
Journal of Software Engineering for Robotics 6(1), December 2015, 1-14
ISSN: 2035-3928

ROS As a Service:
Web Services for Robot Operating System

Anis Koubaa 1,2,∗

1 Prince Sultan University, Saudi Arabia
2 CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal

Abstract—Robot Operating System (ROS) represents nowadays a defacto-standard for the prototyping and development of software
for robotics applications. It presents several software abstraction layers to robotic hardware resources allowing software developers
to focus more on the software development without having to worry about the low-level hardware programming. However, developing
client-side applications requires a full understanding and mastering of ROS and robotics, which is not straightforward for non-ROS
users and for beginners. In addition, with the emergence of the Internet-of-Things (IoT) there is a increasing interest in providing Web
interfaces that allow users to seamlessly access robots through the Internet. To address those issues, there is a need to add a software
abstraction layer on top of ROS to allow a seamless interaction with ROS-enabled robots. In this paper, we leverage the use of Web
services to provide new programming abstraction layers to ROS based on SOAP and REST Web services. The innovation of this paper
consists in proposing software architecture to expose ROS resources as SOAP and REST Web services. In particular, we present an
object-oriented design of software meta-models for the integration of both Web services into ROS and we validate it through a real
implementation on a service robot. The experimental validation demonstrates how ROS Web services promote portability, reusability,
and interoperability of ROS-enabled robots with client applications. We considered the ROSJAVA client Application Program Interface
(API) to implement the proposed meta-models using JAX-RS and JAX-WS Web services APIs. To the best of our knowledge, this is the
first work that addresses the integration of Web services into ROS, in particular with the use of ROSJAVA client API, and we believe
that it will open new insights towards the emerging concept of Cloud Robotics.

Index Terms—Robot Operating System (ROS), Web services, SOAP, REST, Object-oriented design, Software meta-model.

1 INTRODUCTION

The design and development of efficient software for mobile
service robots is highly challenging and tedious. It requires
cross-disciplinary knowledge from low-level hardware drivers
to high-level software abstractions going through the design of
complex signal processing algorithms. Fortunately, the emer-
gence of robotics middleware platforms such Robot Operating
Systems (ROS) [1], Player [2], OROCOS [3], YARP [4] and
others provided one step towards a more affordable approach
for robotics software development. In fact, these middlewares
typically provide hardware abstraction layers and allow de-
velopers to be more dedicated on high-level component-based

Regular paper – Manuscript received August 19, 2015; revised October 12,
2015.

• This work was supported by the myBot project entitled MyBot: A Personal
Assistant Robot Case Study for Elderly People Care under the grant
(No.75-34) from King AbdulAziz City for Science and Technology (KACST).

• Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

software development with an emphasis on modularity and
reuse. Nowadays, ROS represents the most attractive platform
for mobile robot software development and is supported by a
large community of users and developers. One major benefit
of using ROS is that it provides an abstraction layer to
hardware resources (i.e. sensor and actuators) and exposes
any physical data as a labeled data stream, called topic. This
allows software developers to focus more on the high-level
development without having to deal with hardware issues.
In addition, ROS integrates a comprehensive set of libraries
of open-source software components such as openCV for
computer vision algorithms, PCL for Point Cloud, gmapping
for Simultaneous Localization and Mapping (SLAM), openni
for 3D sensing, and supports a wide range of sensors and
robotics platforms. Building complex applications with ROS
becomes a matter of effectively combining different modules
together. This reduces a lot the complexity of robotics software
construction; however, the integration of the different software
components still requires advanced skills in both robotics and
software engineering, and thus remains only limited to experts.
This represents one of the limitations that hindered the public
and large-scale deployment of service robots because of being

www.joser.org - c© 2015 by Anis Koubaa

2 Journal of Software Engineering for Robotics 6(1), December 2015

too much complex to program by non-roboticians experts. In
fact, programming client applications that interact with the
ROS-enabled robots also requires a deep understanding of the
robot internal software architecture and ROS platform due to
the lack of abstract interfaces that encapsulate implementation-
specific details and hide them from the client applications.

In this paper, we address this problem and we aim at
developing a software meta-model to integrate Web services
into ROS to provide new types of interfaces that makes easier
the interaction with ROS and the development of platform-
independent client applications for ROS-enabled robots. The
proposed approach leverages the Web services technology by
defining a Service-Oriented Architecture (SOA) framework
for the integration of Web services into ROS to expose ROS
ecosystem resources as Web services. The innovation of this
work does not lie in the concept of providing abstractions
to robots, as this was addressed in several previous works
including [5], [6], [7], but lies in the proposal of an inte-
gration process and software meta-models to provide new
abstractions to ROS using SOAP and REST Web services.
From a practical perspective, the main challenge was the
integration of the ROSJAVA client API with the JAX-WS
and JAX-RS Web services’ APIs to provide a systematic
approach for the implementation of the proposed ROS Web
services meta-models. One major non-functional requirement
in the implementation is not to rely on third-party Web services
engines, like Glassfish or Tomcat, but using the JAX-WS
Web services’ server API to run and deploy the designed
ROS Web services. The objective is to be independent from
any particular provider, and to ensure the deployment of Web
services on any robotic platform with Java Virtual Machine
(JVM) without additional provider-specific engines.

The rest of this paper is organized as follow. Section 2
discusses the state-of-the-art and emphasizes the contribution
of this paper as compared to previous works. Section 3
presents a background on the main concepts of ROS. Section
4 presents the ROS Web services contribution; it first outlines
the objectives, and then presents the integration process and
the software-meta models that integrate SOAP and REST Web
services into ROS. An experimental validation that illustrates
a case study implementation of the SOAP and REST meta-
models for a robot delivery application and the lessons learned
are presented in Section 5. Section 6 concludes the paper.

2 RELATED WORKS

Recently, there has been a growing interest in integrating
robots into the Internet, and in particular to the emerging
cloud computing and Internet-of-Things (IoT) paradigms. In
2010, reference [7] is one of the first papers that specified the
concept of Robot as a Service (RaaS). Yinong et al. proposed
a cloud framework for interacting with robots in the area of
service-oriented computing. The authors exploited the SOA to
design and implement a prototype of the Robot as a Service

(RaaS) cloud computing model, which consists in exposing
robotic services and applications, and allows interaction with
developers and end-users. The design complies with the com-
mon service standards, development platforms, and execution
infrastructure, following the Web 2.0 principles.

Since then, there have been several interpretations on how to
specify a Robot as a Service using different Internet and cloud
computing technologies. In [5], Osentoski et al. proposed the
rosjs and rosbridge middleware. This work represents
a milestone in the integration of ROS into the Web and the
Internet. The motivation behind rosbridge and rosjs is
mainly two folded: (1) to use commonly available Internet
browsers for non-roboticians users to interact with a ROS-
enabled robot (2) to provide Web developers with no back-
ground on robotics with simple interfaces to develop client
applications to control and manipulate ROS-enabled robots.
The core concept relies on the design of rosbridge as a
middleware and an abstraction layer on top of ROS acting as
a mediator between the front-end Web applications based on
the JavaScript technology (known as rosjs) and the back-
end ROS ecosystem. rosbridge enables a user to interact
with ROS topics and services using JavaScript primitives.
It also uses JSON serialized messages to interact with the
Web interface, which are converted to/from ROS serialized
messages to interact with the ROS back-end. This work repre-
sents an important milestone towards providing new Human-
Robot Interfaces (HRI) opening new horizon towards a more
popular deployment and use of mobile robots in the context
of education and enabling remote laboratories. In addition,
rosbridge and rosjs are designed for Web applications
based on JavaScript, and also provide common interfaces to
non-Web clients based on sockets (version 1.0) and Web
sockets (version 2.0). The ROS Web services that we present
in this paper represents a complementary alternative with
respect to rosbridge to integrate ROS-enabled robots into
the Internet, as we rely on Web services’ technologies rather
than on JavaScript Web technology to define the abstraction
layers on top of ROS. In addition, we do not develop or use any
specific middleware, like rosbridge, but we simply rely on
the Commercial-Off-The-Shell (COTS) Web services’ engines
(i.e. Glassfish, Tomcat, in our case JAX-WS).

