent1/missionManager/out/obstAvoidEnabled
rdk://agent1/missionManager/in/frontiers
rdk://agent1/missionManager/in/features
rdk://agent1/missionManager/out/featureSeekerEnabled

agent2
◦ 
ameraInterfa
e

rdk://agent2/
ameraInterfa
e/out/image

◦ imagePro
essor
rdk://agent2/imagePro
essor/in/image
rdk://agent2/imagePro
essor/out/features
rdk://agent2/imagePro
essor/params/deblur

◦ pantiltController
rdk://agent2/pantiltController/in/position

◦ featureSeeker
rdk://agent2/featureSeeker/enabled
rdk://agent2/featureSeeker/in/features
rdk://agent2/featureSeeker/out/pantiltPosition

(b) properties and links

Fig. 6. An example of a hybrid deliberative-reactive
system implemented with OpenRDK.



D. CALISI et al./ Design Choices for Modular and Flexible Robotic Software Development 25

4.2 Step 2: hybrid reactive-deliberative

A complex system is usually made up of more than one
behavior and, possibly, by some deliberative component; in
order to show how to add complex behaviours to the reactive
system, we consider:

• a pathPlanner module, that, given a target pose in the
global reference frame, computes a path towards that pose
and outputs also a local goal for the obstacleAvoidance
module;

• a featureSeeker module, that implements a scanning
behavior that moves the camera in promising directions,
in order to search for interesting features in the environ-
ment [37];

• a pantiltController module, that controls the pan-tilt unit;
• a imageProcessor module, that implements image pro-

cessing routines needed to detect relevant features in the
environment.

The first module is a path-planner that, given a target pose
in the global reference frame, computes a path towards that
pose. This pathPlanner module outputs continuously a local
target pose for the robot, to be fed into the obstacleAvoidance
module described in the previous subsection.

A level of deliberation is added to manage the overall
mission behavior. Our way to implement this paradigm is by
developing a planner module that is responsible for generating
plans and decide possible re-planning steps. The planner mod-
ule is also responsible for plan execution and monitoring by
activating/deactivating the behaviors according to the current
actions to be executed. The implementation of this module
makes use of the Petri Net Plans (PNP) formalism, presented
in [38], tailored for complex multi-robot plans. In particu-
lar, the PNP formalism allows for non-instantaneous actions,
possible interrupts and failures. The resulting missionManager
module is added to the system: exploiting data coming from
the sensors, the map and the image processor, it decides the
actions to be taken, following a plan written in the PNP formal-
ism. The missionManager module acts upon the featureSeeker
mode (different behavior can be adopted, for example when
the system is near an interesting feature and should perform
a more focused scan), the target pose of the pathPlanner, and
the activation/deactivation of the obstacleAvoidance behavior
(using a special property called enabled).

This version of the application is shown in Figure 6. The
hwInterface and obstacleAvoidance remain the same as before.
The vision subsystem (including the pan-tilt controller) runs
on another agent: image processing can be computationally
intensive, for this reason we decided to split the system into
two processes, running on two different machines.

In Figure 6, some properties output relevant information
about the robot base (hwInterface/out/actualSpeed), as well
as being configurable parameters of the obstacleAvoidance
module (obstacleAvoidance/params/maxSpeed) and the im-
ageProcessor module (imageProcessor/params/deblur). The

reason why we made these properties explicit in the figure
(among many other parameters and outputs) will become clear
in next section.

4.3 Step 3: implementing a context-based architec-
ture
In [39], the context-based architecture has been introduced. A
context-based architecture is actually a meta-architecture, in
the sense that every existing architecture can be transformed
in a context-based architecture, by including some additional
components. A context-based architecture decouples the rea-
soning about the context, where the robot is working from the
components that implement the mission functionalities (e.g.,
navigation, mapping, image processing, etc.). This architecture
divides the components of a system in two sets: the first set
is composed by functional modules, that are not aware of
any context-related feature; in the second set, some modules
are responsible to extract relevant information from functional
modules, reason about these information and modify the
behavior of the functional modules according to the context.