In [8], Kato et al. proposed the Rsi Research cloud, which is
a cloud computing platform that offers robotic services through
the Internet. It allows for the integration of robot services in
the Internet and the composition of robot services. The authors
exploited the Robot Service Network Protocol (RSNP) to hide
robots complexities and expose robotic services to non-experts
in robots. They have tested their proposed architecture by
implementing a surveillance camera service. The authors did
not present any software architecture and did not use Web/Web
service technologies for the integration.

In our earlier work [9], we proposed RoboWeb, a SOAP-
based service-oriented architecture that virtualizes robotic
hardware and software resources and exposes them as services

Anis Koubaa et al./ ROS Web Services Journal of Software Engineering for Robotics 3

through the Web. RoboWeb consists in the integration of
different Web services technologies with the (ROS) mid-
dleware to allow for different levels of abstractions (multi-
layer architecture). It was designed to develop a remote lab
which allows remote researchers and students to access and
monitor robots that belong to the framework. We validated
our proposed architecture by developing a web interface that
allows non-technical users to access, control and monitor
robots that belong to the framework. The ROS Web services
proposed in this paper differ from the RoboWeb system in
several fronts. In fact, the SOAP Web service in RoboWeb
was not integrated inside ROS, but was developed externally
to the ROS ecosystem to provide a Web service interface
to the robot resources. However, in this paper, we integrate
Web services into ROS through an object-oriented design of
software meta-models. In addition, REST Web services were
not considered in RoboWeb. Furthermore, the implementation
of the ROS Web services’ meta-models relies on ROSJAVA
technologies and, JAX-WS and JAX-RS Web services APIs,
which represents an additional difference with respect to [9].
In fact, the meta-models we propose in this paper are more
generic, modular, embedded into ROS, and are based on
completely different technologies, namely ROSJAVA.

Some other recent approaches focused on REST Web ser-
vices to provide Web interfaces to robots and to ROS.

In [10], Souza et al. presented an approach for adopting
REST Web services for networked robotics. The motivation
was to overcome the limitations of RPC-based communica-
tions, like the absence of multiple operations over a single
HTTP transaction and support for asynchronous operations.
They evaluated their approach on the FastSlam algorithm and
compared it to the RPC approach. Our work differs from the
two latter in that we propose SOAP and REST Web services
for the ROS middleware and provide a modular software meta-
model in a unified framework that makes this integration more
effective, with the objective to promote Software as a Service
for future cloud robotics.

Later, in [11], Safaripour et al. proposed a RESTfull archi-
tecture for enabling rapid development of companion robot
applications. The architecture consists of two layers: (i.) an
Application layer, that includes the core logic and is composed
of the client applications, (ii.) a Service layer that defines
the RESTfull Web services, which is also divided into high-
level and low-level layers, to increase the flexibility and
maintainability of the system. A good contribution of this
work is the proposal of REST interfaces and resources to
define REST services for robots. They validate their proposal
through an implementation on a Lego robot. The work in [11]
contributed to the design of REST interfaces, but SOAP was
not considered. SOAP Web services have the advantage of
providing a formal and standard description of services, using
the Web Services Description Language (WSDL) XML-based
standard. In addition, the REST Web services are not designed
for ROS but for generic robots, although the concept can also

be specified for ROS.
In [6], Kehoe recently developed ROStful, an open-source

implementation of a lightweight Web server that operates over
rosbridge to support REST Web services. The lightweight
Web server exposes ROS topics, services and actions through
RESTful Web services. The motivation of the ROStful work
is to integrate Software as a Service concept into robotics.
The proposed REST server makes use of JSON serialization
of rosbridge. However, it differs from rosbridge in that
the latter relies on Web sockets whereas ROStful is based on
REST Web services. In [6], there is no software architecture or
a process description that demonstrates how the integration of
REST Web services was performed, but rather an implemen-
tation of a rosbridge-compatible Web server to allow for
processing REST requests over rosbridge. Our work differs
from [6] by proposing a unified framework for both SOAP and
REST Web services, and that is completely independent from
rosbridge. In addition, we use ROSJAVA, JAX-WS and
JAX-RS as enabling technologies for the integration of Web
services into ROS.

The Unmanned Aeriel Vehicles (UAVs) area also attracted
recent research works on SOA and REST Web services. In [12]
Mahmoud and Mohamed proposed a SOA model for collabo-
rative UAVs. A mapping between cloud computing resources
and UAVs’ resources was presented. Furthermore, essential
services (e.g. mission organization service, broker service,
ground station commands, etc.) and customized services (e.g.
sensing services, actuation services, image/data analysis, etc.)
were proposed. The paper only provides high-level description
of system architecture, components and services without any
specific detail on how these could be implemented on a real
system. In addition, the proposed architecture is too generic
so that it can applied to any type of robots and not specific
to UAVs. In [13], the same authors elaborated more on their
previous work [12] and designed a RESTful web services
model by following a Resource-Oriented Architecture (ROA)
approach to represent the resources and services of UAVs. In
addition, a broker that dispatches mission requests to available
UAVs was proposed. The broker is responsible for managing
the UAVs, their missions and their interactions with the client.
A small prototype was implemented on an Adruino board that
emulates a UAV and its resources. The limitation of this work
is that the cloud is used only to visualize the resources of the
UAVs, and is not used for performing extensive computations.
In addition, the prototype implementation is very limited as
it does not demonstrate a sufficient proof of concept on real
drones or robots, but on a simple Arduino broad. Thus the
feasibility of the approach was not effectively demonstrated.

In [14], Mahmoud et al. extended their previous work with
a more elaborated implementation and performance evaluation
study. The experimental testbed for emulated Arduino-based
on-broad UAV system were used, and several sensors were
used including temperature and humidity, ultrasonic for dis-
tance measurements. For the Internet connectivity, an Adafruit

4 Journal of Software Engineering for Robotics 6(1), December 2015

CC3000 Wi-Fi board was used to connect the Arduino to the
Internet. RESTful web services were defined and implemented
for manipulating each type of sensor through a Web interface.
The performance evaluation study shows the response times
of the HTTP requests to UAV resources were in the order
of 266 ms for the different types of sensors. However, the
experimental systems remains limited in terms of studying the
scalability issues and also applied to a small local network.

Other recent works adopted a more generic SOA approach
for accessing ROS-enabled robots without using Web services.
In [15], Brugali et al. proposed the Task Component Archi-
tecture (TCA), which is an object-oriented software architec-
ture for the seamless integration of the Service Component
Architecture (SCA) into robotic software control systems
to execute asynchronous tasks. The authors also integrated
TCA with ROS using a ROSProxyNode developed with
ROSJAVA. The TCA wrapper layer of ROS nodes allows a
complete management of ROS resources (i.e. nodes, topics,
and services). Our work differs from [15] in that we use Web
services technologies for enabling SOA in ROS, whereas [15]
leveraged the SCA for defining a service-oriented interfaces
to robots and ROS.

This paper proposes a new service-oriented approach by
providing generic Web services interfaces to external clients to
seamlessly interact with ROS. The main contribution consists
in the design of software meta-models for adding a new
abstraction layer to ROS using SOAP and REST Web Services.
We propose a new layer referred to as ROS Web Services
to expose the whole ROS ecosystem as a service to client
applications. We develop a SOAP Web service API (ros-
ws) and a REST Web service API (ros-rs), which are the
two major architectural models for SOA. ROS Web services
allows any client application on any platform to interact with
ROS simply by invoking the Web Services in exactly the
same way as invoking traditional Web services. In fact, Web
services are platform-independent, and supported by most
of commonly used programming languages and operating
systems. We also discuss the main real-world challenges and
practical considerations that must be taken into account for a
successful integration of Web services into ROS ecosystem,
as this integration is not trivial.

3 ROBOT OPERATING SYSTEM (ROS)
In this section, we present a general overview of the basic
concepts of ROS framework [1] to provide the required
background needed to understand the software architecture
proposed in this paper.

ROS acts as a meta-operating system for robots as it
provides hardware abstraction, low-level device control, inter-
processes message-passing and package management. It also
provides tools and libraries for obtaining, building, writing,
and running code across multiple computers. The main ad-
vantage of ROS is that it allows manipulating sensor data

/odom!

move_base/action_topics! /move_base!

/robot_state_publisher!/joint_states!

/scan! /amcl!

/tf!

move_base!

/map_server! /map!

Fig. 1. Example of a ROS Computation Graph. An ellipse
represents a node, and a rectangle represents a topic

of the robot as a labeled abstract data stream, called topic,
without having to deal with hardware drivers. This makes the
programming of robots much easier for software developers as
they do not have to deal with hardware drivers and interfaces.
It is useful to mention that ROS is not a real-time framework,
though it is possible to integrate it with real-time code.

ROS relies on the concept of computational graph, which
represents the network of ROS processes (potentially dis-
tributed across machines). An example of a simplified com-
putation graph is illustrated in Fig. 1.

A process in ROS is called a node, which is responsible
for performing computations and processing data collected
from sensors. As illustrated in Fig. 1, a ROS system is
typically composed of several nodes (i.e. processes), where
each node processes a certain data. For example, move base is
a node that controls the robot navigation, amcl is another node
responsible for the localization of the robot, and map server
is a node that provides the map of the environment to other
processes of the system. Nodes are able to communicate
through message-passing, where a message is a data struc-
ture with different typed-fields. This communication between
nodes is only possible thanks to a central node, referred
to as ROS Master, which acts as a name server providing
name registration and lookup for all components of a ROS
computation graph (e.g. nodes), and store relevant data about
the running system in a central repository called Parameter
Server.

ROS supports two main communication models between
nodes:

• The publish/subscribe model: in this model nodes ex-
change topics, which represents a particular flow on data.

Anis Koubaa et al./ ROS Web Services Journal of Software Engineering for Robotics 5

One node or several nodes may act as a publisher(s)
of a particular topic, and several nodes may subscribe
to that topic, through the ROS Master. Subscriber and
publisher nodes do not need to know about the existence
between other because the interaction is based on the
topic name and made through the ROS Master. For
example, in Fig. 1, the map server is the publisher of
the topic /map, which is consumed by the subscriber
node move base, which uses the map for navigation
purposes. /scan represents the flow of data received from
the laser range finder, also used by move base node to
avoid obstacles. /odom represents the control information
used by move base to control robot motion.

• The request/reply model: in this model, one node
acts as a server that offers the service under a certain
name, and receives and processes requests from other
nodes acting as clients. Services are defined by a pair
of message structures: one message for the request, and
one message for the reply. Services are not represented
in the ROS computation graph.

4 ROS AS A SERVICE: INTEGRATION OF
WEB SERVICES INTO ROS
4.1 Objectives

ROS As A Service (RoAAS) was designed to make an
abstraction of ROS resources, including topics, services and
actions for developers who do not have prior background on
robots or on ROS. We retain three major advantages behind
exposing ROS as a service following an SOA approach:

• Promote public use of robots: First, non-roboticians pro-
grammers, like Web and mobile applications developers,
will be able to develop applications that communicate
with ROS-enabled robots through a service layer. Web
services are a possible instance of the service layer that
can be used as a mediator between client applications
and the ROS ecosystem. In addition, users will have the
capability of directly interacting with robots through the
Internet, and this will enlarge the community of users and
applications’ developers.

• Robot-Cloud integration: A second advantage is the inte-
gration of the robots into the cloud; The robots can expose
their resources as services through the cloud that allows
users to virtually access these resources to perform some
actions or monitor the robots’ status. For example, in
case of surveillance applications, an end-user may want
to send a set of UAVs for a mission and control their
missions remotely through the cloud. The internal status
of the UAVs and their observations will be provided as
services to the end-user by the cloud back-end.

• Standard and unified interfaces: it will be possible to
develop unified and standard client applications that
seamlessly interact with heterogeneous robots provided

Client Device

Web Services Client Layer

Application Layer

Robot

ROS Layer

Application Layer

Web Services Layer
SOAP WS Interface REST WS Interface

SOAP WS Proxy

REST Client APISOAP Client API

Model3::DeploymentDiagram1

Fig. 2. Deployment Diagram of ROS Web Services

that they share the same service-oriented interfaces, inde-
pendently of the implementation details. Web services are
known to be quite effective in meeting this requirement.

To address these objectives, we propose to use Web services
as an additional abstraction layer on top of ROS. We design
generic software meta-models for the integration of SOAP
and REST Web services into ROS, which represent the two
fundamental architectural models for SOA. In addition, we
propose a systematic approach to develop concrete imple-
mentations of the meta-models for SOAP Web services (ros-
ws) and a REST Web services (ros-rs). ROS Web services
allow any client application on any platform to interact with
ROS simply by invoking the ROS Web services in exactly the
same way as invoking traditional Web services. In fact, Web
services present the advantage of being platform-independent,
and also supported by most of commonly used programming
languages and operating systems. In what follows, we present
the architecture of ROS Web services (ROS-WS) and explain
how to integrate them into ROS.

4.2 System Architecture
Figure 2 depicts the deployment diagram of ROS Web services
and illutrates the integration of the Web services’ layers into
the ROS-enabled service robot and the client device.

The Web services represent an intermediate layer that allows
seamless interaction between client applications and ROS
ecosystem in the service robot. In our architecture, we propose
to define both SOAP and REST Web services to offer client
applications’ developers a greater flexibility to choose the
most appropriate Web service interface for their application. In

6 Journal of Software Engineering for Robotics 6(1), December 2015

fact, on the one hand SOAP provides a well-defined contract-
based specification of the services using the Web Services
Description Language (WSDL) and a standardized message
exchange protocol using the SOAP envelop. On the other
hand, REST is a lighter weight Web service solution with
no formal service specification and provides the ability to
the client to interact with the robot through the basic HTTP
protocol from Web browsers. The choice of the interface is
relative to the client objectives and requirements. The reader
may refer to [16] for a thorough discussion and analysis about
the comparison between REST and SOAP Web services.