Using the OpenRDK framework, the context-aware sub-
system can be added straightforwardly, without the need to
change anything in the functional modules. Since there is no
differentiation between inputs, outputs and parameters from
the repository point of view, the parameters of the functional
modules can be linked to the outputs of the context-aware
subsystem, in order to change the behavior of the system.

This version of the application is shown in Figure 7. Another
module contextSubSystem that adjusts the parameters of the
modules obstacleAvoidance and imageProcessor is added.
The rationale is that the current actual speed of the robot
should cause some adjustment in the parameters of the victim
detection (images are expected to be more blurred at high
speeds), while relevant information from the image processor
(e.g., the roughness of the terrain) should be used to regulate
the obstacle avoidance movement.

Fig. 7. An example of context-based system, built on top
of the hybrid one of Figure 6: the context-aware module
adapt other module parameters according to the current
detected context.

A final remark about the complete system described in this
section is that while some of the modules are designed to be
application-specific (e.g., the imageProcessor detects human
victims and exposes some data about the roughness of the



26 Journal of Software Engineering for Robotics 3(1), March 2012

floor), other modules can be reused in other domains (e.g.,
the obstacleAvoidance, localizer, mapper, etc.), without any
change in the code. The very same modules can be loaded as
plug-ins in another system, designed for a completely different
application.

5 CONCLUSIONS
Robotic software development can become more effective and
economical through the use of unified design techniques and
the development of reusable and interoperable components.
As a contribution to the ongoing discussion, in this paper we
have addressed the major choices in the design of robotic
software, trying to highlight merits and drawbacks of each
alternative. More specifically, we have motivated the design
of OpenRDK, a framework for robotic software components,
developed in our laboratory. Our design choices in terms of
concurrency model, data exchange and configuration manage-
ment reflect the need for fast development of complex robotics
applications. OpenRDK’s most specific features are the multi-
threaded multi-processes structure and the blackboard-type
inter-module communication and data sharing. These allow
to seamlessly distribute the computation among several hosts
in a transparent way and encourage the users to develop many
small decoupled modules with well-defined capabilities. In
addition, we have built several tools in OpenRDK that exploit
all the advantages of the underlying blackboard model, and
we take special care of facilitate interoperability with other
existing software resources, such as simulators, low-level robot
operating systems, middleware and robotics libraries.

As it turns out, the solutions chosen by OpenRDK to achieve
rapid prototyping, good performance and limited dependencies
and interactions between different developers in the team, have
led to an overall framework that nicely supports concurrent
engineering and can be exploited to design the software for a
wide class of robotic systems.

REFERENCES
[1] IEC TC65/WG6, IEC 61499-1: Function Blocks – Part 1: Architecture,

International Electrotechnical Commission, Geneva, Switzerland, 2005.
1

[2] ——, IEC 61131-3: Programmable Controllers – Part 3: Program-
ming Languages, International Electrotechnical Commission, Geneva,
Switzerland, 2003. 1

[3] D. Brugali, Software Engineering for Experimental Robotics (Springer
Tracts in Advanced Robotics). Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2007. 1

[4] H. Bruyninckx, “Robotics software: The future should be open,”
IEEERobotics and Automation Magazine, vol. 15, no. 1, pp. 9–11, Mar.
2008. [Online]. Available: http://ieeexplore.ieee.org/search/wrapper.jsp?
arnumber=4476319 1, 2.3

[5] D. Brugali and E. Prassler, “Software engineering for robotics,” IEEE
Robotics and Automation Magazine, vol. 16, no. 1, pp. 9–15, Mar.
2009. [Online]. Available: http://ieeexplore.ieee.org/search/wrapper.jsp?
arnumber=4799437 1, 2.3