The Web service layer in the robot side must ensure the
exposure of ROS topics, services and actions as Web services
to the clients. As the the Web service layer is an intermediate
layer between ROS and the clients, it should be able to (i.)
subscribe to and publish any ROS topic, action or service (ii.)
deliver the ROS messages to clients subscribing to a particular
topic, and (iii.) forward messages received from the client
acting as publishers of ROS messages to ROS. The same
should also hold for ROS service invocation. This means that
for any ROS topic, action or service that must be exposed,
the Web service should instantiate a ROS subscriber and/or a
publisher for the topic or the service of interest. Then, Web
methods and interfaces should be defined according to which
functionalities the robot would like to expose and execute.
We present more details about the software architecture of
underlying technologies in the next sub-section.

4.3 Software Architecture

4.3.1 Technology Design Choices

To integrate Web services into ROS, we faced the challenge of
choosing the most appropriate technology to build the software
system and design its architecture. We have opted for the use
of Java as a Web service programming language, as it provides
a native and advanced support of SOAP and REST Web ser-
vices, although they are programming-language-independent
and platform-independent. However, Java EE provides stan-
dard APIs for SOAP and REST Web Services, known as
JAX-WS and JAX-RS specifications, respectively. Python also
provides REST Web service support, but much less than Java
for SOAP Web services.

This choice wouldn’t have been possible without the for-
tunate existence of the still-in-progress ROSJAVA, which is a
Java API that defines a ROS client library that allows ROS
developers to write ROS programs in the Java language and
interact with the ROS Master. It has to be noted that ROS
mainly relies on its C++ (roscpp) and Pyhton (rospy) client
APIs for developing ROS programs. ROSJAVA is relatively
recent and its purpose was mainly to extend ROS capabil-
ities to be integrated into mobile applications, through the
android_core API that extends ROSJAVA to write ROS
client programs for Android devices.

In this paper, we took advantage of all these capabilities to
develop Web Services’ interfaces using the powerful features
of Java EE in combination with ROSJAVA that allows us to
integrate Web Services with ROS in an elegant fashion. To the
best of our knowledge this is the first work that proposes Web
Services integration into ROS.

4.3.2 Software Meta-Models
The UML class diagrams of SOAP Web Services (ros-ws)
and REST Web Services (ros-rs) for ROS are presented in
Figures 3 and 4.

The UML class diagrams in Figures 3 and 4 can be
considered as generic meta-models that can be instantiated for
any type of robots. We used the generic term Robot as a
prefix in the name of the classes, but it can be replaced with
the name of a concrete robot when instantiated for a real robot.
There are mainly three software packages: (i.) ROSJAVA, (ii.)
SOAP Web services, and (iii.) REST Web services.

ROSJAVA package: The ROSJAVA package contains
classes purely written in ROSJAVA and does not include
any Web service functionality. The objective of the classes
in this package is to create publishers and subscribers of
all ROS topics and ROS services that will later be ex-
poses as services. This is a major requirement as it was
explained in Section 4.2. ROSJAVA package contains the class
AbstractNodeMain class that represents the superclass
of any ROS node to be created with ROSJAVA. In other
words, any ROSJAVA node should extend the ROSJAVA
superclass AbstractNodeMain and override the method
onStart() that represents the entry point of the node. Note
that AbstractNodeMain is an abstract class defined in the
ROSJAVA client API. In our meta-model, we create one class
that represents the ROS node to handle the topic and service
subscribers called RobotSubscribersNode, and another
class for the node RobotPublishersNode that handles
publishing all topics and services of interest. These two classes
will be reused in the classes defining the Web services and will
provide a bridge between the ROS ecosystem and the Web
services interfaces to be defined in the SOAP Web services
package.

SOAP Web services package: The SOAP Web services
package, that we call ros-ws, contains classes that expose
the ROS topics and services specified above as a Web
service. The Web services are defined through generic Java
interfaces for both subscribers and publishers Web services,
namely RobotSubscribersWebServiceInterface
and RobotPublishersWebServiceInterface.
These Java interfaces are used to define the contract of
the SOAP Web services and help in generating a WSDL
document independent of the implementation details.
These interfaces are implemented by the Web Services
concrete classes RobotSubscribersWebService
and RobotPublishersWebService. These classes
provide the implementation of the Web methods that

Anis Koubaa et al./ ROS Web Services Journal of Software Engineering for Robotics 7

ROSJAVA

AbstractNodeMain

+public GraphName getDefaultNodeName()
+public void onStart(ConnectedNode connectedNode)

RobotPublishersNode
+topicPublisher: Publisher<TopicType>

+RobotPublishersNode()
+onStart(ConnectedNode cn): void

SOAP Web Services

RobotSubscribersWebService
+connectedNode: ConnectedNode
+robotSubscribersNode: RobotSubscribersNode

+RobotSubscribersWebService(ConnectedNode cn)

RobotSubscribersWebServiceEndpointPublisherNode
-serviceEndpointInterface: Endpoint
-robotSubscriberWebService: RobotSubscribersWebService

+publishWebServices(): bool
+onStart(ConnectedNode cn): void

RobotPublishersWebService
+connectedNode: ConnectedNode
+robotPublishersNode: RobotPublishersNode

+RobotPublishersWebService(ConnectedNode cn)

RobotPublishersWebServiceEndpointPublisherNode
-serviceEndpointInterface: Endpoint
+robotPublishersWebService: RobotPublishersWebsite

+publishWebService(): bool
+onStart(ConnectedNode cn): void

RobotSubscribersWebServiceInterface RobotPublishersWebServiceInterface

RobotPublishersWebServiceNodesRunner
-endpointPublisher: RobotPublishersWebServiceEndpointPublisherNode
-nodeMainExecutor: NodeMainExecutor
-masteruri: URI
-nodeConfiguration: NodeConfiguration

-executeNode(): void
+main(): void

RobotSubscribersWebServiceNodesRunner
+endPointPublisher: RobotSubscribersWebServiceEndpointPublisherNode
+nodeMainExecutor: NodeMainExecutor
+masteruri: URI
+nodeConfiguration: NodeConfiguration

-executeNode(): void
+main(): void

RobotSubscribersNode
+topicSubscriber: Subscriber<TopicType>

+RobotSubscribersNode()
+onStart(ConnectedNode cn): void

Model2::ClassDiagram1

Fig. 3. UML Class Diagram of SOAP Web Services for ROS

are exposed to and invoked by the Web services’
clients. A Web method acts as a mediator that interacts
directly with the ROS ecosystem through the instanciated
objects of the classes RobotSubscribersNode and
RobotPublishersNode, and then they return the result
of the service execution to the Web service client that
invoked the method. Once the Web services are defined,
they must be published over the Internet to be accessible
to client applications. In Java, the typical way to publish a
Web service, without an integrated Web services platform
(such as Glassfish or Tomcat), is performed through the
Endpoint class with its static method publish(String
address, Object implementor), where
implementor is an instance of the Web service
class created above. This is performed in the classes
RobotSubscribersWSEndpointPublisherNode
and RobotPublishersWSEndpointPublisherNode.
These classes act as Web services’ proxies that expose the
Web services to the client, and at the same time a ROS node
as they extend the class AbstractNodeMain. One trick
is the fact that in the onStart(ConnectedNode
cn) methods of the Endpoint publishers, the
ConnectedNode cn is passed as a parameter to the
constructors of RobotSubscribersWebService

and RobotPublishersWebService, which in
turn will use this ConnectedNode reference
object to execute the onStart(ConnectedNode
cn) methods of RobotSubscribersNode and
RobotPublishersNode, needed for these nodes to launch
the ROS subscribers and publishers and to communicate with
the ROSMaster. This is a kind of a cascade reference for the
object ConnectedNode cn to have a reference to only one
node in ROS responsible for (i.) interacting with ROS and
also (ii.) for publishing the Web services. This is an important
trick in the integration of SOAP Web services with ROS using
ROSJAVA framework. Finally, we define two runner classes
RobotSubscribersWebServiceNodesRunner
and RobotPublishersWebServiceNodesRunner,
which is typical in ROSJAVA environment, to execute the
Endpoint publishers’ nodes with the main() method as
the entry point (not the onStart() method like in ROS
nodes). It is still possible to define the main() method in the
Endpoint publisher nodes, but from software engineering
design perspective the seperation allows for better code
modularity and reuse.

REST Web services package: In contrast to SOAP Web
services, which contains two main classes for publishers and
subscribers, The REST Web services package, that we call

8 Journal of Software Engineering for Robotics 6(1), December 2015

ROSJAVA

AbstractNodeMain

+public GraphName getDefaultNodeName()
+public void onStart(ConnectedNode connectedNode)

RobotPublishersNode
+topicPublisher: Publisher<TopicType>

+RobotPublishersNode()
+onStart(ConnectedNode cn): void

RobotSubscribersNode
+topicSubscriber: Subscriber<TopicType>

+RobotSubscribersNode()
+onStart(ConnectedNode cn): void

REST Web Services

RobotResource_1
+robotSubscribersNode: RobotSubscribersNode
+robotPublishersNode: RobotPublishersNodes
+connectedNode: ConnectedNode

+getXML(): String
+getJSON(): String
+getPlain(): String
+postResource(): void

RobotResourceRunner
+endPointPublisher: RobotResourcesEndpointPublisherNode
+nodeMainExecutor: NodeMainExecutor
+masteruri: URI
+nodeConfiguration: NodeConfiguration

+executeNode(): void
+main(): void

RobotResourcesEndpointPublisherNode
+robotResource_1: RobotResource_1
+roboResource_N: RobotResource_N
+httpServer: HttpServer

+onStart(ConnectedNode cn)

RobotResource_N
+robotSubscribersNode: RobotSubscribersNode
+robotPublishersNode: RobotPublishersNode
+connectedNode: ConnectedNode

+getXML(): String
+getJson(): String
+getPlain(): String
+postResource(): void

Model5::ClassDiagram1

Fig. 4. UML Class Diagram of REST Web Services for ROS

(ros-rs), defines a class for each particular resource. Any
ROS resource (topic, action or service) that must be exposed
as a REST Web service must be defined into a specific class
that represents this particular resource. For this reason, there
will be as many classes as the number of resources that
must be exposed to public. Each resource will be callable
through the four traditional HTTP methods, namely, GET,
POST, PUT, and DELETE. The operations related to each
of these methods is left to developer’s own choice based
on the application logic he would like to implement. For
each method, it is possible to specify a particular format
for returning the result to the calling client, namely as a
plain text, or JSON format or XML format, which provides
multiple ways to exploit the data at the client side. This
is illustrated in the resource classes RobotResource_i,
where i is the index of the resource. To expose these re-
sources over HTTP, an HttpServer object is created in
the class RobotResourceEndpointPublisherNode,
which launches the HTTP server and makes reference to the
resources created in the resources’ classes. As such, these
resources will be accessible through the REST Web service
model using the HTTP protocol as a transport protocol, and
resources are accessed according to the specified path in the re-
source class. Finally, the RobotResourceRunner will run
the RobotResourceEndpointPublisherNode node to

execute the HTTP server and start receiving requests.
An important point in the design of REST Web services is
the design of resources paths and names. Although there is no
formal specification that governs the design of the resources’
paths and names, a natural design choice in the context of
ROS would be to use the representative and unified naming
structure for typical topics and services to define the path to
a resource of interest. In ROS, the velocity topic can have
different names such as cmd_vel or cmd_vel_mux or other
more complex names. It is not appropriate to use the topic
name as is to define the resource name, as the topic name is
subject to changes, whereas a good design choice is to keep
the name of the resource fixed as a unified interface to the
client application independently of the implementation details.
For that purpose, it will be more appropriate to use a specific
keyword such as /velocity to represent a velocity
resource, independently of the real name of the topic, which is
implementation dependent. This allows for a better reuse of the
REST resources through standard interfaces for heterogeneous
robots. In Table 1, we propose a sample of possible REST
resources for some common topics, services and actions in
ROS. For example, /robot/pose allows a user to retrieve
the pose of the robot by making an HTTP request using the
GET method. Other actions and topics may also use the other
HTTP methods such as PUT, POST and DELETE to perform

Anis Koubaa et al./ ROS Web Services Journal of Software Engineering for Robotics 9

specific operation, such as for instance DELETE can be used
to cancel a goal sent to the robot, while it is executing it.

In the next section, we validate our architecture through an
experimental deployment of REST and SOAP web services
into a Turtlebot service robot.

5 EXPERIMENTAL VALIDATION

In this section, we present two illustrative examples that
demonstrates how to integrate Web services into ROS in a real-
world application of a service robot. The application consists
of a service robot based on the Turtlebot 2 platform that
we developed in the context of the MyBot funded project [17].
The service robot prototyped to provide services to faculty
members and students in Prince Sultan University (PSU). We
have used the Robot Operating System (ROS) development
framework for developing software modules and applications
of the service robot. A video demonstration showing the
deployment of courier delivery application (without using Web
services) is presented in the following video [18]. A video
demonstration that presents the integration of SOAP Web
service into ROS is available on this YouTube link [19].

5.1 SOAP Web Services for Delivery Application
The use case consists in sending a command to the
robot to perform a courier/coffee delivery between of-
fices and from the Cafe of the University, respectively.
We will only focus on the Web services interfaces de-
veloped and their integration into ROS, and we will not
describe how the back-end application was implemented
in ROS. The reader may refer to [20] for more de-
tails about the back-end implementation. Listing 1 presents
an instantiation of the class RobotPublishersNode as
TurtlebotPublishersNode.

This class advertises the ROS topic
/DeliveryRequestMsg/from_json. When a message
of type DeliveryRequestMsg is published on the topic
/DeliveryRequestMsg/from_json, the robot will
start executing the delivery mission. Depending on the mission
code, the robot will deliver either a coffee or a courier. Now,
the question how to send this request through a Web service
client? So, the objective is to expose the publisher of the
topic /DeliveryRequestMsg/from_json as a Web
service so that it can be invoked by a Web service client to
send a request to the robot for courier or coffee delivery.

According to our architecture in Figure 3, we first declare a
Java interface for the Web Service, and this represents a good
practice in Web Services design so as to separate the imple-
mentation of the Web service from its interface (i.e. descrip-
tion). The Web service interface is presented in Listing 2. The
interface contains one Web method exposed to the Web service
clients. The method ExecuteDeliveryRequest(...),
which takes a DeliveryRequestMessage as a parameter
and is responsible for executing the request for delivering a

coffee or courier to the user, depending on the mission code.
It is clear that this interface provides a clear description of the
service provided by the service robot, and hides implementa-
tion details from the end-users. All what clients’ applications
need to know is the service description, also known as the
contract, that defines the methods that can be invoked.

package com.rosjava;

public class TurtlebotPublishersNode extends
AbstractNodeMain{

public static Publisher<mybot_delivery_app.
DeliveryRequestMsg>
delivery_message_publisher;

public GraphName getDefaultNodeName() {
return GraphName.of("rosjava/

turtlebot_publisher_node");
}

public void onStart(final ConnectedNode
connectedNode) {

delivery_message_publisher = connectedNode.
newPublisher("/DeliveryRequestMsg/from_json"
, mybot_delivery_app.DeliveryRequestMsg.
_TYPE);