[6] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in Proceedings of IEEE International Conference on Robotics and
Automation (ICRA), 2009. 1, 2.1

[7] “ROS website,” http://www.ros.org. 1, 2.1
[8] D. Calisi, A. Censi, L. Iocchi, and D. Nardi, “OpenRDK: a modular

framework for robotic software development,” in Proc. of Int. Conf. on
Intelligent Robots and Systems (IROS), Sep. 2008, pp. 1872–1877. 1

[9] A. Makarenko, A. Brooks, and T. Kaupp, “Orca: Components for
robotics,” in Int. Conf. on Intelligent Robots and Systems (IROS’06),
Workshop on Robotic Standardization, Dec. 2006. 2.1

[10] “Orca-robotics website,” http://orca-robotics.sourceforge.net. 2.1
[11] P. A. Baer, R. Reichle, and K. Geihs, “The spica development framework

– model-driven software development for autonomous mobile robots,”
in Intelligent Autonomous Systems 10 – IAS-10, 2008, pp. 211–220. 2.1

[12] H. Bruyninckx, “Open robot control software: the OROCOS project,” in
Proceedings of Int. Conf. of Robotics and Automation (ICRA’01). IEEE,
2001, pp. 2523–2528. 2.1

[13] “The Orocos project website,” http://www.orocos.org. 2.1
[14] “OpenRTM-aist official website,” http://www.is.aist.go.jp/rt/

OpenRTM-aist. 2.1
[15] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.-K. Yoon, “RT-

middleware: distributed component middleware for RT (robot technol-
ogy),” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS 2005), Aug. 2005, pp. 3933–3938. 2.1

[16] A. Farinelli, G. Grisetti, and L. Iocchi, “SPQR-RDK: a modular
framework for programming mobile robots,” in Proc. of Int. RoboCup
Symposium 2004, D. Nardi et al., Eds. Heidelberg: Springer Verlag,
2005, pp. 653–660. 2.1

[17] I. Nesnas, “CLARAty: A collaborative software for advancing robotic
technologies,” in Proc. of NASA Science and Technology Conference,
Jun. 2007. 2.1

[18] “CLARAty website,” http://claraty.jpl.nasa.gov. 2.1
[19] T. Collet, B. MacDonald, and B. Gerkey, “Player 2.0: Toward a practical

robot programming framework,” in Proc. of the Australasian Conf. on
Robotics and Automation (ACRA 2005), Dec. 2005. 2.1, 2.2.1, 3.3.4

[20] “The Player project website,” http://playerstage.sourceforge.net. 2.1,
2.2.1

[21] V. Ng-Thow-Hing, K. Thorisson, R. Sarvadevabhatla, J. Wormer, and
T. List, “Cognitive map architecture,” IEEE Robotics & Automation
Magazine, vol. 16, no. 1, pp. 55–66, Mar. 2009. 2.2.1, 2.3

[22] K. Thórisson, T. List, C. Pennock, and J. DiPirro, “Whiteboards:
Scheduling blackboards for semantic routing of messages & streams,”
in AAAI-05 Workshop on Modular Construction of Human-Like Intelli-
gence, I. K. R. Thórisson, H. Vilhjalmsson, and S. Marsella, Eds., Jul.
2005, pp. 8–15. 2.2.1

[23] “The MOOS website,” http://www.robots.ox.ac.uk/∼pnewman/
TheMOOS/. 2.2.1

[24] “Interprocess communication (IPC) website,” http://www.cs.cmu.edu/
∼ipc/. 2.2.2

[25] R. Simmons and D. Apfelbaum, “A task description language for robot
control,” in Proc. of Int. Conf. on Intelligent Robots and Systems (IROS),
vol. 3, Victoria, BC, Canada, Oct. 1998, pp. 1931–1937. [Online].
Available: http://ieeexplore.ieee.org/xpl/freeabs all.jsp?tp=&arnumber=
724883&isnumber=15658 2.2.2