}
}

Listing 1. TurtlebotPublishersNode Class

package org.ros-ws;

@WebService (serviceName="TurtlebotOfficeService",
name="TurtlebotOffice",

targetNamespace="http://ros-ws.org")
public interface TurtlebotPublishersInterface {

@WebMethod (action="execute_delivery",
operationName="executeDelivery")

public void ExecuteDeliveryRequest(
DeliveryRequestMessage msg);

}

Listing 2. TurtlebotPublishersInterface Interface

Now, in the back-end of the Web service layer, we define
the implementation of the Web service interface as illus-
trated in Listing 3. Observe that the constructor of the class
takes a ConnectedNode object as a parameter to initial-
ize the connectedNode attribute. This connectedNode
object is responsible for advertising the topics’ publish-
ers, and publishing messages in the ROS ecosystem. The
ConnectedNode object passed as a parameter in the con-
structor is effectively created in the Endpoint publisher class
in Listing 4, which publishes the Web service. In Listing 3,
the ConnectedNode reference is passed to the onStart()
method that is used to advertise a new topic publisher, as in
Listing 1. As such, this single node reference is used across
all the layers of Web services and ROS. This is the key of the
Web services intergration into ROS, as mentioned earlier.

10 Journal of Software Engineering for Robotics 6(1), December 2015

TABLE 1
Examples of REST Resources for ROS Topics, Actions and Services

Resources Description HTTP Action ROS Topic Type

/robot/pose/ manages the pose of the
robot GET: retrieve the pose of the robot nav msgs/Odometry

/robot/velocity/ manages the velocity of
the robot

GET: retrieve the angular and linear
velocities of the robots
PUT: update the velocity of the robot

geometry msgs/Twist

/robot/velocity/linear/ handle the linear velocity
component of the robot geometry msgs/Vector3

/robot/sensors/ list of available sensors in
the robot

GET: retrieve the list of all sensors in the
robot

/robot/navigation/services/
list of all services
provided by the
navigation stack

GET retrieve the list of all services of the
navigation stack

/robot/navigation/action/goal/
handle the action of
sending/cancelling a goal
location

GET: get current goal location sent to the
navigation stack of the robot
PUT: send a goal location to the
navigation stack of the robot
DELETE: cancel the goal the location
execution

move base msgs/MoveBaseActionGoal

/robot/navigation/service/plan
handle the generation of
a plan in the navigation
stack

GET: retrieve a plan to a given pose from
the navigation stack nav msgs/GetPlan

package org.ros-ws;

@WebService(endpointInterface = "org.ros-ws.
TurtlebotPublishersInterface")

public class TurtlebotPublishersWebService
implements TurtlebotPublishersInterface{

static ConnectedNode connectedNode;
static TurtlebotPublishers turtlebotPublishers

= new TurtlebotPublishers();

public TurtlebotPublishersWebService(
ConnectedNode cn) {
connectedNode = cn;

turtlebotPublishers.onStart(cn);
}

public void ExecuteDeliveryRequest(
DeliveryRequestMessage
deliveryRequestMessage) {

DeliveryRequestMsg rosMessage =
TurtlebotPublishers.

delivery_message_publisher.newMessage();

/** update deliveryRequestMessage **/
rosMessage.setDepotY(deliveryRequestMessage.

getDepot_y());
rosMessage.setDepotX(deliveryRequestMessage.

getDepot_x());
rosMessage.setDestinationX(

deliveryRequestMessage.getDestination_x());
rosMessage.setDestinationY(

deliveryRequestMessage.getDestination_y());
rosMessage.setSourceX(deliveryRequestMessage.

getSource_x());
rosMessage.setSourceY(deliveryRequestMessage.

getSource_y());
rosMessage.setMessageCode(

deliveryRequestMessage.getCode());
/** publish the message to the "/

DeliveryRequestMsg/from_json" topic **/
TurtlebotPublishers.delivery_message_publisher.

publish(rosMessage);
}

}

Listing 3. TurtlebotPublishersWebService Class

When the Web service clients invokes the Web method
ExecuteDeliveryRequest(...), it will create a ROS
message, and publish it so that it is processed by the appli-
cation logic subscribing to this topic; in this case, it executes
either a delivery of a coffee or a courier, depending on mission
code. Finally, a node runner is created to launch the Endpoint
publisher node (Listing not presented for conciseness).

public class
TurtlebotPublishersWebServiceEndpointPublisherNode
extends AbstractNodeMain {

@Override
public GraphName getDefaultNodeName() {

return GraphName.of("rosjava/
turtlesim_publishers/endpoint_publisher"
);

}

@Override
public void onStart(final ConnectedNode

connectedNode) {
Endpoint sei = Endpoint.publish("http://"+

Turtlebot.IPAddress+":5555/
turtlesim_publisher_ws",
new TurtlebotPublishersWebService(

connectedNode)); //pass
ConnectedNode reference to the
constructor

}
}

Listing 4. TurtlebotPublishersWebServiceEndpointPub-
lisherNode Class

5.2 REST Web Services for Delivery Application
Listing 5 presents an implementation of a resource
class for the delivery application. The constructor ini-
tiates the turtlebotPublishers object using the

Anis Koubaa et al./ ROS Web Services Journal of Software Engineering for Robotics 11

ConnectedNode object passed as parameter in the construc-
tor of the Enpoint publisher class that effectively creates the
node reference, as depicted in Listing 6.

package org.mybot.turtlebot.rest;

/**import section **/

@Path("robot/app/delivery/")
public class DeliveryTopicResource {

public static TurtlebotPublishers
turtlebotPublishers;

static ConnectedNode connectedNode ;

public DeliveryTopicResource(ConnectedNode
connectedNode){
turtlebotPublishers = new

TurtlebotPublishers();
turtlebotPublishers.onStart(connectedNode);
}

@PUT
@Path("code/{code}/depot_x/{depot_x}/depot_y/{

depot_y}/dest_x/{dest_x}/dest_y/{dest_y}/
source_x/{source_x}/source_y/{source_y}")

public void executeDelivery (
@PathParam("code") int code,
@PathParam("depot_x") double depot_x,
@PathParam("depot_y") double depot_y,
@PathParam("dest_x") double dest_x,
@PathParam("dest_y") double dest_y,
@PathParam("source_x") double source_x,
@PathParam("source_y") double source_y){

DeliveryRequestMsg rosMessage =
TurtlebotPublishers.
delivery_message_publisher.newMessage();

rosMessage.setDepotX(depot_x);
rosMessage.setDepotY(depot_y);
rosMessage.setDestinationX(dest_x);
rosMessage.setDestinationY(dest_y);
rosMessage.setSourceX(source_x);
rosMessage.setSourceY(source_y);
rosMessage.setMessageCode(code);
System.out.println("\n\n\n\n\n\n Message

received \n\n\n\n");
TurtlebotPublishers.

delivery_message_publisher.publish(
rosMessage);

}

}

Listing 5. DeliveryTopicResource Class

In Listing 5, the ExecuteDelivery(...) Web method
executes when the Web service receives an HTTP
request using the PUT operation on the following URI
/robot/app/delivery/, added to this the list of
parameters passed to the Web method to prepare the
delivery request message according to user request, and
publishes it through the deliver_message_publisher
of the TurtlebotPublishers class. As such,
the application logic embedded in the robot will
receive the request and makes the robot execute it.

public class TurtlebotResourcesEndpointPublisherNode
extends AbstractNodeMain{

@Override
public GraphName getDefaultNodeName() {

return GraphName.of("rosjava/
resources_publisher/
rest_endpoint_publisher_node");

}

@Override
public void onStart(final ConnectedNode

connectedNode){
try {

DeliveryTopicResource deliveryTopicResource
=
new DeliveryTopicResource(connectedNode)

;
HttpServer httpServer =

HttpServerFactory.create(
"http://"+TurtleSim.IPAddress+"

:7003/",
new ClassNamesResourceConfig(

DeliveryTopicResource.class)
);

httpServer.start();
} catch (Exception e) {

e.printStackTrace();
}
}

}

Listing 6. TurtlebotResourcesEndpointPublisherNode
Class

5.3 Web Service Client

It is clear from these two illustrative examples that SOAP and
REST Web services represent an effective approach to expose
ROS resource to end-users in a seamless fashion. The clients
apps can then make abstractions of ROS and the specific im-
plementation details of the back-end service robot applications,
and mainly focus on the services exposes by Web service
interfaces. Listing 7 presents a simple example of a possible
client application that invokes the ExecuteRequest().

Observe that the client application is completely un-
aware of the ROS ecosystem and the details of the
implementation. It mainly consists in invoking through
the Service Enpoint Interface (SEI) the Web method
ExecuteDeliveryRequest(...)to make the robot per-
form the requested mission, in this case to deliver a coffee,
from the Cafe in location (60.63, 37.51) to the office
in location (73.02, 41.35). The developer makes a com-
plete abstraction of ROS and is able to command the robot
through available service interfaces. Finally, we note that the
response time of REST Web services is slightly faster than
SOAP Web services. In fact, we evaluated the response time
of a request sent through REST and SOAP clients to the
Web services in a localhost machine, and we found out that
the average response time is about 1.5 msec in for REST
requests whereas around 2.5 msec for SOAP requests. This
confirms that REST is a lighter weight than SOAP in terms
of deployment.

12 Journal of Software Engineering for Robotics 6(1), December 2015

public class TurtlebotPublishersWebServiceClient {

static final int COURIER_DELIVERY_MESSAGE_CODE=3;
static final int COFFEE_DELIVERY_MESSAGE_CODE=4;

public static void main(String []args){

URL url = new URL("http://"+Turtlebot.IPAddress+"
:5555/turtlesim_publisher_ws?wsdl");

//qualified name of the service
QName qname = new QName ("http://soap.turtlebot.

mybot.org/",
"TurtlebotPublishersWebServiceService");

//create a factory for the service
Service service = Service.create(url, qname);

//extract the endpoint interface, the service "
port"

TurtlebotPublishersInterface sei = service.
getPort(TurtlebotPublishersInterface.class);

DeliveryRequestMessage msg = new
DeliveryRequestMessage();

msg.setMessage_code(COFFEE_DELIVERY_MESSAGE_CODE
);

msg.setSource_x(76.02);
msg.setSource_y(41.35);
msg.setDestination_x(60.633);
msg.setDestination_y(37.51);
msg.setDepot_x(68.269);
msg.setDepot_y(38.718);

sei.ExecuteDeliveryRequest(
deliveryRequestMessage);

}
}

Listing 7. TurtlebotPublishersWebServiceClient Class

5.4 Discussion and lessons learned
The Robot As A Service (RAAS) research area is nowadays an
exciting yet challenging field with a lot of promising potentials
in the near future. In fact, this concept is rather broad and
open to many interpretations and concrete implementations.
This paper presented a new approach that leverages the use of
Web services to expose robots’s resources as services, with a
particular focus on ROS. Several previous and ongoing works
(i.e.[5], [9], [10], [15]) have investigated the RAAS vision
from different facets. The emergence of this research trend is
the result of the convergence of two major technologies in the
today’s IT world, namely the IoT and cloud computing. The
aforementioned efforts, including this work, aim at exposing
future robotic systems to end-users through the IoT. The use
of SOA and in particular Web services, as in this paper, is
indeed a promising approach for achieving this objective. We
retain the following lessons from this paper:

• Web services present an effective approach for providing
abstractions to ROS resources. On the one hand, it
is possible with the proposed ROS Web services to
provide an abstract specification of ROS-enabled robot

services by taking advantage of the WSDL standard
for SOAP Web services (refer to Figure 5) , and the
WADL standard for REST Web services. On the other
hand, these abstract services’ descriptions effectively
hide the implementation details from non-robotician
users and developers. For example, it is clear from
the Web service client application example that the
robot shows-up as a list of services, including the coffee
request and delivery request services that can be remotely
invoked, without having to know how these services are
actually implemented. This is illustrated in Figure 5 that
depicts the WSDL document of the SOAP Web service
corresponding to the delivery application. According
to this WSDL, and from the end-user perspective,
the robot is rather a service provider of two services
provided by the TurtlebotPublisherIterface,
namely the ExecuteCoffeeRequest and the
ExecuteDeliveryRequest. Of course, more
services can be added based on the user requirement.
We note that this generic service interface can be
implemented differently on different robots, but from
the end-user perspective, the service (or the contract)
remains the same independently of the robotic platform
and the service implementation. This is an important
feature for dealing with robot heterogeneity when
developing client applications or when deploying robots
into the cloud.

• The ROSJAVA client API of ROS is a major player
towards the integration of ROS into the Internet through
the use of the powerful feature of Java programming
language. In fact, it also allowed ROS to extend its
capabilities to be supported by Android devices, typically
relying on Java. However, Python remains an other strong
candidate to achieve comparable integration capabilities
to Java, as it greatly supports Internet applications devel-
opment, is better supported by ROS, and also provides
native Web services APIs.

• The ROS Web services abstraction would be quite useful
for enabling future cloud robotics, as they provide a SOA
solution that would facilitate the integration of robots
into the cloud. In fact, SOA and resources’ virtualization
represent a key component of today’s emerging clouds.
ROS Web services can allow the control of these robots
through abstract cloud interfaces based on Web services,
as it is the case nowadays with general-purpose comput-
ing and storage resources.

• The proposed SOAP and REST meta-models provide
an abstract description of services interfaces of ROS
ecosystem. However, this approach can be generalized by
following a model-driven development approach (like in
[21]) that allows for the code auto-generation. To achieve
this, one possible alternative is to follow a contract-
based approach by starting with the definition of the
WSDL for SOAP Web services and the WADL for REST

Anis Koubaa et al./ ROS Web Services Journal of Software Engineering for Robotics 13

Fig. 5. Excerpt from the WSDL document of the SOAP ROS Web Service of the Delivery Application

Web services then auto-generating the code based on the
abstract service description and also the structure of the
meta-models. We plan to investigate this approach in the
future.

6 CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a novel approach for integrating
Web services into ROS. The objective is to provide new pro-
gramming abstractions for robots applications’ developers to
control service robots through Web interfaces without having
to deal with implementation specific details. We developed
both SOAP and REST Web services interfaces for exposing
ROS resources to client applications so that services of interest
can be easily invoked. The new Web services abstraction layer
is an enabling technology for the newly emerging paradigm of
cloud robotics, where robots uses cloud computing capabilities
to either boost its computation resources or also to be exposed
as services through the cloud [9]. In fact, we are currently
working on extending these Web services interfaces for a
seamless interaction between the cloud and the robot, where
the robot may act as a client of the cloud if it needs to use
its computation resources for computation-greedy applications
(e.g. computer vision, SLAM, ...) or it may act as a server
behind the cloud that virtualizes the access to the robot through
a service interface. In this case, an end-user will just initiate
a mission, and the cloud will manage which real robot will
execute the mission based on the robots’ availability and
capability. We are investigating this paradigm in a surveillance
context of applications using drones, where drones are exposed
as services behind the cloud, which will decide which drone

will execute which mission based on user and application
requirements. We believe that the work presented in this paper
will pave the way towards more concrete implementations and
deployment of clouds robotics.