[26] “TDL - Task Description Language website,” http://www.cs.cmu.edu/
∼tdl/. 2.2.2

[27] C. Cotè, Y. Brosseau, D. Letourneau, C. Raı̈evsky, and F. Michaud,
“Robotic software integration using MARIE,” International Journal of
Advanced Robotic Systems, vol. 3, no. 1, pp. 55–60, March 2006. 2.2.2

[28] “MARIE website,” http://marie.sourceforge.net. 2.2.2
[29] S. Sablatnog, S. Enderle, and G. Kraetzschmar, “Miro - middleware

for mobile robot applications,” IEEE Transaction on Robotics and
Automation, vol. 18, pp. 493–497, Aug. 2002. 2.2.2

[30] “MOAST website,” http://moast.sourceforge.net. 2.2.2
[31] D. Calisi, F. Fedi, A. Leo, and D. Nardi, “Software development for

networked robot systems,” in Proc. of the 7th IFAC Symposium on
Intelligent Autonomous Vehicles (IAV), 2010. 2.2.2, 3.3.5

[32] S. Balakirsky, C. Scrapper, S. Carpin, and M. Lewis, “USARSim:
providing a framework for multi-robot performance evaluation,” in
Proceedings of the International Workshop on Performance Metrics for
Intellingent Systems (PerMIS), Gaithersburg, MD, USA, 2006. 2.3, 3.3.4

[33] I. of Electrical & Electronics Engineers, IEEE Standard Computer
Dictionary - A Compilation of IEEE Standard Computer Glossaries.
IEEE, Jan. 1991. 3.3.2

http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=4476319
http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=4476319
http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=4799437
http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=4799437
http://www.ros.org
http://orca-robotics.sourceforge.net
http://www.orocos.org
http://www.is.aist.go.jp/rt/OpenRTM-aist
http://www.is.aist.go.jp/rt/OpenRTM-aist
http://claraty.jpl.nasa.gov
http://playerstage.sourceforge.net
http://www.robots.ox.ac.uk/~pnewman/TheMOOS/
http://www.robots.ox.ac.uk/~pnewman/TheMOOS/
http://www.cs.cmu.edu/~ipc/
http://www.cs.cmu.edu/~ipc/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=724883&isnumber=15658
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=724883&isnumber=15658
http://www.cs.cmu.edu/~tdl/
http://www.cs.cmu.edu/~tdl/
http://marie.sourceforge.net
http://moast.sourceforge.net


D. CALISI et al./ Design Choices for Modular and Flexible Robotic Software Development 27

[34] R. Fielding and R. Taylor, “Principled design of the modern web
architecture,” ACM Transaction on Internet Technology (TOIT), vol. 2,
no. 2, pp. 115–150, 2002. 3.3.5

[35] R. Murphy, Introduction to AI Robotics. Cambridge, MA, USA: MIT
Press, 2000. 4

[36] D. Calisi, A. Farinelli, L. Iocchi, and D. Nardi, “Autonomous navigation
and exploration in a rescue environment,” in Proceedings of IEEE
International Workshop on Safety, Security and Rescue Robotics (SSRR),
Kobe, Japan, June 2005, pp. 54–59. 4

[37] V. Navalpakkam and L. Itti, “An integrated model of top-down and
bottom-up attention for optimal object detection,” in Proc. of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
New York, NY, USA, Jun. 2006, pp. 2049–2056. [Online]. Available:
http://ilab.usc.edu/publications/doc/Navalpakkam Itti06cvpr.pdf 4.2

[38] V. A. Ziparo, L. Iocchi, D. Nardi, P. F. Palamara, and H. Costelha, “Petri
net plans: a formal model for representation and execution of multi-
robot plans,” in AAMAS ’08: Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems. Richland,
SC: International Foundation for Autonomous Agents and Multiagent
Systems, 2008, pp. 79–86. 4.2