ACKNOWLEDGMENTS
This work is supported by the myBot project entitled “MyBot:
A Personal Assistant Robot Case Study for Elderly People
Care” under the grant number 34-75 from King AbdulAziz
City for Science and Technology (KACST). This work is
partially supported by Prince Sultan University.

REFERENCES
[1] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009. 1, 3

[2] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in In Proceedings
of the 11th International Conference on Advanced Robotics, 2003, pp.
317–323. 1

[3] H. Bruyninckx, “Open robot control software: the orocos project,”
in Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, vol. 3, 2001, pp. 2523–2528 vol.3. 1

[4] D. D. A. P. G. M. L. N. Paul Fitzpatrick, Elena Ceseracciu, “A middle
way for robotics middleware,” in Journal of Software Engineering for
Robotics, 2014, pp. 42–49. 1

[5] S. Osentoski, G. Jay, C. Crick, B. Pitzer, C. DuHadway, and O. C.
Jenkins, “Robots as web services: Reproducible experimentation and ap-
plication development using rosjs,” in Robotics and Automation (ICRA),
2011 IEEE International Conference on, 2011. 1, 2, 5.4

[6] “Introducing rostful: Ros over restful web services,
http://www.ros.org/news/2014/02/introducing-rostful-ros-over-restful-
web-services.html,” 2015. 1, 2

[7] C. Yinong, D. Zhihui, and G.-A. Marcos, “Robot as a service in cloud
computing,” in Service Oriented System Engineering (SOSE), 2010 Fifth
IEEE International Symposium on, 2010. 1, 2

14 Journal of Software Engineering for Robotics 6(1), December 2015

[8] K. Yuka, I. Toru, M. Yoshihiko, O. Keiju, U. Miwa, T. Yosuke,
and N. Masahiko, “Research and development environments for robot
services and its implementation,” in System Integration (SII), 2011
IEEE/SICE International Symposium on, 2011. 2

[9] A. Koubaa, “A service-oriented architecture for virtualizing robots
in robot-as-a-service clouds,” in Architecture of Computing Systems
ARCS 2014, ser. Lecture Notes in Computer Science, E. Maehle,
K. Rmer, W. Karl, and E. Tovar, Eds. Springer International
Publishing, 2014, vol. 8350, pp. 196–208. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-04891-8 17 2, 5.4, 6

[10] R. Souza, F. Pinho, L. Olivi, and E. Cardozo, “A restful platform for
networked robotics,” in Ubiquitous Robots and Ambient Intelligence
(URAI), 2013 10th International Conference on, Oct 2013, pp. 423–
428. 2, 5.4

[11] R. Safaripour, F. Khendek, R. Glitho, and F. Belqasmi, “A restfull archi-
tecture for enabling rapid development and deployment of companion
robot applications,” in Computing, Networking and Communications
(ICNC), 2014 International Conference on, Feb 2014, pp. 971–976. 2

[12] S. Mahmoud and N. Mohamed, “Collaborative uavs cloud,” in Un-
manned Aircraft Systems (ICUAS), 2014 International Conference on,
May 2014, pp. 365–373. 2

[13] ——, “Broker architecture for collaborative uavs cloud computing,”
in Collaboration Technologies and Systems (CTS), 2015 International
Conference on, June 2015, pp. 212–219. 2

[14] S. Mahmoud, N. Mohamed, and J. Al-Jaroodi, “Integrating uavs into
the cloud using the concept of the web of things,” Journal of Robotics,
vol. 2015, September 2015. 2

[15] D. Brugali, A. Da Fonseca, A. Luzzana, and Y. Maccarana, “Developing
service oriented robot control system,” in Service Oriented System
Engineering (SOSE), 2014 IEEE 8th International Symposium on, April
2014, pp. 237–242. 2, 5.4

[16] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services
vs. ”big”’ web services: Making the right architectural decision,” in
Proceedings of the 17th International Conference on World Wide Web,
ser. WWW ’08. New York, NY, USA: ACM, 2008, pp. 805–814.
[Online]. Available: http://doi.acm.org/10.1145/1367497.1367606 4.2

[17] “Mybot project, KACST Project Number 34-75,” 2015. 5
[18] “Video demonstration of mybot service robot for courier delivery appli-

cation, https://www.youtube.com/watch?v=oTLtmX2-ucA,” 2015. 5
[19] “Video demonstration of Web Services integration in ros,

https://www.youtube.com/watch?v=WvjY5XjAX7U,” 2015. 5
[20] A. Koubâa, M. Sriti, H. Bennaceur, A. Ammar, Y. Javed, M. Alajlan,

N. Al-Elaiwi, M. Tounsi, and E. M. Shakshuki, “COROS: A multi-agent
software architecture for cooperative and autonomous service robots,”
in Cooperative Robots and Sensor Networks 2015, 2015, pp. 3–30.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-18299-5 1 5.1

[21] H. Bruyninckx, M. Klotzbücher, N. Hochgeschwender, G. Kraetzschmar,
L. Gherardi, and D. Brugali, “The brics component model: A model-
based development paradigm for complex robotics software systems,” in
Proceedings of the 28th Annual ACM Symposium on Applied Computing,
ser. SAC ’13. New York, NY, USA: ACM, 2013, pp. 1758–1764.
[Online]. Available: http://doi.acm.org/10.1145/2480362.2480693 5.4

Dr. Anis Koubaa received his B. Sc. in Telecom-
munications Engineering from Higher School of
Telecommunications (Tunisia), and M. Sc. de-
grees in Computer Science from University
Henri Poincar (France), in 2000 and 2001, re-
spectively, and the Ph. D. degree in Computer
Science from the National Polytechnic Institute
of Lorraine (France), in 2004. He was a faculty
member at Al-Imam University from 2006 to
2012. Currently, he is an associate professor in
the Department of Computer Science at Prince

Sultan University and research associate in CISTER Research Unit,
ISEP-IPP, Portugal. He becomes a Senior Fellow of the Higher Educa-
tion Academy (SFHEA) in 2015. He has published over 120 refereed
journal and conference papers. His research interest covers mobile
robots, robotics software engineering, Internet-of-Things, cloud comput-
ing and wireless sensor networks. Dr. Anis received the best research
award from Al-Imam University in 2010, and the best paper award of the
19th Euromicro Conference in Real-Time Systems (ECRTS) in 2007. He
is the head of the ACM Chapter in Prince Sultan University. His H-Index
is 26.

http://dx.doi.org/10.1007/978-3-319-04891-8_17
http://doi.acm.org/10.1145/1367497.1367606
http://dx.doi.org/10.1007/978-3-319-18299-5_1
http://doi.acm.org/10.1145/2480362.2480693

	Introduction
	Related Works
	Robot Operating System (ROS)
	ROS As A Service: Integration of Web Services into ROS
	Objectives
	System Architecture
	Software Architecture
	Technology Design Choices
	Software Meta-Models

	Experimental Validation
	SOAP Web Services for Delivery Application
	REST Web Services for Delivery Application
	Web Service Client
	Discussion and lessons learned

	Conclusions and Future Works
	References
	Biographies
	Dr. Anis Koubaa