[39] D. Calisi, L. Iocchi, D. Nardi, C. Scalzo, and V. A. Ziparo, “Context-
based design of robotic systems,” Robotics and Autonomous Systems
(RAS) - Special Issue on Semantic Knowledge in Robotics, vol. 56,
no. 11, pp. 992–1003, Nov. 2008. 4.3

Daniele Calisi Daniele Calisi is with the SIED
Laboratory in Rome from 2004, in 2010, he
got the Ph.D at Dipartimento di Informatica e
Sistemistica (DIS) of ”Sapienza” University in
Rome, Italy. He worked for many projects re-
garding robotics. He has been a visiting scholar
in the Tadokoro Laboratory of Tohoku Univer-
sity, Sendai, Japan, and in the Neuroinformatics
Group of University of Osnabrueck, Germany.
His main research topics are robot motion plan-
ning, obstacle avoidance, machine learning and

software frameworks for robotics. http://www.dis.uniroma1.it/∼calisi/

Andrea Censi Andrea Censi received a Laurea
Specialistica (M.Eng.) degree in control engi-
neering from ”Sapienza” University in Rome,
Italy in 2007. Currently he is a Ph.D. student in
Control & Dynamical Systems at the California
Institute of Technology. His research interests
include estimation and filtering for robotics and
other artificial and biological systems. http://
www.cds.caltech.edu/∼ender/

Luca Iocchi Luca Iocchi is Assistant Professor
at Facolta’ di Ingegneria (Faculty of Engineer-
ing), ”Sapienza” Universityin Rome, Italy, Dipar-
timento di Informatica e Sistemistica (DIS), since
2002. He has been Post-Doc and visiting re-
searcher at SRI International, Menlo Park USA.
He has been working mainly in the field of cog-
nitive robotics, realizing teams of mobile robots
with cognitive capabilities for applications in dy-
namic environments (including soccer robots,
rescue robots, domestic robots). His main re-

search interests include: reasoning about actions and planning under
incomplete knowledge, cognitive robotics, multi-robot coordination, mo-
bile robot localization navigation and mapping, robot learning, vision-
based people and object tracking. http://www.dis.uniroma1.it/∼iocchi/

Daniele Nardi Daniele Nardi is Full Professor at
”Sapienza” University of Rome, member of Di-
partimento di Informatica e Sistemistica, where
he was employed since 1986 (as Full Profes-
sor since 2000). His current research interests
are mainly in the field of artificial intelligence in
the area of knowledge representation and rea-
soning, and cognitive robotics, multi agent and
multi-robot systems. http://www.dis.uniroma1.it/
∼nardi/

http://ilab.usc.edu/publications/doc/Navalpakkam_Itti06cvpr.pdf
http://www.dis.uniroma1.it/~calisi/
http://www.cds.caltech.edu/~ender/
http://www.cds.caltech.edu/~ender/
http://www.dis.uniroma1.it/~iocchi/
http://www.dis.uniroma1.it/~nardi/
http://www.dis.uniroma1.it/~nardi/

	Introduction
	Issues in robotics software development
	Concurrency model
	Information sharing
	Information sharing metaphors
	Information sharing implementation

	Tools and interoperability

	OpenRDK
	Concurrency Model
	Information sharing model
	Blackboard data-sharing metaphor: repository, properties and URLs
	Data-ports data-sharing metaphor: property links
	Data queues
	Data sharing implementation: inter-thread, inter-process and inter-machines

	Tools and interoperability
	Remote inspection and debugging
	Modularity and Configuration
	Logging and debugging sensor data
	Interoperability with simulators
	Interoperability with other frameworks


	Flexible development using OpenRDK
	Step 1: reactive system
	Step 2: hybrid reactive-deliberative
	Step 3: implementing a context-based architecture

	Conclusions
	References
	Biographies
	Daniele Calisi
	Andrea Censi
	Luca Iocchi
	Daniele Nardi


